如何求法向量?求法向量的公式是什么?
法向量的求法如下:1、建立恰当的直角坐标系;2、设平面法向量n=(x,y,z);3、在平面内找出两个不共线的向量,记为a=(a1,a2, a3) b=(b1,b2,b3);4、根据法向量的定义建立方程组①n·a=0 ②n·b=0;5、解方程组,取其中一组解即可。关于法向量微分几何的计算方式,这涉及到曲面的表示方式。通常曲面的表示方式为:(1)隐函数:F(x,y,z)=0, 如平面x+y+z=0;(2)(参数化的)向量形式:r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k. 因为曲面的维度为2,所以一般是两个参数u,v。比如:x+y+z=0 可表示为:r(u,v)=ui+vj+(-u-v)k.对应的,计算法向量的方式分别为:(1)grad(F). 即隐函数F(x,y,z)的梯度grad(F) 即为曲面在点(x,y,z)处的法向量,也即,法向量为F(x,y,z)=C变化率最大的方向。人类地板流精华2023-07-14 07:14:431
如何求法向量?
法向量 法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量.由于空间内有无数个直线垂直于已知平面,而且每条直线可以存在不同的法向量;因此一个平面都存在无数个法向量,但是这些法向量之间相互平行.从理论上述,空间零向量是任何平面的法向量,但是由于零向量不能表示平面的信息.一般不选择零向量为平面的法向量. 如果已知直线与平面垂直,可以取已知直线的两点构成的向量作为法向量;如果不存在这样的直线,可用设元法求一个平面的法向量;步骤如下:首先设平面的法向量m(x,y,z),然后寻找平面内任意两个不共线的向量AB(x1,y1,z1)和CD(x2,y2,z2).由于平面法向量垂直于平面内所有的向量,因此得到x*x1+y*y1+z*z1=0和x*x2+y*y2+z*z2=0.由于上面解法存在三个未知数两个方程(不能通过增加新的向量和方程求解,因为其它方程和上述两个方程是等价的),无法得到唯一的法向量(因为法向量不是唯一的).为了得到确定法向量,可采用固定z=1(也可以固定x=1或y=1)或者模等于1的方法(单位法向量),但是这步并不是必须的.因为确定法向量和不确定法向量的作用是一样的. 法向量的主要应用如下: 1、求斜线与平面所成的角:求出平面法向量和斜线的夹角,这个角和斜线与平面所成的角互余.利用这个原理也可以证明线面平行; 2、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补; 3、点到面的距离: 任一斜线(平面为一点与平面内的连线)在法向量方向的射影;如点B到平面α的距离d=|BD·n|/|n|(等式右边全为向量,D为平面内任意一点,向量n为平面α的法向量).利用这个原理也可以求异面直线的距离 法向量方法是高考数学可以采用的方法之一,他的优点在于思路简单,容易操作.只要能够建立出直角坐标系,都可以写出最后答案.缺点在于同一般立体几何方法相比,其计算量巨大,特别是在计算二面角的时候.阿啵呲嘚2023-07-14 07:14:411
如何求法向量?
法向量求法如下:1、建立恰当的直角坐标系。2、设平面法向量n=(x,y,z)。3、在平面内找出两个不共线的向量,记为a=(a1,a2, a3) b=(b1,b2,b3)。4、根据法向量的定义建立方程组①n·a=0 ②n·b=0。5、解方程组,取其中一组解即可。关于法向量微分几何的计算方式,这涉及到曲面的表示方式。通常曲面的表示方式为:(1)隐函数:F(x,y,z)=0, 如平面x+y+z=0。(2)(参数化的)向量形式:r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k. 因为曲面的维度为2,所以一般是两个参数u,v。比如:x+y+z=0 可表示为:r(u,v)=ui+vj+(-u-v)k。对应的,计算法向量的方式分别为:(1)grad(F)。即隐函数F(x,y,z)的梯度。(2)grad(F)。 即为曲面在点(x,y,z)处的法向量,也即,法向量为F(x,y,z)=C变化率最大的方向。无尘剑 2023-07-14 07:14:351
在平面内如何求法向量?
两个不共线向量叉乘豆豆staR2023-05-25 07:25:094
如何求法向量
在平面几何中,如果一个向量垂直于一条直线,那么它就叫做直线的法向量,在立体几何中,如果一个向量垂直于一个平面,那么它就叫做平面的法向量,三维平面的法线是垂直于该平面的三维向量,曲面在某点p处的法线为垂直于该点切平面的向量。在立体几何中,如果一个向量同时垂直于两条或多条异面直线,那么该向量叫做这些异面直线的公共法向量。比方说,1在平面上有直线y=x,那么向量(1,-1)就是这条直线的(一个)法向量(注意法向量是无穷多的)。在立体空间中有由x轴和y轴确定的平面,那么这个平面就有一个法向量(0,0,1)。meira2023-05-15 13:53:271
如何求法向量?
法向量 法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,而且每条直线可以存在不同的法向量;因此一个平面都存在无数个法向量,但是这些法向量之间相互平行。从理论上述,空间零向量是任何平面的法向量,但是由于零向量不能表示平面的信息。一般不选择零向量为平面的法向量。 如果已知直线与平面垂直,可以取已知直线的两点构成的向量作为法向量;如果不存在这样的直线,可用设元法求一个平面的法向量;步骤如下:首先设平面的法向量m(x,y,z),然后寻找平面内任意两个不共线的向量AB(x1,y1,z1)和CD(x2,y2,z2)。由于平面法向量垂直于平面内所有的向量,因此得到x*x1+y*y1+z*z1=0和x*x2+y*y2+z*z2=0。由于上面解法存在三个未知数两个方程(不能通过增加新的向量和方程求解,因为其它方程和上述两个方程是等价的),无法得到唯一的法向量(因为法向量不是唯一的)。为了得到确定法向量,可采用固定z=1(也可以固定x=1或y=1)或者模等于1的方法(单位法向量),但是这步并不是必须的。因为确定法向量和不确定法向量的作用是一样的。 法向量的主要应用如下: 1、求斜线与平面所成的角:求出平面法向量和斜线的夹角,这个角和斜线与平面所成的角互余。利用这个原理也可以证明线面平行; 2、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补; 3、点到面的距离: 任一斜线(平面为一点与平面内的连线)在法向量方向的射影;如点B到平面α的距离d=|BD·n|/|n|(等式右边全为向量,D为平面内任意一点,向量n为平面α的法向量)。利用这个原理也可以求异面直线的距离 法向量方法是高考数学可以采用的方法之一,他的优点在于思路简单,容易操作。只要能够建立出直角坐标系,都可以写出最后答案。缺点在于同一般立体几何方法相比,其计算量巨大,特别是在计算二面角的时候。肖振2023-05-15 13:53:261