矩阵

知道矩阵A的值,怎么求它的转置矩阵的值?

设矩阵a经过初等行变换之后,化为上三角矩阵b,则a等价于b矩阵a"经过初等列变换之后,可化为下三角矩阵c,则a"等价于c显然,b的转置矩阵b"=c因为,转置之后对角线上的元素不变,所以,b和c的对角线元素相等。因为,三角形行列式的值等于对角线上元素的乘积又因为,|λi-a|=|λi-b|=对角线上元素的乘积,|λi-a"|=|λi-c|=对角线上元素的乘积所以,|λi-a|=|λi-a"|所以,矩阵a与矩阵a的转置矩阵的特征值相同
铁血嘟嘟2023-05-24 18:38:232

线性代数中的矩阵的转置和矩阵的逆矩阵有什么区别和联系?

没有关系。转置是把行和列交换,逆是相乘等于E,一般用初等变换法
韦斯特兰2023-05-24 18:38:234

矩阵的转置怎么算?

设矩阵a经过初等行变换之后,化为上三角矩阵b,则a等价于b矩阵a"经过初等列变换之后,可化为下三角矩阵c,则a"等价于c显然,b的转置矩阵b"=c因为,转置之后对角线上的元素不变,所以,b和c的对角线元素相等。因为,三角形行列式的值等于对角线上元素的乘积又因为,|λi-a|=|λi-b|=对角线上元素的乘积,|λi-a"|=|λi-c|=对角线上元素的乘积所以,|λi-a|=|λi-a"|所以,矩阵a与矩阵a的转置矩阵的特征值相同扩展资料:化成三角形行列式法:先把行列式的某一行(列)全部化为 1 ,再利用该行(列)把行列式化为三角形行列式,从而求出它的值,这是因为所求行列式有如下特点:1、各行元素之和相等; 2 各列元素除一个以外也相等。充分利用行列式的特点化简行列式是很重要的。根据行列式的特点,利用行列式性质把某行(列)化成只含一个非零元素,然后按该行(列)展开。展开一次,行列式降低一阶,对于阶数不高的数字行列式本法有效。参考资料来源:百度百科-矩阵转置
苏萦2023-05-24 18:38:231

怎么把矩阵的转置运算公式推导一下呢?

矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。最重要的一个公式,其余的每个都可以用这个来推导已知Y = AXB Y = A*X*BY=AXB那么有对X求导,公式(1)d Y d X = A TB T frac{dY}{dX} = A^T*B^TdXdY=ATBT和对X T X^TXT求导,公式(2)d Y d X T = BA frac{dY}{dX^T} = B*AdXTdY=BA下面我们来举例:如果要计算Y = XB Y = X*BY=XB中,d Y d X frac{dY}{dX}dXdY的值,我们可以令A = E A =EA=E代入公式(1),有d Y d X = B T frac{dY}{dX} = B^TdXdY=BT其他计算同理。有一个小窍门,平时在推导的时候,可以根据矩阵的行列数来判断。具体的规律可以自己私下尝试。
肖振2023-05-24 18:38:231

矩阵转置的定义

设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)定义A的转置为这样一个n×m阶矩阵B,满足B=a(j,i),即 b (i,j)=a (j,i)(B的第i行第j列元素是A的第j行第i列元素),记A"=B。(有些书记为AT=B,这里T为A的上标)直观来看,将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。例:
LuckySXyd2023-05-24 18:38:231

矩阵的转置怎么算?

设矩阵a经过初等行变换之后,化为上三角矩阵b,则a等价于b矩阵a"经过初等列变换之后,可化为下三角矩阵c,则a"等价于c显然,b的转置矩阵b"=c因为,转置之后对角线上的元素不变,所以,b和c的对角线元素相等。因为,三角形行列式的值等于对角线上元素的乘积又因为,|λi-a|=|λi-b|=对角线上元素的乘积,|λi-a"|=|λi-c|=对角线上元素的乘积所以,|λi-a|=|λi-a"|所以,矩阵a与矩阵a的转置矩阵的特征值相同化成三角形行列式法:先把行列式的某一行(列)全部化为 1 ,再利用该行(列)把行列式化为三角形行列式,从而求出它的值,这是因为所求行列式有如下特点:1、各行元素之和相等; 2 各列元素除一个以外也相等。充分利用行列式的特点化简行列式是很重要的。根据行列式的特点,利用行列式性质把某行(列)化成只含一个非零元素,然后按该行(列)展开。展开一次,行列式降低一阶,对于阶数不高的数字行列式本法有效。
苏萦2023-05-24 18:38:221

如何求一个矩阵的转置?

解: |A-λE|=|2-λ 2 -2||2 5-λ -4||-2 -4 5-λ|r3+r2 (消0的同时, 还能提出公因子, 这是最好的结果)|2-λ 2 -2||2 5-λ -4||0 1-λ 1-λ|c2-c3|2-λ 4 -2||2 9-λ -4||0 0 1-λ|= (1-λ)[(2-λ)(9-λ)-8] (按第3行展开, 再用十字相乘法)= (1-λ)(λ^2-11λ+10)= (10-λ)(1-λ)^2.如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),而且该矩阵对应的特征值全部为实数,则称A为实对称矩阵。主要性质:1.实对称矩阵A的不同特征值对应的特征向量是正交的。2.实对称矩阵A的特征值都是实数,特征向量都是实向量。3.n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4.若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。扩展资料:把一个m×n矩阵的行,列互换得到的n×m矩阵,称为A的转置矩阵,记为A"或AT。矩阵转置的运算律(即性质):1.(A")"=A2.(A+B)"=A"+B"3.(kA)"=kA"(k为实数)4.(AB)"=B"A"若矩阵A满足条件A=A",则称A为对称矩阵。由定义知对称矩阵一定是方阵,而且位于主对角线对称位置上的元素必对应相等,即aij=aji对任意i,j都成立。(1)对称矩阵 在一个n阶方阵A中,若元素满足下述性质:则称A为对称矩阵。(2)对称矩阵的压缩存储 对称矩阵中的元素关于主对角线对称,故只要存储矩阵中上三角或下三角中的元素,让每两个对称的元素共享一个存储空间。这样,能节约近一半的存储空间。①按行优先顺序存储主对角线(包括对角线)以下的元素即按 次序存放在一个向量sa[0...n(n+1)/2-1]中(下三角矩阵中,元素总数为n(n+1)/2)。其中:sa[0]=a0,0sa[1]=a1,0……sa[n(n+1)/2-1]=an-1,n-1②元素aij的存放位置aij元素前有i行(从第0行到第i-1行),一共有:1+2+…+i=i×(i+1)/2个元素。在第i行上, 之前恰有j个元素,即ai0,ai1,…,ai,j-1 ,因此有:sa[i×(i+1)/2+j]=aij③aij和sa[k]之间的对应关系:若i≥j,k=i×(i+1)/2+j0≤k<n(n+1)/2若i<j,k=j×(j+1)/2+i0≤k<n(n+1)/2令I=max(i,j),J=min(i,j),则k和i,j的对应关系可统一为:k=i×(i+1)/2+j0≤k<n(n+1)/2(3)对称矩阵的地址计算公式LOC(aij)=LOC(sa[k])=LOC(sa[0])+k×d=LOC(sa[0])+[I×(I+1)/2+J]×d通过下标变换公式,能立即找到矩阵元素aij在其压缩存储表示sa中的对应位置k。因此是随机存取结构。参考资料:百度百科---实对称矩阵
九万里风9 2023-05-24 18:38:221

行列式和它的转置行列式相等,那矩阵的转置等于原矩阵吗

行列式和它的转置相等,行列式的行列对称了,行的性质对列也成立。 你自己先写个行列式,然后转置一下;再写出和它的转置相等的行列式; 马上就清楚了。 告诉你思路自己练习,比直接告诉你结果好一些。
无尘剑 2023-05-24 18:38:228

求已知矩阵的转置矩阵的简单方法

你好!求转置矩阵就是把原矩阵的第一行写为第一列,把原矩阵的第二行写为第二列,...,把原矩阵的最后一行写为最后一列。经济数学团队帮你解答,请及时采纳。谢谢!
u投在线2023-05-24 18:38:222

矩阵A的转置怎么求?

AA^T| = |A| |A^T| = |A||A| = |A|^2即矩阵A乘以A的转置等于A的行列式的平方。矩阵转置的主要性质:1、实对称矩阵A的不同特征值对应的特征向量是正交的(网易笔试题曾考过)。2、实对称矩阵A的特征值都是实数,特征向量都是实向量。3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4、若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。扩展资料:线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。
Ntou1232023-05-24 18:38:221

矩阵的转置矩阵的性质是什么?

转置矩阵的性质如下:1、(A^T)^T=A2、(A+)B^T=A^T+B^T3、(kA)^T=kA^T4、(AB)^T=B^TA^T一个矩阵的转置与本身相乘得到对称矩阵一个矩阵的逆矩阵与本身相乘得到单位矩阵行列式不等于零,矩阵可逆,反之不可逆满秩矩阵一定是可逆的。矩阵的性质1、乘法结合律: (AB)C=A(BC)2、乘法左分配律:(A+B)C=AC+BC3、乘法右分配律:C(A+B)=CA+CB4、对数乘的结合性k(AB)=(kA)B=A(kB)5、AA*=A*A,A和伴随矩阵相乘满足交换律。6、AE=EA,A和单位矩阵或数量矩阵满足交换律。以上内容参考 百度百科—转置矩阵
北营2023-05-24 18:38:221

矩阵转置公式是什么?

矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。最重要的一个公式,其余的每个都可以用这个来推导已知Y = AXB Y = A*X*BY=AXB那么有对X求导,公式(1)d Y d X = A TB T frac{dY}{dX} = A^T*B^TdXdY=ATBT和对X T X^TXT求导,公式(2)d Y d X T = BA frac{dY}{dX^T} = B*AdXTdY=BA下面我们来举例:如果要计算Y = XB Y = X*BY=XB中,d Y d X frac{dY}{dX}dXdY的值,我们可以令A = E A =EA=E代入公式(1),有d Y d X = B T frac{dY}{dX} = B^TdXdY=BT其他计算同理。有一个小窍门,平时在推导的时候,可以根据矩阵的行列数来判断。具体的规律可以自己私下尝试。
豆豆staR2023-05-24 18:38:221

转置矩阵和原矩阵的关系是什么?

转置矩阵与原矩阵的关系:1、如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。2、一阶矩阵的转置不变。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但是存在一种复正交矩阵,复正交矩阵不是酉矩阵。正交矩阵的一个重要性质就是它的转置矩阵就是它的逆矩阵。简介简单地说如果A是两个向量空间之间的线性映射在给定基下面的矩阵,那么A的转置矩阵就是向量空间的对偶空间上的线性映射关于这两组基对应的对偶基(坐标函数)的矩阵,出于方便起见我们假设以下所有向量空间都是n维的。对于每个两个向量空间空间之间线性映射,存在一个反向的在其对应的对偶空间上的线性映射,我们称之为它的转置映射。
凡尘2023-05-24 18:38:221

转置矩阵和原矩阵的关系是什么?

转置后的矩阵与原矩阵的关系:1、如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。2、一阶矩阵的转置不变。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但是存在一种复正交矩阵,复正交矩阵不是酉矩阵。正交矩阵的一个重要性质就是它的转置矩阵就是它的逆矩阵。矩阵的应用:矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
大鱼炖火锅2023-05-24 18:38:221

什么是转置矩阵,有什么样的性质呢?

转置矩阵的性质如下:1、(A^T)^T=A2、(A+)B^T=A^T+B^T3、(kA)^T=kA^T4、(AB)^T=B^TA^T一个矩阵的转置与本身相乘得到对称矩阵一个矩阵的逆矩阵与本身相乘得到单位矩阵行列式不等于零,矩阵可逆,反之不可逆满秩矩阵一定是可逆的。矩阵的性质1、乘法结合律: (AB)C=A(BC)2、乘法左分配律:(A+B)C=AC+BC3、乘法右分配律:C(A+B)=CA+CB4、对数乘的结合性k(AB)=(kA)B=A(kB)5、AA*=A*A,A和伴随矩阵相乘满足交换律。6、AE=EA,A和单位矩阵或数量矩阵满足交换律。以上内容参考 百度百科—转置矩阵
u投在线2023-05-24 18:38:221

A的转置矩阵的逆矩阵=A的逆矩阵的转置矩阵吗,为什么

等于,因为A的转制乘A逆的转制=(A逆乘A)的转制=E的转制=E,所以A的转制的逆等于A逆的转制
人类地板流精华2023-05-24 18:38:224

矩阵转置怎么求?

AA^T| = |A| |A^T| = |A||A| = |A|^2即矩阵A乘以A的转置等于A的行列式的平方。矩阵转置的主要性质:1、实对称矩阵A的不同特征值对应的特征向量是正交的(网易笔试题曾考过)。2、实对称矩阵A的特征值都是实数,特征向量都是实向量。3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4、若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。扩展资料:线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。
肖振2023-05-24 18:38:221

怎么判断矩阵的转置

解: |A-λE|=|2-λ 2 -2||2 5-λ -4||-2 -4 5-λ|r3+r2 (消0的同时, 还能提出公因子, 这是最好的结果)|2-λ 2 -2||2 5-λ -4||0 1-λ 1-λ|c2-c3|2-λ 4 -2||2 9-λ -4||0 0 1-λ|= (1-λ)[(2-λ)(9-λ)-8] (按第3行展开, 再用十字相乘法)= (1-λ)(λ^2-11λ+10)= (10-λ)(1-λ)^2.扩展资料:如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),而且该矩阵对应的特征值全部为实数,则称A为实对称矩阵。主要性质:1.实对称矩阵A的不同特征值对应的特征向量是正交的。2.实对称矩阵A的特征值都是实数,特征向量都是实向量。3.n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4.若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。参考资料:百度百科——实对称矩阵
小菜G的建站之路2023-05-24 18:38:221

转置矩阵的特征值是什么?

设矩阵A经过初等行变换之后,化为上三角矩阵B,则A等价于B。矩阵A"经过初等列变换之后,可化为下三角矩阵C,则A"等价于C。相关介绍:矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。
Jm-R2023-05-24 18:38:211

(T是转置矩阵) A是三阶矩阵AT*A=4E则 |A|=

ATA=4E则等式两边取行列式,得到|A|^2=4^3|E|即|A|^2=64因此|A|=8或-8
此后故乡只2023-05-24 18:38:212

矩阵转置的性质

矩阵转置是矩阵运算中非常基础的操作之一,它可以将矩阵的列变为行,行变为列,生成一个新的矩阵。在矩阵分析和线性代数等领域,矩阵转置具有很多重要的性质和应用。下面我将从几个方面介绍矩阵转置的性质。一、基本性质:矩阵转置的基本性质包括:(A^T)^T=A,即矩阵转置的转置等于原矩阵;(AB)^T=B^TA^T,即矩阵乘积的转置等于因子的转置逆序相乘。二、转置运算的运算规律:矩阵转置的运算规律包括:对于任意的实矩阵A和B以及标量c,有(A+B)^T=A^T+B^T和(cA)^T=cA^T;若A是一个对称矩阵,则A^T=A;若A是一个反对称矩阵,则A^T=-A。三、转置运算的性质:矩阵转置的性质包括:矩阵的秩不变:若A为m×n矩阵,则r(A)=r(A^T);矩阵的行列式不变:若A为n×n矩阵,则|A|=|A^T|;矩阵的特征值不变:若A为n×n矩阵,则它的特征值和特征向量不变,即矩阵的谱不变。四、转置运算的应用:矩阵转置在很多领域中都有广泛的应用,如:矩阵求逆:由于(A^-1)^T=(A^T)^-1,所以转置比求逆更容易计算;矩阵相似性:如果存在可逆矩阵P,使得A=PBP^-1,则A^T=PB^TP^-1,即A与B相似;矩阵的正交性:正交矩阵Q满足 Q^TQ=I,即它的转置等于它的逆,因此矩阵转置在正交矩阵的证明中也有着重要的应用。综上所述,矩阵转置是矩阵运算中非常基础的操作,并具有很多重要的性质和应用。在学习和应用矩阵分析和线性代数的过程中,深入理解矩阵转置的性质和规律,可以更好地处理矩阵的相关问题,提高数学分析的能力和水平。
左迁2023-05-24 18:38:211

一个矩阵是否能转置有无条件?

矩阵的秩定义为它的非零子式的最大阶。注意行列式转置值不变。矩阵的子式在转置之后成为转置矩阵的子式(原子式的转置。)。它的值不变。所以非零子式的最大阶也不会变。即矩阵的转置矩阵与它自身具有相同的秩。
可桃可挑2023-05-24 18:38:212

为什么要做矩阵的转置

转置是矩阵的一种常规运算。例如对于正交矩阵 A,其逆矩阵等于转置矩阵,即A^(-1) = A^T。求逆矩阵很繁,但求转置矩阵较容易。
苏萦2023-05-24 18:38:211

请问一个矩阵的行列式为什么等于它的转置的行列式

|a^t|=|a|这是行列式的性质|ab|=|a||b|这是个方阵行列式的性质,称为行列式乘法公式
LuckySXyd2023-05-24 18:38:212

矩阵的转置是什么?

矩阵的转置也就是转置矩阵,将矩阵的行列互换得到的新矩阵称为转置矩阵,转置矩阵的行列式不变。将矩阵的行列互换得到的新矩阵称为转置矩阵,转置矩阵的行列式不变。矩阵的转置可能在实际生活中感受不到,但是在专业的工具中,尤其是图像处理的工具中可以经常用到的旋转功能,其实就是应用的矩阵转置,只是平时联想不到。性质:简单地说如果A是两个向量空间之间的线性映射在给定基下面的矩阵,那么A的转置矩阵就是向量空间的对偶空间上的线性映射关于这两组基对应的对偶基(坐标函数)的矩阵,出于方便起见我们假设以下所有向量空间都是n维的。对于每个两个向量空间空间之间线性映射,存在一个反向的在其对应的对偶空间上的线性映射,我们称之为它的转置映射。
此后故乡只2023-05-24 18:38:211

矩阵A的转置是什么?

AA^T| = |A| |A^T| = |A||A| = |A|^2即矩阵A乘以A的转置等于A的行列式的平方。矩阵转置的主要性质:1、实对称矩阵A的不同特征值对应的特征向量是正交的(网易笔试题曾考过)。2、实对称矩阵A的特征值都是实数,特征向量都是实向量。3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4、若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。扩展资料:线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。
ardim2023-05-24 18:38:211

矩阵的转置怎么求

矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。1、设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)。2、A的转置为这样一个n×m阶矩阵B,满足B=b(j,i),即 a(i,j)=b (j,i)(B的第i行第j列元素是A的第j行第i列元素),记A"=B。3、直观来看,将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。
肖振2023-05-24 18:38:211

矩阵的转置公式是什么啊?

矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。最重要的一个公式,其余的每个都可以用这个来推导已知Y = AXB Y = A*X*BY=AXB那么有对X求导,公式(1)d Y d X = A TB T frac{dY}{dX} = A^T*B^TdXdY=ATBT和对X T X^TXT求导,公式(2)d Y d X T = BA frac{dY}{dX^T} = B*AdXTdY=BA下面我们来举例:如果要计算Y = XB Y = X*BY=XB中,d Y d X frac{dY}{dX}dXdY的值,我们可以令A = E A =EA=E代入公式(1),有d Y d X = B T frac{dY}{dX} = B^TdXdY=BT其他计算同理。有一个小窍门,平时在推导的时候,可以根据矩阵的行列数来判断。具体的规律可以自己私下尝试。
苏萦2023-05-24 18:38:211

矩阵的转置公式是什么?

矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。最重要的一个公式,其余的每个都可以用这个来推导已知Y = AXB Y = A*X*BY=AXB那么有对X求导,公式(1)d Y d X = A TB T frac{dY}{dX} = A^T*B^TdXdY=ATBT和对X T X^TXT求导,公式(2)d Y d X T = BA frac{dY}{dX^T} = B*AdXTdY=BA下面我们来举例:如果要计算Y = XB Y = X*BY=XB中,d Y d X frac{dY}{dX}dXdY的值,我们可以令A = E A =EA=E代入公式(1),有d Y d X = B T frac{dY}{dX} = B^TdXdY=BT其他计算同理。有一个小窍门,平时在推导的时候,可以根据矩阵的行列数来判断。具体的规律可以自己私下尝试。
肖振2023-05-24 18:38:211

对角矩阵的转置矩阵原矩阵吗

是的。矩阵的转置是行列互换,主对角线上的元素转置后仍在主对角线上。如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但是存在一种复正交矩阵,复正交矩阵不是酉矩阵。正交矩阵的一个重要性质就是它的转置矩阵就是它的逆矩阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
无尘剑 2023-05-24 18:38:201

如何求矩阵的转置矩阵?

a×a的转置等于AA^T| = |A| |A^T| = |A||A| = |A|^2即矩阵A乘以A的转置等于A的行列式的平方。|A|=|A"|。转置矩阵的行列式等于原矩阵的行列式。而乘积矩阵的行列式等于行列式的乘积。|AA"|=|A||A"|。所以。|AA"|=|A||A"|=|A||A|=|A|²。性质:1、实对称矩阵A的不同特征值对应的特征向量是正交的(网易笔试题曾考过)。2、实对称矩阵A的特征值都是实数,特征向量都是实向量。3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4、若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
kikcik2023-05-24 18:38:201

分块矩阵的转置怎么求?

就是将原矩阵转置就行吧,和分块没有关系?
gitcloud2023-05-24 18:38:203

矩阵的转置的行列式

矩阵的行列式和其转置矩阵的行列式一定相等。证明要用到:1、交换排列中两个元素的位置,改变排列的奇偶性;2、行列式的定义可改为按列标的自然序,正负号由行标排列的奇偶性决定。扩展资料初等行变换1、以P中一个非零的数乘矩阵的某一行。2、把矩阵的某一行的c倍加到另一行,这里c是P中的任意一个数。3、互换矩阵中两行的位置。一般来说,一个矩阵经过初等行变换后就变成了另一个矩阵,当矩阵A经过初等行变换变成矩阵B时,一般写作A-B。可以证明:任意一个矩阵经过一系列初等行变换总能变成阶梯型矩阵。初等列变换同样地,定义初等列变换,即:1、以P中一个非零的数乘矩阵的某一列。2、把矩阵的某一列的c倍加到另一列,这里c是P中的任意一个数。3、互换矩阵中两列的位置。
肖振2023-05-24 18:38:201

求a的转置矩阵?

a的转置乘以a等于a行列式的平方。设A为m×n阶矩阵(即m行n列),第i行j列的元素是aij,即A=(aij)m×n定义A的转置为这样一个n×m阶矩阵B,满足B=(aji),即bij=aji(B的第i行第j列元素是A的第j行第i列元素)。记AT=B,直观来看将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。一个矩阵M,把它的第一行变成第一列,第二行变成第二列,最末一行变为最末一列,从而得到一个新的矩阵N,这一过程称为矩阵的转置。历史:矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究,阿瑟·凯利,矩阵论奠基人在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出,作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变数,但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。
CarieVinne 2023-05-24 18:38:201

矩阵和它的转置矩阵相乘结果是什么?

只有对称矩阵,反对称矩阵和正交矩阵满足矩阵的转置乘以矩阵,等于矩阵乘以矩阵的转置。如果矩阵不是方阵:转置矩阵与原矩阵的乘积是一个方阵,阶数为原矩阵Amxn的列数n;原矩阵与转置矩阵的乘积是一个方阵,阶数为原矩阵的行数m。这两个矩阵不是同型矩阵,不相等。如果矩阵是方阵:(1)对称矩阵(转置矩阵=原矩阵)的转置矩阵与原矩阵的乘法满足交换律。(2)反对称矩阵(转置矩阵=原矩阵的负矩阵)的转置矩阵与原矩阵的乘法满足交换律。(3)正交矩阵(逆矩阵=转置矩阵)的转置矩阵与原矩阵的乘法满足交换律。将矩阵的行列互换得到的新矩阵称为转置矩阵,转置矩阵的行列式不变。对称矩阵(Symmetric Matrices)是指元素以主对角线为对称轴对应相等的矩阵。在线性代数中,对称矩阵是一个方形矩阵,其转置矩阵和自身相等。1、对于任何方形矩阵X,X+XT是对称矩阵。2、A为方形矩阵是A为对称矩阵的必要条件。3、对角矩阵都是对称矩阵。4、两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。
无尘剑 2023-05-24 18:38:201

(矩阵的转置乘矩阵)的秩=矩阵的秩。那么矩阵乘(矩阵的转置)的秩是什么?求证明

有没有一种可能,矩阵=矩阵的转置的转置
再也不做站长了2023-05-24 18:38:204

线性代数中的矩阵的转置和矩阵的逆矩阵有什么区别和联系?

这是两个完全不同的概念转置是行变成列列变成行,没有本质的变换逆矩阵是和这个矩阵相乘以后成为单位矩阵的矩阵这个是一个本质的变换,逆矩阵除了一些显然的性质以外还有一些很特殊的性质,例如无论左乘还是右乘原矩阵,都是单位矩阵。
wpBeta2023-05-24 18:38:201

在线性代数里边,转置与逆矩阵的区别是什么?

转置是把矩阵的行变为列、列变为行,无论是不是方阵,都可以转置。逆矩阵是与原矩阵的积等于单位矩阵的矩阵。仅方阵才可能存在逆矩阵。
肖振2023-05-24 18:38:201

两个向量相乘得到的矩阵的转置怎么求

既然求二者相乘得到的矩阵转置那么就先把两个向量写成可以相乘的矩阵形式只有 1*n和n*1向量相乘得到数值而n*1 和1*n向量相乘,得到n*n方阵
大鱼炖火锅2023-05-24 18:38:201

(线代)分块矩阵的转置有这公式?

对的
NerveM 2023-05-24 18:38:2013

如何求矩阵转置?如何求行列式的值?

转置矩阵就是把原矩阵第m行n列位置的数换到第n行m列。比如1 2 3 4 56 7 8 9 0的转置矩阵就是1 62 73 84 95 0就是这样的求行列式的值 行列式的计算一 化成三角形行列式法 先把行列式的某一行(列)全部化为 1 ,再利用该行(列)把行列式化为三角形行列式,从而求出它的值,这是因为所求行列式有如下特点: 1 各行元素之和相等; 2 各列元素除一个以外也相等。 充分利用行列式的特点化简行列式是很重要的。 二 降阶法 根据行列式的特点,利用行列式性质把某行(列)化成只含一个非零元素,然后按该行(列)展开。展开一次,行列式降低一阶,对于阶数不高的数字行列式本法有效。 三 拆成行列式之和(积) 把一个复杂的行列式简化成两个较为简单的。 四 利用范德蒙行列式 根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去; ...) 把所求行列式化成已知的或简单的形式。其中范德蒙行列式就是一种。这种变形法是计算行列式最常用的方法。 五 加边法 要求:1 保持原行列式的值不变; 2 新行列式的值容易计算。根据需要和原行列式的特点选取所加的行和列。加边法适用于某一行(列)有一个相同的字母外,也可用于其第 列(行)的元素分别为 n-1 个元素的倍数的情况。 六 综合法 计算行列式的方法很多,也比较灵活,总的原则是:充分利用所求行列式的特点,运用行列式性质及上述常用的方法,有时综合运用以上方法可以更简便的求出行列式的值;有时也可用多种方法求出行列式的值。 七 行列式的定义 一般情况下不用。
瑞瑞爱吃桃2023-05-24 18:38:201

矩阵的转置问题

注意到行列式的性质|A^T|=|A|且单位阵E是对称阵,则有|E-A^T|=|E^T-A^T|=|(E-A)^T|=|E-A|。
mlhxueli 2023-05-24 18:38:201

什么情况下矩阵的转置矩阵等于其逆矩阵,能证明下吗

A^T=A^{-1} <=> AA^T=I,也就是A是正交阵
Chen2023-05-24 18:38:194

矩阵的转置是什么呢?

矩阵的转置也就是转置矩阵,将矩阵的行列互换得到的新矩阵称为转置矩阵,转置矩阵的行列式不变。在数学中,矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出,矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。矩阵的秩矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。方阵(行数、列数相等的矩阵)的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。以上内容参考 百度百科——矩阵的秩
ardim2023-05-24 18:38:191

如何求矩阵的转置

方法1:使用伴随矩阵的定义,先求出各元素,对应的代数余子式,再转置方法2:利用伴随矩阵(仅限可逆矩阵情况下),与行列式及逆矩阵的关系:先求出行列式|A|再使用初等行变换,求出逆矩阵根据公式
北境漫步2023-05-24 18:38:191

矩阵怎么进行转置操作?

Option ExplicitOption Base 1Dim a(4, 4) As IntegerPrivate Sub Command1_Click()Dim i As Integer, j As IntegerPicture1.ClsRandomizeFor i = 1 To 4 For j = 1 To 4 a(i, j) = Int(Rnd * 9) + 1 Picture1.Print a(i, j); Next j Picture1.PrintNext iEnd SubPrivate Sub Command2_Click()Dim i As Integer, j As IntegerDim b(4, 4) As IntegerPicture2.ClsFor i = 1 To 4 For j = 1 To 4 b(i, j) = a(j, i) Picture2.Print b(i, j); Next j Picture2.PrintNext iEnd SubPrivate Sub Command3_Click()Dim i As Integer, j As Integer, temp As IntegerPicture2.ClsFor i = 1 To 4 For j = i To 4 temp = a(i, j) a(i, j) = a(j, i) a(j, i) = temp Next jNext iFor i = 1 To 4 For j = 1 To 4 Picture2.Print a(i, j); Next j Picture2.PrintNext iEnd Sub
西柚不是西游2023-05-24 18:38:193

矩阵的转置是什么意思?

矩阵的转置也就是转置矩阵,将矩阵的行列互换得到的新矩阵称为转置矩阵,转置矩阵的行列式不变。矩阵的转置可能在实际生活中感受不到,但是在专业的工具中,尤其是图像处理的工具中可以经常用到的旋转功能,其实就是应用的矩阵转置,只是平时联想不到。矩阵分解将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积 ,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。在线性代数中,相似矩阵是指存在相似关系的矩阵,相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。
wpBeta2023-05-24 18:38:191

一个矩阵的转置是什么呢?

等于A^2。AA^T=AA^T=AA=A^2即矩阵A乘以A的转置等于A的行列式的平方。矩阵转置的主要性质实对称矩阵A的不同特征值对应的特征向量是正交的。实对称矩阵A的特征值都是实数,特征向量都是实向量。n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。若入0具有k重特征值必有k个线性无关的特征向量,或者说必有秩r(入OE-A)=n-k,其中E为单位矩阵。a×a的转置介绍:a*a的转置可以表示为:AA^T= AA^T= AA|= A^2即矩阵A乘以A的转置等于A的行列式的平方。2、转置是一个数学名词。直观来看,将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。一个矩阵M,把它的第一行变成第一列,第二行变成第二列,等等。直到最末一行变为最末一列,从而得到一个新的矩阵N。这一过程称为矩阵的转置。即矩阵A的行和列对应互换。3、矩阵转置的主要性质:实对称矩阵A的不同特征值对应的特征向量是正交的。实对称矩阵A的特征值都是实数,特征向量都是实向量。n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
西柚不是西游2023-05-24 18:38:191

矩阵的转置是什么意思,矩阵的转置怎么表示

1.矩阵的转置是矩阵的一种运算,在矩阵的所有运算法则中占有重要地位。 2. 设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:把m×n矩阵A的行换成同序数的列得到一个n×m矩阵,此矩阵叫做A的转置矩阵。
黑桃花2023-05-24 18:38:191

矩阵转置公式是什么?

设矩阵a经过初等行变换之后,化为上三角矩阵b,则a等价于b。矩阵a"经过初等列变换之后,可化为下三角矩阵c,则a"等价于c。显然,b的转置矩阵b"=c。所以,矩阵a与矩阵a的转置矩阵的特征值相同。化成三角形行列式法:先把行列式的某一行(列)全部化为 1 。再利用该行(列)把行列式化为三角形行列式,从而求出它的值。这是因为所求行列式有如下特点:各行元素之和相等; 各列元素除一个以外也相等。
瑞瑞爱吃桃2023-05-24 18:38:191

矩阵的转置怎么求

方法1/3矩阵转置其实就是行列互换,根据字面意思,就是把行的内容换到列的内容,下面给大家举例介绍请点击输入图片描述2/3如图所示,将矩阵第一行的内容转换到第一列的位置请点击输入图片描述3/3以此类推,第二行内容转至第二列,第三行内容转至第三列,就完成矩阵转置了请点击输入图片描述
苏萦2023-05-24 18:38:191

矩阵的转置是什么

在求矩阵的转置的时候实际上就把每个第m行n列的元素都转移到第n行m列去得到的新矩阵就是矩阵的转置记为转置矩阵A^T
阿啵呲嘚2023-05-24 18:38:191

如何求矩阵A的转置?

解: |A-λE|=|2-λ 2 -2||2 5-λ -4||-2 -4 5-λ|r3+r2 (消0的同时, 还能提出公因子, 这是最好的结果)|2-λ 2 -2||2 5-λ -4||0 1-λ 1-λ|c2-c3|2-λ 4 -2||2 9-λ -4||0 0 1-λ|= (1-λ)[(2-λ)(9-λ)-8] (按第3行展开, 再用十字相乘法)= (1-λ)(λ^2-11λ+10)= (10-λ)(1-λ)^2.如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),而且该矩阵对应的特征值全部为实数,则称A为实对称矩阵。主要性质:1.实对称矩阵A的不同特征值对应的特征向量是正交的。2.实对称矩阵A的特征值都是实数,特征向量都是实向量。3.n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4.若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。扩展资料:把一个m×n矩阵的行,列互换得到的n×m矩阵,称为A的转置矩阵,记为A"或AT。矩阵转置的运算律(即性质):1.(A")"=A2.(A+B)"=A"+B"3.(kA)"=kA"(k为实数)4.(AB)"=B"A"若矩阵A满足条件A=A",则称A为对称矩阵。由定义知对称矩阵一定是方阵,而且位于主对角线对称位置上的元素必对应相等,即aij=aji对任意i,j都成立。(1)对称矩阵 在一个n阶方阵A中,若元素满足下述性质:则称A为对称矩阵。(2)对称矩阵的压缩存储 对称矩阵中的元素关于主对角线对称,故只要存储矩阵中上三角或下三角中的元素,让每两个对称的元素共享一个存储空间。这样,能节约近一半的存储空间。①按行优先顺序存储主对角线(包括对角线)以下的元素即按 次序存放在一个向量sa[0...n(n+1)/2-1]中(下三角矩阵中,元素总数为n(n+1)/2)。其中:sa[0]=a0,0sa[1]=a1,0……sa[n(n+1)/2-1]=an-1,n-1②元素aij的存放位置aij元素前有i行(从第0行到第i-1行),一共有:1+2+…+i=i×(i+1)/2个元素。在第i行上, 之前恰有j个元素,即ai0,ai1,…,ai,j-1 ,因此有:sa[i×(i+1)/2+j]=aij③aij和sa[k]之间的对应关系:若i≥j,k=i×(i+1)/2+j0≤k<n(n+1)/2若i<j,k=j×(j+1)/2+i0≤k<n(n+1)/2令I=max(i,j),J=min(i,j),则k和i,j的对应关系可统一为:k=i×(i+1)/2+j0≤k<n(n+1)/2(3)对称矩阵的地址计算公式LOC(aij)=LOC(sa[k])=LOC(sa[0])+k×d=LOC(sa[0])+[I×(I+1)/2+J]×d通过下标变换公式,能立即找到矩阵元素aij在其压缩存储表示sa中的对应位置k。因此是随机存取结构。参考资料:百度百科---实对称矩阵
墨然殇2023-05-24 18:38:191

矩阵的转置怎么算

.现有两个矩阵,这两个矩阵的行数和列数都一样,将它们设为矩阵A与B,他们的行数与列...2.矩阵C既然为矩阵A与B的和矩阵,那么就等于矩阵A与B中的元素各自相加之后的结果。3.现我们找两个矩阵,而且这两个矩阵的行数和列数必须一样,否则就不能进行加减运算。4.按照矩阵加法的运算法则,我们先写出这两个矩阵相加时所对应的加法算式矩阵,...
CarieVinne 2023-05-24 18:38:192

什么是转置矩阵

将矩阵的行列互换得到的新矩阵就称为转置矩阵即原来的m行n列的元素更换到n行m列去而转置方阵的行列式是不变的
善士六合2023-05-24 18:38:191

矩阵的转置矩阵是什么意思

转置矩阵的性质如下:1、(A^T)^T=A2、(A+)B^T=A^T+B^T3、(kA)^T=kA^T4、(AB)^T=B^TA^T一个矩阵的转置与本身相乘得到对称矩阵一个矩阵的逆矩阵与本身相乘得到单位矩阵行列式不等于零,矩阵可逆,反之不可逆满秩矩阵一定是可逆的。矩阵的性质1、乘法结合律: (AB)C=A(BC)2、乘法左分配律:(A+B)C=AC+BC3、乘法右分配律:C(A+B)=CA+CB4、对数乘的结合性k(AB)=(kA)B=A(kB)5、AA*=A*A,A和伴随矩阵相乘满足交换律。6、AE=EA,A和单位矩阵或数量矩阵满足交换律。以上内容参考 百度百科—转置矩阵
肖振2023-05-24 18:38:191

矩阵的迹和向量内积的关系

设阿尔法(a,b,c)T,贝塔(a1,b1,c1)T,内积一下,你就发现aa1+bb1+cc1=3正好等于迹。
九万里风9 2023-05-24 18:38:181

矩阵的迹的证明

设A为n阶方阵,则矩阵A的特征多项式为a11-λ a12 ... a1(n-1) a1na21 a22-λ ... a2(n-1) a2n .... ... ... .... ...an1 an2 ... an(n-1) ann-λ=f(λ) (上述为行列式)同时,设矩阵的特征值为λ1,λ2。。。。λn即当λ=λi(i=1,2,.......n)时 (A-λE)X=0有非零解根据齐次线性方程组解存在的定理可得 IA-λEI=0即 f(λ)=0故λi均为f(λ)=0的解 于是 f(λ)=(λ1-λ)(λ2-λ).........(λn-λ)显然,当令λ=0时,f(λ)=λ1λ2...λn而此时行列式a11-λ a12 ... a1(n-1) a1na21 a22-λ ... a2(n-1) a2n ... ... ... ... ...an1 an2 ... an(n-1) ann-λ=a11 a12 ... a1(n-1) a1na21 a22 ... a2(n-1) a2n ... ... ... ... ...an1 an2 ... an(n-1) ann=IAI于是 IAI=λ1λ2...λn,即矩阵特征值的连乘等于矩阵的行列式的值再将 f(λ)=(λ1-λ)(λ2-λ).........(λn-λ)展开可得λ^(n-1)的系数为-1^(n-1)*(λ1+λ2+..............+λn)再看行列式a11-λ a12 ... a1(n-1) a1na21 a22-λ ... a2(n-1) a2n... ... ... ... ...an1 an2 ... an(n-1) ann-λ=f(λ) (上述为行列式)若要出现λ^(n-1),则必有对角线上的(n-1)项相乘,且这(n-1)项均提供λ,而剩下的系数也只能是对角线上余下的一项中的常数提供因此,可得λ^(n-1)的系数为-1^(n-1)*(a11+a22+...+ann)于是 λ1+λ2+...+λn=a11+a22+...+ann即 矩阵特征值的和等于矩阵主对角线上元素的和
肖振2023-05-24 18:38:181

计算器可以求矩阵的迹吗

计算器可以求矩阵的迹。按照初等行变换原则把原来的矩阵变换为阶梯型矩阵,总行数减去全部为零的行数即非零的行数为矩阵的秩了。用初等行变换化成梯矩阵,梯矩阵中非零行数为矩阵的秩。普通计算器的作用:用来计算各种数字,关于我们需要的各项数字,计算器的种类不同,在计算上也略有不同,比如在使用普通的计算器时,就只能计算一些普通的加减乘除。特别的科学计算器在使用上则可以做很多的运算,尤其在一些比较高深的计算。矩阵的迹性质:1、在数值分析中,由于数值计算误差,测量误差,噪声以及病态矩阵,零奇异值通常显示为很小的数目。2、设有N阶矩阵A,那么矩阵A的迹就等于A的特征值的总和,也即矩阵A的主对角线元素的总和。3、U和V中分别是A的奇异向量,而B是A的奇异值。AA"的特征向量组成U,特征值组成B"B,A"A的特征向量组成V,特征值(与AA"相同)组成BB"。因此,奇异值分解和特征值问题紧密联系。以上内容参考:百度百科--计算器
墨然殇2023-05-24 18:38:181

关于矩阵的迹(trace)

这个一般是做不到的,除非矩阵A的阶数n=1。如果存在trace(A)=B*A*C这样的表示,那么分析维数就可以知道trace(A)=y"Ax,其中x和y是列向量。取A=xy",则trace(A)=trace(y"x)=y"x=trace(I)=n,再由迹的表示得trace(A)=y"xy"x=n^2,当n>1的时候不可能成立。
拌三丝2023-05-24 18:38:181

矩阵的迹及迹的求导

对于一个N x N的矩阵 A,其主对角线元素之和称为迹,即: 存在N x 1列向量 M,其模的平方记为 而其模的平方可以转换为 其中 是一个N x N的矩阵,矩阵的对角线恰好是列向量的迹BC、AB、CA看作整体,利用定理1,即可推出只考虑对角线的元素下,有同理,关于 求偏导,即可
苏州马小云2023-05-24 18:38:181

为什么两个矩阵的特征值相同迹也相同?

矩阵的迹,就等于所有特征值之和。既然,特征值相同,因此特征值之和相等,从而迹相等
NerveM 2023-05-24 18:38:181

在量子力学中,Hermitian矩阵的迹是不是就是它的实部值?

是的,简单的可以这么理解。虚部可以理解是非对角元,就是量子相干部分。
LuckySXyd2023-05-24 18:38:181

相似矩阵的迹为什么相等

若A=SB(S^-1)则A和B是相似矩阵迹运算满足性质(轮换不变性):tr(ABC)=tr(BCA)=tr(CAB)所以:tr(A)=tr(SB(S^-1))=tr((S^-1)SB)=tr(B)
凡尘2023-05-24 18:38:181

一个矩阵的迹和秩都为1,能得出什么结论

迹为1,说明矩阵的特征值和为1; 秩为1,说明矩阵的任意两行或两列都线性相关;可表示为A=a×b‘ 的形式,其中a,b为列向量; 还可得到 0是n-1重特征值,其中n为矩阵的阶数; 再结合迹为1的性质,可得另外一个特征值是1
苏萦2023-05-24 18:38:181

矩阵转置公式是什么?

矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。最重要的一个公式,其余的每个都可以用这个来推导已知Y = AXB Y = A*X*BY=AXB那么有对X求导,公式(1)d Y d X = A TB T frac{dY}{dX} = A^T*B^TdXdY=ATBT和对X T X^TXT求导,公式(2)d Y d X T = BA frac{dY}{dX^T} = B*AdXTdY=BA下面我们来举例:如果要计算Y = XB Y = X*BY=XB中,d Y d X frac{dY}{dX}dXdY的值,我们可以令A = E A =EA=E代入公式(1),有d Y d X = B T frac{dY}{dX} = B^TdXdY=BT其他计算同理。有一个小窍门,平时在推导的时候,可以根据矩阵的行列数来判断。具体的规律可以自己私下尝试。
陶小凡2023-05-24 18:38:181

矩阵的转置怎么求?

AA^T| = |A| |A^T| = |A||A| = |A|^2即矩阵A乘以A的转置等于A的行列式的平方。矩阵转置的主要性质:1、实对称矩阵A的不同特征值对应的特征向量是正交的(网易笔试题曾考过)。2、实对称矩阵A的特征值都是实数,特征向量都是实向量。3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4、若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。扩展资料:线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。
可桃可挑2023-05-24 18:38:181

矩阵中的迹代表什么

就是主对线上,所有元素加起来的和
Chen2023-05-24 18:38:172

矩阵的迹怎么求

方阵对角元之和即为矩阵的迹
meira2023-05-24 18:38:171

求矩阵的迹时需要把矩阵化成上三角吗

当然不需要既然是求迹,那按定义直接把对角元加起来就行了
meira2023-05-24 18:38:171

矩阵逆的迹与矩阵的迹有什么关系吗

tr(A^(-1))=tr(A)/det(A),因为tr(A^(-1))=1/λ1+1/λ2+...+1/λn=(λ1+λ2+...+λn)/(λ1*λ2*...*λn)=tr(A)/det(A)
豆豆staR2023-05-24 18:38:172

矩阵中 为什么矩阵的迹就是特征值的和 为什么等于第二项系数?要具体证明

设A为n阶方阵,考虑特征多项式|λE-A|的n-1次项。使用行列式的完全展开式,可知除了主对角线乘积(λ-a11)(λ-a22)...(λ-ann)一项外次数都小于n-1。因此n-1次项的系数就是(λ-a11)(λ-a22)...(λ-ann)中λ^(n-1)的系数,也就是-(a11+a22+...+ann)。特征值是特征多项式的根,由韦达定理(根与系数关系)知特征值的和 = a11+a22+...+ann。
hi投2023-05-24 18:38:173

为什么矩阵特征值的和等于矩阵的迹?

原因如下:简而言之,因为相似矩阵的对角线元素的和相等,以特征值为对角线元素的矩阵与原矩阵相似,所以矩阵特征值的和等于矩阵的迹 。简介:在线性代数中,一个n×n矩阵A的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹(或迹数),一般记作tr(A)。将一个矩阵分解为比较简单或者性质比较熟悉的矩阵之组合,方便讨论和计算。由于矩阵的特征值和特征向量在化矩阵为对角形的问题中占有特殊位置, 因此矩阵的特征值分解。尽管矩阵的特征值具有非常好的性质,但是并不是总能正确地表示矩阵的“大小”。
凡尘2023-05-24 18:38:171

怎么用R语言求矩阵的迹?

a=matrix(1:9,nrow=3)tr = 0for(i in 1:nrow(a)) tr = tr + a[i, i]tr
小菜G的建站之路2023-05-24 18:38:172

矩阵trA什么意思?

trA代表矩阵A的迹。在线性代数中,一个n×n矩阵A的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹(或迹数),一般记作tr(A)。trA是主对角线上元素之和:a11+a22+...ann。扩展资料:矩阵的迹计算性质:1.两个矩阵相似,那么两个矩阵的迹相等。2.矩阵的迹就是对角线元素的和。3.矩阵的迹不能又初等行变换之后的矩阵求得。4.矩阵的迹只有在矩阵中存在,在行列式中不存在。参考资料来源:百度百科——矩阵的迹
铁血嘟嘟2023-05-24 18:38:171

矩阵迹的性质

性质(1)设有N阶矩阵A,那么矩阵A的迹(用表示)就等于A的特征值的总和,也即矩阵A的主对角线元素的总和。1.迹是所有主对角元素的和2.迹是所有特征值的和3.某些时候也利用tr(AB)=tr(BA)来求迹4.(2)奇异值分解(Singular value decomposition )奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),满足A = U*B*VU和V中分别是A的奇异向量,而B是A的奇异值。AA"的特征向量组成U,特征值组成B"B,A"A的特征向量组成V,特征值(与AA"相同)组成BB"。因此,奇异值分解和特征值问题紧密联系。如果A是复矩阵,B中的奇异值仍然是实数。SVD提供了一些关于A的信息,例如非零奇异值的数目(B的阶数)和A的阶数相同,一旦阶数确定,那么U的前k列构成了A的列向量空间的正交基。(3)在数值分析中,由于数值计算误差,测量误差,噪声以及病态矩阵,零奇异值通常显示为很小的数目。将一个矩阵分解为比较简单或者性质比较熟悉的矩阵之组合,方便讨论和计算。由于矩阵的特征值和特征向量在化矩阵为对角形的问题中占有特殊位置, 因此矩阵的特征值分解。尽管矩阵的特征值具有非常好的性质,但是并不是总能正确地表示矩阵的“大小”。矩阵的奇异值和按奇异值分解是矩阵理论和应用中十分重要的内容,已成为多变量反馈控制系统最重要最基本的分析工具之一,奇异值实际上是复数标量绝对值概念的推广, 表示了反馈控制系统的输出/输入增益,能反映控制系统的特性。《鲁棒控制.倾斜转弯导弹》矩阵的迹,数学、线性代数名词,在线性代数中,一个n×n矩阵A的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹(或迹数),一般记作tr(A)。
bikbok2023-05-24 18:38:171

特征值的和等于矩阵的迹是什么?

因为相似矩阵的对角线元素的和相等,以特征值为对角线元素的矩阵与原矩阵相似,所以矩阵特征值的和等于矩阵的迹 。在线性代数中,一个n×n矩阵A的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹(或迹数),一般记作tr(A)。将一个矩阵分解为比较简单或者性质比较熟悉的矩阵之组合,方便讨论和计算。由于矩阵的特征值和特征向量在化矩阵为对角形的问题中占有特殊位置, 因此矩阵的特征值分解。尽管矩阵的特征值具有非常好的性质,但是并不是总能正确地表示矩阵的“大小”。在线性代数中,一个n×n矩阵A的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹(或迹数),一般记作tr(A)。将一个矩阵分解为比较简单或者性质比较熟悉的矩阵之组合,方便讨论和计算。由于矩阵的特征值和特征向量在化矩阵为对角形的问题中占有特殊位置, 因此矩阵的特征值分解。尽管矩阵的特征值具有非常好的性质,但是并不是总能正确地表示矩阵的“大小”。矩阵的奇异值和按奇异值分解是矩阵理论和应用中十分重要的内容,已成为多变量反馈控制系统最重要最基本的分析工具之一,奇异值实际上是复数标量绝对值概念的推广, 表示了反馈控制系统的输出/输入增益,能反映控制系统的特性。
无尘剑 2023-05-24 18:38:171

相似矩阵的迹一定相同,那么两个矩阵的迹相同一定相似吗?

当然不一定了,迹相同是很弱的条件。比如说两个对角阵一个全是1,另一个对角元素是-1,2,1,...,1两个矩阵迹相等,但显然不相似
小白2023-05-24 18:38:171

矩阵A的迹等于A的秩等于1,证明A平方等于A

显然A是1阶矩阵时,tr(A)=r(A)=1,则A=[1]显然此时A^2=A=[1]下面证明当A的阶数大于1时,有A^2=AA的秩等于1,说明此时A只有1个非零特征值x,而其余特征值为0(即0是n-1重特征值)则tr(A)=x+0+0+..+0=x=1即A的全部特征值是1,0(n-1重)则A与对角矩阵D=diag(1,0,...,0)相似,且有可逆矩阵P,使得P^(-1)AP=D则A=PDP^(-1)A^2=(PDP^(-1))^2=PD^2P^(-1)=PDP^(-1)=A因此得证
Chen2023-05-24 18:38:171

矩阵的迹如何表示

trace(A)表示 矩阵 A的迹或 用 tr(A)表示
bikbok2023-05-24 18:38:161
 首页 上一页  10 11 12 13 14 15 16 17 18 19 20  下一页  尾页