数学

初一数学解方程~ 急急急~

(1)设小明第二年需交房款X万元。 则X=5+上一年余剩欠款的利息 X=5+5%(120-40) X=5+4 X=9 所以小明第二年需交房款9万元。 (2)第Y年小明家需交房款6.75万元。 则6.75=每年应付房款为5万元+上一年余剩欠款的利息之和 6.75=5+5%[120-40-5(Y-1)] 1.75=5%[120-40-5(Y-1)] 35=80-5(Y-1) 45=5(Y-1) 9=Y-1 Y=10 所以第10年小明家需交房款6.75万元。
此后故乡只2023-07-01 13:08:171

高手帮我做几个数学题!(用初一的方法写!要写算式)

不会
大鱼炖火锅2023-07-01 13:08:121

数学初一下册的利息问题

你要的是什么?
墨然殇2023-07-01 13:08:124

六年级数学题

ni bu neng shao xie dian ma?
康康map2023-07-01 13:08:123

30道关于购物的数学问题

例1. 初一年级的小刚和小强在讨论利润率的问题.小刚说:我的商品A进价是1600元,按标价2000元的9折销售,我的商品A的利润率高;小强说:我的商品B进价是320元,按标价460元的8折销售,我的商品B的利润率高.两人争论不休,请你帮助算一算,看谁的商品利润率高?例2.商店将进价为600元的商品按标价的8折销售,仍可获利120元,则商品的标价是多少元?例3.(安徽中考)张新和李明相约到图书城去买书,请你根据他们的对话内容,求出李明上次所买书籍的原价. 例4. 某种商品进货之后,零售价确定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进货价),问这种商品的进货价是多少? 例5. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元? 例6.某个体商贩在一次买卖中同时卖出两件上衣,每件都以135元出售,按成本计算,其中一件盈利25%,另一件亏本25%,试问: (1)在这次买卖中,该商贩是赚还是赔,还是不赚不赔? (2)把题中的135元改为任何正数a,情况如何? * 例7.(陕西中考)某企业生产一种产品,每件成本价为400元,销售价为510元,本季度销售了件,为了进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调查,预测下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润保持不变,该产品每件的成本价应降低多少元? 例8. 某市百货商场元月1日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元优惠10%;超过500元的,其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品不打折值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将这两次的钱合起来购同样的商品是更节省还是亏损?说明你的理由? 某商场搞促销活动,所有商品一律七五折,一件毛衣现在的价钱比原来便宜60元,这件毛衣原来的价格是多少钱?儿童书店所有图书一律七折销售,新华书店所有图书一律"买四送一",六年级要买20本<趣味数学>,到哪家书店买比较便宜一件商品的售价为720元,利润是成本的20%,如果要把利润提高到成本的30%,那么提高售价多少元?(用方程解商店进了100台彩电,每台进价为2000元,进货后市场情况较好,以每台2200元的零售价销售,用了不长时间就销售了40台,后来出现滞销,年底将到,商场为了减少库存加快流通,决定对剩下的60台打折促销,问在零售价每台2200元的基础上打几折,商场才能使100台彩电全部销售且总利润不低于4%? 某商场的空调原价每台是2500元,打折后销售量可增加10台,要使打折后的销售额为100000元,那么折扣率应为多少?典例1 某商品按定价的80%出售,仍能获得20%的利润。定价时期望的利润百分数是多少? 举一反三训练1 1.某种商品的利润是20%,如果进货价降低20%,售出价保持不变,那么商品的利润是百分之几? 2.某服装店把一批西服按50%的利润定价,当销售75%以后,剩下的打折出售,结果获得的利润是预期利润的70%,剩下的打几折出售? 3.某商品按20%的利润定价,若按八折出售,每件亏损64元。每件成本是多少元? 典例2 甲、乙两种商品成本共200元。甲商品按30%的利润定价,乙商品按20%的利润定价,后来两种商品都按定价的90%出售,共获利润27.7元。甲、乙两种商品的成本各是多少元? 解 举一反三训练2 1.某出版社出版某种书,今年每册书的成本比去年每册书增加10%,但是仍然保持原售价,结果每本盈利下降了40%,但今年的发行册数比去年增加80%,那么今年发行这种书获得的总盈利比去年增加了百分之几? 2.某商品按定价出售,每个可以获得利润50元。现在按定价的八折出售8个和按定价每个减价40元出售12个所获得的利润一样。这种商品每个定价多少? 3.商店购进一批本子,每本1元,若按定价的80%出售,能获得20%的利润,现在,本子的成本降低按原定价的70%出售,仍能获得50%的利润。则现在这种本子进价每本几元? 典例3 张大爷有5000元钱,打算存入银行两年。已知有两种储蓄办法:一种是存两年期的,年利率为2.43%;另一种是先存一年期的,年利率为2.25%,第一年到期时把本金和利息取出来合在一起,再存一年。选择哪种办法得到的利息多一些?﹙利息税率为5%﹚举一反三训练3 1.爸爸妈妈给小静存了4万元教育存款,存期为三年,年利率为3.24%,到期一次支取,支取时凭学生身份证明,可以免征储蓄存款利息所得税。 (1)小静到期可以拿到多少钱? (2)如果是普通三年期存款,应缴纳利息税多少元?﹙利息税率为5%﹚ 2.若两年定期存款的年利率为2.52%,到期需交5%的利息税,小明爸爸今年3月5日存入1000元两年定期,到期实得本息是多少元? 3.某人在银行存入10000元人民币,存期为一年,年利率为2.06%﹙利息税率为5%﹚,到期后,他要把利息全部捐给希望小学。他捐款多少元? 4.某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款得年利率为4%,第几年小明家需交款5200元? 5.假定A种保险每投保1000元,要交保险费3元,保险期1年,期满后不退保险费,续保需重新缴费。B种保险按储蓄方式,每投保1000元,缴储蓄金40元,保险期1年,期满后不论是否得到赔款均全额退还储蓄金,以利息作为保险费,年利率为4%。若要投保8万元,A、B两种保险哪一种合算,为什么? 典例4 海淀图书城内某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的,只有甲种书得到了90%的优惠。这时,买甲种书所付的总钱数是买乙种书所付总钱数的2倍。已知乙种书每本定价时1.5元,甲种书每本定价多少元?举一反三训练4 1.佳佳商店进行打折销售,规定购买200元以下商品不打折;200元以上(500元以下)则全部打九折;如购满500元以上的商品,就把500元以内的打九折,超出的打八折。王华买了三件商品,定价分别是156元、438元、615元,那么如果她一次买这些商品的话,可节省多少元?2.某商场在奥运会期间,将一批商品降价出售。如果减去定价的10%出售,可以赢利120元。如果减去定价的15%出售,亏损120元。此商品的定价是多少? 3.张大伯把120千克青菜运到集市上去卖,其中按每千克2.4元卖出,剩下的按八折卖出。这些青菜一共卖了多少钱? 4.成本为3.5元的笔记本4000本,按50%的利润定价出售,当售出80%后,剩下的笔记本打折出售,结果获得的利润是预定的88%,剩下的笔记本出售时是按定价打了几折? 能力加强 1.一件商品按30%的利润定价,然后按七折卖出,结果亏损了18元,这件商品的成本是多少元?2.服装商场购进一批儿童服装,先按40%的利润定价出售,当售出这批服装的90%后,剩下的服装全部五折出售,这批儿童服装全部售出后实际可获利百分之几? 3.某水果店到苹果产地收购苹果,收购价为每千克1.2元。从产地到商店的距离是400千米,运费为每吨货物每运 1千米收1.5元,如果在运输及销售过程中的损耗是10%,那么商店要实现15%的利润率,零售价应是每千克多少元? 4.王阿姨把5000元钱存入银行,定期三年,年利率是3.12%,若利息的税金按5%计算,到期时,王阿姨应得本金和税后利息共多少元? 5.某商场参加财物保险,保险金额为4000万元,保险费率为0.75%,由于事故损失了650万元的物品,保险公司赔偿了500万元,这个商场实际损失了多少万元? 6.张先生向商店订购某一商品,每件定价100元,共订购60件。张先生对商店经理说:“如果你肯减价,每减价1元,我就多订购3件。”商店经理算了一下,如果减价4%,由于张先生多订购,仍可获得与原来一样多的总利润,这种商品的成本是多少元? 7.某文体商店用2200元钱购进一批篮球和足球,篮球比足球多15个,商店出售足球的定价是20元,篮球的定价比足球高20%,这批球售完后共得利润1020元,足球和篮球各有多少个?
人类地板流精华2023-07-01 13:08:121

有三道数学题不会!谁会啊!用一元一次方程解或用计算方法,知识范围不能超过初一!

你都已经问过一遍了,也已经解决了,你还问我干什么?
墨然殇2023-07-01 13:08:114

数学问题

(1)观察所交水费的平均水价知,该户居民当月用水量超过了20立方米设这个月用水x立方米(显然x>20)则前20吨应交水费20*2.5=50元,余下应交水费(x-20)*4元,总所交水费为50+(x-20)*4元根据总所交水费/总用水量=平均水价列式有[50+(x-20)*4]/x=3解得x=30(立方米)(2)首付后欠款=120-40=80万元,第二年应付利息80*5%因此第二年应交房款5+80*5%=9(万元)设第x年需交房款6.75万元因每年交完房款后,欠款减少5万元利息按上一年欠款计算又第2年开始交房款,到第x-1年共交[(x-1)-2+1]*5=(x-2)*5万元房款,到第x年欠款为80-(x-2)*5万元则到第x年应交房款5+[80-(x-2)*5]*5%=6.75解得x=11(第11年)
hi投2023-07-01 13:08:111

初中数学试题及答案

  初中数学试题及答案   选择题   (1)有写着数字2、5、8的卡片各10张,现在从中任意抽出7张,这7张卡片的和可能等于( )。   A、21 B、25 C、29 D、58   答案:C   (2)某开发商按照分期付款的形式售房。张明家购买了一套,现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款5000元,与上一年剩余欠款的利息之和。已知剩余欠款的年利率为0.4%,第( )年张明家需要交房款5200元。   A、7 B、8 C、9 D、10   答案D   (3)若干名战士排成8列长方形的队列,若增加120人或减少120人都能组成一个新的正方形队列,那么,原有战士( )人。   A、904 B、136 C、240 D、360   解:A、B   此题反推一下即可。所以选择A、B   (4)一个三位数,它的反序数也是一个三位数,用这个三位数减去它的反序数得到的差不为0,而且是4的倍数。那么,这样的三位数有( )个。   A、2 B、30 C、60 D、50   答案:D   这个三位数与它的反序数除以四的余数应该相等,   不妨设这个三位数是ABC,则它的反序数为CBA。于是有ABC-CBA=4的倍数,即100A+10B+C-(100C+10B+C)=4的倍数,整理得99(A-C)=4的倍数,即可知A-C是4的倍数即可,但是不能使这两个三位数的差为0,所以分别有5,1;6,2;7,3;8,4;9,5四组。每组中分别有10个,那么共有50个。   (5)有若干条长短、粗细相同的绳子,如果从一端点火,每根绳子都正好8分钟燃尽。现在用这些绳子计量时间,比如:在一根绳子的两端同时点火,绳子4分钟燃尽;在一根绳子的一端点火,燃尽的同时点第二根绳子的一端,两根绳子燃尽可计时16分钟。   规则:①计量一个时间最多只能使用3条绳子。   ②只能在绳子的端部点火。   ③可以同时在几个端部点火。   ④点着的火中途不灭。   ⑤不许剪断绳子,或将绳子折起。   根据上面的5条规则下列时间能够计量的有( )。   A、6分钟 B、7分钟 C、9分钟   D、10分钟 E、11分钟、 F、12分钟   答案:A,B,C,D,F。只有11分钟计量不出来。   通过上面对数学选择题试题的知识练习学习,希望同学们对上面的题目知识都能很好的掌握,相信同学们会从中学习的更好的哦。   因式分解同步练习(解答题)   关于因式分解同步练习知识学习,下面的题目需要同学们认真完成哦。   因式分解同步练习(解答题)   解答题   9.把下列各式分解因式:   ①a2+10a+25 ②m2-12mn+36n2   ③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2   10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.   11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.   答案:   9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2   通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。   因式分解同步练习(填空题)   同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。   因式分解同步练习(填空题)   填空题   5.已知9x2-6xy+k是完全平方式,则k的值是________.   6.9a2+(________)+25b2=(3a-5b)2   7.-4x2+4xy+(_______)=-(_______).   8.已知a2+14a+49=25,则a的值是_________.   答案:   5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12   通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。   因式分解同步练习(选择题)   同学们认真学习,下面是老师提供的关于因式分解同步练习题目学习哦。   因式分解同步练习(选择题)   选择题   1.已知y2+my+16是完全平方式,则m的值是( )   A.8 B.4 C.±8 D.±4   2.下列多项式能用完全平方公式分解因式的是( )   A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1   3.下列各式属于正确分解因式的是( )   A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2   C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2   4.把x4-2x2y2+y4分解因式,结果是( )   A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2   答案:   1.C 2.D 3.B 4.D   以上对因式分解同步练习(选择题)的知识练习学习,相信同学们已经能很好的完成了吧,希望同学们很好的考试哦。   整式的乘除与因式分解单元测试卷(填空题)   下面是对整式的乘除与因式分解单元测试卷中填空题的练习,希望同学们很好的完成。   填空题(每小题4分,共28分)   7.(4分)(1)当x _________ 时,(x﹣4)0=1;(2)(2/3)2002×(1.5)2003÷(﹣1)2004= _________   8.(4分)分解因式:a2﹣1+b2﹣2ab= _________ .   9.(4分)(2004万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要 _________ .(单位:mm)(用含x、y、z的代数式表示)   10.(4分)(2004郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为 _________ .   11.(4分)(2002长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.   (a+b)1=a+b;   (a+b)2=a2+2ab+b2;   (a+b)3=a3+3a2b+3ab2+b3;   (a+b)4=a4+ _________ a3b+ _________ a2b2+ _________ ab3+b4.   12.(4分)(2004荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a)   第n年12345…   老芽率aa2a3a5a…   新芽率0aa2a3a…   总芽率a2a3a5a8a…   照这样下去,第8年老芽数与总芽数的比值为 _________ (精确到0.001).   13.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为 _________ .   答案:   7.   考点:零指数幂;有理数的乘方。1923992   专题:计算题。   分析:(1)根据零指数的意义可知x﹣4≠0,即x≠4;   (2)根据乘方运算法则和有理数运算顺序计算即可.   解答:解:(1)根据零指数的意义可知x﹣4≠0,   即x≠4;   (2)(2/3)2002×(1.5)2003÷(﹣1)2004=(2/3×3/2)2002×1.5÷1=1.5.   点评:主要考查的知识点有:零指数幂,负指数幂和平方的运算,负指数为正指数的倒数,任何非0数的0次幂等于1.   8.   考点:因式分解-分组分解法。1923992   分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中a2+b2﹣2ab正好符合完全平方公式,应考虑为一组.   解答:解:a2﹣1+b2﹣2ab   =(a2+b2﹣2ab)﹣1   =(a﹣b)2﹣1   =(a﹣b+1)(a﹣b﹣1).   故答案为:(a﹣b+1)(a﹣b﹣1).   点评:此题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组,要考虑分组后还能进行下一步分解.   9.   考点:列代数式。1923992   分析:主要考查读图,利用图中的信息得出包带的长分成3个部分:包带等于长的有2段,用2x表示,包带等于宽有4段,表示为4y,包带等于高的有6段,表示为6z,所以总长时这三部分的和.   解答:解:包带等于长的有2x,包带等于宽的有4y,包带等于高的有6z,所以总长为2x+4y+6z.   点评:解决问题的关键是读懂题意,找到所求的量的等量关系.   10.   考点:平方差公式。1923992   分析:将2a+2b看做整体,用平方差公式解答,求出2a+2b的值,进一步求出(a+b)的值.   解答:解:∵(2a+2b+1)(2a+2b﹣1)=63,   (2a+2b)2﹣12=63,   (2a+2b)2=64,   2a+2b=±8,   两边同时除以2得,a+b=±4.   点评:本题考查了平方差公式,整体思想的利用是解题的关键,需要同学们细心解答,把(2a+2b)看作一个整体.   11   考点:完全平方公式。1923992   专题:规律型。   分析:观察本题的`规律,下一行的数据是上一行相邻两个数的和,根据规律填入即可.   解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.   点评:在考查完全平方公式的前提下,更深层次地对杨辉三角进行了了解.   12   考点:规律型:数字的变化类。1923992   专题:图表型 。   分析:根据表格中的数据发现:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.根据这一规律计算出第8年的老芽数是21a,新芽数是13a,总芽数是34a,则比值为   21/34≈0.618.   解答:解:由表可知:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和,   所以第8年的老芽数是21a,新芽数是13a,总芽数是34a,   则比值为21/34≈0.618.   点评:根据表格中的数据发现新芽数和老芽数的规律,然后进行求解.本题的关键规律为:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.   13.   考点:整式的混合运算。1923992   分析:运用完全平方公式计算等式右边,再根据常数项相等列出等式,求解即可.   解答:解:∵(x+2)2﹣1=x2+4x+4﹣1,   a=4﹣1,   解得a=3.   故本题答案为:3.   点评:本题考查了完全平方公式,熟记公式,根据常数项相等列式是解题的关键.   以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工作。   整式的乘除与因式分解单元测试卷(选择题)   下面是对整式的乘除与因式分解单元测试卷中选择题的练习,希望同学们很好的完成。   整式的乘除与因式分解单元测试卷   选择题(每小题4分,共24分)   1.(4分)下列计算正确的是( )   A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6   2.(4分)(x﹣a)(x2+ax+a2)的计算结果是( )   A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a3   3.(4分)下面是某同学在一次检测中的计算摘录:   ①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2   其中正确的个数有( )   A.1个B.2个C.3个D.4个   4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是( )   A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+1   5.(4分)下列分解因式正确的是( )   A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)   6.(4分)(2003常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为( )   A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab   答案:   1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。1923992   分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.   解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;   B、应为a4÷a=a3,故本选项错误;   C、应为a3a2=a5,故本选项错误;   D、(﹣a2)3=﹣a6,正确.   故选D.   点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.   2.   考点:多项式乘多项式。1923992   分析:根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,计算即可.   解答:解:(x﹣a)(x2+ax+a2),   =x3+ax2+a2x﹣ax2﹣a2x﹣a3,   =x3﹣a3.   故选B.   点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.   3.   考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;整式的除法。1923992   分析:根据单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的性质,同底数幂的除法的性质,对各选项计算后利用排除法求解.   解答:解:①3x3(﹣2x2)=﹣6x5,正确;   ②4a3b÷(﹣2a2b)=﹣2a,正确;   ③应为(a3)2=a6,故本选项错误;   ④应为(﹣a)3÷(﹣a)=(﹣a)2=a2,故本选项错误.   所以①②两项正确.   故选B.   点评:本题考查了单项式乘单项式,单项式除单项式,幂的乘方,同底数幂的除法,注意掌握各运算法则.   4   考点:完全平方公式。1923992   专题:计算题。   分析:首先找到它后面那个整数x+1,然后根据完全平方公式解答.   解答:解:x2是一个正整数的平方,它后面一个整数是x+1,   它后面一个整数的平方是:(x+1)2=x2+2x+1.   故选C.   点评:本题主要考查完全平方公式,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.   5,   考点:因式分解-十字相乘法等;因式分解的意义。1923992   分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.   解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误;   B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;   C、是整式的乘法,不是分解因式,故本选项错误;   D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.   故选B.   点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.   6   考点:因式分解-十字相乘法等;因式分解的意义。1923992   分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.   解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误;   B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;   C、是整式的乘法,不是分解因式,故本选项错误;   D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.   故选B.   点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.   6.   考点:列代数式。1923992   专题:应用题。   分析:可绿化部分的面积为=S长方形ABCD﹣S矩形LMPQ﹣S?RSTK+S重合部分.   解答:解:∵长方形的面积为ab,矩形道路LMPQ面积为bc,平行四边形道路RSTK面积为ac,矩形和平行四边形重合部分面积为c2.   可绿化部分的面积为ab﹣bc﹣ac+c2.   故选C.   点评:此题要注意的是路面重合的部分是面积为c2的平行四边形.   用字母表示数时,要注意写法:   ①在代数式中出现的乘号,通常简写做“”或者省略不写,数字与数字相乘一般仍用“×”号;   ②在代数式中出现除法运算时,一般按照分数的写法来写;   ③数字通常写在字母的前面;   ④带分数的要写成假分数的形式.   以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工   初中数学试题总汇   解答题   1.把下列各式分解因式:   ①a2+10a+25 ②m2-12mn+36n2   ③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2   10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.   11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.   答案:   1.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2   通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。   因式分解同步练习(填空题)   同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。   填空题   2.已知9x2-6xy+k是完全平方式,则k的值是________.   3.9a2+(________)+25b2=(3a-5b)2   4.-4x2+4xy+(_______)=-(_______).   5.已知a2+14a+49=25,则a的值是_________.   答案:   2.y23.-30ab 4.-y2;2x-y 5.-2或-12   选择题   6.已知y2+my+16是完全平方式,则m的值是( )   A.8 B.4 C.±8 D.±4   7.下列多项式能用完全平方公式分解因式的是( )   A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1   8.下列各式属于正确分解因式的是( )   A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2   C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2   9.把x4-2x2y2+y4分解因式,结果是( )   A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2   答案:   6.C 7.D8.B9.D   初中数学试题精选之圆   因式分解同步练习(解答题)   解答题   9.把下列各式分解因式:   ①a2+10a+25 ②m2-12mn+36n2   ③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2   10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.   11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.   答案:   9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2   通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。   因式分解同步练习(填空题)   同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。   因式分解同步练习(填空题)   填空题   5.已知9x2-6xy+k是完全平方式,则k的值是________.   6.9a2+(________)+25b2=(3a-5b)2   7.-4x2+4xy+(_______)=-(_______).   8.已知a2+14a+49=25,则a的值是_________.   答案:   5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12   通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。   因式分解同步练习(选择题)   同学们认真学习,下面是老师提供的关于因式分解同步练习题目学习哦。   因式分解同步练习(选择题)   选择题   1.已知y2+my+16是完全平方式,则m的值是( )   A.8 B.4 C.±8 D.±4   2.下列多项式能用完全平方公式分解因式的是( )   A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1   3.下列各式属于正确分解因式的是( )   A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2   C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2   4.把x4-2x2y2+y4分解因式,结果是( )   A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2   答案:   1.C 2.D 3.B 4.D   以上对因式分解同步练习(选择题)的知识练习学习,相信同学们已经能很好的完成了吧,希望同学们很好的考试哦。
NerveM 2023-07-01 13:08:111

一些数学难题求解

1.设45座的客车x辆,租车费用Y 学生总数不变,列方程: x*45+15=(x-1)*60 15x=75,x=5因此,共有学生240人。若租用45座客车,需要x+1=6辆;租60座,需x-1=4辆。 租用45座客车费用:Y=250*(x+1)=1500元 租用60座客车费用:Y=300*(x-1)=1200元所以,租用60座客车较合算,租金1200元,应租4辆。
陶小凡2023-07-01 13:08:111

数学初一下册的利息问题

从第二年起.4%,小露家购买了一套现价为12万元的新房,购房时需首付(第一年)款为3万元,问小露家第几年需交房款5200元,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0某开发商按照分期付款的形式售房
小菜G的建站之路2023-07-01 13:08:112

数学题求助!!需要过程!!

12000+(224000-12000x)*0.05=1300012000+11200-600x=1300012000+11200-13000=600x600x=10200x=17
gitcloud2023-07-01 13:08:101

一个数学问题

设第X年张华家需交房款5200元5000+[120000-30000-5000*(X-2)]*0.4%=52005000+(100000-5000X)*0.4%=52005000+400-20X=520020X=200X=10
mlhxueli 2023-07-01 13:08:103

两道数学题 求解 求过程 怎么解

设x y 然后不等式连接
豆豆staR2023-07-01 13:08:102

解一道数学题

设第x年小明家需交房款2.33万元,2+(8-2X+10)*5.5%=2.332+0.99-0.11x=2.330.11x=0.66x=6
铁血嘟嘟2023-07-01 13:08:081

小学数学3年级下知识点1900年是平年还是闰年

1900年是平年公历闰年判定遵循的规律为:四年一闰,百年不闰,四百年再闰.公历闰年的简单计算方法(符合以下条件之一的年份即为闰年,反之则是平年)1.能被4整除而不能被100整除。2.能被100整除也能被400整除。
苏萦2023-07-01 13:07:411

高中数学,如图中位数怎么求?

666我们初中学的
tt白2023-07-01 13:07:034

高中数学频率直线分布图众数,平均数,中位数分别怎么求

中位数就是频率分布直方图面积的一半所对应的值 众数就是频率最高的中间值 平均数则是每组频率的中间值乘频数再相加 众数即出现频率最大的数,平均数就不用说了,中位数即把所有数从小到大排列,若总个数是偶数位则取正中间的两个数之和除以二,若总个数是奇数位则直接取中间的数即可
肖振2023-07-01 13:07:021

高中数学八个基础初等函数

y=kxy=x^ay=a^xy=sinxy=cosxy=lnxy=tanxy=c这几种函数的图像。奇偶性。增减性。有限次复合
铁血嘟嘟2023-07-01 13:06:584

人教版高一数学优秀说课稿

人教版高一数学优秀说课稿(一)   一、教材分析   (一)地位与作用   《幂函数》选自高一数学新教材必修1第2章第3节。是基本初等函数之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,为今后学习三角函数等其他函数打下良好的基础.在初中曾经研究过y=x,y=x2,y=x—1三种幂函数。   这节内容,是对初中有关内容的进一步的概括、归纳与发展,是与幂有关知识的高度升华.本节内容之后,将把指数函数,对数函数,幂函数科学的组织起来,体现充满在整个数学中的组织化,系统化的精神。让学生了解系统研究一类函数的方法.这节课要特别让学生去体会研究的方法,以便能将该方法迁移到对其他函数的研究.   (二)学情分析   (1)学生已经接触的函数,确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,已初步形成对数学问题的合作探究能力。   (2)虽然前面学生已经学会用描点画图的方法来绘制指数函数,对数函数图像,但是对于幂函数的图像画法仍然缺乏感性认识。   (3)学生层次参差不齐,个体差异比较明显。   二、目标分析   新课标指出“三维目标”是一个密切联系的有机整体。   (一)教学目标   (1)知识与技能   ①使学生理解幂函数的概念,会画幂函数的图象。   ②让学生结合这几个幂函数的图象,理解幂函图象的变化情况和性质。   (2)过程与方法   ①让学生通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。   ②使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。   (3)情感态度与价值观   ①通过熟悉的例子让学生消除对幂函数的陌生感从而引出概念,引起学生注意,激发学生的学习兴趣。   ②利用多媒体,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望。   ③培养学生从特殊归纳出一般的意识,培养学生利用图像研究函数奇偶性的能力。并引导学生发现数学中的对称美,让学生在画图与识图中获得学习的快乐。   (二)重点难点   根据我对本节课的内容的理解,我将重难点定为:   重点:从五个具体的幂函数中认识概念和性质   难点:从幂函数的图象中概括其性质。   三、教法、学法分析   (一)教法   教学过程是教师和学生共同参与的过程,教师要善于启发学生自主性学习,充分调动学生的积极性、主动性,要有效地渗透数学思想方法,努力去提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法。   1、引导发现比较法   因为有五个幂函数,所以可先通过学生动手画出函数的图象,观察它们的解析式和图象并从式的角度和形的角度发现异同,并进行比较,从而更深刻地领会幂函数概念以及五个幂函数的图象与性质。   2、借助信息技术辅助教学   由于多媒体信息技术能具有形象生动易吸引学生注意的特点,故此,可用多媒体制作引入情境,将学生引到这节课的学习中来。再利用《几何画板》画出五个幂函数的图象,为学生创设丰富的数形结合环境,帮助学生更深刻地理解幂函数概念以及在幂函数中指数的变化对函数图象形状和单调性的影响,并由此归纳幂函数的性质。   3、练习巩固讨论学习法   这样更能突出重点,解决难点,使学生既能够进行深入地独立思考又能与同学进行广泛的交流与合作,这样一来学生对这五个幂函数领会得会更加深刻,在这个过程中学生们分析问题和解决问题的能力得到进一步的提高,班级整体学习氛氛围也变得更加浓厚。   (二)学法   本节课主要是通过对幂函数模型的特征进行归纳,动手探索幂函数的图像,观察发现其有关性质,再改变观察角度发现奇偶函数的特征。重在动手操作、观察发现和归纳的过程。   由于幂函数在第一象限的特征是学生不容易发现的问题,因此在教学过程中引导学生将抽象问题具体化,借助多媒体进行动态演化,以形成较完整的知识结构。   四、教学过程分析   (一)教学过程设计   (1)创设情境,提出问题。新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生的思考空间,充分体现学生主体地位。   问题1:下列问题中的函数各有什么共同特征?是否为指数函数?   由学生讨论,总结,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1   这时学生观察可能有些困难,老师提示可以用x表示自变量,用y表示函数值,上述函数式变成:   都是自变量的若干次幂的形式。都是形如   的函数。   揭示课题:今天这节课,我们就来研究:幂函数   (一)课堂主要内容   (1)幂函数的概念   ①幂函数的定义。   一般地,函数   叫做幂函数,其中x是自变量,a是常数。   ②幂函数与指数函数之间的区别。   幂函数——底数是自变量,指数是常数;   指数函数——指数是自变量,底数是常数。   (2)几个常见幂函数的图象和性质   由同学们画出下列常见的幂函数的图象,并根据图象将发现的性质填入表格   根据上表的内容并结合图象,总结函数的共同性质。让学生交流,老师结合学生的回答组织学生总结出性质。   以上问题的设计意图:数形结合是一个重要的数学思想方法,它包含以数助形,和以形助数的思想。通过问题设计让学生着手实际,借助行的生动来阐明幂函数的性质。   教师讲评:幂函数的性质.   ①所有的幂函数在(0,+∞)上都有定义,并且图像都过点(1,1).   ②如果a>0,则幂函数的图像通过原点,并在区间〔0,+∞)上是增函数.   ③如果a<0,则幂函数在(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图像在y轴右方无限地趋近y轴;当x趋向于+∞时,图像在x轴上方无限地趋近x轴.   ④当a为奇数时,幂函数为奇函数;当a为偶数时,幂函数为偶函数。   以问题设计为主,通过问题,让学生由已经学过的指数函数,对数函数,描点作图得到五个幂函数的图像,但是我们应该知道绘制幂函数的图像比绘制指数函数和对数函数的图像更为复杂,因为幂函数随着幂指数的轻微变化会出现较大的变化,因此,在描点作图之前,应引导学生对几个特殊的幂函数的性质先进行初步的探究,如分析函数的定义域,奇偶性等,在根据研究结果和描点作图画出图像,让学生观察所作图像特征,并由图象特征得到相应的函数性质,让学生充分体会系统的研究方法。同时学生对于归纳性质这一环节相对指数函数,对数函数的性质,学生会有更大的困难。因此,教学中只须对他们的图像与基本性质进行认识,而不必在一般幂函数上作过多的引申和介绍。在教学中,采用从具体到一般,再从一般到具体的安排。   通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。   (3)当堂训练,巩固深化   例题和练习题的选取应结合学生认知探究,巩固本节课的重点知识,并能用知识加以运用。本节课选取主要选取了两道例题。   例1是课本上的例题:证明f(x)=x1/2在(0,+∞)上是增函数。这题先从“形”的角度判断函数的单调区间和单调性,再用到定义从“数”的角度对函数的单调性进行推理论证,培养学生的数形结合的数学思想和解决问题的专业素养。   例2是补充例题,主要培养学生根据体例构造出函数,并利用函数的性质来解决问题的能力,从而加深学生对幂函数及其性质的理解。注意:由于学生对幂函数还不是很熟悉,所以在讲评中要刻意体现出幂函数y=x1。3是增函数与y=x—5/4的图像的画法,即再一次让学生体会根据解析式来画图像解题这一基本思路   (4)小结归纳,回顾反思。小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:   (1)通过本节课的学习,你学到了哪些知识?   (2)通过本节课的学习,你的体验是什么?   (3)通过本节课的学习,你掌握了哪些技能?   (二)作业设计作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.我设计了以下作业:   (1)必做题   (2)选做题   (三)板书设计   板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。   五、评价分析   学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对幂函数是否有一个完整的集训,并进行及时的调整和补充。以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。   谢谢! 人教版高一数学优秀说课稿(二)   各位评委老师,大家好!   我是本科数学**号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与(小)值》(可以在这时候板书课题,以缓解紧张)。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。   一、教材分析   1、教材的地位和作用   (1)本节课主要对函数单调性的学习;   (2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)   (3)它是历年高考的热点、难点问题   (根据具体的课题改变就行了,如果不是热点难点问题就删掉)   2、教材重、难点   重点:函数单调性的定义   难点:函数单调性的证明   重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)   二、教学目标   知识目标:(1)函数单调性的定义   (2)函数单调性的证明   能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想   情感目标:培养学生勇于探索的精神和善于合作的意识   (这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)   三、教法学法分析   1、教法分析   "教必有法而教无定法",只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法   2、学法分析   "授人以鱼,不如授人以渔",最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。   (前三部分用时控制在三分钟以内,可适当删减)   四、教学过程   1、以旧引新,导入新知   通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)   2、创设问题,探索新知   紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。   让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。   让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。   3、例题讲解,学以致用   例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式   例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。   例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。   学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。   4、归纳小结   本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。   5、作业布置   为了让学生学习不同的数学,我将采用分层布置作业的方式:   6、板书设计   我力求简洁明了地概括本节课的学习要点,让学生一目了然。   (这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)   五、教学评价   本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。
LuckySXyd2023-07-01 13:06:581

讨论中学数学中函数的性质与函数图像的关系,并以指数函数说明。

二次函数的图象和性质2010-11-2014:341、二次函数y=ax2+c的图象与性质(1)抛物线y=ax2+c的形状由a决定,位置由c决定.(2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.(3)抛物线y=ax2+c与y=ax2的关系.抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.2、二次函数y=a(x-h)2的图象与性质①抛物线y=a(x-h)2的对称轴为x=h,顶点为(h,0).②y=a(x-h)2的形状与y=ax2的图象的形状相同,只是位置不同,它们彼此可以通过平移而得到.③把y=ax2的图象向左(或向右)平移|h|个单位,即得y=a(x-h)2的图象,由实践可知,当h>0时,向右平移,当h<0时,向左平移.3、二次函数y=a(x-h)2+k的图象与性质一般地,抛物线y=a(x-h)2+k与y=ax2的形状相同,只是位置不同.抛物线y=a(x-h)2+k有如下特点:①a>0时,开口向上;a<0时,开口向下;②对称轴是平行于y轴的直线x=h;③顶点坐标是(h,k).二次函数y=a(x-h)2+k的图象可由抛物线y=ax2向左(或向右)平移|h|个单位,再向上(或向下)平移|k|个单位而得到.4、二次函数y=ax2+bx+c(a≠0)的图象和性质即可化为y=a(x-h)2+k的形式,因此y=ax2+bx+c与y=a(x-h)2+k的图象具有一致性,即y=ax2+bx+c的图象是一条抛物线,它的顶点坐标为,对称轴是直线.当a>0时,抛物线开口向上,有最低点(即顶点),当时,,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.当a<0时,抛物线开口向下,有最高点(即顶点),当时,.在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.由于y=ax2+bx+c可化为的形式,所以抛物线y=ax2+bx+c可由抛物线y=ax2平移得到:第一步:若时,把y=ax2的图象向右平移个单位;若时,把y=ax2的图象向左平移个单位;第二步:若时,再把第一次平移后的图象向上平移个单位;若时,再把第一步平移后的图象向下平移个单位.所以抛物线y=ax2+bx+c与抛物线y=ax2的形状相同,只是位置不同.5、二次函数y=ax2+bx+c(a≠0)的图象的画法(1)先确定二次函数的对称轴,在对称轴的左右两侧取自变量x的值,通过列表、描点,用光滑曲线连接得到图象.(2)通过二次函数的图象进行平移得到抛物线y=ax2+bx+c的图象.6、抛物线y=ax2+bx+c(a≠0)与系数a、b、c的关系a、b、c的代数式作用字母的符号图象的特征a1.决定抛物线的开口方向;2.决定增减性a>0开口向上a<0开口向下c决定抛物线与y轴交点的位置,交点坐标为(0,c)c>0交点在x轴上方c=0抛物线过原点c<0交点在x轴下方决定对称轴的位置,对称轴是ab>0对称轴在y轴左侧ab<0对称轴在y轴右侧二、重难点知识讲解1、二次函数的三种形式:(1)一般式:y=ax2+bx+c(a、b、c是常数,a≠0);(2)顶点式:y=a(x-h)2+k,(h,k)为函数图象的顶点;(3)交点式:y=a(x-x1)(x-x2),(x1,0),(x2,0)为函数图象与x轴的交点.2、图象的变换二次函数的平移规律:任意抛物线y=ax2+bx+c都可转化为y=a(x-h)2+k,便可以由y=ax2适当平移得到.y=ax2h>0向右平移个单位y=a(x-h)2k>0向上平移个单位长度y=a(x-h)2+kh<0向左平移个单位k<0向下平移个单位长度3、根据已知条件正确求出二次函数的关系式用待定系数法求函数解析式时,应当根据已知条件选择适当的二次函数的形式.如果知道函数图象与x轴的交点,那么选择交点式;如果知道函数图象的顶点,那么选择顶点式;如果知道函数图象上三个一般的点,那么选择一般式.一次函数I、定义与定义式:一次函数自变量x和因变量y有如下关系:y=kx+b(k,b为常数,k≠0)则称y是x的一次函数。特别地,当b=0时,y是x的正比例函数。II、一次函数的性质:y的变化值与对应的x的变化值成正比例,比值为k即△y/△x=kIII、一次函数的图象及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象--一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。2.性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。3.k,b与函数图象所在象限。当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。IV、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。(1)设一次函数的表达式(也叫解析式)为y=kx+b。(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b①和y2=kx2+b②。(3)解这个二元一次方程,得到k,b的值。(4)最后得到一次函数的表达式。V、在y=kx+b中,两个坐标系必定经过(0,b)和(-k/b,0)两点1)反比例函数的图象是双曲线,反比例函数图象的两个分支关于原点对称.(2)当k>0时,反比例函数图象的两个分支分别在第一、三象限内,且在每个象限内,y随x的增大而减小;当k<0时,图象的两个分支分别在第二、四象限内,且在每个象限内,y随x的增大而增大.注意:不能说成“当k>0时,反比例函数y随x的增大而减小,当k<0时,反比例函数y随x的增大而增大.”因为,当x由负数经过0变为正数时,上述说法不成立.(3)反比例函数解析式的确定:反比例函数的解析式y=(k≠0)中只有一个待定系数k,因而只要有一组x、y的对应值或函数图象上一点的坐标,代入函数解析式求得k的值,就可得到反比例函数解析式.5.反比例函数解析式的确定在反比例函数y=(k≠0)定义中,只有一个常数,所以求反比例函数的解析式只需确定一个待定系数k,反比例函数即可确定.所以只要将图象上一点的坐标代入y=中即可求出k值.
苏萦2023-07-01 13:06:574

高中数学

设重心G(X,Y),则M(1/3X,1/3Y),把M点坐标代入椭圆方程,化简得X^2/36+Y^2/9=1
陶小凡2023-07-01 13:06:564

高一数学总结

只有五个一 集合与简易逻辑集合具有四个性质 广泛性 集合的元素什么都可以 确定性 集合中的元素必须是确定的,比如说是好学生就不具有这种性质,因为它的概念是模糊不清的 互异性 集合中的元素必须是互不相等的,一个元素不能重复出现无序性 集合中的元素与顺序无关二 函数这是个重点,但是说起来也不好说,要作专题训练,比如说二次函数,指数对数函数等等做这一类型题的时候,要掌握几个函数思想如 构造函数 函数与方程结合 对称思想,换元等等三 数列这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等四 三角函数三角函数不是考试题型,只是个应用的知识点,所以只要记熟特殊角的三角函数值和一些重要的定理就行五 平面向量这是个比较抽象的把几何与代数结合起来的重难点,结体的时候要有技巧,主要就是把基本知识掌握到位,注意拓展,另外要多做题,见的题型多,结体的时候就有思路,能够把问题简单化,有利于提高做题效率高一的数学只是入门,只要把基础的掌握了,做题就没什么大问题了,数学就可以上130
hi投2023-07-01 13:06:561

高一数学必修一知识点总结

没有
墨然殇2023-07-01 13:06:555

高一数学必修一知识点总结

  数学是比较容易得分的科目之一,那么高一数学必修一知识点有哪些呢。以下是由我为大家整理的“高一数学必修一知识点总结”,仅供参考,欢迎大家阅读。    第一章 集合与函数概念   一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性   说明:   (1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。   (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。   (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。   (4)集合元素的三个特性使集合本身具有了确定性和整体性。   3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}   2.集合的表示方法:列举法与描述法。   注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,   如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。   描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}   4、集合的分类:   1.有限集 含有有限个元素的集合 2.无限集 含有无限个元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5}二、集合间的基本关系   1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”   结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,   即:A=B ① 任何一个集合是它本身的子集。AíA   ②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)   ③如果 AíB, BíC ,那么 AíC   ④ 如果AíB 同时 BíA 那么A=B   3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.   4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作: CSA 即 CSA ={x | x?S且 x?A}   (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。   (3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ   ⑶(CUA)∪A=U   二、函数的有关概念   1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域   . 注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;   3 函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;   (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 构成函数的三要素:定义域、对应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (见课本21页相关例2) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象. C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A } 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。 (2) 画法 A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换   (3)作用: 1、直观的看出函数的性质; 2、利用数形结合的方法分析解题的思路。提高解题的速度。 发现解题中的错误。 4.快去了解区间的概念   (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.   5.什么叫做映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B” 给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象   说明:函数是一种特殊的映射,映射是一种特殊的对应   ,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:   (Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;   (Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。   常用的函数表示法及各自的优点:   1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;   2 解析法:必须注明函数的定义域;   3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;   4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值   补充一:分段函数 (参见课本P24-25) 在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。   分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.   (1)分段函数是一个函数,不要把它误认为是几个函数;   (2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 补充二:复合函数 如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。   例如: y=2sinX y=2cos(X2+1)   7.函数单调性   (1).增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.   注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质   2 必须是对于区间D内的任意两个自变量x1,x2;当x1   (2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.   (3).函数单调区间与单调性的判定方法 (A)   定义法: 1 任取x1,x2∈D,且x1   8.函数的奇偶性 (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.   注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).   (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称.   总结:利用定义判断函数奇偶性的格式步骤:   1 首先确定函数的定义域,并判断其定义域是否关于原点对称;   2 确定f(-x)与f(x)的关系;   3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.   首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .   9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)   10.函数最大(小)值(定义见课本p36页)   1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);   如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);   第二章 基本初等函数   一、指数函数 (一)指数与指数幂的运算   1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *. 当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand)   . 当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).   由此可得:负数没有偶次方根;0的任何次方根都是0,   , 2.分数指数幂 正数的分数指数幂的意义,规定: , 0的正分数指数幂等于0,0的负分数指数幂没有意义   指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.   (二)指数函数及其性质   1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1.   2、指数函数的图象和性质 a>1 0   (1)在[a,b]上, 值域是 或 ;   (2)若 ,则 ; 取遍所有正数当且仅当 ;   (3)对于指数函数 ,总有 ;   (4)当 时,若 ,则 ; 二、对数函数 (一)对数 1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)   说明:1 注意底数的限制 ,且 ; 2 ; 3 注意对数的书写格式. 两个重要对数: 1 常用对数:以10为底的对数 ; 2 自然对数:以无理数 为底的对数的对数 . 对数式与指数式的互化 对数式 指数式 对数底数 ← → 幂底数 对数 ← → 指数 真数 ← → 幂 (二)对数的运算性质 如果 ,且 , , ,那么: 1 · + ; 2 - ; 3 . 注意:换底公式 ( ,且 ; ,且 ; ). 利用换底公式推导下面的结论(1) ;(2) . (二)对数函数 1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞). 注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。 如: , 都不是对数函数,而只能称其为对数型函数. 2 对数函数对底数的限制: ,且 . 2、对数函数的性质: a>1 0   (三)幂函数   1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸; (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴. 第三章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。 2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即: 方程 有实数根 函数 的图象与 轴有交点 函数 有零点. 3、函数零点的求法: 求函数 的零点: 1 (代数法)求方程 的实数根; 2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数 . 1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点. 2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程 无实根,二次函数的图象与轴无交点。
ardim2023-07-01 13:06:511

高一数学《二次函数》知识全攻略

二次函数是幂函数的一种,是高中函数中比较基础但应用比较广泛的函数,学好二次函数有助于同学们在处理函数问题时得心应手,多多取分。 工具/材料 高一数学必修一教材 01 第一,二次函数的三种表示方法。适用于不同的情况,下面分别给大家介绍。 02 第二,二次函数的单调性,单调性就是增减性,表现在图像上就是图像升高或降低 03 第三,二次函数开口方向。由a的符号决定。 04 第四,二次函数与y轴的交点位置。由c的符号决定。 05 第五,二次函数与x轴的交点个数。由△=b^2-4ac决定。 06 第六,二次函数的最值。由定义域和开口方向共同决定。 07 第七,二次函数与一次函数的交点个数。由联立方程组得到的△=b^2-4ac决定。 08 第八,二次函数对称轴与y轴的关系,由a、b的符号决定。 特别提示 二次函数的一般式、顶点式和两根式之间是可以互换的。大家要熟练运用,适合哪一种就用哪一种
西柚不是西游2023-07-01 13:06:511

高中数学里面的函数部分是不是都有一定的联系? 幂函数,指数函数,二次函数,三角函数。它们和导数的关系

每个函数都有自己的基本表达式和基本性质啊,这些性质是需要花时间去好好研究的。导数就是研究函数在其区间内的增长还是下降吧,我记得不太齐了
凡尘2023-07-01 13:06:454

初中数学课本有提到幂函数了吗?

mlhxueli 2023-07-01 13:06:439

高中数学必修一的知识点

高中高一数学必修1各章知识点总结第一章 集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1.元素的确定性; 2.元素的互异性; 3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特性使集合本身具有了确定性和整体性。3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集 含有有限个元素的集合2.无限集 含有无限个元素的集合3.空集 不含任何元素的集合 例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B① 任何一个集合是它本身的子集。AíA②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)③如果 AíB, BíC ,那么 AíC④ 如果AíB 同时 BíA 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作: CSA 即 CSA ={x | x?S且 x?A}SCsAA(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。)构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。(2) 画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。发现解题中的错误。4.快去了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.5.什么叫做映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B”给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。常用的函数表示法及各自的优点:1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值补充一:分段函数 (参见课本P24-25)在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.补充二:复合函数如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。例如: y=2sinX y=2cos(X2+1)7.函数单调性(1).增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;2 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) 。(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)-f(x2)的正负);5 下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)_(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:函数 单调性u=g(x) 增 增 减 减y=f(u) 增 减 增 减y=f[g(x)] 增 减 减 增注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?8.函数的奇偶性(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)10.函数最大(小)值(定义见课本p36页)1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);第二章 基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *.当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand).当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。注意:当 是奇数时, ,当 是偶数时, 2.分数指数幂正数的分数指数幂的意义,规定:, 0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(1) · ;(2) ;(3) .(二)指数函数及其性质1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>1 0<a<1图象特征 函数性质向x、y轴正负方向无限延伸 函数的定义域为R图象关于原点和y轴不对称 非奇非偶函数函数图象都在x轴上方 函数的值域为R+函数图象都过定点(0,1)自左向右看,图象逐渐上升 自左向右看,图象逐渐下降 增函数 减函数在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1图象上升趋势是越来越陡 图象上升趋势是越来越缓 函数值开始增长较慢,到了某一值后增长速度极快; 函数值开始减小极快,到了某一值后减小速度较慢;注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上, 值域是 或 ;(2)若 ,则 ; 取遍所有正数当且仅当 ;(3)对于指数函数 ,总有 ;(4)当 时,若 ,则 ;二、对数函数(一)对数1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)说明:1 注意底数的限制 ,且 ;2 ;3 注意对数的书写格式.两个重要对数:1 常用对数:以10为底的对数 ;2 自然对数:以无理数 为底的对数的对数 .对数式与指数式的互化对数式 指数式对数底数 ← → 幂底数对数 ← → 指数真数 ← → 幂(二)对数的运算性质如果 ,且 , , ,那么:1 · + ;2 - ;3 .注意:换底公式 ( ,且 ; ,且 ; ).利用换底公式推导下面的结论(1) ;(2) .(二)对数函数1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.2 对数函数对底数的限制: ,且 .2、对数函数的性质:a>1 0<a<1图象特征 函数性质函数图象都在y轴右侧 函数的定义域为(0,+∞)图象关于原点和y轴不对称 非奇非偶函数向y轴正负方向无限延伸 函数的值域为R函数图象都过定点(1,0)自左向右看,图象逐渐上升 自左向右看,图象逐渐下降 增函数 减函数第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0(三)幂函数1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.3、函数零点的求法:求函数 的零点:1 (代数法)求方程 的实数根;2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数 .1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
豆豆staR2023-07-01 13:06:411

高中数学中的六大类函数

一次函数二次函数幂函数指数函数对数函数三角函数
北有云溪2023-07-01 13:06:383

幼儿园数学题2889=多少

5,因为有5个圆圈圈
无尘剑 2023-07-01 13:05:5615

幼儿园数学题2889=多少

5,因为有5个圆圈圈
阿啵呲嘚2023-07-01 13:05:5115

写出热力学第一定律、第二定律和相律的数学表达式,并说明其主要应用或解决什么问

热力学第一定律  热力学第一定律也就是能量守恒定律。内容  一个热力学系统的内能增量等于外界向它传递的热量与外界对它做功的和。(如果一个系统与环境孤立,那么它的内能将不会发生变化。)   表达式:△U=W+Q符号规律  :热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△U=W+Q时,通常有如下规定:   ①外界对系统做功,W>0,即W为正值。   ②系统对外界做功,也就是外界对系统做负功,W0,即Q为正值   ④系统从外界放出热量,Q0,即△U为正值   ⑥系统内能减少,△U<0,即△U为负值理解  从三方面理解   1.如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时物体内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=W   2.如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时物体内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q   3.在做功和热传递同时存在的过程中,物体内能的变化,则要由做功和所传递的热量共同决定。在这种情况下,物体内能的增量△U就等于从外界吸收的热量Q和对外界做功W之和。即△U=W+Q能量守恒定律内容  能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体。能量的多样性  物体运动具有机械能、分子运动具有内能、电荷具有电能、原子核内部的运动具有原子能等等,可见,在自然界中不同的能量形式与不同的运动形式相对应。不同形式的能量的转化  “摩擦生热”是通过克服摩擦力做功将机械能转化为内能;水壶中的水沸腾时水蒸气对壶盖做功将壶盖顶起,表明内能转化为机械能;电流通过电热丝做功可将电能转化为内能。。。这些实例说明了不同形式的能量之间可以相互转化,且这一转化过程是通过做功来完成的。能量守恒的意义  1.能的转化与守恒是分析解决问题的一个极为重要的方法,它比机械能守恒定律更普遍。例如物体在空中下落受到阻力时,物体的机械能不守恒,但包括内能在内的总能量守恒。   2.能量守恒定律是19世纪自然科学中三大发现之一,也庄重宣告了第一类永动机幻想的彻底破灭。   3.能量守恒定律是认识自然、改造自然的有力武器,这个定律将广泛的自然科学技术领域联系起来。第一类永动机(不可能制成)  不消耗任何能量却能源源不断地对外做功的机器。   其不可能存在,因为违背的能量守恒定律编辑本段热力学第二定律  热力学第二定律有几种表述方式:   克劳修斯表述 热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物体; 开尔文-普朗克表述 不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。 熵表述 随时间进行,一个孤立体系中的熵总是不会减少。关系  热力学第二定律的两种表述(前2种)看上去似乎没什么关系,然而实际上他们是等效的,即由其中一个,可以推导出另一个。意义  热力学第二定律的每一种表述,揭示了大量分子参与的宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。微观意义  一切自然过程总是沿着分子热运动的无序性增大的方向进行。   第二类永动机(不可能制成)   只从单一热源吸收热量,使之完全变为有用的功而不引起其他变化的热机。   ∵第二类永动机效率为100%,虽然它不违法能量守恒定律,但大量事实证明,在任何情况下,热机都不可能只有一个热源,热机要不断地把吸取的热量变成有用的功,就不可避免地将一部分热量传给低温物体,因此效率不会达到100%。第二类永动机违反了热力学第二定律。编辑本段热力学第三定律  热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。 或者绝对零度(T=0K)不可达到。   R.H.否勒和E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0k,称为0K不能达到原理。编辑本段另外热力学第零定律  热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,那么它们也必定处于热平衡 。   热力学第零定律是热力学三大定律的基础。
CarieVinne 2023-07-01 13:05:241

写出热力学第一定律、第二定律和相律的数学表达式,并说明其主要应用或解决什么问

热二是克劳修斯不等式ds>=dq/t
苏萦2023-07-01 13:05:184

热力学第二定律的数学表达式是什么?

热力学第二定律的数学表达式是:ds≥δQ/T。热力学第二定律的数学表达式:ds≥δQ/T,又称克劳修斯不等式。 由克劳修斯不等式知,将体系熵变量的大小与过程热温熵值进行比较就可以判断过场可逆与否。 对于绝热可逆过程,ds=δQ/T=0。热力学第二定律是热力学基本定律之一,克劳修斯表述为:热量不能自发地从低温物体转移到高温物体。热力学第二定律的意义:热力学第二定律的数学表达式表明所有可逆 循环的克劳修斯积分值都等于零,所有不可逆循环的克劳修斯积分值都小于零。故本不等式可作为判断一切任意循环是否可逆的依据。应用克劳修斯不等式还可推出如下的重要结论,即任何系统或工质经历一个不可逆的绝热过程之后,其熵 值必将有所增大。
康康map2023-07-01 13:05:131

我学数学与应用数学,想学精算师,需要学什么,有哪些书籍我可以看,帮忙推荐一下

主要是偏向经济学以及保险数理方面的书学习的话,以精算师考试的书籍为主
hi投2023-07-01 13:04:453

1线性规划标准的数学模式应符合哪三个条件.2对偶单纯形法的最小比值规则,是为了保证什么,.急.

目标函数,受约束条件,自变量的选取.最小比值原则是为了保证趋向最优解的速度最快,在单纯形表中有看到!
北营2023-07-01 13:04:401

一道初一数学题。谢谢!

(1)书包44词典8
tt白2023-07-01 13:04:2315

数学问题:某办公室用品销售商店推出两种优惠方法:(1)购书包1个,赠水笔1支,

昨天刚回答人家的这个问题
黑桃花2023-07-01 13:04:062

请问数学: 某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润

设小书包进价为x,大书包进价为Y,由题目可知x+10=y0.3x=0.2YY=1.5xx+10=1.5xx=20y=20+10=30
苏萦2023-07-01 13:03:591

请问数学: 某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润

当然有区别: 0.3(x-10)表示小书包的利润,0.2x表示大书包的利润。所以0.3(x-10)=0.2x。而0.3(x-10)=0.2并不成立,因为 0.3(x-10)表示小书包的利润,0.2是一个比值。
Chen2023-07-01 13:03:581

初一数学上一元一次方程500道

你疯了。
北境漫步2023-07-01 13:03:572

请问数学: 某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润

某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润额相同。其中,每个小书包的盈利率为30%,每个大书包的盈利率为20%,试求两种书包的进价。解:设大书包的进价为 x 元,则小书包的进价为(x-10)元30% *(x-10)=20% x0.3x -3=0.2x0.3x-0.2x=30.1x=3x=30小书包的进价:x-10=30-10=20(元)答:大书包的进价为 30 元,小书包的进价为20元
mlhxueli 2023-07-01 13:03:571

初中数学题3道,必须用方程解,写过程,题目看补充。

苏州马小云2023-07-01 13:03:551

初一数学题:(一元一次方程,必须要用方程!!!)某商店有两种书包,每个小书包比大书包的进价少10元

x*20%=(x-10)*30%
bikbok2023-07-01 13:03:536

请问数学: 某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润额相同,其中每

大书包进价=小书包进价+10
无尘剑 2023-07-01 13:03:522

请问数学: 某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润额相同,其中每

设小书包价格为X0.3X=0.2(X+10)0.3X=0.2X+2X=20大书包价格20+10=3020*1.3=30*1.2=36是不是这样
mlhxueli 2023-07-01 13:03:522

请问数学: 某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润额相同,其中每个

又看到你~式子里x代表的什么你明确了没有?
meira2023-07-01 13:03:524

为什么1+1=2呢?求一高端数学解释

偶数2N可以写成两个素数之和,是哥德巴赫猜想的一种情形,在中国简称“1+1=2”,1+1=2只是一个比喻而已,不是你所理解的1+1=2
阿啵呲嘚2023-07-01 13:03:202

用数学公式来证明1+1不是等于2

1+1并不都等于2 歌德巴赫1+1成立的证明 证明如下: 2是第一个质数,也是唯一的偶质数。我们用筛法把偶数全部去掉,用数列表示剩余的数,也就是剩下有可能是质数的数列,如下: 2N+1(N=1,2,3……)(间隙) (全部质数都可以用此表示) 2N(N=2,3……)(筛子) (2质数筛去的全部非质数都可以用此表示) 我把这个称为间隙,2之后的第一个间隙肯定为质数,所以N取最小值1即可取得下一个质数3。☆以下为基础步骤,需要理解。我们在数列2N+1中把下一个质数数列筛子3N减去。(为节省空间后面的N的取值范围不再标注) ☆ 我先把间隙 2N+1表示为 2N×3+(1+2×(3-1))=6N+5 2N×3+(1+2×(3-2))=6N+3=3×(2N+1) 2N×3+(1+2×(3-3))=6N+1 把筛子3N表示为3×(2N+1)和3×2N,其中3×2N棣属于筛子2N,因此得到除去筛子3N后的新的间隙表示公式: ☆ 6N+5, 6N+1(全部质数都可以用其中之一表示) 我们再在此基础上算出下一个质数为5(N=0),其中1为特殊数一直会出现在后面的公式,好我现在把筛子5N减去得出间隙为:(步骤省略) 30N+29, 30N+23,30N+17, 30N+11,30N+5 (棣属于父系基因5) 30N+25, 30N+19,30N+13, 30N+7, 30N+1 (棣属于父系基因1) 同样处理方法把30N+25和30N+5除去得出间隙为: ☆ 30N+29, 30N+23,30N+17, 30N+11,30N+19,30N+13, 30N+7, 30N+1 ☆ 突破口:注意下面出现全部质数的规律,我把以下数表称为棣属7的同辈质数表: 再重复一次上面步骤,得出间隙:(令P=210N) 行宽 基因29 基因23 基因19 基因17 基因13 基因11 基因7 基因1 30 P+209 P+203 P+199 P+197 P+193 P+191 P+187 P+181 P+179 P+173 P+169 P+167 P+163 P+161 P+157 P+151 P+149 P+143 P+139 P+137 P+133 P+131 P+127 P+121 P+119 P+113 P+109 P+107 P+103 P+101 P+97 P+91 P+89 P+83 P+79 P+77 P+73 P+71 P+67 P+61 P+59 P+53 P+49 P+47 P+43 P+41 P+37 P+31 P+29 P+23 P+19 P+17 P+13 P+11 P+7 P+1 列宽2 6 4 2 4 2 4 6 2 除去7N筛子(表中粗体部分,刚好每个基因要除去一个,占1/7)和除去由N个大于7的质数之积(不大于210的部分)(我称其为空位),☆剩下的就全部是质数。(N=0)(需要理解) 终于到证明1+1部分啦!!! 我们现在来研究一下这个质数表有什么规律,首先任意取一个偶数,比如198,再任意去表中两个数,我现在取107和103,107+103=210,210比198大12,现在将107和103进行移位103向右移动三位得出107+91=198,但是读者会想91不是质数啊,没错,我们现在将107向上移动一位等于137,91向下移动一位等于61,137+61还是等于198,而且两个都是质数,因为行宽是一样的。你还可以将107向下移动两位,103向上移动两位得出47+151=198,也都是质数。再者将47向右移动两位,将151向左移动一位,得出再一个41+157=198。用因子6,4,2可以构成2~30里面的任何一个偶数,有人可能问6,4,2要构成28不知道要移动多少,表格容不下,其实就是+30再减2。如果遇到太大的偶数,则放到下一个质数表。 我们现在来看看最下面一行的质数也就是基因部分29,23,19,17,13,11,7,5,3,2(其中5,3,2为外延尾部)可以组成的偶数有8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,它们是连续的,而行宽是30,也就是说你可以随意在这组数列增加30×N,也就是说这个数表可以表示(8~36)+30×N这个范围的全部质数,N至少可以取7(实际大得多,但我为什么只证明7呢,自己想),举个例子23+19,虽然23最上有个空位,但是你可以在19那里向上移动一位。(自己理解)也就是说这个数表可以表示8~(36+30×7),即8~246>210任何质数。至于5,3,2外露部分可以配合另外一个数先向左移动直至增加30(超级重点理解部分,至此已经解决1+1问题) 好我们继续向下证明,以这个质数表的全部质数作为父系基因(除去下一个质数筛子11N和除去由N个大于11的质数之积(不大于2310的部分)后得到的质数),得出棣属11的同辈质数表:(因为质数表太大不作列出,有43列×11行大小) 我们现在来分析11的同辈质数表性质: 行宽:210 列宽: 基因199 197 193 191 181 179 173 167 163 列宽2 2 4 2 10 2 6 6 4 基因157 151 149 139 137 131 127 113 109 列宽6 6 2 10 2 6 4 14 4 余下基因列宽不再列举(原稿有,自己看),可以知道列宽有14,10,6,4,2,足以构成2~210里面任何一个偶数,而且6,4,2是继承了上一个质数表的列宽,而且后面会一直出现,14,10是新出现的列宽因子,以后会一直遗传下去。 ☆ 现在又到要理解的部分啦! 因为这个表的基因部分(最下面一行)正是上一个表的全部质数,也就是说底部一列可以表示8~246,而行宽是210,同理这个质数表可以表示(8~246)+210×N(N至少可以取到11),也就是说这个质数表可以表示8~2556>2310。下一个表的基因部分则是以此表产生,而且下一个表的行宽为2310,因此可以无限推导下去。 至于N个大于11的质数之积的数目,23100.5=48,11>89,远大于一半,所以对结论不产生影响。原文有证明,要多列几个质数表,空位产生的速度追不上质数表扩张的速度,到了后面比例空位占质数表的比例极低!另外被筛去的169非质数,在下个表会产生169+210=379为质数,但是对推导无影响!
真颛2023-07-01 13:03:151

求一道数学题 一个多边形除了一个内角外,其余各内角的和为2478,求这个内角的度数

设边数是x 则内角和(x-2)*180=180x-360 则另一个角是180x-360-2478=180x-2838 所以0<180x-2838<180 2838<180x<3018 2838/180<x<3018 bdsfid="119" 180 x是整数 所以x=16 180x-2838=42 所以这个角是42度</x
北营2023-07-01 13:03:081

五年级下册数学解决问题及答案

你这样的问题还不知道有多少网友提过了,下回提问题大脑好好思考一下
韦斯特兰2023-07-01 13:01:244

四年级数学 2+4+6+8+10+12+14+16+18+.......92+94+96+98+100=?用简便方法怎么算

=(2+100)*50/2=2550
NerveM 2023-07-01 13:01:098

数学数列问题

T(n-1)=1-a(n-1).......1 Tn=1-an.........22/1=an 然后化简得到an为等比数列 要注意验证n=1时是否满足 由原式可求出a1 让后再把an带入求的Tn 然后就能求的Cn 主要记住做数列题时要注意n的范围 要验证n=1时是否满足
hi投2023-07-01 13:00:463

求一个数学问题

把乙生产的6小时换算为甲生产9小时也就是甲17小时生产306个306/17=183*18/2=27答:甲每小时生产18件,乙27件
善士六合2023-07-01 13:00:454

高中数学必修五公式总结(人教版)

人教版高中数学必修五主要学习三大块内容,分别为解三角形,数列和不等式,这三项在高考中占的分数比较大,所以考生应该多练习、勤复习,下面是我为大家整理的人教版高中数学必修五公式,希望大家喜欢。人教版高中数学必修五---解三角形 1.人教版必修五正弦定理:a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,R是此三角形外接圆的半径)。 变形公式: (1)a=2RsinA,b=2RsinB,c=2RsinC (2)sinA:sinB:sinC=a:b:c (3)asinB=bsinA,asinC=csinA,bsinC=csinB (4)sinA=a/2R,sinB=b/2R,sinC=c/2R (5)S=1/2bcsinA=1/2acsinB=1/2absinC 2.人教版必修五余弦定理: a2=b2+c2-2bccosA b2=a2+c2-2accosB c2=a2+b2-2abcosC 注:勾股定理其实是余弦定理的一种特殊情况。 3.人教版必修五变形公式: cosC=(a2+b2-c2)/2ab cosB=(a2+c2-b2)/2ac cosA=(c2+b2-a2)/2bc 4.人教版必修五三角形面积公式:S=absinC/2=bcsinA/2=acsinB/2 人教版高中数学必修五---数列 1.人教版必修五等差数列: 通项公式:an=a1+(n-1)d,Sn=(2a1+(n-1)d)*n/2=n*a1+n*(n-1)*d/2 前n项和:Sn=na1+n(n-1)d/2 或 Sn=n(a1+an)/2 前n项积:Tn=a1^n + b1a1^(n-1)×d + …… + bnd^n 其中b1…bn是另一个数列,表示1…n中1个数、2个数…n个数相乘后的积的和。 2.人教版必修五等比数列: 通项公式:An=A1*q^(n-1) 前n项和:Sn=[A1(1-q^n)]/(1-q) 前n项积:Tn=A1^n*q^(n(n-1)/2) 等比数列: 若q=1,则S=n*a1 若q≠1,则 S=a1+a1*q+a1*q^2+……+a1*q^(n-1) 等式两边同时乘q ,S=a1*(1-q^n)/(1-q) 3.人教版必修五利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn-1,同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1). 注意:(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0. (2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误. 等比数列的判断方法有: (1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N*),则{an}是等比数列. (2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N*),则数列{an}是等比数列. (3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N*),则{an}是等比数列. 人教版高中数学必修五---不等式 1.人教版必修五等式的概念:一般的,用符号“=”连接的式子叫做等式。一般的,用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式。 不等式中可以含有未知数,也可以不含)。用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式。 2.人教版必修五不等式的性质: ①不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。 ②不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。 ③不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 ④不等式的两边都乘以0,不等号变等号。 3.人教版必修五不等式的基本性质: ①如果a>b,那么a±c>b±c ②性质2:如果a>b,c>0,那么ac>bc(或a/c>b/c) ③性质3:如果a>b,c<0,那么ac<BC(或A c<b c)< p> 4.解一元一次不等式的一般方法顺序:①去分母 (运用不等式性质2,3);②去括号;③移项 (运用不等式性质1);④合并同类项;⑤将未知数的系数化为1 (运用不等式性质2,3);⑥有些时候需要在数轴上表示不等式的解集。 5.人教版必修五一元一次不等式的解法及解集 解一元一次不等式的步骤:(1)去分母,(2)去括号,(3)移项,(4)合并同类项,(5)求得解集。 一元一次不等式的解集:将不等式化为aχ>b的形式 (1)若a>0,则解集为χ>b/a (2)若a<0,则解集为χ<B p a<> 6.人教版必修五不等式的解集: (1) 能使不等式成立的未知数的值,叫做不等式的解。 (2)一个有未知数的不等式的所有解,组成这个不等式的解集。例如,不等式x-5≤-1的解集为x≤4;不等式x2>0的解集是所有非零实数。求不等式解集的过程叫做不等式。 7.人教版必修五解不等式的五个步骤:(在运算中,根据不同情况来使用) (1)去分母; (2)去括号; (3)移项; (4)合并同类项; (5)两边同时除以x的系数。 8.一元一次不等式: 这些不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。 9.一元一次不等式组: (1) 一般的,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。 (2)一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。 10.人教版必修五一元一次不等式的定义: (1) 不等式左右两边都是整式; (2) 不等式中只含一个未知数; (3) 未知数最高次数是1。 注:一元一次不等式的解集不是具体的几个数,而是一个范围,集合。 一元一次不等式与一次函数的综合运用:一般先求出函数表达式,再化简不等式求解。 解一元一次不等式组的步骤: (1) 求出每个不等式的解集; (2) 求出每个不等式的解集的公共部分;(一般利用数轴) (3) 用代数符号语言来表示公共部分。(也可以说成是下结论) 几种常见的不等式组的解集: (1) 关于x不等式组{x>a} {x>b}的解集是:x>b (2) 关于x不等式组{x<A} {x a (3) 关于x不等式组{x>a} {x<B}的解集是:A<X<B< p> (4) 关于x不等式组{x b}的解集是空集。 几种特殊的不等式组的解集: (1) 关于x不等式(组):{x≥a} { x≤a}的解集为:x=a (2) 关于x不等式(组):{x>a} {x<A}的解集是空集。< p>
余辉2023-07-01 13:00:451

高一数学必修五知识点总结

高一是我们进入高中时期的第一阶段,我们应该完善己身,好好学习。而数学也是我们必须学习的重要课程之一,我为各位同学整理了高 一年级数学 必修五知识点 总结 ,希望对你有所帮助! 高一数学 必修五知识点总结1 【差数列的基本性质】 ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d. ⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd. ⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列. ⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性. ⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+…. ⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差). ⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、) ⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项. ⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数. ⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=. ⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数). ⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=. ⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为. ⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=. ⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b). ⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上. ⑺记等差数列{a}的前n项和为S.①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a<0,公差d>0,则当a≤0且a≥0时,S最小. 【等比数列的基本性质】 ⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差). ⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性. ⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a.a.a.…=a.a.a.….. ⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}. ⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列. ⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0. ⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积. ⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列. 高中数学必修五:等比数列前n项和公式S的基本性质 ⑴如果数列{a}是公比为q的等比数列,那么,它的前n项和公式是S= 也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q=1和q≠1进行讨论. ⑵当已知a,q,n时,用公式S=;当已知a,q,a时,用公式S=. ⑶若S是以q为公比的等比数列,则有S=S+qS.⑵ ⑷若数列{a}为等比数列,则S,S-S,S-S,…仍然成等比数列. ⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,S成等比数列,T,T,T亦成等比数列 万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α) cos2α=(1-tan^2α)/(1+tan^2α)tan2α=2tanα/(1-tan^2α) 升幂公式:1+cosα=2cos^2(α/2)1-cosα=2sin^2(α/2)1±sinα=(sin(α/2)±cos(α/2))^2 降幂公式:cos^2α=(1+cos2α)/2sin^2α=(1-cos2α)/21)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα,cot(2kπ+α)=cotα,其中k∈Z; (2)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα (3)sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα (4)sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα (5)sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα (6)sin(π/2+α)=cosα,cos(π/2+α)=-sinα, tan(π/2+α)=-cotα,cot(π/2+α)=-tanα (7)sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα, tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα (8)sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα, tan(3π/2-α)=cotα,cot(3π/2-α)=tanα(k·π/2±α),其中k∈Z 注意:为方便做题,习惯我们把α看成是一个位于第一象限且小于90°的角; 当k是奇数的时候,等式右边的三角函数发生变化,如sin变成cos.偶数则不变; 用角(k·π/2±α)所在的象限确定等式右边三角函数的正负.例:tan(3π/2+α)=-cotα ∵在这个式子中k=3,是奇数,因此等式右边应变为cot 又,∵角(3π/2+α)在第四象限,tan在第四象限为负值,因此为使等式成立,等式右边应为-cotα.三角函数在各象限中的正负分布 sin:第一第二象限中为正;第三第四象限中为负cos:第一第四象限中为正;第二第三象限中为负cot、tan:第一第三象限中为正;第二第四象限中为负。 高一数学必修五知识点总结2 (一)、映射、函数、反函数 1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射. 2、对于函数的概念,应注意如下几点: (1)掌握构成函数的三要素,会判断两个函数是否为同一函数. (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式. (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数. 3、求函数y=f(x)的反函数的一般步骤: (1)确定原函数的值域,也就是反函数的定义域; (2)由y=f(x)的解析式求出x=f-1(y); (3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域. 注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起. ②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算. (二)、函数的解析式与定义域 1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型: (1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑; (2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如: ①分式的分母不得为零; ②偶次方根的被开方数不小于零; ③对数函数的真数必须大于零; ④指数函数和对数函数的底数必须大于零且不等于1; ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等. 应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集). (3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可. 已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域. 2、求函数的解析式一般有四种情况 (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式. (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可. (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域. (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式. (三)、函数的值域与最值 1、函数的值域取决于定义域和对应法则,不论采用何种 方法 求函数值域都应先考虑其定义域,求函数值域常用方法如下: (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域. (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元. (3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得. (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法. (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧. (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式. (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域. (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域. 2、求函数的最值与值域的区别和联系 求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异. 如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响. 3、函数的最值在实际问题中的应用 函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值. (四)、函数的奇偶性 1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数). 正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质). 2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式: 注意如下结论的运用: (1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数; (2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”; (3)奇偶函数的复合函数的奇偶性通常是偶函数; (4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。 3、有关奇偶性的几个性质及结论 (1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称. (2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数. (3)若奇函数f(x)在x=0处有意义,则f(0)=0成立. (4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。 (5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数. (6)奇偶性的推广 函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。 高一数学必修五知识点总结3 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零 2.构成函数的三要素:定义域、对应关系和值域 再注意: (1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) (2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.(3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等. 3.函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象. C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A} 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成. (2)画法 A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用: 1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。 发现解题中的错误。 4.快去了解区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 5.什么叫做映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB” 给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象 说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。 常用的函数表示法及各自的优点: 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;解析法:必须注明函数的定义域;图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征. 注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值 补充一:分段函数(参见课本P24-25) 在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 补充二:复合函数 如果y=f(u),(u∈M),u=g(x),(x∈A),则y=f[g(x)]=F(x),(x∈A)称为f、g的复合函数。 高一数学必修五知识点总结相关 文章 : ★ 高中数学学霸提分秘籍:必修五知识点总结 ★ 高中数学必修5数列知识点总结 ★ 高一数学必修五数列知识点 ★ 高中数学必修5公式总结 ★ 高中数学必修5全部公式 ★ 高一数学等比数列知识点总结 ★ 高一数学必修五等比中项必考知识点 ★ 高一数学必修一知识点总结 ★ 高中数学必考知识点归纳整理 ★ 高中数学推理知识点总结
再也不做站长了2023-07-01 13:00:451

高一数学 高中数学

k为-1/2,因为平行向量的斜率相同,1/k=2/(-1)画图 两点之间距离的等式列出来可以解
人类地板流精华2023-07-01 13:00:413

数学,等差、等比数列有关的全部公式,谢了

记公式没用的。你公式全记住了,也不代表你会做题。在做题的过程中,所有公式自然就记住了。以下的所谓的公式,是我根据09、10年各省市高考题总结的。事实上,单纯的记忆没用的,只有做题才有用。等差数列通项公式,两元素为首项a1和公差d等比数列通项公式,两元素为首项a1和公比q,注意取值范围a1≠0,q≠0等比数列各项为正,即a1>0且q>0等比数列前n项和公式Sn,主要分q=1和q≠1讨论,当q≠1时,公式可变形为Sn=k-kq^(n-1),其中k为常数,是指数函数形式,注意其常数项和q^(n-1)前的系数一定是相等的等比数列中,同时出现前m项和Sm以及前2m项和S2m或前nm项和Snm(n表示m的倍数)时,注意两者联立后整体代换,注意因式分解等比中项、等差中项的定义等差数列前n项和的公式,注意公式有多个,根据场合运用。Sn=(a1+an)n/2=a1n+n(n-1)d/2=dn^2/2+(a1-d/2)n=k1n^2+k2n,其中k1,k2为常数,注意是二次函数形式,但一定没有常数项注意对数函数、指数函数中,等差数列和等比数列的穿插应用,以对数为例,lna+lnb=lnab,由此和的形式变成了积的形式,等式左边可以出等差数列的题目,等式右边可以出等比数列的题目注意等差数列、等比数列的证明方法,以等差数列为例,可以证明其通项公式为一次函数形式,或证明相邻两项等差,或证明中间项的2倍为前后两项的和,等等注意有限项等比数列、等差数列中运用基本不等式注意非0常数数列既是等差数列,也是等比数列注意一个公式的运用,两个等差数列{an}和{bn}的前n项和分别为An和Bn,则恒有ai/bi=A[2i-1]/B[2i-1],其中i为任意正整数注意,证明一个3项数列不为等比数列的方法(以下结论都可以推广到任意有限项或无限项),其一,若证得相邻两项同正或同负,另一项符号相反,则得证;其二,只要证得有1个0,就一定不是等比数列;等等,方法很多,也很灵活推荐一道有关等差、等比数列的高考压轴题,有难度。08上海高考最后一大题。
kikcik2023-07-01 13:00:411

数学卷17:等比数列{an}的公比为q,其前n项的积为Tn,并且满足条件a1>1

等比数列{an}的公比为q,其前n项的积为Tn,并且满足条件a1>1,a99a100-1>0,(a99-1 ) / (a100-1)<0.给出下列结论:①0<q<1;②a99u2022a101-1<0;③T100的值是Tn中最大的;④使Tn>1成立的最大自然数n等于198.其中正确的结论是(  )A.①②④ B.②④ C.①② D.①②③④ ∵a99a100-1>0,∴a12u2022q197>1,∴(a1u2022q98)2>1.∵a1>1,∴q>0.又∵(a99-1 ) / (a100-1)<0,∴a99>1,且a100<1.∴0<q<1,即①正确.∵a99u2022a101=a100^2 ;0<a100<1 ∴0<a99u2022a101 <1,即 a99u2022a101-1<0,故②正确.由于 T100=T99u2022a100,而 0<a100<1,故有 T100<T99,∴③错误.④中T198=a1u2022a2…a198=(a1u2022a198)(a2u2022a197)…(a99u2022a100)=(a99u2022a100)99>1,T199=a1u2022a2…a199=(a1u2022a199)(a2u2022a198)…(a99u2022a101)a100<1,∴④正确.∴正确的为①②④,故选A.
余辉2023-07-01 13:00:351

请教大家一道数学问题!下面的图形,只要画一条直线就能分成两个三角形!可是我怎么都想不通!

拌三丝2023-07-01 13:00:275

小学四年级的数学题,做到我崩溃了。在正方形一角剪掉一个小三角形,然后用一条直线划分成两个三角形。。

立体的,联想一下就行啊
豆豆staR2023-07-01 12:59:5714

小学数学题奥数题 增加一条直线使下面图形分为两个三角形

对折、、、、、、、、、、、、
北营2023-07-01 12:59:396

数学题 关于X的方程

4x+b=ax+84x-ax=8-b(4-a)x=8-bx=(8-b)/(4-a)
左迁2023-07-01 12:59:034

在数学题中,关于X的方程是什么意思?

关于X的方程,X就是未知数,关于谁,谁就是未知数
北有云溪2023-07-01 12:58:575

数学:如果关于x的方程

%bydynamic%%Formoreinformation,seealso%%http://www.4math.cn——中国最大的数学工具软件联盟论坛%%http://www.matlabsky.com——专业、优秀和权威的MATLAB技术交流平台%%Email:matlabsky@gmail.com1.通分,将所有的化成整数表达式,通分就是等号两边同时乘以分母的公倍数2.将含有x的项移到等式的一边,常数项移到另一边注意移项的是有注意要添加符号,比如-x+y=5将-x移到右边,就必须在-x前添加一个符号,于是变成+x,即y=5-(-x)+x,同理将5移到左边,x-y-(5)=x-y-5=0注意等式两边同时加减乘除同一个数,等式仍然成立(2x-3)/5=2x/3通分===>3(2x-3)=5*2x乘开===>4x-9=10x移项注意负号===>6x=-9同时除以6===>x=-1.53n-1/4=3(x+n)-2n===>12n-1=12x+12n-8n===>8n=12x+1===>n=(12x+1)/8x=1.5带入===>n=2.375故n-3*5/8=0.5
meira2023-07-01 12:58:501

求四年级下册数学脱式计算题120道,我没有学方程,注意是四年级下册的哦,不要复制的,谢谢,麻烦了

喝酒
gitcloud2023-07-01 12:57:5512

四年级数学脱式计算题 100道!要答案! 100道 ,高手快答!!!!!!!!

1+2+98+99=(1+99)+(98+2)=200 2+3+97+98=(2+98)+(97+3)=200 3+4+96+97=(3+97)+(96+4)=200 4+5+95+96=(4+96)+(95+5)=200 5+6+94+95=(5+95)+(94+6)=200 6+7+93+94=(6+94)+(93+7)=200 7+8+92+93=(7+93)+(92+8)=200 8+9+91+92=(8+92)+(91+9)=200 9+10+90+91=(9+91)+(90+10)=200 10+11+89+90=(10+90)+(89+11)=200 11+12+88+89=(11+89)+(88+12)=200 12+13+87+88=(12+88)+(87+13)=200 13+14+86+87=(13+87)+(86+14)=200 14+15+85+86=(14+86)+(85+15)=200 15+16+84+85=(15+85)+(84+16)=200 16+17+83+84=(16+84)+(83+17)=200 17+18+82+83=(17+83)+(82+18)=200 18+19+81+82=(18+82)+(81+19)=200 19+20+80+81=(19+81)+(80+20)=200 20+21+79+80=(20+80)+(79+21)=200 21+22+78+79=(21+79)+(78+22)=200 22+23+77+78=(22+78)+(77+23)=200 23+24+76+77=(23+77)+(76+24)=200 24+25+75+76=(24+76)+(75+25)=200 25+26+74+75=(25+75)+(74+26)=200 26+27+73+74=(26+74)+(73+27)=200 27+28+72+73=(27+73)+(72+28)=200 28+29+71+72=(28+72)+(71+29)=200 29+30+70+71=(29+71)+(70+30)=200 30+31+69+70=(30+70)+(69+31)=200 31+32+68+69=(31+69)+(68+32)=200 32+33+67+68=(32+68)+(67+33)=200 33+34+66+67=(33+67)+(66+34)=200 34+35+65+66=(34+66)+(65+35)=200 35+36+64+65=(35+65)+(64+36)=200 36+37+63+64=(36+64)+(63+37)=200 37+38+62+63=(37+63)+(62+38)=200 38+39+61+62=(38+62)+(61+39)=200 39+40+60+61=(39+61)+(60+40)=200 40+41+59+60=(40+60)+(59+41)=200 41+42+58+59=(41+59)+(58+42)=200 42+43+57+58=(42+58)+(57+43)=200 43+44+56+57=(43+57)+(56+44)=200 44+45+55+56=(44+56)+(55+45)=200 45+46+54+55=(45+55)+(54+46)=200 46+47+53+54=(46+54)+(53+47)=200 47+48+52+53=(47+53)+(52+48)=200 48+49+51+52=(48+52)+(51+49)=200 49+50+50+51=(49+51)+(50+50)=200 50+51+49+50=(50+50)+(49+51)=200 51+52+48+49=(51+49)+(48+52)=200 52+53+47+48=(52+48)+(47+53)=200 53+54+46+47=(53+47)+(46+54)=200 54+55+45+46=(54+46)+(45+55)=200 55+56+44+45=(55+45)+(44+56)=200 56+57+43+44=(56+44)+(43+57)=200 57+58+42+43=(57+43)+(42+58)=200 58+59+41+42=(58+42)+(41+59)=200 59+60+40+41=(59+41)+(40+60)=200 60+61+39+40=(60+40)+(39+61)=200 61+62+38+39=(61+39)+(38+62)=200 62+63+37+38=(62+38)+(37+63)=200 63+64+36+37=(63+37)+(36+64)=200 64+65+35+36=(64+36)+(35+65)=200 65+66+34+35=(65+35)+(34+66)=200 66+67+33+34=(66+34)+(33+67)=200 67+68+32+33=(67+33)+(32+68)=200 68+69+31+32=(68+32)+(31+69)=200 69+70+30+31=(69+31)+(30+70)=200 70+71+29+30=(70+30)+(29+71)=200 71+72+28+29=(71+29)+(28+72)=200 72+73+27+28=(72+28)+(27+73)=200 73+74+26+27=(73+27)+(26+74)=200 74+75+25+26=(74+26)+(25+75)=200 75+76+24+25=(75+25)+(24+76)=200 76+77+23+24=(76+24)+(23+77)=200 77+78+22+23=(77+23)+(22+78)=200 78+79+21+22=(78+22)+(21+79)=200 79+80+20+21=(79+21)+(20+80)=200 80+81+19+20=(80+20)+(19+81)=200 81+82+18+19=(81+19)+(18+82)=200 82+83+17+18=(82+18)+(17+83)=200 83+84+16+17=(83+17)+(16+84)=200 84+85+15+16=(84+16)+(15+85)=200 85+86+14+15=(85+15)+(14+86)=200 86+87+13+14=(86+14)+(13+87)=200 87+88+12+13=(87+13)+(12+88)=200 88+89+11+12=(88+12)+(11+89)=200 89+90+10+11=(89+11)+(10+90)=200 90+91+9+10=(90+10)+(9+91)=200 91+92+8+9=(91+9)+(8+92)=200 92+93+7+8=(92+8)+(7+93)=200 93+94+6+7=(93+7)+(6+94)=200 94+95+5+6=(94+6)+(5+95)=200 95+96+4+5=(95+5)+(4+96)=200 96+97+3+4=(96+4)+(3+97)=200 97+98+2+3=(97+3)+(2+98)=200 98+99+1+2=(98+2)+(1+99)=200 99+100+0+1=(99+1)+(0+100)=200
陶小凡2023-07-01 12:57:521

四年级数学脱式计算题不要简便计算 能多少题算多少题

四年级数学脱式计算题不要简便计算 能多少题算多少题8×39×125=39×125×8=39×1000=39000,25×64×125 =25×4×125×8×2=100×1000×2=200000,120÷24+6=5+6=11.
瑞瑞爱吃桃2023-07-01 12:57:501

小学四年级上册数学脱式计算题,带中括号小括号,没

小学四年级上册数学脱式计算题,带中括号小括号,没 2800÷ 100+789 (947-599)+7×64 36×(15-276÷23) (93+25×21)×97 23-(521+504)÷25 (39-21)×(396÷6) 507÷13×63+498 384÷12+3×31 [37—(7 6)] ×30 16×[(17-8)÷3] 28×(5 96÷32) 81÷[(72-54)×9] 57×12-560÷35 848-640÷16×19 60÷(1500-32×45) [192-(54+38)]×6 (12 24 80)×50 32×(25 125) 123×18-123×3 85×123 25×(24 16) 178×99 178 (140-70)×54 15×7+ 85×7 (46-20)×30-90 25×27×4 (40-4)×25 2400÷80-14×2 108-(83+360÷60) (420+48)÷(375-345) 290-(34×3 99) 142-54÷9 14 75×4×25 16×76-76×6 720÷36÷2 99×53+53 450-2×(16+9) 245-(45+39) 125×(8×4)×5 41×25-25 420÷(205-198)×4 四年级上册数学题脱式计算题包含大小括号 25-5+2 30x2+1 80x1-10 25x4+100 300+20+10 88+22+100 33+77+20 44+66+20 33+77+80 四年级上册数学带中括号的脱式计算大全 75÷〔138÷(100-54)〕 85×(95-1440÷24) 80400-(4300+870÷15) 240×78÷(154-115) 1437×27+27×563 〔75-(12+18)〕÷15 2160÷〔(83-79)×18〕 280+840÷24×5 325÷13×(266-250) 85×(95-1440÷24) 58870÷(105+20×2) 1437×27+27×563 81432÷(13×52+78) [37.85-(7.85+6.4)] ×30 156×[(17.7-7.2)÷3] (947-599)+76×64 36×(913-276÷23) [192-(54+38)]×67 [(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78) 5.4÷[2.6×(3.7-2.9)+0.62] (947-599)+76×64 60-(9.5+28.9)]÷0.18 2.881÷0.43-0.24×3.5 20×[(2.44-1.8)÷0.4+0.15] 28-(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕 (31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35) 0.8×[(10-6.76)÷1.2] (136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5 0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5) 812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6 85+14×(14+208÷26) 120-36×4÷18+35 (284+16)×(512-8208÷18) 9.72×1.6-18.305÷7 4/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/10 12.78-0÷( 13.4+156.6 ) 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 3.2×(1.5+2.5)÷1.6 85+14×(14+208÷26) (58+37)÷(64-9×5) (6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18) 0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6 120-36×4÷18+35 10.15-10.75×0.4-5.7 5.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷52 32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5) [(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.6 5.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-6 3.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.6 5.8×(3.87-0.13)+4.2×3.74 33.02-(148.4-90.85)÷2.5 带中括号的小学四年级数学题 [(3+50)x88+1]x88 小学四年级数学中括号应该怎样计算, 四年级下册运算(带有小括号、中括号)。 先算小括号,再算中括号。举例说明: 5X[11-(5+4)] =5X[11-9] =5X2 =10 小学四年级上册的数学计算题 题目呢? 小学四年级上册计算题 40*8= 120*6= 5*16= 2*4*5= 11*60= 102+20= 9*50= 40*80= 50*0*6= 小学四年级脱式计算题 63+16+84 76+15+24 140+639+860 46+67+54 680+485+120 155+657+245 四年级加减乘除小括号计算题 2400÷80-14×2 108-(83+360÷60) (420+48)÷(375-345) 420÷(205-198)×4 460÷(29-18÷3) 1450÷2×(16+9) 3、怎样算简便就怎样算: 715+265+335+285 125×32×5 46×201 7100-137-263+300 75×4×2×5 99×64+64
豆豆staR2023-07-01 12:57:501

1000道四年级数学简便计算

题目呢?
苏萦2023-07-01 12:57:5010

小学四年级数学 脱式计算什么意思

即递等式计算,把计算过程完整写出来的运算
LuckySXyd2023-07-01 12:57:484

四年级数学脱式计算题

1
NerveM 2023-07-01 12:57:436

四年级数学脱式计算题

没有实际意义
人类地板流精华2023-07-01 12:57:424

四年级数学脱式计算题不要简便计算 能多少题算多少题

1、125+25×6=125+150=2752、(135+75)÷(14×5)=210÷70 =33、120-60÷5×5=120-60=60
拌三丝2023-07-01 12:57:401

小学四年级下册数学脱式计算题怎么算的

脱式计算,即递等式计算,把计算过程完整写出来的运算,也就是脱离竖式的计算。在计算混合运算时,通常是一步计算一个算式(逐步计算,等号不能写在原式上),要写出每一步的过程。一般来说,等号要往前,不与第一行对齐。也就是离开原式计算。主要掌握的是记住要先算乘、除法,后算加、减法。在乘除法连继计算时中,要按从左往右的顺序依次计算。遇到括号,要首先计算括号内部。在脱式过程中要按运算顺序划出运算顺序线,还要做到“三核对”:一、要核对从书上把题抄到作业本上数字、符号是否抄对;二、要核对从横式抄到草稿竖式的数字、符号是否抄对;三、要核对把草稿竖式上的得数,抄到横式上是否抄对,小数点是否点对地方,有无遗漏。
康康map2023-07-01 12:57:401

四年级数学含小数的脱式简便计算

hi投2023-07-01 12:57:402

数学练习册P61页答案: 师徒两人一起加工零件。师傅工作3小时,徒弟工...

用方程
黑桃花2023-07-01 12:57:3514

两个数学题,求详细过程,小学六年级的学生能接受的 1, 师徒两个人一起加工零件,师傅工作3小时

5次
Jm-R2023-07-01 12:57:337

问一道数学题:师徒二人共同工作了3小时,一共生产了468个零件,已知师傅的工作效率是徒弟的2倍,问:师徒

师徒每小时=468/3=156个师=156*(2/3)=104个徒=156*(1/3)=52个
小白2023-07-01 12:57:282

初中数学知识点:长方形有几条对称轴?

  长方形有几条对称轴?下面由我为你精心准备了“初中数学知识点:长方形有几条对称轴?”,持续关注本站将可以持续获取更多的考试资讯! 初中数学知识点:长方形有几条对称轴?   长方形有两条对称轴,长方形的特殊形式正方形有4条对称轴。长方形是轴对称图形,轴对称图形即为一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,沿着的直线就是对称轴。   长方形性质   1、两条对角线互相平分且相等   2、两组对边分别平行且相等   3、4个角都是直角   4、有2条对称轴(正方形有4条)   5、具有不稳定性(易变形)   6、长方形对角线长的平方为两边长平方的和   7、顺次连接长发形各边中点得到的四边形是菱形   长方形判定   1、有一个角是直角的平行四边形是长方形   2、对角线相等的平行四边形是长方形   3、邻边互相垂直的平行四边形是长方形   4、有三个角是直角的四边形是长方形   5、对角线相等且互相平分的四边形是长方形   长方形公式   周长:C=2(a+b)   面积:S=ab
Chen2023-07-01 12:57:101
 首页 上一页  52 53 54 55 56 57 58 59 60 61 62  下一页  尾页