根式

二次根式的加减乘除运算法则

题目?
NerveM 2023-08-10 10:28:5010

想知道根号4是二次根式吗?

√4是二次根式,但不是最简二次根式。形如√a的式子称为二次根式,如√3,√5,√32等均为二次根式,从形式上看二次根式必须含有二次根号"√",但是带根号的不一定是最简二次根式,如√4带根号,但√4=2,显然不是最简二次根式。一般地,形如√a的代数式叫作二次根式,其中,a叫作被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。同类二次根式怎么判断?几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫作同类二次根式。一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。
康康map2023-08-03 10:40:101

根号四是不是二次根式

一般按照基本定义形如√a的代数式叫做二次根式那么这里的根号四当然是二次根式只是其经过化简之后根号4 可以得到有理数2
人类地板流精华2023-08-03 10:40:071

根号4是二次根式吗?

根号4是二次根式。如果是二次根号4,那就是二次根式,即4=2,如果是n次根号4,那就是n次根式。根式的两个重要标志,一是带有根号,二是被开方数取值要有意义,如开偶次方时被开方数必须非负。带有三次根号的式子叫三次根式,带有n(≥2)次根号的式子叫做n次根式。根号的取值范围根号取值范围取值范围是大于等于0。在实数范围内偶次根号下不能为负数,其运算结果也不为负;奇次根号下可以为负数。不限于实数,即考虑虚数时,偶次根号下可以为负数。通常说的根号都是指二次根号,即√它表示对根号下的数开平方。根号下的数叫做被开方数。
阿啵呲嘚2023-08-03 10:39:471

二次根式定义,性质,公式,法则

二次根式的定义:二次根式的性质:a(a≥0)-a(a≤0)==∣a∣===计算下列式子.并观察他们之间有什么联系?能用字母表示你所发现的规律吗?一、二次根式乘法法则:一般地有二次根式与二次根式相乘,等于各被开数的积的算术平方根。扩充:例题1计算:(1)(2)解:(3)(a≥0,b≥0)二次根式的乘法:利用这个等式可以化简一些根式。试一试:例题2化简:(1)(3)解:(1)(2)化简:4、计算:化简二次根式的步骤:1.将被开方数尽可能分解成几个平方数.根式运算的结果中,被开方数应不含能开得尽方的因数或因式二次根式的乘法和除法1.积的算数平方根的性质列如:√ab=√a·√b(a≥0,b≥0)2.乘法法则列如:√a·√b=√ab(a≥0,b≥0)二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。3.除法法则√a÷√b=√a÷b(a≥0,b>0)二次根式的除法运算法则,用语言叙述为:两个数的算术平方根的商,等于这两个数商的算术平方根。4.有理化根式。如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。编辑本段二次根式的加法和减法1同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。2合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。例如:2√5+√5=3√54、有括号时,要先去括号
拌三丝2023-07-29 20:16:303

二次根式的定义与性质

如果一个数的平方等于a,那么这个数叫做a的平方根。a可以是具体的数,也可以是含有字母的代数式。即:若,则叫做a的平方根,记作x=。其中a叫被开方数。其中正的平方根被称为算术平方根。关于二次根式概念,应注意:被开方数可以是数,也可以是代数式。被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。性质:1.任何一个正数的平方根有两个,它们互为相反数。如正数a的算术平方根是,则a的另一个平方根为﹣;最简形式中被开方数不能有分母存在。2.零的平方根是零,即;3.负数的平方根也有两个,它们是共轭的。如负数a的平方根是。4.有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。5.无理数可用有理数形式表示,
LuckySXyd2023-07-29 20:16:302

下列根式中与18是同类二次根式的是( )A.132B.27C.6D.3

解:∵18=32;A、132=182与32被开方数相同,故是同类二次根式;B、27=33与32被开方数不同,故不是同类二次根式;C、6与32被开方数不同,故不是同类二次根式;D、3与32被开方数不同,故不是同类二次根式.故选A.
北营2023-07-29 20:16:301

二次根式数学知识点

  二次根式数学知识点 篇1   1.乘法规定:(a≥0,b≥0)   二次根式相乘,把被开方数相乘,根指数不变。   推广:   (1)(a≥0,b≥0,c≥0)   (2)(b≥0,d≥0)   2.乘法逆用:(a≥0,b≥0)   积的算术平方根等于积中各因式的算术平方根的积。   注意:公式中的a、b可以是数,也可以是代数式,但必须满足a≥0,b≥0;   3.除法规定:(a≥0,b>0)   二次根式相处,把被开方数相除,根指数不变。   推广:,其中a≥0,b>0,。   方法归纳:两个二次根式相除,可采用根号前的系数与系数对应相除,根号内的被开方数与被开方数对应相除,再把除得得结果相乘。   4.除法逆用:(a≥0,b>0)   商的算术平方根等于被除式的算术平方根除以除式的算术平方根。   二次根式数学知识点 篇2   二次根式的概念   形如√a(a≥0)的式子叫做二次根式。   注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a≥0是√a为二次根式的前提条件,如√5,√(x2+1),   √(x—1)(x≥1)等是二次根式,而√(—2),√(—x2—7)等都不是二次根式。   二次根式取值范围   1、二次根式有意义的条件:由二次根式的意义可知,当a≥0时√a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。   2、二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,√a没有意义。   知识点三:二次根式√a(a≥0)的非负性   √a(a≥0)表示a的算术平方根,也就是说,√a(a≥0)是一个非负数,即√a≥0(a≥0)。   注:因为二次根式√a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a≥0)的算术平方根是非负数,即√a≥0(a≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若√a+√b=0,则a=0,b=0;若√a+|b|=0,则a=0,b=0;若√a+b2=0,则a=0,b=0。   二次根式的性质   √a2=|a|   文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。   注:   1、化简√a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即√a2=|a|=a(a≥0);若a是负数,则等于a的相反数—a,即√a2=|a|=—a(a﹤0);   2、√a2中的a的取值范围可以是任意实数,即不论a取何值,√a2一定有意义;   3、化简√a2时,先将它化成|a|,再根据绝对值的意义来进行化简。   二次根式(√a)的性质   (√a)2=a(a≥0)   文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。   注:二次根式的性质公式(√a)2=a(a≥0)是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若a≥0,则a=(√a)2,如:2=(√2)2,1/2=(√1/2)2。   方程与方程组   一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。   解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。   二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。   二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。   适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。   二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。   解二元一次方程组的方法:代入消元法/加减消元法。   一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程   提高数学成绩的方法   1、怎么样提高数学成绩   首先想要提升数学成绩,成为数学学霸的前提是要对数学有良好的学习兴趣。其次要学会课前预习,方便自己能够更加深入的吃透课堂上的知识点。然后还要学会总结复习,总结自己课堂上的问题,复习课堂上的重要知识点,从而提高自己的数学成绩。   提升数学成绩还要拥有一个错题本,和数学资料。认真对待自己的学习工具,多做练习题,找出自己的薄弱环节和自己常犯的题型,记在错题本上,常练习,常巩固。在自己的数学资料中摸索出适合自己的解题技巧,反复练习加以运用,一定会提升你的数学成绩。   学会听课,在课堂上勇于提问。数学最重要的部分都是在课本上,所以必须要掌握好课堂的45分钟。把握好数学课本,为自己打下一个好基础,这样才能更有效的提升你的数学成绩。学会做课堂笔记,把每节课的重要知识点记下来,以便接下来的复习。   2、如何才能成为数学学霸   想要提升成绩成为数学学霸,天赋是非常重要的,当然除了天赋外还要看你是否肯用心,而且学习方法也是同等重要的。   提升数学成绩成为学霸的第一步,就是要背,记住数学里面的公式和推算方法,掌握住数学公式和推算方法有助于你答题,无论自己碰到什么样的题型,最基本的公式是必须要掌握的。因为数学答题时就算你不会,但是只要把公式写出来还是会得分的,能够更有效地提升你的成绩。   多练习,多练习不是说搞那些所谓的题海战术,真正要练的是教材,数学教材才是真正的基础题,可以起到举一反三的作用。而且在做题的时候要的是效率,而不是量,认真分析做过的题型,你会发现他们的题型会有相似之处,能够使你更好的知道数学中的奥秘。   二次根式数学知识点 篇3   第1章 二次根式   学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式 一章就来认识这种式子,探索它的性质,掌握它的运算。   在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:   注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到并运用它们进行二次根式的化简。   二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。   第2章 一元二次方程   学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。   本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,   22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的`方法。下面分别加以说明。   (1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。   (2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。   (3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。   22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。   二次根式数学知识点 篇4   (一)知识要点:   知识点1:同类二次根式   (Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如 这样的二次根式都是同类二次根式。   (Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。   知识点2:合并同类二次根式的方法   合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。   知识点3:二次根式的加减法则   二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。   知识点4:二次根式的混合运算方法和顺序   运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。   知识点5:二次根式的加减法则与乘除法则的区别   乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。
hi投2023-07-29 20:16:302

同类根式是什么

化成最简二次根式后的被开方数相同。这样的二次根式叫做同类二次根式. 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。
tt白2023-07-29 20:16:291

什么是同类二次根式的概念

同类二次根式与同类项的异同同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。相同点1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。2. 两者都能合并,而且合并法则相同。如果把最简二次根式的根号部分看做是同类项的指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。不同点1. 判断准则不同。判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。2. 合并形式不同。教学阶梯编辑“同类二次根式定义”教学的三个梯级(1)实例引入同类二次根式定义,举正反例反复理解;(2)定义应用,充分理解“化简后,被开方数相同的二次根式”,并举几组不是最简二次根式的例子进行理解;(3)定义的拓广,从同类二次根式定义中发现一般同类根式的定义(新教材正文不做要求)。拓展应用编辑拓展与应用-一道题的联想二次根式是初二代数最重要的内容,同类二次根式又是其中最重要的概念之一。人教版初中《代数》第二册第189面关于同类二次根式的描述是“几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫同类二次根式”,显然此定义是建立在最简二次根式基础之上的。由于题目未讲明与是否是最简二次根式,同学们普遍感到难以下手。求解时,大多数同学的做法是先假定两根式都为最简二次根式,然后由同类二次根式的定义列出等式解的。为了检查正确与否,最后又进行了验算,将代入原题,得到的根式是做为特例,它们满足题意,是同类二次根式。于是题目得到了圆满解决,选择答案B。但这里得到的与都不是最简二次根式,这与解题时的假设互相矛盾。问题出在同类二次根式的概念上,概念讲明最终比较时是看最简二次根式的被开方数。而在上题中,两根式有意义的充要条件是在此范围内两根式的被开方数都是分数,根式根本不可能是最简二次根式,所以作出了的假设原本就不成立,也就意味着此题不能直接用课本定义加以判断,必须对同类二次根式的概念加以挖掘和拓展!根据课本定义有以下两点值得注意:不论几个二次根式是否为最简二次根式都有:1。若被开方数相同,必为同类二次根式,如与;2。经过一步或几步变形,若被开方数相同,必为同类二次根式。如,可变形为即可判断;或将变形为也马上可以判断;甚至可将变为,同时将变为作最终判断。
铁血嘟嘟2023-07-29 20:16:291

什么是同类二次根式

二次根式化为最简二次根式后,如果被开方数相同,则称为同类二次根式。如:√8和√(1/2)是的,√27和√3也是的。
苏州马小云2023-07-29 20:16:292

什么是同类二次根式?

比如说5根号2与4根号2就是同类二次根式。最主要的是两个或若干个代根号的数字中根号里面的数字一样我们就称它为同类二次要式。根号外面的数字不必关心,正负号也没关系。
铁血嘟嘟2023-07-29 20:16:263

同类二次根式的定义是什么?

几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。同类二次根式与同类项的异同:同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。相同点:1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。2. 两者都能合并,而且合并法则相同。如果把最简二次根式的根号部分看做是同类项的指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即"同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减"。不同点:1. 判断准则不同。判断两个最简二次根式是否为同类二次根式,其依据是"被开方数是否相同",与根号外的因式无关;而同类项的判断依据是"字母因式及其指数是否对应相同",与系数无关。2. 合并形式不同。
hi投2023-07-29 20:16:261

什么是同类二次根式

同类二次根式是指[1]几个 二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先 化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。[1]
kikcik2023-07-29 20:16:252

同类二次根式的定义同类二次根式的定义在那页?

同类二次根式的定义:化成最简二次根式后的被开方数相同。这样的二次根式叫做同类二次根式。一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。“同类二次根式定义”教学的三个梯级实例引入同类二次根式定义,举正反例反复理解;定义应用,充分理解“化简后,被开方数相同的二次根式”,并举几组不是最简二次根式的例子进行理解;定义的拓广,从同类二次根式定义中发现一般同类根式的定义。运算如下:加减法1.同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。化简:根号12等于4的根号32.合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。3.二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。扩展资料:一、最简二次根式条件1、被开方数的因数是整数或字母,因式是整式。2、被开方数中不含有可化为平方数或平方式的因数或因式。二、二次根式化简一般步骤1、把带分数或小数化成假分数。2、把开方数分解成质因数或分解因式。3、把根号内能开得尽方的因式或因数移到根号外。4、化去根号内的分母,或化去分母中的根号。5、约分。
陶小凡2023-07-29 20:16:211

什么叫同类二次根式

几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。同类二次根式与同类项的异同同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。相同点1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。2. 两者都能合并,而且合并法则相同。如果把最简二次根式的根号部分看做是同类项的指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。不同点1. 判断准则不同。判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。2. 合并形式不同。
北境漫步2023-07-29 20:16:201

初中数学 同类二次根式是什么

名称定义化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式.一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。[编辑本段]同类二次根式与同类项的异同同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。一.相同点:1.两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。2.两者都能合并,而且合并法则相同。我们如果把最简二次根式的根号部分看做是同类项的字母及指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。二.不同点:1.判断准则不同。判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。2.合并形式不同
CarieVinne 2023-07-29 20:16:191

什么是同类二次根式?

就是x
真颛2023-07-29 20:16:063

什么是同类二次根式?怎么判断?

同类二次根式定义:化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式。性质:一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。【要判断几个根式是不是同类二次根式,须先化简,把非最简二次根式化成最简二次根式,然后判断。】例题下列各式中,哪些是同类二次根式?解析:评析:判断几个二次根式是否为同类二次根式的关键是先化简,化简后被开方数完全相同的二次根式才是同类二次根式.望采纳,多谢。
Ntou1232023-07-29 20:16:051

什么是同类二次根式

化简后被开方数相同的二次根式叫作同类二次根式。例于3√2、√8、√2.就是同类二次根式,√a、.(√a)/2、2√a也是同类二次根式。
豆豆staR2023-07-29 20:16:053

什么叫同类二次根式

同类二次根式是指几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。拓展资料如下:一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。二次根式是初二代数最重要的内容,同类二次根式又是其中最重要的概念之一。人教版初中《代数》第二册第189面关于同类二次根式的描述是“几个二次根式化成最简二次根式以后,如果 被开方数相同,这几个二次根式就叫同类二次根式”,显然此定义是建立在最简二次根式基础之上的。由于题目未讲明与是否是最简二次根式,同学们普遍感到难以下手。求解时,大多数同学的做法是先假定两根式都为最简二次根式,然后由同类二次根式的定义列出等式解的。为了检查正确与否,最后又进行了验算,将代入原题,得到的根式是做为特例,它们满足题意,是同类 二次根式。
meira2023-07-29 20:16:041

写出一个与 是同类二次根式的二次根式:

答案不唯一,如 试题分析:同类二次根式的定义:化为最简二次根式后被开方数相同的二次根式.答案不唯一,如 点评:本题属于基础应用题,只需学生熟练掌握同类二次根式的定义,即可完成.
西柚不是西游2023-07-29 20:16:021

同类二次根式的加减

①√2x-√8x^3+2√2xy^2=√2x-2x√2x+2y√2x=(1-2x-y)√2x②[4b√(a/b)+2/a*√a^3b)]-[3a√(b/a)+√9ab]=[4√ab+2/√3ab]-[3√ab+3√ab]=2/√3ab-2√ab
Chen2023-07-29 20:16:002

怎样才是是同类二次根式?

名称定义 化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式. 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。编辑本段同类二次根式与同类项的异同 同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。 一. 相同点: 1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。 2. 两者都能合并,而且合并法则相同。我们如果把最简二次根式的根号部分看做是同类项的字母及指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。 二. 不同点: 1. 判断准则不同。 判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。 2. 合并形式不同
此后故乡只2023-07-29 20:15:381

在u271416,u271472,u271448,u2714二分之一中,与u27142是同类二次根式的有几个?

√16=4√72=6√2√48=4√3√1/2=(√2)/2答:与√2是同类的二次根式的有两个,一个是√72,一个是√1/2。
苏萦2023-07-29 20:15:381

同类二次根式怎样合并

合并同类二次根式是把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。合并同类二次根式与合并同类项相似,同类项中所含字母相同,并且相同字母的次数也分别相同,同类二次根式也是:化简后被开方数相同,合并方法与同类项也相似,系数相加。合并二次根式,是根式的加减法,其做法类似于合并同类项。将同类根式(被开方数相同,且根指数相同)作为相同的字母处理,例如2√3+5√3,将√3作为字母处理,2和5作为系数。合并结果为7√3而2√3+4√2中因为被开方数不同,因此√3、√2作为不同字母处理,所以不能合并。
NerveM 2023-07-29 20:15:381

二次根式的定义

1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,√0=02、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一个非负数。1)a≥0 ; √ā≥0 [ 双重非负性 ] 2)(√ā)^2=a (a≥0)[任何一个非负数都可以写成一个数的平方的形式] 3) √(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论 1.3是的 例举几个 √2 √3 √5 √7 √6 √10
wpBeta2023-07-29 20:15:375

根号5的同类二次根式 如题.

同类二次根式是指化简后被开方数相同的二次根式 所以,只要把一个二次根式化简,被开方数为5即可 如2倍根号5、5倍根号5、1.5倍根号5、根号45……
ardim2023-07-29 20:15:371

同类二次根式是不是最简二次根式

人类地板流精华2023-07-29 20:15:363

初中数学 同类二次根式是什么

名称定义 化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式. 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。 [编辑本段]同类二次根式与同类项的异同 同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。 一. 相同点: 1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。 2. 两者都能合并,而且合并法则相同。我们如果把最简二次根式的根号部分看做是同类项的字母及指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。 二. 不同点: 1. 判断准则不同。 判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。 2. 合并形式不同
豆豆staR2023-07-29 20:15:361

若最简二次根式 和 是同类二次根式.求x、y的值.

分析: 根据同类二次根式的定义:①被开方数相同;②均为二次根式;列方程解组求解. ∵最简二次根式和是同类二次根式,∴3x-10=2,2x+y-5=x-3y+11,即解得:. 点评: 此题主要考查了同类二次根式的定义,即化成最简二次根式后,被开方数相同.这样的二次根式叫做同类二次根式.
CarieVinne 2023-07-29 20:15:351

与根号48是同类二次根式的是 A 根号18 B根号24 C根号三分之一 D根号三分之八

√48=4√3√1/3=(1/3)√3选C
水元素sl2023-07-29 20:15:175

同类二次根式的拓展应用

拓展与应用-一道题的联想二次根式是初二代数最重要的内容,同类二次根式又是其中最重要的概念之一。人教版初中《代数》第二册第189面关于同类二次根式的描述是“几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫同类二次根式”,显然此定义是建立在最简二次根式基础之上的。由于题目未讲明与是否是最简二次根式,同学们普遍感到难以下手。求解时,大多数同学的做法是先假定两根式都为最简二次根式,然后由同类二次根式的定义列出等式解的。为了检查正确与否,最后又进行了验算,将代入原题,得到的根式是做为特例,它们满足题意,是同类二次根式。于是题目得到了圆满解决,选择答案B。但这里得到的与都不是最简二次根式,这与解题时的假设互相矛盾。问题出在同类二次根式的概念上,概念讲明最终比较时是看最简二次根式的被开方数。而在上题中,两根式有意义的充要条件是在此范围内两根式的被开方数都是分数,根式根本不可能是最简二次根式,所以作出了的假设原本就不成立,也就意味着此题不能直接用课本定义加以判断,必须对同类二次根式的概念加以挖掘和拓展!根据课本定义有以下两点值得注意:不论几个二次根式是否为最简二次根式都有:1。若被开方数相同,必为同类二次根式,如与;2。经过一步或几步变形,若被开方数相同,必为同类二次根式。如,可变形为即可判断;或将变形为也马上可以判断;甚至可将变为,同时将变为作最终判断。有了以上两点,问题已迎刃而解,原题不必作任何假设,直接将原式被开方数比较,或者将其一或二者经一步或数步变形后再比较被开方数,即可得到结论。象这样未指明是否是最简二次根式的情况都有无数组解。此题同样有无数组解,答案C是满足题意的一个解。通过此题的探索,可以得到了判断同类二次根式的更简单和更广泛的方法,不必将原式化成最简二次根式,也不必关心它们是否是最简二次根式,只需直接观察被开方数可否化成相同的值即可得到结论。
tt白2023-07-29 20:15:161

什么叫做同类二次根式? 为什么同类二次根式的被开方式相同?

比如说同类根式根号8和根号18,根号下分别可以看做2乘以4、2乘以9,选择可以开除出来的4和9,根号下就只剩下了2,也就是2倍根号2和3倍根号2.同类根式就是被完全开方以后根号下剩下的数字是一样的,也就是说,他们的被开方...
水元素sl2023-07-29 20:15:161

同类二次根式有哪些?

同类二次根式定义:化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式。性质:一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。【要判断几个根式是不是同类二次根式,须先化简,把非最简二次根式化成最简二次根式,然后判断。】例题下列各式中,哪些是同类二次根式?解析:评析:判断几个二次根式是否为同类二次根式的关键是先化简,化简后被开方数完全相同的二次根式才是同类二次根式.望采纳,多谢。
LuckySXyd2023-07-29 20:15:151

同类二次根式是什么意思?

名称定义 化成最简二次根式后与被开方数相同。这样的二次根式叫做同类二次根式. 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。 编辑本段同类二次根式与同类项的异同 同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。 一. 相同点: 1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。 2. 两者都能合并,而且合并法则相同。我们如果把最简二次根式的根号部分看做是同类项的字母及指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。 二. 不同点: 1. 判断准则不同。 判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。 2. 合并形式不同 编辑本段“同类二次根式定义”教学的三个梯级 “同类二次根式定义”教学的三个梯级为:(1)实例引入同类二次根式定义,举正反例反复理解;(2)定义应用,充分理解“化简后,被开方数相同的二次根式”,并举几组不是最简二次根式的例子进行理解;(3)定义的拓广,从同类二次根式定义中发现一般同类根式的定义(新教材正文不做要求)。
豆豆staR2023-07-29 20:15:151

三次根式分母有理化怎么做

在进行二次根式的运算时,往往需要把分母有理化,而分母有理化的方法则是把分子、分母同乘以分母的有理化因式,因此分母有理化的关键是找分母的有理化因式。
豆豆staR2023-07-28 10:57:412

二次根式分母有理化.

水元素sl2023-07-28 10:57:186

分母有理化是指分母不能有根式或者根号还是不能有什么

你好 分母有理化就是指的要求分母不能有根号或者根式. 举个例:1/2+√2 ,这个分母就有根式,所以进行分母有理化,过程: 1/2+√2=1×(2-√2)/(2+√2))(2-√2)=2-√2/2 ps:“/”指分数线 要分母有理化,也就是要把根式或根号化掉.分子和分母同时乘以与分母相同的那个数. 这样说不知道你能不能明白.希望帮到你
西柚不是西游2023-07-28 10:57:071

分母有理化是指分母不能有根式或者根号还是不能有什么

你好分母有理化就是指的要求分母不能有根号或者根式。举个例:1/2+√2,,这个分母就有根式,所以进行分母有理化,过程:1/2+√2=1×(2-√2)/(2+√2))(2-√2)=2-√2/2ps:“/”指分数线要分母有理化,也就是要把根式或根号化掉。分子和分母同时乘以与分母相同的那个数。这样说不知道你能不能明白。希望帮到你
苏萦2023-07-28 10:57:041

二次根式化简

解:原式=5ab√(3a)-b/6·3a√(3a)+3a·b√(3a)/3=5ab√(3a)-ab/2·√(3a)+ab·√(3a)=11/2·ab√(3a)
真颛2023-07-26 10:34:101

根号1到100的最简二次根式

√1=1、√2=√2、√3=√3、√4=2、√5=√5、√6=√6、√7=√7、√8=2√2、√9=3、√10=√10、√11=√11、√12=2√3√13=√13、√14=√14、√15=√15、√16=4、√17=√17、√18=3√2、√19=√19√20=2√5、√21=√21...
此后故乡只2023-07-26 10:33:471

最简二次根式所满足的两个条件 什么是最简二次根式

1、如果一个二次根式符合下列两个条件: 一是被开方数中不含能开得尽方的因数或因式;二是被开方数的因数是整数,因式是整式。那么,这个根式叫做最简二次根式。 2、判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
北境漫步2023-07-26 10:33:461

什么是二次根式,什么是最简二次根式。

人类地板流精华2023-07-26 10:33:465

最简二次根式必须满的两个条件

最简二次根式必须满足以下两个条件:1被开方数的因数是(整数),因式是(整式)(分母中不含根号)2被开方数或式中不含能开提尽方的(因数)或(因式)。
水元素sl2023-07-26 10:33:452

最简二次根式的概念

判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。基本信息中文名最简二次根式条件一满足被开方数的因数是整数条件二被开方数中不含能开得尽方的因数或因式【例】 把下列各式化成最简二次根式解:√16、√215、√8/27注意:(1)化简时,往往需要把被开方数分解因数或分解因式.(2)当一个式子的分母中含有二次根式时,一般应把它化简成分母中不含二次根式的式子,也就是把它的分母有理化.
CarieVinne 2023-07-26 10:33:431

最简二次根式定义

最简二次根式定义如下:一般地,形如√a的代数式叫做二次根式,其中,a 叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。最简二次根式条件:1.被开方数的因数是整数或字母,因式是整式;2.被开方数中不含有可化为平方数或平方式的因数或因式。二次根式化简一般步骤:1.把带分数或小数化成假分数;2.把开方数分解成质因数或分解因式;3.把根号内能开得尽方的因式或因数移到根号外;4.化去根号内的分母,或化去分母中的根号;5.约分。加减法1.同类二次根式。一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。 化简:根号12等于4的根号3。2.合并同类二次根式。把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。3.二次根式加减时,可以先将二次根式化为最简二次根式,再将同类二次根式进行合并。
u投在线2023-07-26 10:33:111

怎么将二次根式化成最简二次根式,举例来

1)根号下是一个正整数。将该数字拆分成一个完全平方数和某个数字的乘积,然后将完全平方数开平方放到根号外面。2)根号下是一个分数。将该分数拆分成一个分数的平方数和某个数字的乘积,然后将分数开根号到根号外面。3)根号下有数字和字母。这种情况下,由于不确定字母是正数还是负数,因此开放的时候要带着绝对值开方。4)两个根式相加减。首先将两个根式通分,然后再运算。5)两个根式相乘除。注意观察两个式子的特点,决定先化简再乘除,还是先乘除再化简。6)开根号后分情况运算。如果根式下有数字和字母运算成平方,开方后要分情况讨论。ps:熟练掌握上述根式的基本简化运算方法,然后再多练习几个根式简化题目就可以开始处理更复杂的二次根式化简运算了。
西柚不是西游2023-07-26 10:33:102

关于最简二次根式的问题

解:4不是最简二次根式。因为形如√a (a≥0)的式子二次根式; 二次根号下(5a),是最简二次根式。因为 二次根号下(5a)中,满足最简二次根式的两个条件。
大鱼炖火锅2023-07-26 10:33:101

最简二次根式满足的条件是

满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.
tt白2023-07-26 10:33:101

根号x是不是最简二次根式?

√x是最简二次根式,定义是不含分母,不含可开方的因子
mlhxueli 2023-07-26 10:33:101

最简二次根式的概念

如果一个二次根式符合下列两个条件:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式。那么,这个根式叫做最简二次根式。判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。 最简二次根式是满足下列两个条件的二次根式:1、被开方数的每一个因式的指数都小于根指数2;2、被开方数不含分母。 把一个二次根式化简成最简二次根式,有以下两种情况: 1、如果被开方数是整式或整数,先将它分解因式或分解因数,然后将完全平方式或平方数开除根号,使根式化简。 2、如果被开方数是分式或分数(包括小数),先分母有理化,再按被开方数是整式或整数的情形化简。 由此可见,化简二次根式要领有两条:一是分母有理化;二是分解因式(因数),将完全平方式(数)开出根号。
九万里风9 2023-07-26 10:33:091

二次根式的性质是什么?

应用二次根式的应用主要体现在两个方面:利用从特殊到一般,再由一般到特殊的重要思想方法,解决一些规律探索性问题;利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。二次根式与算数平方根有区别吗?一、二次根式是一种代数式,而算术平根是一种运算。二、二次根式比算术平方根内涵更丰富。三、二次根式一定带有根号,而算术平方根不一定带根号。四、二次根式都可看作是算术平方根,用根号表示的算术平方根也都是二次根式。
可桃可挑2023-07-26 10:32:531

根号42的最简二次根式是多少

化不开!!采纳我的答案吧。。
陶小凡2023-07-26 10:32:522

下列二次根式中,最简二次根式是( ) A. B. C. D

C.试题分析:最简根式应满足的条件:①被开方数的因数是整数,因式是整式;②被开方数的因式的指数必须小于根指数.A、不符合上述条件①,即,故不是最简二次根式;B、不符合上述条件①,即,故不是最简二次根式;C、符合上述条件,故是最简二次根式;D、不符合上述条件②,即,故不是最简二次根式.故选C.
北境漫步2023-07-26 10:32:511

什么是最简二次根式

最简二次根式的条件是:①被开方数的因数是整数,因式是整式.②被开方数中不含能开得尽方的因数和因式.
无尘剑 2023-07-26 10:32:501

在任何情况下遇见根式都要化为最简吗?

在作为结果出现时,根式必须化为最简,这跟分数是一样的,在运算过程中为了计算的简单可以不用化。
NerveM 2023-07-26 10:32:141

根号1到100的最简二次根式

u221a1=1u3001u221a2=u221a2u3001u221a3=u221a3u3001u221a4=2u3001u221a5=u221a5u3001u221a6=u221a6u3001u221a7=u221a7u3001u221a8=2u221a2u3001u221a9=3u3001u221a10=u221a10u3001u221a11=u221a11u3001u221a12=2u221a3u221a13=u221a13u3001u221a14=u221a14u3001u221a15=u221a15u3001u221a16=4u3001u221a17=u221a17u3001u221a18=3u221a2u3001u221a19=u221a19u221a20=2u221a5u3001u221a21=u221a21u3001u221a22=u221a22u3001u221a23=u221a23u3001u221a24=2u221a6u3001u221a25=5u221a26=u221a26u3001u221a27=3u221a3u3001u221a28=2u221a7u3001u221a29=u221a29u3001u221a30=u221a30u3001u221a31=u221a31u3001u221a32=4u221a2u3001u221a33=u221a33u3001u221a34=u221a34u3001u221a35=u221a35u3001u221a36=6u3001u221a37=u221a37u3001u221a38=u221a38u3001u221a39=u221a39u3001u221a40=2u221a10u3001u221a41=u221a41u3001u221a42=u221a42u3001u221a43=u221a43u3001u221a44=2u221a11u3001u221a45=3u221a5u3001u221a46=u221a46u3001u221a47=u221a47u3001u221a48=4u221a3u3001u221a49=7u3001u221a50=u221a50u3001u221a51=u221a51u3001u221a52=2u221a13u3001u221a53=u221a53u3001u221a54=3u221a6u3001u221a55=u221a55u3001u221a56=4u221a7u3001u221a57=u221a57u3001u221a58=u221a58u3001u221a59=u221a59u3001u221a60=2u221a15u3001u221a61=u221a61u3001u221a62=u221a62u3001u221a63=3u221a7u3001u221a64=8u3001u221a65=u221a65u3001u221a66=u221a66u3001u221a67=u221a67u3001u221a68=2u221a17u3001u221a69=u221a69u3001u221a70=u221a70u3001u221a71=u221a71u3001u221a72=6u221a2u3001u221a73=u221a73u3001u221a74=u221a74u3001u221a75=5u221a3u3001u221a76=u221a76u3001u221a77=u221a77u3001u221a78=u221a78u3001u221a79=u221a79u3001u221a80=4u221a5u221a81=u221a81u221a82=u221a82u3001u221a83=u221a83u3001u221a84=2u221a21u3001u221a95=u221a85u3001u221a86=u221a86u3001u221a87=u221a87u3001u221a88=2u221a22u3001u221a89=u221a89u3001u221a90=3u221a10u3001u221a91=u221a91u3001u221a92=u221a92u3001u221a93=u221a93u3001u221a94=u221a94u3001u221a95=u221a95u3001u221a96=4u221a6u3001u221a97=u221a97u3001u221a98=u221a98u3001u221a99=3u221a11u221a100=10
北境漫步2023-07-26 10:32:132

最简二次根式

韦斯特兰2023-07-26 10:32:121

最简二次根式

1 根号9*4*2=3*2*根号2=6*根号22 6*根号8/64=6*根号(2*4)/64=6*(2/8)*根号2=(3/2)*根号23 10*根号(9/5)=10*根号(9*5)/25=10*(3/5)*根号5=6根号54 根号xy/x平方=(根号xy)/x5 根号 64 减 负16=根号80=根号16*5=4根号56 这前面是立方吗?不好意思~我看不清楚如果是立方就是 根号25m平方*(m+5)=5m根号(m+5)7 前面是1/2次方还是乘以1/2呀 如果是1/2次方就是 根号13/4=(根号13)/2 如果是乘以1/2就是 根号10/4=(根号10)/28 a根号5ab/25=(a根号5ab)/59 根号a平方*(1-b平方)/(1-b平方)的平方=a*根号(1-b)/(1-b10 21*(a平方-b平方)/81*(a+b)平方=根号(21*a平方-21*b平方)/9a+9b分母有理化1 根号3/6=根号1/2=根号2/4=(根号2)/22 4根号(15根号3)/36=4根号(15根号3)/6=2/3 *根号(15根号3)3 3跟号(10根号2)/400=3/20 *跟号(10根号2)4 2根号(负5根号45)/100=1/5 *根号(负5根号45)5 约分得 3根号76 根号8y/4=(根号8y)/27 根号[(a+1)*(a+2)]/(a+1)平方=根号[(a+1)*(a+2)]/(a+1)8 上下乘以根号x+1=(根号x平方-1)/(x+1) 兄弟 我打字打的好辛苦啊~有看不懂的就问我啊!现我不能浪费了我的一番苦心
hi投2023-07-26 10:32:081

最简二次根式

满足下列两个条件的二次根式,叫做最简二次根式: (1)被开方数的因数是整数,因式是整式;(即,根号内不含分母. )(2)被开方数中不含能开得尽方的因数或因式. (即,因式的指数小于2.)
mlhxueli 2023-07-26 10:32:081

怎样才算是最简二次根式

满足下列两个条件的二次根式,叫做最简二次根式: ①被开方数的因数是整数或整式,②被开方数中不含能开得尽方的因数或因式。化简:√0.5=√(1/2)=√2/2,√50=√(25×2)=5√2,……
拌三丝2023-07-26 10:32:082

最简二次根式

开得尽方的因数或因式 分母
ardim2023-07-26 10:31:562

最简二次根式,求详细解释。

5.已知:a=2+√3分之1 求:a-1分之1-2a+a的两次方 -a的二次方-a1.√a-b分之a+b (a>b>0) =(a+b)/(√a+b) =(a+b)(√a-
meira2023-07-26 10:31:563

化为最简二次根式?

(1)2/(√5+√3)=(5一3)/(√5+√3)=(√5一√3)(√5+√3)/(√5+√3)=√5一√3。
Jm-R2023-07-26 10:31:553

数学 化成最简二次根式

陶小凡2023-07-26 10:31:556

最简二次根式的定义

最简二次根式是指同时满足被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式两个条件的二次根式。判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。根据最新人教版教材、浙教版等教版中,在初二下学期,学生会学习二次根式。所以初中数学教学要求学生能够熟练的掌握二次根式的化简,是毕业考试、中考的必考点。简介:二次根式一般指形如√a的代数式,其中,a叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
铁血嘟嘟2023-07-26 10:31:541

最简二次根式的定义是什么?

就是二次根号里面的数字已经是最简单的了。
凡尘2023-07-26 10:31:223

二次根式的基本性质是什么?

应用二次根式的应用主要体现在两个方面:利用从特殊到一般,再由一般到特殊的重要思想方法,解决一些规律探索性问题;利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。二次根式与算数平方根有区别吗?一、二次根式是一种代数式,而算术平根是一种运算。二、二次根式比算术平方根内涵更丰富。三、二次根式一定带有根号,而算术平方根不一定带根号。四、二次根式都可看作是算术平方根,用根号表示的算术平方根也都是二次根式。
小菜G的建站之路2023-07-26 10:31:222

二次根式要怎么化简

4√2=√4^2*2=√16*2=√32
bikbok2023-07-26 10:31:223

怎么化成最简二次根式

满足下列两个条件的二次根式,叫做最简二次根式: ①被开方数的因数是整数或整式,②被开方数中不含能开得尽方的因数或因式。如:√18=√(9×2)=√9×√2=3√2,√0.2=√(1/5)=√(5/25)=√5/5,……
tt白2023-07-26 10:31:211

最简二次根式的条件

最简二次根式的条件:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.如果一个二次根式符合下列两个条件: 1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式。那么,这个根式叫做最简二次根式。判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。化简过程把一个二次根式化简成最简二次根式,有以下两种情况:1.如果被开方数是整式或整数,先将它分解因式或分解因数,然后将完全平方式或平方数开除根号,使根式化简。2.如果被开方数是分式或分数(包括小数),先分母有理化,再按被开方数是整式或整数的情形化简。由此可见,化简二次根式要领有两条:一是分母有理化;二是分解因式(因数),将完全平方式(数)开出根号。最简根式是根式的一个重要概念,在根式运算过程中,自始至终贯穿着根式的化简,同学们要学会化简根式的方法,化简二次根式的步骤可简要地概括为“开”、“补”两个字,第一步,“开”,即在被开方式的各因式中,可以用它们的算术平方根来代替,能移到根号外面的,都移到根号外面去,使新的被开方式的每一个因式的指数都小于根指数2;第二步,“补”,即把新的被开方式的分母与分子同时补乘以分母本身,使分母自乘后,新分母可以全部开出根号外面去,达到被开方式不含分母的目的。
小菜G的建站之路2023-07-26 10:31:211

什么是最简二次根式

一个二次根式符合下列两个条件:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式。那么,这个根式叫做最简二次根式。判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
tt白2023-07-26 10:31:214

最简二次根式和同类二次根式的概念是什么?

满足下列条件的二次根式,叫做最简二次根式:  (1) 被开方数的因数是整数,因式是整式;  (2) 被开方数中不含能开得尽方的因数或因式.判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.同类二次根式的定义:化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式. 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。
Ntou1232023-07-26 10:31:201

数学最简二次根式是什么形式

满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.
余辉2023-07-26 10:31:203

最简二次根式的特点

最简二次根式的特点是:1、被开方数的因数是整数,因式是整式;2、被开方数中不含能开得尽方的因数或因式。如果一个二次根式符合这两个条件,那么,这个根式就叫做最简二次根式。什么是二次根式:一般地,形如√a的代数式叫做二次根式,其中,a 叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。把一个二次根式化简成最简二次根式,有以下两种情况:1、如果被开方数是整式或整数,先将它分解因式或分解因数,然后将完全平方式或平方数开除根号,使根式化简。2、如果被开方数是分式或分数(包括小数),先分母有理化,再按被开方数是整式或整数的情形化简。由此可见,化简二次根式要领有两条:一是分母有理化;二是分解因式(因数),将完全平方式(数)开出根号。
黑桃花2023-07-26 10:31:201

请问最简二次根式的条件是什么?

满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.
拌三丝2023-07-26 10:30:522

二次根式的化简方法讲解有哪些?

因为开方是相对于平方而言的,所以掌握常见数的平方就是诀窍。加之分母不能有根号,要化简。比如:2^2=4,问√20=?显然√20=√(4x5)=2√5再比如二次根式化简:3/√12+2√3=XXX=3/2√3+2√3=√3/2+2√3=5/2√3最简二次根式条件:1、被开方数的因数是整数或字母,因式是整式;2、被开方数中不含有可化为平方数或平方式的因数或因式。二次根式化简:1、把带分数或小数化成假分数;2、把开方数分解成质因数或分解因式;3、把根号内能开得尽方的因式或因数移到根号外;4、化去根号内的分母,或化去分母中的根号;5、约分。
凡尘2023-07-26 10:30:521

二次根式化简方法

请看附件
阿啵呲嘚2023-07-26 10:30:522

怎么算最简二次根式

最简二次根式包括两点1、根号里不含分母2、根号里不含能开的尽方的因数或因式比如根号四,根号3/2,都不是最简二次根式
北境漫步2023-07-26 10:30:521
 1 2 3 4  下一页  尾页