等价代换

八大等价代换公式

重要等价无穷小的公式: 前提条件:当x→0时: (1)sinx~x (2)tanx~x (3)arcsinx~x (4)arctanx~x (5)1-cosx~(1/2)*(x^2)~secx-1 (6)(a^x)-1~x*lna ((a^x-1)/x~lna) (7)(e^x)-1~x (8)ln(1+x)~x (9)(1+Bx)^a-1~aBx (10)[(1+x)^1/n]-1~(1/n)*x (11)loga(1+x)~x/lna (12)(1+x)^a-1~ax(a≠0) 扩展资料: 等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。 求极限时,使用等价无穷小的条件: (1)被代换的量,在取极限的时候极限值为0; (2)被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。 无穷小量的性质: (1)有限个无穷小量之和仍是无穷小量。 (2)有限个无穷小量之积仍是无穷小量。 (3)有界函数与无穷小量之积为无穷小量。 (4)特别地,常数和无穷小量的乘积也为无穷小量。 (5)恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。
苏萦2023-05-16 14:50:491

等价代换的公式是什么?

等价无穷小替换公式如下 :(如图)可通过泰勒展开式推导出来,等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。 求极限时,使用等价无穷小的条件:1、被代换的量,在取极限的时候极限值为0;2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以,加减时可以整体代换,不一定能随意单独代换或分别代换。
瑞瑞爱吃桃2023-05-16 14:50:491

什么是等价代换

应该是等量代换吧.等量代换是指一个量用与它相等的量去代替,它是数学中一种基本的思想方法,也是代数思想方法的基础。等量代换思想用等式的性质来体现就是等式的传递性:如果a=b,b=c,那么a=c。
FinCloud2023-05-16 14:50:481

什么是等价代换

分类: 地区 >> 广东 >> 广州市 解析: 应该是等量代换吧. 等量代换是指一个量用与它相等的量去代替,它是数学中一种基本的思想方法,也是代数思想方法的基础。等量代换思想用等式的性质来体现就是等式的传递性:如果a=b,b=c,那么a=c。
拌三丝2023-05-16 14:50:471

等价代换常用公式是什么?

等价无穷小替换公式如下 :以上各式可通过泰勒展开式推导出来,等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。 注意1、0是可以作为无穷小的常数。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。2、x趋于0时候,求极限,可以运用等价无穷小来求解。x趋于0时候,求f(x²/sin²x)也可以使用等价无穷小求解。x²和sin²x是等价无穷小,所以可以求得函数的极限。3、等价无穷小:高数中常用于求x趋于0时候极限,当然,x趋于无穷的时候也可求,转化成倒数即成为等价无穷小。
黑桃花2023-05-16 14:50:441

等价代换的公式是什么?

等价无穷小替换公式如下 :需知:以上各式可通过泰勒展开式推导出来,等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。 求极限时,使用等价无穷小的条件:1、被代换的量,在取极限的时候极限值为0;2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以,加减时可以整体代换,不一定能随意单独代换或分别代换。
小菜G的建站之路2023-05-16 14:50:431

等价代换的条件是什么?

被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。事实上,等价无穷小是由泰勒公式推导而来,所以运用等价无穷小的结论就是,乘除可以整体换,而加减情况不能换,即使可以,那也是凑巧正确。下面给出什么情况下会“凑巧正确”。使用等价无穷小有两大原则:乘除极限直接用。加减极限时看分子分母阶数。若使用等价无穷小后分子分母阶数相同,则可用;若阶数不同则不可用。无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别的什么数)时,函数值f(x)与零无限接近,即f(x)=0,则称f(x)为当x→x0时的无穷小量。
Jm-R2023-05-16 14:50:431