矩阵等价

ab矩阵等价的充分必要条件

如果A,B是同型矩阵,等价的充要条件为 r(A)=r(B) 同维的向量组等价的充要条件是 r(A)=r(B)=r(AB)
NerveM 2023-08-04 11:24:191

两个矩阵等价是什么意思,怎么定义的.两矩阵等价和相

两个矩阵等价,就是存在可逆矩阵P,Q使得,QAP=B
Ntou1232023-05-24 18:38:081

矩阵等价,相似,合同之间的区别和联系

矩阵相似、合同之间没有充要关系,存在相似但不合同的矩阵,也存在合同但不相似的矩阵。 总结起来就是:相似=>等价,合同=>等价,等价=>等秩矩阵等秩是相似、合同、等价的必要条件,相似、合同、等价是等秩的充分条件。合同是存在非异矩阵P,使得PAP‘=B,注意,这里P"是P的转置,而非逆阵。这一般应用在二次型理论上面。合同也可以推出等价。合同的条件是两个矩阵惯性系数一样。就是说正特征,负特征数目一样。扩展资料矩阵的分解主条目:矩阵分解矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。三角分解设 ,则A可以唯一地分解为A=U1R ,其中U1是酉矩阵,R是正线上三角复矩阵,或A可以唯一地分解为其中L是正线上三角复矩阵,是酉矩阵   。谱分解谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。需要注意只有对可对角化矩阵才可以施以特征分解。奇异值分解假设M是一个m×n阶矩阵,其中的元素全部属于域K,也就是实数域或复数域。如此则存在一个分解使得其中U是m×m阶酉矩阵;Σ是m×n阶实数对角矩阵;而V*,即V的共轭转置,是n×n阶酉矩阵。这样的分解就称作M的奇异值分解 [19]  。Σ对角线上的元素Σi,i即为M的奇异值。常见的做法是将奇异值由大而小排列。如此Σ便能由M唯一确定了。满秩分解设 ,若存在矩阵 及 ,使得A=FG,则称其为的A一个满秩分解。LUP分解LUP分解的思想就是找出三个n×n矩阵L,U,P,满足 . 其中L是一个单位下三角矩阵,U是一个单位上三角矩阵,P是一个置换矩阵。 而满足分解条件的矩阵L,U,P称为矩阵A的一个LUP分解 。参考资料:百度百科-矩阵
九万里风9 2023-05-22 22:49:451

如何判断矩阵等价,向量组的等价条件是什么

矩阵等价充要条件:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。向量组等价充要条件:两个向量组可以互相线性表示。向量组A:a1,a2,am与向量组B:b1,b2,bn的等价秩相等条件是R(A)=R(B)=R(A,B)。相关如下矩阵A和A等价(反身性);矩阵A和B等价,那么B和A也等价(等价性);矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);矩阵A和B等价,那么IAI=KIBI。(K为非零常数)具有行等价关系的矩阵所对应的线性方程组有相同的解。等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。任一向量组和它的极大无关组等价。向量组的任意两个极大无关组等价。两个等价的线性无关的向量组所含向量的个数相同。等价的向量组具有相同的秩,但秩相同的向量组不一定等价。如果向量组A可由向量组B线性表示,且R(A)=R(B),则A与B等价。
水元素sl2023-05-16 14:52:541

矩阵等价与向量组等价

可逆矩阵不改变矩阵的秩,即有r(B)=r(PAQ)=r(A),所以A的行(列)秩=B的行(列)秩.但A,B的行(列)向量组不一定可以互相线性表示,即不一定等价.记住下面2个相关知识点:1.若B=PA,则A,B的行向量组等价若B=AQ,则A,B的列向量组等价但若B=PAQ,就没有相应的结论了2.若B=PA,则B的列向量组与A的对应的列向量组有相同的线性关系即初等行变换不改变列向量组的线性关系满意请采纳^_^
豆豆staR2023-05-16 14:52:542

什么叫做向量组等价以及矩阵等价

方向相同,大小相等的一组向量叫向量组。 向量组等价的条件:A={a1,a2,a3,,an} B={b1,b2,b3,,bn} r(A)=r(A|bi)并且 r(B)=r(B|ai) (i=1,2,,n) 举个例子吧例如,矩阵A=(α1,α2,…,αm)与B=(β1,β2…,βm)等价,意味着经过初等变换可由A得到B,要做到这一点,关键是看秩r(A)与r(B)是否相等,而向量组α1,α2,…αm与β1,β2,…βm等价,说明这两个向量组可以互相线性表出,因而它们有相同的秩,但是向量组有相同的秩时,并不能保证它们必能互相线性表现,也就得不出向量组等价的信息,因此,由向量组α1,α2,…αm与β1,β2,…βm等价,可知矩阵A=(α1,α2,…αm)与B=(β1,β2,…βm)等价,但矩阵A与B等价并不能保证这两个向量组等价
善士六合2023-05-16 14:52:531

矩阵等价、向量组等价,充要条件分别是什么?

不要信口开河。“矩阵等价”是最简单的关系。——同类型矩阵A与B 等价。即,矩阵A可经初等变换转化为B等价条件,R(A)=R(B)“向量组等价”是最复杂的关系。——两向量组等价,即,两向量组可以相互线性表示。等价条件,两向量组秩相等,且其中一组向量可以被另一组向量线性表示。复杂在于,一个向量能否被某组向量线性表示,这是一个线性方程组有无解的问题。 查看原帖>>
此后故乡只2023-05-16 14:52:502

如果两个向量组向量个数相同且等价 则可推知两个矩阵等价

两个向量组个数相同且等价是两个矩阵等价的充分条件,而矩阵等价则未必是它的必要条件。
u投在线2023-05-16 14:52:502

矩阵等价是什么意思?

矩阵等价:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵(P、Q),使得A经过有限次的初等变换得到B。矩阵合同:两个矩阵和是合同的,当且仅当存在一个可逆矩阵 ,使得A=P^T*B*P。矩阵的等价:存在可逆矩阵P、Q,使P*A*Q=B,则A与B等价,充要条件就是R(A)=R(B)。矩阵等价性质:矩阵A和A等价(反身性)。矩阵A和B等价,那么B和A也等价(等价性)。矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性)。矩阵A和B等价,那么IAI=KIBI。(K为非零常数)。具有行等价关系的矩阵所对应的线性方程组有相同的解对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:(1)矩阵可以通过基本行和列操作的而彼此变换。(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
FinCloud2023-05-16 14:50:491

矩阵等价是什么意思

你好!广泛意义的等价,是集合在某种变换下保持不变性。如:矩阵A与称为等价的,如果B可以是A经过一系列初等变换得到。矩阵在初等变换下是行列式不变的。在线性代数中,合同、相似都是等价关系
左迁2023-05-16 14:50:481

两个矩阵等价是什么意思,怎么定义的。两矩阵等价和相似又有什么关系?两矩阵等价的充要条件是什么?两等

两矩阵等价:设同型矩阵A,B。若A经过有限次的初等变换可以得到B,则称矩阵A与B等价。两矩阵相似,则必然两矩阵等价。反之未必然。两矩阵等价的充要条件是:设矩阵A,B均为m行n列的矩阵。A与B等价的充要条件是存在m阶可逆矩阵P与n阶可逆矩阵Q,使得B=PAQ。矩阵等价的基本性质有:自反性:任意矩阵均与自身等价;对称性:若A与B等价,则B与A等价;传递性:若A与B等价,且B与C等价,则A与C等价。
meira2023-05-16 14:50:485

矩阵等价的充要条件是什么?

矩阵等价充要条件:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。向量组等价充要条件:两个向量组可以互相线性表示。向量组A:a1,a2,am与向量组B:b1,b2,bn的等价秩相等条件是R(A)=R(B)=R(A,B)。相关如下矩阵A和A等价(反身性);矩阵A和B等价,那么B和A也等价(等价性);矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);矩阵A和B等价,那么IAI=KIBI。(K为非零常数)具有行等价关系的矩阵所对应的线性方程组有相同的解。等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。任一向量组和它的极大无关组等价。向量组的任意两个极大无关组等价。两个等价的线性无关的向量组所含向量的个数相同。等价的向量组具有相同的秩,但秩相同的向量组不一定等价。如果向量组A可由向量组B线性表示,且R(A)=R(B),则A与B等价。
余辉2023-05-16 14:50:471

怎么判断矩阵等价

矩阵等价充要条件:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。向量组等价充要条件:两个向量组可以互相线性表示。向量组A:a1,a2,am与向量组B:b1,b2,bn的等价秩相等条件是R(A)=R(B)=R(A,B)。相关如下矩阵A和A等价(反身性);矩阵A和B等价,那么B和A也等价(等价性);矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);矩阵A和B等价,那么IAI=KIBI。(K为非零常数)具有行等价关系的矩阵所对应的线性方程组有相同的解。等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。任一向量组和它的极大无关组等价。向量组的任意两个极大无关组等价。两个等价的线性无关的向量组所含向量的个数相同。等价的向量组具有相同的秩,但秩相同的向量组不一定等价。如果向量组A可由向量组B线性表示,且R(A)=R(B),则A与B等价。
水元素sl2023-05-16 14:50:471

矩阵等价的定义

等价矩阵的定义是对同型矩阵A、B,存在可逆阵P和Q,使得B=PAQ。在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B等于Q减1AP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。等价矩阵的定义是对同型矩阵A、B,存在可逆阵P和Q,使得B=PAQ。矩阵等价是存在可逆矩阵,即A经过有限次的初等变换得到B。矩阵A和B等价,那么B和A也等价。矩阵等价的要求是:同一维度就可以了。比如三维你只要映射都映射到二维,我们就说矩阵等价。向量组等价的要求是:必须是同一维度的同一空间。比如三维映射到二维就必须映射到同一个平面上。等价矩阵的性质1、矩阵A和A等价(反身性)。2、矩阵A和B等价,那么B和A也等价(等价性)。3、矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性)。4、矩阵A和B等价,那么IAI=KIBI,(K为非零常数)。5、具有行等价关系的矩阵所对应的线性方程组有相同的解。6、对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征。(1)矩阵可以通过基本行和列操作的而彼此变换。(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
ardim2023-05-16 14:50:461

矩阵等价是什么意思?

矩阵等价意思是:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵(P、Q),使得A经过有限次的初等变换得到B。 扩展资料   一、矩阵等价性质   1.矩阵A和A等价(反身性);   2.矩阵A和B等价,那么B和A也等价(等价性);   3.矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);   4.矩阵A和B等价,那么IAI=KIBI。(K为非零常数)   5.具有行等价关系的矩阵所对应的线性方程组有相同的"解对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:   (1)矩阵可以通过基本行和列操作的而彼此变换。   (2)当且仅当它们具有相同的秩时,两个矩阵是等价的。   二、矩阵等价证明   a1,a2,....an,线性无关,而a1,a2,....an,b,r线性相关,所以有x1a1+x2a2+....xnan+xb+yr=0,若y=0,则x1a1+x2a2+....xnan+xb=0,说明a1,a2,...an,b线性相关,同理x=0,可得a1,a2,....an,r线性相关。   若x,y都不为零,两边除以x可得-b=x1/x)a1+(x2/x)a2+...+(xn/x)an+(y/x)r,这表示b可以用a1,a2,....an,r.表示。若除以y可证明r可以用a1,a2,....an,b表示。这就说明a1,a2,....an,b与a1,a2,....an,r等价.综合可得命题得证。   当A和B为同型矩阵,且r(A)=r(B)时,A,B一定等价。
九万里风9 2023-05-16 14:50:461

两个矩阵等价是什么意思,怎么定义的.两矩阵等价和相

a经过一系列初等变换等到b,称a与b等价,也就是存在可逆阵pq使b=paq,那么ab秩相等。而ab相似是存在可逆阵p使b=p-1ap,由此可见相似的结论强于等价,具有的性质更多了。比如特征值相同,行列式相同
铁血嘟嘟2023-05-16 14:50:451

矩阵等价是什么意思

矩阵等价呼吸下课那些年聊咋咧蒙大拿显卡学哦吃啦摩擦成绩下降
九万里风9 2023-05-16 14:50:458

矩阵等价条件是什么?

矩阵等价充要条件:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。向量组等价充要条件:两个向量组可以互相线性表示。向量组A:a1,a2,am与向量组B:b1,b2,bn的等价秩相等条件是R(A)=R(B)=R(A,B)。相关如下矩阵A和A等价(反身性);矩阵A和B等价,那么B和A也等价(等价性);矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);矩阵A和B等价,那么IAI=KIBI。(K为非零常数)具有行等价关系的矩阵所对应的线性方程组有相同的解。等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。任一向量组和它的极大无关组等价。向量组的任意两个极大无关组等价。两个等价的线性无关的向量组所含向量的个数相同。等价的向量组具有相同的秩,但秩相同的向量组不一定等价。如果向量组A可由向量组B线性表示,且R(A)=R(B),则A与B等价。
陶小凡2023-05-16 14:50:451

矩阵等价是啥意思

矩阵等价意思是:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵(P、Q),使得A经过有限次的初等变换得到B。证明a1,a2,....an,线性无关,而a1,a2,....an,b,r线性相关,所以有x1a1+x2a2+....xnan+xb+yr=0,若y=0,则x1a1+x2a2+....xnan+xb=0,说明a1,a2,...an,b线性相关,同理x=0,可得a1,a2,....an,r线性相关。若x,y都不为零,两边除以x可得-b=x1/x)a1+(x2/x)a2+...+(xn/x)an+(y/x)r,这表示b可以用a1,a2,....an,r.表示。若除以y可证明r可以用a1,a2,....an,b表示。这就说明a1,a2,....an,b与a1,a2,....an,r等价.综合可得命题得证。当A和B为同型矩阵,且r(A)=r(B)时,A,B一定等价。性质1、矩阵A和A等价(反身性);2、矩阵A和B等价,那么B和A也等价(等价性);3、矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);4、矩阵A和B等价,那么IAI=KIBI。(K为非零常数)5、具有行等价关系的矩阵所对应的线性方程组有相同的解对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:(1)矩阵可以通过基本行和列操作的而彼此变换;(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
九万里风9 2023-05-16 14:50:451

什么是矩阵等价

你好!广泛意义的等价,是集合在某种变换下保持不变性。如:矩阵A与称为等价的,如果B可以是A经过一系列初等变换得到。矩阵在初等变换下是行列式不变的。在线性代数中,合同、相似都是等价关系
西柚不是西游2023-05-16 14:50:433

两矩阵等价有哪些性质

A经过一系列初等变换等到B,称A与B等价,也就是存在可逆阵PQ使B=PAQ,那么AB秩相等.而AB相似是存在可逆阵P使B=P-1AP,由此可见相似的结论强于等价,具有的性质更多了.比如特征值相同,行列式相同
凡尘2023-05-16 14:50:432

矩阵等价的概念是什么等价的概念?

矩阵等价意思是:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵(P、Q),使得A经过有限次的初等变换得到B。相关内容解释:矩阵,Matrix。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
陶小凡2023-05-16 14:50:421

矩阵等价是啥意思

矩阵等价意思是:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵(P、Q),使得A经过有限次的初等变换得到B。性质1、矩阵A和A等价(反身性)。2、矩阵A和B等价,那么B和A也等价(等价性)。3、矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性)。4、矩阵A和B等价,那么IAI=KIBI。(K为非零常数)。5、具有行等价关系的矩阵所对应的线性方程组有相同的解对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:(1)矩阵可以通过基本行和列操作的而彼此变换。(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
wpBeta2023-05-16 14:50:421