因式分解

如何因式分解一元三次方程

分组分解法,分组的思路是:分完组后还能用提公因式法或公式法再分。一般都是用提分因式法。x^3-2x^2-19x-20=x^3-x^2-x^2-19x-20=x^3-x^2-(x^2+19x-20)=x^2(x-1)-(x-1)(x+20)=(x-1)(x^2-x-20)=(x-1)(x-5)(x+4)
拌三丝2023-08-10 10:22:442

一元三次方程因式分解方法

一元三次方程因式分解法在高中二年级数学书上可能有。
豆豆staR2023-08-10 10:22:434

如何对一元三次方程进行因式分解?

高中阶段,只能是观察方程,通过因式分解来完成。
康康map2023-08-10 10:22:435

因式分解与整式乘法有什么关系

两者是互逆的,因式分解是把一个多项式写成几个多项式的积,整式乘法则反之
瑞瑞爱吃桃2023-08-02 10:31:254

整式的乘除与因式分解总结

一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。15.2 乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。接着,在第一小节安排了平方差公式的教学,教科书首先安排了下一个“探究”栏目,安排了3个题目,让学生通过计算,总结三个题目结果的共同点,发现其中的规律。接着,教科书推证了平方差公式,并进一步借助于几何图形对公式作了直观解释,让学生能更好地理解此公式。最后,举例说明运用平方差公式进行有关的计算。第二小节教科书设计了与第一小节类似的教学过程,引进了乘法的完全平方公式。为了满足整式运算的需要,在本小节引进了添括号法则,这也是很重要的整式运算知识。 15.3 整式的除法整式的除法也是整式四则运算的重要组成部分。本节也分为两个小节。同底数幂的除法是学习整式除法的基础和关键,因此教科书在第一小节中首先介绍同底数幂除法的性质。对于同底数幂除法,这里只先讨论所得商仍是整式的情形,对于所得商是分式的情形将在后续内容引入负整数指数幂的概念以后再讨论。能熟练地进行单项式除以单项式的除法是进行多项式除以单项式等一般的整式除法的前提。在第二小节,教科书根据乘、除互为逆运算的关系,并以分配律、同底数幂的除法为依据,由计算具体的实例得到单项式除以单项式的除法法则。同样地,对于单项式除以单项式的除法,讨论的问题也都在被除式中字母的指数大于或等于除式中字母的指数的限制条件范围内。对于多项式除以单项式,教科书是从计算来导出运算法则的,根据是乘除法互为逆运算以及分配律。可以看出,法则的基本点是把多项式除以单项式转化为单项式的除法,而单项式除法是已经学习并掌握了的。在本章中,不讨论多项式除以多项式等一般性的问题。 15.4 因式分解因式分解是解析式的一种恒等变形,因式分解不但在解方程等问题中极其重要,在数学科学其他问题和一般科学研究中也具有广泛应用,是重要的数学基础知识。因式分解的方法一般包括提公因式法、公式法、分组分解法、十字相乘法、待定系数法等。本教科书安排了多项式因式分解比较基本的知识和方法,它包括因式分解的有关概念,整式乘法与因式分解的区别与联系,因式分解的两种基本方法,即提公因式法和公式法。两种方法分别安排在第1和第2小节。
真颛2023-08-02 10:31:201

什么叫做多项式,什么叫做多项式的因式分解 概念

若干个单项式的和组成的式叫做多项式(减法中有:减一个数等于加上它的相反数).多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.不含字母的项叫做常数项.如一式中:最高项的次数为5,此式有3个单项式组成,则称其为:五次三项式. 比较广义的定义,1个或0个单项式的和也算多项式.按这个定义,多项式就是整式.实际上,还没有一个只对狭义多项式起作用,对单项式不起的定理:0作为多项式时,次数为负无穷大. 因式分解指的是把一个多项式分解为几个整式的积的形式,它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等. ⑴提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的~. ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法. am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)] a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数) ⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形. ⑸十字相乘法 ①x^2+(p q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分 x^2+(p q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax b)(cx d) a -----/b ac=k bd=n c /-----d ad+bc=m ※ 多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止. (6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a).如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式. 经典例题: 1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2 原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y) 2.证明:对于任何数x,y,下式的值都不会为33 x^5+3x^4y-5x^3y^2+4xy^4+12y^5 原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y) 当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立 因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式. 例1、 分解因式x^3 -2x^2 -x(2003淮安市中考题) x^3 -2x^2 -x=x(x^2 -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式. 例2、分解因式a^2 +4ab+4b^2 (2003南通市中考题) a^2 +4ab+4b^2 =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m^2 +5n-mn-5m m^2+5n-mn-5m= m^2-5m -mn+5n = (m^2 -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx^2 +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x^2 -19x-6 分析: 1 -3 7 2 2-21=-19 7x^2 -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解. 例5、分解因式x^2 +3x-40 解x^2 +3x-40 =x^2+3x+2.25-42.25 =(x+1.5)^2-(6.5)^2 =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解. 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来. 例7、分解因式2x^4 -x^3 -6x^2 -x+2 (解答错误太多,请大牛再分一遍吧) 8、 求根法 令多项式f(x)=0,求出其根为x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn ) 例8、分解因式2x^4 +7x^3 -2x^2 -13x+6 令f(x)=2x^4 +7x^3 -2x^2 -13x+6=0 通过综合除法可知,f(x)=0根为1/2 ,-3,-2,1 则2x^4 +7x^3 -2x^2 -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图像法 令y=f(x),做出函数y=f(x)的图像,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn ) 例9、因式分解x^3 +2x^2 -5x-6 令y= x^3 +2x^2 -5x-6 作出其图像,与x轴交点为-3,-1,2 则x^3 +2x^2 -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解. 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式. 例11、分解因式x^3 +9x^2 +23x+15 令x=2,则x^3 +9x^2 +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x^3 +9x^2 +23x+15可能=(x+1)(x+3)(x+5) ,验证后的确如此. 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多
小菜G的建站之路2023-08-02 10:31:201

若关于x的一元二次方程x^2+bx+c=0的两根是x1=1,x2=-3,那么多项式x^2+bx+c因式分解的结果

解:x1+x2=-b/a=-b1-3=-bb=2x1*x2=c/a=c1*(-3)=cc=-3x^2+2x-3=(x+3)(x-1)
善士六合2023-07-28 10:26:162

因式分解练习题.

(1)(-1-b)u2022M=-M(b+1)=b^2-1=(b+1)(b-1) 所以-M=b-1 M=1-b(2)(x+1)(x-2)=x^2-x-2 所以a=-1,b=-2(3)因为(3x+4)^2=9x^2+24x+16 所以2(m-4)=24 m=16 又因为(3x-4)^2=9x^2-24x+16 所以2(m-4)=-24 m=-8所以m的值为16或-8
铁血嘟嘟2023-07-23 13:40:334

求因式分解的好题目,初一!

因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14=整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)
无尘剑 2023-07-23 13:40:321

求几个因式分解的题目答案

1、3x-42、原式=3.14*(21+2*10-40)=3.14*1=3.143、(x-2)^2 (4a+1)^2 -(m-1)^24、(a+b-c)(a-b+c)
ardim2023-07-23 13:40:315

急需40道因式分解题,要包含各种解题方法在内

⑴提公因式法①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。 ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.。am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形. ⑸十字相乘法 ①x^2+(p q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax b)(cx d) a -----/b ac=k bd=n c /-----d ad+bc=m ※ 多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止。(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。经典例题:1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)=[(1+y)+x^2(1-y)]^2-(2x)^2=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)2.证明:对于任何数x,y,下式的值都不会为33x^5+3x^4y-5x^3y^2+4xy^4+12y^5解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)=(x+3y)(x^4-5x^2y^2+4y^4)=(x+3y)(x^2-4y^2)(x^2-y^2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y)当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x^3 -2x^2 -x(2003淮安市中考题) x^3 -2x^2 -x=x(x^2 -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a^2 +4ab+4b^2 (2003南通市中考题) 解:a^2 +4ab+4b^2 =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m^2 +5n-mn-5m 解:m^2+5n-mn-5m= m^2-5m -mn+5n = (m^2 -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx^2 +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x^2 -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x^2 -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x^2 +3x-40 解x^2 +3x-40=x^2+3x+2.25-42.25=(x+1.5)^2-(6.5)^2=(x+8)(x-5)6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x^4 -x^3 -6x^2 -x+2 8、 求根法 令多项式f(x)=0,求出其根为x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn ) 例8、分解因式2x^4 +7x^3 -2x^2 -13x+6 解:令f(x)=2x^4 +7x^3 -2x^2 -13x+6=0 通过综合除法可知,f(x)=0根为1/2 ,-3,-2,1 则2x^4 +7x^3 -2x^2 -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图像法 令y=f(x),做出函数y=f(x)的图像,找到函数图像与x轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn ) 例9、因式分解x^3 +2x^2 -5x-6 解:令y= x^3 +2x^2 -5x-6 作出其图像,与x轴交点为-3,-1,2 则x^3 +2x^2 -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例11、分解因式x^3 +9x^2 +23x+15 解:令x=2,则x^3 +9x^2 +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x^3 +9x^2 +23x+15可能=(x+1)(x+3)(x+5) ,验证后的确如此。12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x^4 -x^3 -5x^2 -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x^4 -x^3 -5x^2 -6x-4=(x^2 +ax+b)(x^2 +cx+d) = x^4 +(a+c)x^3 +(ac+b+d)x^2 +(ad+bc)x+bd 所以 解得 则x^4 -x^3 -5x^2 -6x-4 =(x +x+1)(x -2x-4)初学因式分解的“四个注意”因式分解初见于九年义务教育三年制初中教材《代数》第二册,在初二上学期讲授,但它的内容却渗透于整个中学数学教材之中。学习它,既可以复习初一的整式四则运算,又为本册下一章分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。其中四个注意,则必须引起师生的高度重视。因式分解中的四个注意散见于教材第5页和第15页,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举数例,说明如下,供参考。例1 把-a2-b2+2ab+4分解因式。解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误?如例2 △abc的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证这个三角形是等腰三角形。分析:此题实质上是对关系式的等号左边的多项式进行因式分解。证明:∵-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0.又∵a、b、c是△abc的三条边,∴a+2b+c>0,∴a-c=0,即a=c,△abc为等腰三角形。例3把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。防止学生出现诸如6p(x-1)3-8p2(x-1)2+2p(1-x)2=2p(x-1)2[3(x-1)-4p]=2p(x-1)2(3x-4p-3)的错误。例4 在实数范围内把x4-5x2-6分解因式。解:x4-5x2-6=(x2+1)(x2-6)=(x2+1)(x+6)(x-6)这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的
kikcik2023-07-23 13:40:311

跪求200道因式分解,带答案.最好要简单的. 主要是工整 别乱就行 谢谢

因式分解 3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2) 3.因式分解xy+6-2x-3y=(x-3)(y-2) 4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b) 6.因式分解a4-9a2b2=a^2(a+3b)(a-3b) 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 10.因式分解a2-a-b2-b=(a+b)(a-b-1) 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 12.因式分解(a+3)2-6(a+3)=(a+3)(a-3) 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4) (2)16x2-81=(4x+9)(4x-9) (3)9x2-30x+25=(3x-5)^2 (4)x2-7x-30=(x-10)(x+3) 35.因式分解x2-25=(x+5)(x-5) 36.因式分解x2-20x+100=(x-10)^2 37.因式分解x2+4x+3=(x+1)(x+3) 38.因式分解4x2-12x+5=(2x-1)(2x-5) 39.因式分解下列各式: (1)3ax2-6ax=3ax(x-2) (2)x(x+2)-x=x(x+1) (3)x2-4x-ax+4a=(x-4)(x-a) (4)25x2-49=(5x-9)(5x+9) (5)36x2-60x+25=(6x-5)^2 (6)4x2+12x+9=(2x+3)^2 (7)x2-9x+18=(x-3)(x-6) (8)2x2-5x-3=(x-3)(2x+1) (9)12x2-50x+8=2(6x-1)(x-4) 40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1) 41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3) 42.因式分解9x2-66x+121=(3x-11)^2 43.因式分解8-2x2=2(2+x)(2-x) 44.因式分解x2-x+14 =整数内无法分解 45.因式分解9x2-30x+25=(3x-5)^2 46.因式分解-20x2+9x+20=(-4x+5)(5x+4) 47.因式分解12x2-29x+15=(4x-3)(3x-5) 48.因式分解36x2+39x+9=3(3x+1)(4x+3) 49.因式分解21x2-31x-22=(21x+11)(x-2) 50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2) 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1) 52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3) 53.因式分解x(y+2)-x-y-1=(x-1)(y+1) 54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3) 55.因式分解9x2-66x+121=(3x-11)^2 56.因式分解8-2x2=2(2-x)(2+x) 57.因式分解x4-1=(x-1)(x+1)(x^2+1) 58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2) 59.因式分解4x2-12x+5=(2x-1)(2x-5) 60.因式分解21x2-31x-22=(21x+11)(x-2) 61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1) 62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2) 63.因式分解下列各式: (1)3x2-6x=3x(x-2) (2)49x2-25=(7x+5)(7x-5) (3)6x2-13x+5=(2x-1)(3x-5) (4)x2+2-3x=(x-1)(x-2) (5)12x2-23x-24=(3x-8)(4x+3) (6)(x+6)(x-6)-(x-6)=(x-6)(x+5) (7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2) (8)9x2+42x+49=(3x+7)^2 。1.若(2x)n6181 = (4x2+9)(2x+3)(2x613),那么n的值是( ) A.2 B. 4 C.6 D.8 2.若9x26112xy+m是两数和的平方式,那么m的值是( ) A.2y2 B.4y 2 C.±4y2 D.±16y2 3.把多项式a461 2a2b2+b4因式分解的结果为( ) A.a2(a2612b2)+b4 B.(a261b2)2 C.(a61b)4 D.(a+b)2(a61b)2 4.把(a+b)2614(a261b2)+4(a61b)2分解因式为( ) A.( 3a61b)2 B.(3b+a)2 C.(3b61a)2 D.( 3a+b)2 5.计算:(61)2001+(61)2000的结果为( ) A.(61)2003 B.61(61)2001 C. D.61 6.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( ) A.M>N B.M≥N C.M≤N D.不能确定 7.对于任何整数m,多项式( 4m+5)2619都能( ) A.被8整除 B.被m整除 C.被(m611)整除 D.被(2n611)整除 8.将613x2n616xn分解因式,结果是( ) A.613xn(xn+2) B.613(x2n+2xn) C.613xn(x2+2) D.3(61x2n612xn) 9.下列变形中,是正确的因式分解的是( ) A. 0.09m261 n2 = ( 0.03m+ )( 0.03m61) B.x26110 = x2619611 = (x+3)(x613)611 C.x461x2 = (x2+x)(x261x) D.(x+a)261(x61a)2 = 4ax 10.多项式(x+y61z)(x61y+z)61(y+z61x)(z61x61y)的公因式是( ) A.x+y61z B.x61y+z C.y+z61x D.不存在 11.已知x为任意有理数,则多项式x61161x2的值( ) A.一定为负数 B.不可能为正数 C.一定为正数 D.可能为正数或负数或零 二、解答题: 分解因式: (1)(ab+b)261(a+b)2 (2)(a261x2)2614ax(x61a)2 (3)7xn+16114xn+7xn611(n为不小于1的整数) 答案: 一、选择题: 1.B 说明:右边进行整式乘法后得16x46181 = (2x)46181,所以n应为4,答案为B. 2.B 说明:因为9x26112xy+m是两数和的平方式,所以可设9x26112xy+m = (ax+by)2,则有9x26112xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = 6112,b2y2 = m;得到a = 3,b = 612;或a = 613,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B. 3.D 说明:先运用完全平方公式,a461 2a2b2+b4 = (a261b2)2,再运用两数和的平方公式,两数分别是a2、61b2,则有(a261b2)2 = (a+b)2(a61b)2,在这里,注意因式分解要分解到不能分解为止;答案为D. 4.C 说明:(a+b)2614(a261b2)+4(a61b)2 = (a+b)2612(a+b)[2(a61b)]+[2(a61b)]2 = [a+b612(a61b)]2 = (3b61a)2;所以答案为C. 5.B 说明:(61)2001+(61)2000 = (61)2000[(61)+1] = ()2000 61= ()2001 = 61(61)2001,所以答案为B. 6.B 说明:因为M61N = x2+y2612xy = (x61y)2≥0,所以M≥N. 7.A 说明:( 4m+5)2619 = ( 4m+5+3)( 4m+5613) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1). 8.A 9.D 说明:选项A,0.09 = 0.32,则 0.09m261 n2 = ( 0.3m+n)( 0.3m61n),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x261x)可继续分解为x2(x+1)(x611);所以答案为D. 10.A 说明:本题的关键是符号的变化:z61x61y = 61(x+y61z),而x61y+z≠y+z61x,同时x61y+z≠61(y+z61x),所以公因式为x+y61z. 11.B 说明:x61161x2 = 61(161x+x2) = 61(161x)2≤0,即多项式x61161x2的值为非正数,正确答案应该是B. 二、解答题: (1) 答案:a(b611)(ab+2b+a) 说明:(ab+b)261(a+b)2 = (ab+b+a+b)(ab+b61a61b) = (ab+2b+a)(ab61a) = a(b611)(ab+2b+a). (2) 答案:(x61a)4 说明:(a261x2)2614ax(x61a)2 = [(a+x)(a61x)]2614ax(x61a)2 = (a+x)2(a61x)2614ax(x61a)2 = (x61a)2[(a+x)2614ax] = (x61a)2(a2+2ax+x2614ax) = (x61a)2(x61a)2 = (x61a)4. (3) 答案:7xn611(x611)2 说明:原式 = 7xn611 61x2617xn611 612x+7xn611 = 7xn611(x2612x+1) = 7xn611(x611)2
阿啵呲嘚2023-07-23 13:40:301

求八年级上册人教版数学因式分解练习题 越多也好(答案最好有)

你去买数学八年级《培优竞赛新方法》吧,那里面有许多基础题和竞赛题和中考题,或者买和它一套的另两本,那两本一本基本上全是竞赛题,一本基本上是中考题,对你学习应该有帮助。
水元素sl2023-07-23 13:40:292

数学因式分解习题

题目?
黑桃花2023-07-23 13:40:282

初一因式分解练习题

楼主是求题目 楼上的给的些乱糟糟的公式
苏州马小云2023-07-23 13:40:273

初二上的100道整式数学题,和100道因式分解和100道化简求值,100道二元一次方程组

这个太大了吧,你的问题问得也太那个了,看不懂呀
小白2023-07-23 13:40:272

因式分解练习题 (把题目放在前面后面放答案)

http://zhidao.baidu.com/question/264647627.html帮个忙,有分
阿啵呲嘚2023-07-23 13:40:273

求30道因式分解题 要答案 速度速度!

1. ax+by+ay+bx2. x^3+13. x^2+x^34. x^2+x^3-25. x^2-6x+86. x^2-12x+357. (x^3-1)+(x-1)(6x+11)8. x^4-19. x^4+410. b^2+ab+ac+bc11. x^3+y^3+z^3-3xyz12. x^6+8x^3+913. x^2-100x+9914. x^2-x-y^2-y15. 7x^2-19x-616. 8x^2-6x-917. x+1)(x+2)-1218. x^2+(p+q)x+pq19. 3x^3-6x^2+320. a^2(x-2a)^2-a(x-2a)^221. 25m^2-10mn+n^222. x^2-3x-2823. y^4+2y^3-3y^224. (x-1)^2*(3x-2)+(2-3x)25. (x-2)^2-x+226. x^2-12x-2827. 12a^2*b(x-y)-4ab(y-x)28. a^2+5a+629. x^11-2x^10+x^930. x^2+x31. x^3+x32. x^4+x33. 100x^2+30xy+2y^234. 6y^2-16y+835. 6-7a-5a^236. 3x^2-17x+1037. 6a^2-11ab+3b^238. 2m^3+3m^2-5m39. (x+y)^2-2(x+y)-340. a^2-b^2+2ab-c^241. m^2+2mn+n^2-142. x^2-4y^2+4yz-z^243. 9x^2-4y^2-z^2+4yz44. -25+a^2+9b^2-6ab45. 2x^2-100x-10246. x^2*y^2-7xy+1047. x^2-x-248. -x^2*y+6xy-8y49. x^2-9y^2-x+3y50. x^2-7x-8答案:1. (a+b)(x+y)2. (x+1)(x^2-x+1)3. x^2*(x+1)4. (x-1)(x^2-2x+2)5. (x-2)(x-4)6. (x-5)(x-7)7. (x-1)(x+3)(x+4)8. (x^2+1)(x-1)(x+1)9. (x^2-2x+2)(x^2+2x+x)10. (b+c)(b+a)11. (x+y+z)(x^2+y^2+z^2-xy-yz-xz)12. (x+1)(x^2-x+1)(x+2)(x^2-2x+4)13. (x-99)(x-1)14. (x+y)(x-y-1)15. (7x+2)(x-3)16. (2x-3)(4x+3)17. (x+5)(x-2)18. (x+p)(x+q)19. (x-1)(x^2-x-1)20. a(a-1)(x-2a)^221. (5m-n)^222. (x-7)(x+4)23. y^2(y-1)(y+3)24. x(x-2)(3x-2)25. (x-2)(x-3)26. (x-14)(x+2)27. 4ab(3a+1)(x-y)28. (a+2)(a+3)29. x^9*(x-1)^230. x(1+x)31. x(1+x^2)32. x(1+x)(1-x+x^2)33. 2(5x+y)(10x+y)34. 2(3y-2)(y-2)35. (3-5a)(a+2)36. (3x-2)(x-5)37. (2a-3b)(3a-b)38. m(m-1)(2m+5)39. (x+y-3)(x+y+1)40. (a+b-c)(a+b+c)41. (m+n+1)(m+n-1)42. (x+2y-z)(x-2y+z)43. (3x+2y-z)(3x-2y+z)44. (a-3b-5)(a-3b+5)45. 2(x-51)(x+1)46. (xy-5)(xy-2)47. (x-2)(x+1)48. -y(x-2)(x-4)49. (x-y)(x+3y-1)50. (x-8)(x+1
此后故乡只2023-07-23 13:40:261

有什么关于因式分解的练习题(附加答案)

上数学网
mlhxueli 2023-07-23 13:40:252

初二数学因式分解练习题50道

怎么没人帮我
meira2023-07-23 13:40:252

初中因式分解给20道要答案和过程!先来先采纳

现出的:1. ax+by+ay+bx2. x^3+13. x^2+x^34. x^2+x^3-25. x^2-6x+86. x^2-12x+357. (x^3-1)+(x-1)(6x+11)8. x^4-19. x^4+410. b^2+ab+ac+bc11. x^3+y^3+z^3-3xyz12. x^6+8x^3+913. x^2-100x+9914. x^2-x-y^2-y15. 7x^2-19x-616. 8x^2-6x-917. x+1)(x+2)-1218. x^2+(p+q)x+pq19. 3x^3-6x^2+320. a^2(x-2a)^2-a(x-2a)^221. 25m^2-10mn+n^222. x^2-3x-2823. y^4+2y^3-3y^224. (x-1)^2*(3x-2)+(2-3x)25. (x-2)^2-x+226. x^2-12x-2827. 12a^2*b(x-y)-4ab(y-x)28. a^2+5a+629. x^11-2x^10+x^930. x^2+x31. x^3+x32. x^4+x33. 100x^2+30xy+2y^234. 6y^2-16y+835. 6-7a-5a^236. 3x^2-17x+1037. 6a^2-11ab+3b^238. 2m^3+3m^2-5m39. (x+y)^2-2(x+y)-340. a^2-b^2+2ab-c^241. m^2+2mn+n^2-142. x^2-4y^2+4yz-z^243. 9x^2-4y^2-z^2+4yz44. -25+a^2+9b^2-6ab45. 2x^2-100x-10246. x^2*y^2-7xy+1047. x^2-x-248. -x^2*y+6xy-8y49. x^2-9y^2-x+3y50. x^2-7x-8出不动了。。。难度不随题号变化,解题方法不随题号变化,老少皆宜,童叟无欺。答案:1. (a+b)(x+y)2. (x+1)(x^2-x+1)3. x^2*(x+1)4. (x-1)(x^2-2x+2)5. (x-2)(x-4)6. (x-5)(x-7)7. (x-1)(x+3)(x+4)8. (x^2+1)(x-1)(x+1)9. (x^2-2x+2)(x^2+2x+x)10. (b+c)(b+a)11. (x+y+z)(x^2+y^2+z^2-xy-yz-xz)12. (x+1)(x^2-x+1)(x+2)(x^2-2x+4)13. (x-99)(x-1)14. (x+y)(x-y-1)15. (7x+2)(x-3)16. (2x-3)(4x+3)17. (x+5)(x-2)18. (x+p)(x+q)19. (x-1)(x^2-x-1)20. a(a-1)(x-2a)^221. (5m-n)^222. (x-7)(x+4)23. y^2(y-1)(y+3)24. x(x-2)(3x-2)25. (x-2)(x-3)26. (x-14)(x+2)27. 4ab(3a+1)(x-y)28. (a+2)(a+3)29. x^9*(x-1)^230. x(1+x)31. x(1+x^2)32. x(1+x)(1-x+x^2)33. 2(5x+y)(10x+y)34. 2(3y-2)(y-2)35. (3-5a)(a+2)36. (3x-2)(x-5)37. (2a-3b)(3a-b)38. m(m-1)(2m+5)39. (x+y-3)(x+y+1)40. (a+b-c)(a+b+c)41. (m+n+1)(m+n-1)42. (x+2y-z)(x-2y+z)43. (3x+2y-z)(3x-2y+z)44. (a-3b-5)(a-3b+5)45. 2(x-51)(x+1)46. (xy-5)(xy-2)47. (x-2)(x+1)48. -y(x-2)(x-4)49. (x-y)(x+3y-1)50. (x-8)(x+1)
u投在线2023-07-23 13:40:251

求300道因式分解计算题 (要答案)

300道没有,只有100多道因式分解法 1.x^2-3x+2=0 2.2x^2-x-3=0 3.(x+2)^2+x+2=0 4.3x^2-27=0 1. (x-1)(x-2)=0 x=1 或 x=2 2. (2x-3)(x+1)=0 x=3/2 或 x=-1 3. (x+2+1)(x+2)=0 x=-1 或 x=-2 4. x^2-9=0 (x+3)(x-3)=0 x=-3 或 x=3 其他没过程有答案的: x^2-34x-35=0 35 or -1 x^2-2-3=0 3 or -1 -x^2-9x-14=0 -2 or- 7 -x^2-10x-24=0 -4 or -6 x^2-5x-6=0 6 or -1 x^2-14x-32=0 16 or 2 x^2-3x-4=0 4 or -1 -x^2-4x+5=0 -5 or 1 x^2-20x-21=0 21 or -1 x^2+8x+7=0 1 or 7 -x^2-4x-4=0 -2 -x^2-6x-8=0 -2 or -4 x^2+7x+12=0 -3 or -4 -x^2-8x-15=0 -3 or -5 x^2-4x-32=0 8 or -4 x^2-6x-27=0 9 or -3 -x^2-9x+22=0 -11 or 2 x^2+12x-28=0 -14 or 2 -x^2-4x+21=0 -7 or 3 x^2-5x-36=0 9 or -4 x^2+12x-13=0 -13 or 1 -x^2-3x+54=0 -9 or 6 -x^2-x+90=0 -10 or 9 x^2-3x-88=0 11 or -8 x^2-5x-14=0 7 or -2 x^2-3x-10=0 5 or -2 -x^2+4x+12=0 6 or -2 x^2+7x-18=0 -9 or 2 x^2+9x-10=0 -10 or 1 -x^2-11x+26=0 -13 or 2 x^2-3x-40=0 8 or -5 -x^2-5x+36=0 -9 or 4 x^2-14x-15=0 15 or -1 -x^2+22x+23=0 23 or -1 x^2-5x-50=0 10 or -5 x^2-12x-64=0 16 or -4 x^2+3x+2=0 -1 or -2 3x^2-18x+24=0 2 or 4 x^2+6x+5=0 -1 or -5 -x^2+4x+12=0 6 or -2 x^2+12x-20=0 -10 or 2 -x^2-13x+40=0 -5 or -8 x^2-x-6=0 3 or -2 -x^2-11x-28=0 x^2+2x-3=0 -x^2+5x+6=0 6 or -1 -x^2-5x-6=0 -2 or -3 -x^2-16x-63=0 -7 or -9 x^2-2x-3=0 3 or -1 -x^2-5x+4=0 1 or 4 -x^2-8x-12=0 -2 or -6 x^2-5x-6=0 6 or -1 x^2-9x+18=0 3 or 6 -x^2-6x-8=0 -2 or -4 x^2-6x-16=0 8 or -2 x^2-12x+11=0 1 or 11 -x^2+4x+5=0 5 or -1 x^2-13x+22=0 2 or 11 x^2-34x+33=0 1 or 33 -x^2-2x-1=0 -1 x^2-x-2=0 2 or -1 x^2+7x+10=0 -2 or -5 x^2+8x-20=0 -10 or 2还有一些没答案但是都能用因式分解法做的 X^2-X-6=0 2X^2-3X-2=0 -3X^2+6X=2 4X^2-4X+1=0 X^2-2X+3=0 -X^2-2X+8=0 X^2-X-2=4 2X^2-3X+1=0 -3X^2+4X+4=0 4X^2-11X-3=3 x^2-2x-3=0 4x^2-1=0 5x^2-3x+2=0 -x^2-2x+8=0 -2x2+x+3=0 2x^2+3x-9=0 x^2-9=0 4x^2-10x-6=0 5x^2-8x-4=0 3x^2+4x-4=0 6x^2+7x-5=0 x^2-8x+12=0 2x^2-6x+3=0 2x^2+9x-5=0 3x^2-16x+5=0 2x^2-11x+5=0 4x^2-16x+7=0 10x^2-9x-7=0 2x^2-13x-7=0 2x^2-3x-2=0 -2x^2+3x-1=0 2x^2-17x-9=0 2x^2-x-6=0 12x^2+16x-3=0 6x^2-13x+2=0 3x^2-7x+2=0 5x^2-11x+2=0 2x^2-9x+9=0 2x^2+3x-9=0 x^2+2x-3=0 x^2-6x+5=0 x^2-3x+2=0 x^2-12x+32=0 x^2+6x-16=0 3x^2-12x-15=0 2x^2-11x-21=0 2x^2-7x-15=0 -x^2+8x-12=0 6x^2-x-15=0 -6x^2-7x+2=0 2x^2-x-6=0 x^2+x-6=0 x^2+5x-14=0 -2x^2-13x+7=0 2x^2-x-1=0 2x^2+7x+5=0
mlhxueli 2023-07-23 13:40:241

求初二因式分解题及其答案100道

25x^2-16y^2=(5x+4x)(5x-4x)
余辉2023-07-23 13:40:223

初二因式分解练习题

现出的:1. ax+by+ay+bx2. x^3+13. x^2+x^34. x^2+x^3-25. x^2-6x+86. x^2-12x+357. (x^3-1)+(x-1)(6x+11)8. x^4-19. x^4+410. b^2+ab+ac+bc11. x^3+y^3+z^3-3xyz12. x^6+8x^3+913. x^2-100x+9914. x^2-x-y^2-y15. 7x^2-19x-616. 8x^2-6x-917. x+1)(x+2)-1218. x^2+(p+q)x+pq19. 3x^3-6x^2+320. a^2(x-2a)^2-a(x-2a)^221. 25m^2-10mn+n^222. x^2-3x-2823. y^4+2y^3-3y^224. (x-1)^2*(3x-2)+(2-3x)25. (x-2)^2-x+226. x^2-12x-2827. 12a^2*b(x-y)-4ab(y-x)28. a^2+5a+629. x^11-2x^10+x^930. x^2+x31. x^3+x32. x^4+x33. 100x^2+30xy+2y^234. 6y^2-16y+835. 6-7a-5a^236. 3x^2-17x+1037. 6a^2-11ab+3b^238. 2m^3+3m^2-5m39. (x+y)^2-2(x+y)-340. a^2-b^2+2ab-c^241. m^2+2mn+n^2-142. x^2-4y^2+4yz-z^243. 9x^2-4y^2-z^2+4yz44. -25+a^2+9b^2-6ab45. 2x^2-100x-10246. x^2*y^2-7xy+1047. x^2-x-248. -x^2*y+6xy-8y49. x^2-9y^2-x+3y50. x^2-7x-8出不动了。。。难度不随题号变化,解题方法不随题号变化,老少皆宜,童叟无欺。答案:1. (a+b)(x+y)2. (x+1)(x^2-x+1)3. x^2*(x+1)4. (x-1)(x^2-2x+2)5. (x-2)(x-4)6. (x-5)(x-7)7. (x-1)(x+3)(x+4)8. (x^2+1)(x-1)(x+1)9. (x^2-2x+2)(x^2+2x+x)10. (b+c)(b+a)11. (x+y+z)(x^2+y^2+z^2-xy-yz-xz)12. (x+1)(x^2-x+1)(x+2)(x^2-2x+4)13. (x-99)(x-1)14. (x+y)(x-y-1)15. (7x+2)(x-3)16. (2x-3)(4x+3)17. (x+5)(x-2)18. (x+p)(x+q)19. (x-1)(x^2-x-1)20. a(a-1)(x-2a)^221. (5m-n)^222. (x-7)(x+4)23. y^2(y-1)(y+3)24. x(x-2)(3x-2)25. (x-2)(x-3)26. (x-14)(x+2)27. 4ab(3a+1)(x-y)28. (a+2)(a+3)29. x^9*(x-1)^230. x(1+x)31. x(1+x^2)32. x(1+x)(1-x+x^2)33. 2(5x+y)(10x+y)34. 2(3y-2)(y-2)35. (3-5a)(a+2)36. (3x-2)(x-5)37. (2a-3b)(3a-b)38. m(m-1)(2m+5)39. (x+y-3)(x+y+1)40. (a+b-c)(a+b+c)41. (m+n+1)(m+n-1)42. (x+2y-z)(x-2y+z)43. (3x+2y-z)(3x-2y+z)44. (a-3b-5)(a-3b+5)45. 2(x-51)(x+1)46. (xy-5)(xy-2)47. (x-2)(x+1)48. -y(x-2)(x-4)49. (x-y)(x+3y-1)50. (x-8)(x+1)
余辉2023-07-23 13:40:224

初一因式分解练习题及答案,求!!!~~要速度啊 50题 或者有多少先发多少吧,,,不要出太难了,简单些的

苏州马小云2023-07-23 13:40:221

跪求五十道七年级下册因式分解带答案,答案一定要完整

分解:的1.x中2 -25 = 2×2-20X +100 = 3。 X 2 +4×3 = 4。 4X-12X +5 = 5。 3AX 2 6AX = 6.x的第(x +2)-X = 7.x的2至4倍,斧头+4 = 8.25x 2 -49 = 9.36x 2-60X +25 = 10.4倍2 +12×9 = 11.x的2-9X +18 = 12.2倍2-5X-3 = > 13.12x-50X +8 = 14。第(x +2)(3)+(2)(4)= 15。 2AX 2-3X +2 AX-3 = 16。 9X-66X +121 = 17。 8 - 2×2 = 18。 X 2-X 14 = 19。 9X-30X +25 = 20.-20×2 +9 +20 = 21。 12X-29X +15 = 22。 36X +39所述+9 = 23。 21X-31X-22 = 24。 9X4-35X 2 -4 = 25。 (2×1)(×1)+(2×1)(3)= 26。 2AX 2-3X +2 AX-3 = 27。 ×(式y +2)的x-y-1 = 28。 (×2 3×)+(-3)2 = 29。 9X-66X +121 = 30。 8 2×2 = 31。 X4-1 = 32。 ×2 +4 X-XY-2Y +4 = 33。 4X-12X +5 = 34。 21X-31X-22 = 35。 4X 2 +4 XY + Y2-4X-2Y-3 = 36。 9X5-35x3-4X = 37.3x 2-6X = 38.49x 2 -25 = 39.6x-13X +5 = 40.x 2 +2-3 X = 41.12×2-23X-24 = 42。 (6)(6) - (6)= 43.3第(x +2)(5) - (2)(3)= 44.9x 2 +42所述+49 = 45。 (2)-2(x +2)2 = 46.36x 2 +39×9 = 47.2x 2 + AX??-6X-3A = 48.22x 2-31X -21 = 49.3ax 2 6AX = 50。 (X +1)×5倍= 51。 (2×1)(3) - (2×1)(5)= 52.XY 2的X年5年-10 = 53。 X2Y2-×2-γ2-6xy 4 = 54.8x2-18 55。组x2 - (从头)×-ab的 56.9x4 35×2-4 57.x2-Y2-2yz-z2的 58.a(的b2-c2)的-C(A2-b2的) 59。 (2×1)(×1)+(2×1)(3) 60。 39x2-38X +8 61 7(X-1)2 +4(X-1)(Y +2) - 20(Y +2)2 62。 XY2-2XY-3X-Y2-2Y-1 63。 4X2-6AX +18 A2 64。 9a2b2c-20ab3c 20a3bc- 65。 2ax2-5X +2 AX-5 66。的4x3 +4 X2-25X-25 67。 (1-xy)2 - (YX)2 68.mx2-M2-X +1 69.a2-2AB + B2-1 70.5x2-45 71.81 X3-9X 72.x2-Y2-5X-5年 73.x2-Y2 +2 YZ-Z2 74。 XY2-2XY-3倍-Y2-2Y-1 75.y2(的x-y)+ z2的(γ-x)的
FinCloud2023-07-23 13:40:212

求数学初二因式分解计算题20题附答案

1.m2(p-q)-p+q; 2.a(ab+bc+ac)-abc; 3.x4-2y4-2x3y+xy3; 4.abc(a2+b2+c2)-a3bc+2ab2c2; 5.a2(b-c)+b2(c-a)+c2(a-b); 6.(x2-2x)2+2x(x-2)+1; 7.(x-y)2+12(y-x)z+36z2; 8.x2-4ax+8ab-4b2; 9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx); 10.(1-a2)(1-b2)-(a2-1)2(b2-1)2; 11.(x+1)2-9(x-1)2; 12.4a2b2-(a2+b2-c2)2; 13.ab2-ac2+4ac-4a; 14.x3n+y3n; 15.(x+y)3+125; 16.(3m-2n)3+(3m+2n)3; 17.x6(x2-y2)+y6(y2-x2); 18.8(x+y)3+1; 19.(a+b+c)3-a3-b3-c3; 答案 1.(p-q)(m-1)(m+1). 8.(x-2b)(x-4a+2b). 11.4(2x-1)(2-x). 20.(x+3y)(x+y). 21.(x-6)(x+24).
wpBeta2023-07-23 13:40:191

出15道因式分解题带答案。

xy+6-2x-3y=(x-3)(y-2) 4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b) 6.因式分解a4-9a2b2=a^2(a+3b)(a-3b) 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 10.因式分解a2-a-b2-b=(a+b)(a-b-1) 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 12.因式分解(a+3)2-6(a+3)=(a+3)(a-3) 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4) (2)16x2-81=(4x+9)(4x-9) (3)9x2-30x+25=(3x-5)^2 (4)x2-7x-30=(x-10)(x+3)
北营2023-07-23 13:40:191

求初二上册因式分解练习题及答案30道

1.若(2x)nu221281 = (4x2+9)(2x+3)(2xu22123),那么n的值是( ) A.2 B. 4 C.6 D.8 2.若9x2u221212xy+m是两数和的平方式,那么m的值是( ) A.2y2 B.4y 2 C.±4y2 D.±16y2 3.把多项式a4u2212 2a2b2+b4因式分解的结果为( ) A.a2(a2u22122b2)+b4 B.(a2u2212b2)2 C.(au2212b)4 D.(a+b)2(au2212b)2 4.把(a+b)2u22124(a2u2212b2)+4(au2212b)2分解因式为( ) A.( 3au2212b)2 B.(3b+a)2 C.(3bu2212a)2 D.( 3a+b)2 5.计算:(u2212)2001+(u2212)2000的结果为( ) A.(u2212)2003 B.u2212(u2212)2001 C. D.u2212 6.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( ) A.M>N B.M≥N C.M≤N D.不能确定 7.对于任何整数m,多项式( 4m+5)2u22129都能( ) A.被8整除 B.被m整除 C.被(mu22121)整除 D.被(2nu22121)整除 8.将u22123x2nu22126xn分解因式,结果是( ) A.u22123xn(xn+2) B.u22123(x2n+2xn) C.u22123xn(x2+2) D.3(u2212x2nu22122xn) 9.下列变形中,是正确的因式分解的是( ) A. 0.09m2u2212 n2 = ( 0.03m+ )( 0.03mu2212) B.x2u221210 = x2u22129u22121 = (x+3)(xu22123)u22121 C.x4u2212x2 = (x2+x)(x2u2212x) D.(x+a)2u2212(xu2212a)2 = 4ax 10.多项式(x+yu2212z)(xu2212y+z)u2212(y+zu2212x)(zu2212xu2212y)的公因式是( ) A.x+yu2212z B.xu2212y+z C.y+zu2212x D.不存在 11.已知x为任意有理数,则多项式xu22121u2212x2的值( ) A.一定为负数 B.不可能为正数 C.一定为正数 D.可能为正数或负数或零 二、解答题: 分解因式: (1)(ab+b)2u2212(a+b)2 (2)(a2u2212x2)2u22124ax(xu2212a)2 (3)7xn+1u221214xn+7xnu22121(n为不小于1的整数) 答案: 一、选择题: 1.B 说明:右边进行整式乘法后得16x4u221281 = (2x)4u221281,所以n应为4,答案为B. 2.B 说明:因为9x2u221212xy+m是两数和的平方式,所以可设9x2u221212xy+m = (ax+by)2,则有9x2u221212xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = u221212,b2y2 = m;得到a = 3,b = u22122;或a = u22123,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B. 3.D 说明:先运用完全平方公式,a4u2212 2a2b2+b4 = (a2u2212b2)2,再运用两数和的平方公式,两数分别是a2、u2212b2,则有(a2u2212b2)2 = (a+b)2(au2212b)2,在这里,注意因式分解要分解到不能分解为止;答案为D. 4.C 说明:(a+b)2u22124(a2u2212b2)+4(au2212b)2 = (a+b)2u22122(a+b)[2(au2212b)]+[2(au2212b)]2 = [a+bu22122(au2212b)]2 = (3bu2212a)2;所以答案为C. 5.B 说明:(u2212)2001+(u2212)2000 = (u2212)2000[(u2212)+1] = ()2000 u2022= ()2001 = u2212(u2212)2001,所以答案为B. 6.B 说明:因为Mu2212N = x2+y2u22122xy = (xu2212y)2≥0,所以M≥N. 7.A 说明:( 4m+5)2u22129 = ( 4m+5+3)( 4m+5u22123) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1). 8.A 9.D 说明:选项A,0.09 = 0.32,则 0.09m2u2212 n2 = ( 0.3m+n)( 0.3mu2212n),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2u2212x)可继续分解为x2(x+1)(xu22121);所以答案为D. 10.A 说明:本题的关键是符号的变化:zu2212xu2212y = u2212(x+yu2212z),而xu2212y+z≠y+zu2212x,同时xu2212y+z≠u2212(y+zu2212x),所以公因式为x+yu2212z. 11.B 说明:xu22121u2212x2 = u2212(1u2212x+x2) = u2212(1u2212x)2≤0,即多项式xu22121u2212x2的值为非正数,正确答案应该是B. 二、解答题: (1) 答案:a(bu22121)(ab+2b+a) 说明:(ab+b)2u2212(a+b)2 = (ab+b+a+b)(ab+bu2212au2212b) = (ab+2b+a)(abu2212a) = a(bu22121)(ab+2b+a). (2) 答案:(xu2212a)4 说明:(a2u2212x2)2u22124ax(xu2212a)2 = [(a+x)(au2212x)]2u22124ax(xu2212a)2 = (a+x)2(au2212x)2u22124ax(xu2212a)2 = (xu2212a)2[(a+x)2u22124ax] = (xu2212a)2(a2+2ax+x2u22124ax) = (xu2212a)2(xu2212a)2 = (xu2212a)4. (3) 答案:7xnu22121(xu22121)2 说明:原式 = 7xnu22121 u2022x2u22127xnu22121 u20222x+7xnu22121 = 7xnu22121(x2u22122x+1) = 7xnu22121(xu22121)2.抱歉,没有那么多,希望对你有帮助
无尘剑 2023-07-23 13:40:181

初二数学因式分解复习题

一、选择题1、下列各式中从左到右的变形属于分解因式的是()A.a(a+b-1)=a2+ab-aB.a2–a-2=a(a-1)-2C.-4a2+9b2=(-2a+3b)(2a+3b)D.2x+1=x(2+1/x)2、下列各式分解因是正确的是()A.x2y+7xy+y=y(x2+7x)B.3a2b+3ab+6b=3b(a2+a+2)C.6xyz-8xy2=2xyz(3-4y)D.-4x+2y-6z=2(2x+y-3z)3、下列多项式中,能用提公因式法分解因式的是()A.x2-yB.x2+2xC.x2+y2D.x2-xy+y24、2(a-b)3-(b-a)2分解因式的正确结果是()A.(a-b)2(2a-2b+1)B.2(a-b)(a-b-1)C.(b-a)2(2a-2b-1)D.(a-b)2(2a-b-1)5、下列多项式分解因式正确的是()A.1+4a-4a2=(1-2a)2B.4-4a+a2=(a-2)2C.1+4x2=(1+2x)2D.x2+xy+y2=(x+y)26、运用公式法计算992,应该是()A.(100-1)2B.(100+1)(100-1)C.(99+1)(99-1)D.(99+1)2
可桃可挑2023-07-23 13:40:184

求因式分解五道习题答案

第一题:(3a)(a+2b)第二题:(x+y-5)^2第三题:(2a-3b)^2第四题:(x+2)^2(x-2)^2第五题:(x^2+y^2-2)^2
meira2023-07-23 13:40:171

求100道因式分解及附带每题答案!

因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2c(a^2-2ac+3c^2)2.因式分解xy+6-2x-3y=(x-3)(y-2)3.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^24.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)5.因式分解a4-9a2b2=a^2(a+3b)(a-3b)8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14=整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2.x^2+7x+12=(x+3)(x+4)x^2-7x+12=(x-3)(x-4)x^2+8x+12=(x+2)(x+6)x^2-8x+12=(x-2)(x-6)x^2+13x+12=(x+1)(x+12)x^2-13x+12=(x-1)(x-12)12x^2+7x+1=(3x+1)(4x+1)12x^2-7x+1=(3x-1)(4x-1)12x^2+8x+1=(2x+1)(6x+1)12x^2-8x+1=(2x-1)(6x-1)12x^2+13x+1=(x+1)(12x+1)12x^2-13x+1=(x-1)(12x-1)x^2+6x+8=(x+2)(x+4)x^2-6x+8=(x-2)(x-4)x^2+9x+8=(x+1)(x+8)x^2-9x+8=(x-1)(x-8)8x^2+6x+1=(2x+1)(4x+1)8x^2-6x+1=(2x-1)(4x-1)8x^2+9x+1=(x+1)(8x+1)8x^2-9x+1=(x-1)(8x-1)x^2+7x+10=(x+2)(x+5)x^2-7x+10=(x-2)(x-5)x^2+5x+4=(x+1)(x+4)x^2-5x+4=(x-1)(x-4)x^2+5x+6=(x+2)(x+3)x^2-5x+6=(x-2)x-3)x^2-5x-6=(x-6)(x+1)x^2+5x-6=(x+6)(x-1)x^2+4x+3=(x+1)(x+3)x^2-4x+3=(x-1)(x-3)x^2-3x-4=(x-4)(x+1)x^2+3x-4=(x+4)(x-1)
康康map2023-07-23 13:40:051

给我一些八年级数学整式的乘除与因式分解的练习题

不会
FinCloud2023-07-23 13:40:051

请帮忙出100道简单的初二因式分解题 (象x y类型) 急用!!!!!!!!1

铁血嘟嘟2023-07-23 13:40:055

因式分解练习题及答案,最好多一点题目^_^o~ 努力!

3.因式分解xy+6-2x-3y=(x-3)(y-2) 4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b) 6.因式分解a4-9a2b2=a^2(a+3b)(a-3b) 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 10.因式分解a2-a-b2-b=(a+b)(a-b-1) 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 12.因式分解(a+3)2-6(a+3)=(a+3)(a-3) 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4) (2)16x2-81=(4x+9)(4x-9) (3)9x2-30x+25=(3x-5)^2 (4)x2-7x-30=(x-10)(x+3) 35.因式分解x2-25=(x+5)(x-5) 36.因式分解x2-20x+100=(x-10)^2 37.因式分解x2+4x+3=(x+1)(x+3) 38.因式分解4x2-12x+5=(2x-1)(2x-5) 39.因式分解下列各式: (1)3ax2-6ax=3ax(x-2) (2)x(x+2)-x=x(x+1) (3)x2-4x-ax+4a=(x-4)(x-a) (4)25x2-49=(5x-9)(5x+9) (5)36x2-60x+25=(6x-5)^2 (6)4x2+12x+9=(2x+3)^2 (7)x2-9x+18=(x-3)(x-6) (8)2x2-5x-3=(x-3)(2x+1) (9)12x2-50x+8=2(6x-1)(x-4)
豆豆staR2023-07-23 13:40:042

求初二上因式分解和整式乘除练习题200道(要答案)

第15章 整式的乘除与因式分解第4节 因式分解 第一课时 提公因式法 跟踪训练:1、下列各式从左到右的变形属于因式分解的是( ) A. B. C. D. 2、观察下列各式:① ;② ;③ ;④ ;⑤ ;⑥ .其中可以用提公因式法分解因式的有( ) A.①②⑤ B.②④⑤ C.②④⑥ D.①②⑤⑥3、多项式 分解因式时应提取的公因式为( ) A.3mn B. C. D. 4、下列因式分解中,正确的有①4a-a3b2=a(4-a2b2);②x2y-2xy+xy=xy(x-2);③-a+ab-ac=-a(a-b-c);④9abc-6a2b=3abc(3-2a);⑤ x2y+ xy2= xy(x+y)A.0个 B.1个 C.2个 D.5个5、若 ,则A为( ) A. B. C. D. 6、把多项式 (n为大于2的正整数)分解因式为( ) A. B. C. D. 7、把多项式 分解因式的结果是( )A. B. C. D. 8、把一个多项式化成几个整式_______的形式,叫做把这个多项式因式分解.9、利用因式分解计算32×3.14+5.4×31.4+0.14×314=________.10、分别写出下列多项式的公因式:(1) : ;(2) : ;(3) : ;(4) : ;11、已知a+b=13,ab=40,则 的结果为______________.12、用提公因式法分解下列各式:(1) (2) 13、当x=2,y= 时,求代数式 的值.15.4第1课时参考答案:1、D(点拨:判断是不是因式分解必须满足两点,一是等式左边是多项式,二是等式的整式积的形式) 2、D(点拨:看能否使用提公因式法因式分解的关键是多项式中各项是否有公因式的存在) 3、B(点拨:公因式的系数取各系数的最大公约数,相同字母取最低指数幂,保证提取后的多项式第一项符号为正) 4、B(点拨:①正确;②提取公因式后漏项了;③最后一项提取公因式后应该+c;④公因式应该是3ab;⑤⑥) 5、D(点拨:可用 除以 ) 6、D(点拨:公因式是相同字母的最低次幂,然后用 除以公因式即可) 7、C(点拨:本题的公因式为 ,提公因式一定要提尽) 8、乘积 9、314 10、(1) ;(2) ;(3) ;(4) 11、520 12、(1)原式= ; (2)原式= ;13、解: = = =x(x+y)把x=2,y= 代入,原式=2×(2+ )=5第二课时 公式法(一)跟踪训练:1、下列各式中,不能用平方差公式分解因式的是( ) A. B. C.49 D. 2、分解因式结果为 的多项式是( ) A. B. C. D. 3、把多项式 因式进行分解因式,其结果是( ) A. B. C. D. 4、把 分解因式的结果是( )A. B. C. D. 5、将多项式 分解因式为( ) A. B. C. D. 6、在有理数范围内把 分解因式,结果中因式的个数有( ) A.3个 B.4个 C.5个 D.6个7、已知长方形的面积是 ,一边长是 ,则另一边长是___________.8、已知x、y互为相反数,且 =4,则x=________,y=________.9、分解因式: =________________.10、利用因式分解计算: =_____________.11、已知 , ,则x=________,y=__________.12、已知 , ,则代数式 的值为_______________.15.4第2课时参考答案:1、B(点拨:能运用平方差的公式特点,一是左边有两项可以表达成平方的形式,这两项前面的符号一正一负) 2、D(点拨:原式= ) 3、D(点拨: ,然后运用平方差公式) 4、D(点拨:有公因式,先提取公因式,再运用平方差公式) 5、D(点拨:先将前两项运用平方差公式因式分解,然后再提取公因式 ) 6、C(点拨: = ) 7、 8、 - 9、 10、-12.996(点拨:原式= = ) 11、 12、8跟踪训练:1、( )2+20xy+25 =( )2.2、已知 ,则 =__________.3、已知 ,则x+y=________.4、若 是完全平方式,则实数m的值是( ) A.-5 B.3 C.7 D.7或-15、若二项式 加上一个单项式后成为一个完全平方式,则这样的单项式共有( ) A.1个 B.2个 C.3个 D.4个6、利用因式分解计算: =_______________.7、在实数范围内分解因式: =_____________________.8、将下列各式因式分解 (1) (2) (3) (4) 9、分解因式: =( ) , ( )-20(x+y)=( ) .10、因式分解 的结果为_________________________.11、已知x+y=7,xy=10.求 (1) 的值;(2) 12、如果 ,求 的值.15.4第3课时参考答案:1、2x 2x+5y 2、 3、-2 4、D(点拨:中间一项应该是x和2的积的两倍,所以m-3=±4) 5、C(点拨:如果已知的两项是平方和,则缺少的项应该是积的两倍±4x;如果 是积的两倍,缺少的是一个平方项 ;如果4是积的两倍,则缺少的项为 ,最后一个是分式,不符合要求) 6、90000 7、 8、(1) ;(2) ;(3) ;(4) 9、x+y+4 25 2x+2y-5 10、 11、解:(1)∵x+y=7,xy=10,∴ , ∴ ,∴ ,∴ =58(2)∵ ,∴ ,∴ =841 ∴ =641∴ = =44112、∵ ,∴ ,∴ = =-3×5+7=-8一、耐心选一选,你会开心(每题6分,共30分)1、下列从左到右的变形是分解因式的是( ) A. B. C. D. 2、 不能被下列那个数整除( ) A.2003 B.2002 C.2001 D.10013、已知m-n=3,mn=1,则 的值为( ) A.5 B.7 C.9 D.114、将多项式 分解因式为( ) A. B. C. D. 5、如果4x-3是多项式 的一个因式,则a等于( ) A.-6 B.6 C.-9 D.9二、精心填一填,你会轻松(每题6分,共30分)6、分解因式: =______________________.7、多项式 , 的公因式是__________________.8、用分解因式法计算 =__________________.9、多项式 加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是_______________________(填上一个你认为正确的即可)10、已知多项式 分解因式的结果是 ,则a=______,b=______,c=_________.三、细心做一做,你会成功(共40分)11、(8分)分解因式(1) (2) (3) (4) 12、(8分)计算: 13、(8分)已知 , ,则 的值是多少?综合创新14、(8分)证明: 能被13整除.15、(8分)若多项式 分解因式得 ,求: 的值.中考链接16.(2007四川德阳)已知 ,则 的值是( )A. B. C. D. 17.(2007云南)已知x+y = –5,xy = 6,则 的值是( )A. B. C. D. 18.(2007广东河池)分解因式: .19. (2007山东烟台)请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果 .20. (2007安徽芜湖)因式分解: .15.4本节自测参考答案:夯实基础1、C(点拨:因式分解的特征,左边是几个整式的乘积的形式)2、C(点拨: =2003×(2003-1)=2003×2002)3、D(点拨: ,将m-n=3,mn=1)4、D(点拨: = = )5、A(点拨:令4x-3=0,解得x=0.75,把x=0.75代入 =0中,求得a=-6)6、 7、a-b8、100009、 或± 10、12 -5 -311、(1) ;(2) ;(3) 12、 13、14综合创新14、证明:∵ = =13(2n+13) ∴ 能被13整除15、∵ = ,∴m=1,n=-12, ∴ =-12×(-11)=132中考链接16.C17. B18. 19.答案不唯一,如 20.
余辉2023-07-23 13:40:041

整式的乘除与因式分解练习题

你可以去书店找,网上不一定好~ 类似奥数的,或练习
北营2023-07-23 13:39:463

帮我出几道因式分解,带答案的,长一点?!!!

额,你为什么还要再问一遍?
meira2023-07-23 13:39:451

高分求因式分解练习题

因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2) 3.因式分解xy+6-2x-3y=(x-3)(y-2) 4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b) 6.因式分解a4-9a2b2=a^2(a+3b)(a-3b) 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 10.因式分解a2-a-b2-b=(a+b)(a-b-1) 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 12.因式分解(a+3)2-6(a+3)=(a+3)(a-3) 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4) (2)16x2-81=(4x+9)(4x-9) (3)9x2-30x+25=(3x-5)^2 (4)x2-7x-30=(x-10)(x+3) 35.因式分解x2-25=(x+5)(x-5) 36.因式分解x2-20x+100=(x-10)^2 37.因式分解x2+4x+3=(x+1)(x+3) 38.因式分解4x2-12x+5=(2x-1)(2x-5) 39.因式分解下列各式: (1)3ax2-6ax=3ax(x-2) (2)x(x+2)-x=x(x+1) (3)x2-4x-ax+4a=(x-4)(x-a) (4)25x2-49=(5x-9)(5x+9) (5)36x2-60x+25=(6x-5)^2 (6)4x2+12x+9=(2x+3)^2 (7)x2-9x+18=(x-3)(x-6) (8)2x2-5x-3=(x-3)(2x+1) (9)12x2-50x+8=2(6x-1)(x-4) 40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1) 41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3) 42.因式分解9x2-66x+121=(3x-11)^2 43.因式分解8-2x2=2(2+x)(2-x) 44.因式分解x2-x+14 =整数内无法分解 45.因式分解9x2-30x+25=(3x-5)^2 46.因式分解-20x2+9x+20=(-4x+5)(5x+4) 47.因式分解12x2-29x+15=(4x-3)(3x-5) 48.因式分解36x2+39x+9=3(3x+1)(4x+3) 49.因式分解21x2-31x-22=(21x+11)(x-2) 50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2) 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1) 52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3) 53.因式分解x(y+2)-x-y-1=(x-1)(y+1) 54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3) 55.因式分解9x2-66x+121=(3x-11)^2 56.因式分解8-2x2=2(2-x)(2+x) 57.因式分解x4-1=(x-1)(x+1)(x^2+1) 58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2) 59.因式分解4x2-12x+5=(2x-1)(2x-5) 60.因式分解21x2-31x-22=(21x+11)(x-2) 61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1) 62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2) 63.因式分解下列各式: (1)3x2-6x=3x(x-2) (2)49x2-25=(7x+5)(7x-5) (3)6x2-13x+5=(2x-1)(3x-5) (4)x2+2-3x=(x-1)(x-2) (5)12x2-23x-24=(3x-8)(4x+3) (6)(x+6)(x-6)-(x-6)=(x-6)(x+5) (7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2) (8)9x2+42x+49=(3x+7)^2 。1.若(2x)nu221281 = (4x2+9)(2x+3)(2xu22123),那么n的值是( ) A.2 B. 4 C.6 D.8 2.若9x2u221212xy+m是两数和的平方式,那么m的值是( ) A.2y2 B.4y 2 C.±4y2 D.±16y2 3.把多项式a4u2212 2a2b2+b4因式分解的结果为( ) A.a2(a2u22122b2)+b4 B.(a2u2212b2)2 C.(au2212b)4 D.(a+b)2(au2212b)2 4.把(a+b)2u22124(a2u2212b2)+4(au2212b)2分解因式为( ) A.( 3au2212b)2 B.(3b+a)2 C.(3bu2212a)2 D.( 3a+b)2 5.计算:(u2212)2001+(u2212)2000的结果为( ) A.(u2212)2003 B.u2212(u2212)2001 C. D.u2212 6.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( ) A.M>N B.M≥N C.M≤N D.不能确定 7.对于任何整数m,多项式( 4m+5)2u22129都能( ) A.被8整除 B.被m整除 C.被(mu22121)整除 D.被(2nu22121)整除 8.将u22123x2nu22126xn分解因式,结果是( ) A.u22123xn(xn+2) B.u22123(x2n+2xn) C.u22123xn(x2+2) D.3(u2212x2nu22122xn) 9.下列变形中,是正确的因式分解的是( ) A. 0.09m2u2212 n2 = ( 0.03m+ )( 0.03mu2212) B.x2u221210 = x2u22129u22121 = (x+3)(xu22123)u22121 C.x4u2212x2 = (x2+x)(x2u2212x) D.(x+a)2u2212(xu2212a)2 = 4ax 10.多项式(x+yu2212z)(xu2212y+z)u2212(y+zu2212x)(zu2212xu2212y)的公因式是( ) A.x+yu2212z B.xu2212y+z C.y+zu2212x D.不存在 11.已知x为任意有理数,则多项式xu22121u2212x2的值( ) A.一定为负数 B.不可能为正数 C.一定为正数 D.可能为正数或负数或零 二、解答题: 分解因式: (1)(ab+b)2u2212(a+b)2 (2)(a2u2212x2)2u22124ax(xu2212a)2 (3)7xn+1u221214xn+7xnu22121(n为不小于1的整数) 答案: 一、选择题: 1.B 说明:右边进行整式乘法后得16x4u221281 = (2x)4u221281,所以n应为4,答案为B. 2.B 说明:因为9x2u221212xy+m是两数和的平方式,所以可设9x2u221212xy+m = (ax+by)2,则有9x2u221212xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = u221212,b2y2 = m;得到a = 3,b = u22122;或a = u22123,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B. 3.D 说明:先运用完全平方公式,a4u2212 2a2b2+b4 = (a2u2212b2)2,再运用两数和的平方公式,两数分别是a2、u2212b2,则有(a2u2212b2)2 = (a+b)2(au2212b)2,在这里,注意因式分解要分解到不能分解为止;答案为D. 4.C 说明:(a+b)2u22124(a2u2212b2)+4(au2212b)2 = (a+b)2u22122(a+b)[2(au2212b)]+[2(au2212b)]2 = [a+bu22122(au2212b)]2 = (3bu2212a)2;所以答案为C. 5.B 说明:(u2212)2001+(u2212)2000 = (u2212)2000[(u2212)+1] = ()2000 u2022= ()2001 = u2212(u2212)2001,所以答案为B. 6.B 说明:因为Mu2212N = x2+y2u22122xy = (xu2212y)2≥0,所以M≥N. 7.A 说明:( 4m+5)2u22129 = ( 4m+5+3)( 4m+5u22123) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1). 8.A 9.D 说明:选项A,0.09 = 0.32,则 0.09m2u2212 n2 = ( 0.3m+n)( 0.3mu2212n),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2u2212x)可继续分解为x2(x+1)(xu22121);所以答案为D. 10.A 说明:本题的关键是符号的变化:zu2212xu2212y = u2212(x+yu2212z),而xu2212y+z≠y+zu2212x,同时xu2212y+z≠u2212(y+zu2212x),所以公因式为x+yu2212z. 11.B 说明:xu22121u2212x2 = u2212(1u2212x+x2) = u2212(1u2212x)2≤0,即多项式xu22121u2212x2的值为非正数,正确答案应该是B. 二、解答题: (1) 答案:a(bu22121)(ab+2b+a) 说明:(ab+b)2u2212(a+b)2 = (ab+b+a+b)(ab+bu2212au2212b) = (ab+2b+a)(abu2212a) = a(bu22121)(ab+2b+a). (2) 答案:(xu2212a)4 说明:(a2u2212x2)2u22124ax(xu2212a)2 = [(a+x)(au2212x)]2u22124ax(xu2212a)2 = (a+x)2(au2212x)2u22124ax(xu2212a)2 = (xu2212a)2[(a+x)2u22124ax] = (xu2212a)2(a2+2ax+x2u22124ax) = (xu2212a)2(xu2212a)2 = (xu2212a)4. (3) 答案:7xnu22121(xu22121)2 说明:原式 = 7xnu22121 u2022x2u22127xnu22121 u20222x+7xnu22121 = 7xnu22121(x2u22122x+1) = 7xnu22121(xu22121)2.
mlhxueli 2023-07-23 13:39:451

举一些关于因式分解的题目,另附过程和答案,(有易有难),谢谢~

我先说简单的 分解因式题目带答案因式分解3a3b2c-6a2b2c2+9ab2c3= 3.因式分解xy+6-2x-3y= 4.因式分解x2(x-y)+y2(y-x)= 5.因式分解2x2-(a-2b)x-ab= 6.因式分解a4-9a2b2= 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4= 8.因式分解ab(x2-y2)+xy(a2-b2)= 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)= 10.因式分解a2-a-b2-b= 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2= 12.因式分解(a+3)2-6(a+3)= 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2= abc+ab-4a= 。 (2)16x2-81= 。 (3)9x2-30x+25= 。 (4)x2-7x-30= 35.因式分解x2-25= 。 36.因式分解x2-20x+100= 。 37.因式分解x2+4x+3= 。 38.因式分解4x2-12x+5= 。 39.因式分解下列各式: (1)3ax2-6ax= 。 (2)x(x+2)-x= 。 (3)x2-4x-ax+4a= 。 (4)25x2-49= 。 (5)36x2-60x+25= 。 (6)4x2+12x+9= 。 (7)x2-9x+18= 。 (8)2x2-5x-3= 。 (9)12x2-50x+8= 。 40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。 41.因式分解2ax2-3x+2ax-3= 。 42.因式分解9x2-66x+121= 。 43.因式分解8-2x2= 。 44.因式分解x2-x+14 = 。 45.因式分解9x2-30x+25= 。 46.因式分解-20x2+9x+20= 。 47.因式分解12x2-29x+15= 。 48.因式分解36x2+39x+9= 。 49.因式分解21x2-31x-22= 。 50.因式分解9x4-35x2-4= 。 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。 52.因式分解2ax2-3x+2ax-3= 。 53.因式分解x(y+2)-x-y-1= 。 54.因式分解(x2-3x)+(x-3)2= 。 55.因式分解9x2-66x+121= 。 56.因式分解8-2x2= 。 57.因式分解x4-1= 。 58.因式分解x2+4x-xy-2y+4= 。 59.因式分解4x2-12x+5= 。 60.因式分解21x2-31x-22= 。 61.因式分解4x2+4xy+y2-4x-2y-3= 。 62.因式分解9x5-35x3-4x= 。 63.因式分解下列各式: (1)3x2-6x= 。 (2)49x2-25= 。 (3)6x2-13x+5= 。 (4)x2+2-3x= 。 (5)12x2-23x-24= 。 (6)(x+6)(x-6)-(x-6)= 。 (7)3(x+2)(x-5)-(x+2)(x-3)= 。 (8)9x2+42x+49= 。因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2) 3.因式分解xy+6-2x-3y=(x-3)(y-2) 4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b) 6.因式分解a4-9a2b2=a^2(a+3b)(a-3b) 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 10.因式分解a2-a-b2-b=(a+b)(a-b-1) 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 12.因式分解(a+3)2-6(a+3)=(a+3)(a-3) 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4) (2)16x2-81=(4x+9)(4x-9) (3)9x2-30x+25=(3x-5)^2 (4)x2-7x-30=(x-10)(x+3) 35.因式分解x2-25=(x+5)(x-5) 36.因式分解x2-20x+100=(x-10)^2 37.因式分解x2+4x+3=(x+1)(x+3) 38.因式分解4x2-12x+5=(2x-1)(2x-5) 39.因式分解下列各式: (1)3ax2-6ax=3ax(x-2) (2)x(x+2)-x=x(x+1) (3)x2-4x-ax+4a=(x-4)(x-a) (4)25x2-49=(5x-9)(5x+9) (5)36x2-60x+25=(6x-5)^2 (6)4x2+12x+9=(2x+3)^2 (7)x2-9x+18=(x-3)(x-6) (8)2x2-5x-3=(x-3)(2x+1) (9)12x2-50x+8=2(6x-1)(x-4) 40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1) 41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3) 42.因式分解9x2-66x+121=(3x-11)^2 43.因式分解8-2x2=2(2+x)(2-x) 44.因式分解x2-x+14 =整数内无法分解 45.因式分解9x2-30x+25=(3x-5)^2 46.因式分解-20x2+9x+20=(-4x+5)(5x+4) 47.因式分解12x2-29x+15=(4x-3)(3x-5) 48.因式分解36x2+39x+9=3(3x+1)(4x+3) 49.因式分解21x2-31x-22=(21x+11)(x-2) 50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2) 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1) 52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3) 53.因式分解x(y+2)-x-y-1=(x-1)(y+1) 54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3) 55.因式分解9x2-66x+121=(3x-11)^2 56.因式分解8-2x2=2(2-x)(2+x) 57.因式分解x4-1=(x-1)(x+1)(x^2+1) 58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2) 59.因式分解4x2-12x+5=(2x-1)(2x-5) 60.因式分解21x2-31x-22=(21x+11)(x-2) 61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1) 62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2) 63.因式分解下列各式: (1)3x2-6x=3x(x-2) (2)49x2-25=(7x+5)(7x-5) (3)6x2-13x+5=(2x-1)(3x-5) (4)x2+2-3x=(x-1)(x-2) (5)12x2-23x-24=(3x-8)(4x+3) (6)(x+6)(x-6)-(x-6)=(x-6)(x+5) (7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2) (8)9x2+42x+49=(3x+7)^2 。
苏州马小云2023-07-23 13:39:431

因式分解,50道题

您好!点击以下链接即可下载因式分解练习题,答案很全哦!http://www.223t.com/UserFiles/2007050721055798663.rar如果你懒得下载,就请看以下这些题目,不过这些没有答案;说明:x的平方本来应该表示为x^2,但在以下题目中,统统表示成x2,例如下列第一道题目9x2-1就表示9·x的平方-1. 一、填空题1、因式分解: 9x2-1=_________________, 4x2-4x+1=_________________. a4-b4=_________________, an+2-an=____________________ 2、多项式x2+mx+36是一个完全平方式,则m=_____________. 3、多项式x2+ax+b可以因式分解成(x-1)(x+3)则a=_______, b=______. 4、如果x=3时,多项式x3-4x2-9x+m的值为0,则m=_________,多项式因式分解的结果为_______________________. 二、选择题 1、下列从左到右的变形,属于因式分解的是……………………………………( ) (A)(a+3)(a-3)=a2-9 (B)4a2+4a+3=(2a+1)2+2 (C)x2-1=(x+1)(x-1) (D)-2m(m2-3m+1)=-2m3+6m2-2m 2、下列各式,能用完全平方因式分解的多项式的个数为………………………( ) ①-a2-b2+2ab ②a2-ab+b2 ③a2-a+14 ④4a2+4a-1 (A)1个 (B)2个 (C)3个 (D)4个 3、用因式分解多项式3xy+6y2-x-2y时,分解正确的个数………………… ( ) ①3xy+6y2-x-2y =(3xy-x)+(6y2-2y) ②3xy+6y2-x-2y=(3xy+6y2)-(x+2y) ③3xy+6y2-x-2y=(3xy-2y)+(6y2-x) (A)0个 (B)1个 (C)2个 (D)3个 三、选择题)1.下列多项式中何者含有2x+3的因式 (1)2x3+3 (2)4x2-9 (3)6x2-11x+3 (4)2x2+x+3 ( )2.下列何者是2x2-11x-21的因式? (1)(x-6) (2)(x+7) (3)(2x-3) (4)(2x+3) ( )3.下列何者为甲×丙+乙×丙的因式 (1)甲+乙×丙 (2)甲+乙 (3)甲+丙 (4)丙+乙。 ( )4.下列各式中,何者不是x2-4的因式? (1)x+2 (2)x-2 (3)x2-4 (4)x2。 ( )5.a2-b2的因式不可能是下列那一个? (1)a2+b2 (2)a+b (3)a-b (4)a2-b2。 ( )6.下列何者错误? (1)(-a+b)2=a2-2ab+b2 (2)(a-b)(a+b)=a2-b2 (3)(a-b)2=a2-2ab-b2 (4)(4+3)2=42+8×3+32。 ( )7.下列各式中,何者是2x2-11x-21的因式? (1)2x-3 (2)x+7 (3)x-7 (4)2x+7。 ( )8.下列何者为2x2+3x+1与4x2-4x-3的公因式? (1)x+1 (2)x+2 (3)2x-3 (4)2x+1。 ( )9.因式分解(a+2)2-3(a+2)= (1)(a+2)(a-3) (2)(a+2)(a+3) (3)(a+2)(a+1) (4)(a+2)(a-1)。 ( )10.下列何者正确? (1)a2-b2=(a-b)2 (2)a2-2ab+b2=(a+b)(a-b) (3)a2+2ab+b2=(a+b)2 (4)a2+b2=(a+b)(a-b)。 ( )11.因式分解9x2-1= (1)(9x+1)(9x-1) (2)(3x-1)2 (3)(3x+1)(3x-1) (4)(9x-1)2。 ( )12.若5x2-7x-6=(5x+a)(x+b),则 (1)a=-3 (2)b=-2 (3)ab=6 (4)a+b=5。 ( )13.x2+mx+n=(x+a)(x+b),若m<0,n>0,则 (1)a>0,b>0 (2)a<0,b<0 (3)a>0,b<0 (4)a<0,b>0。 ( )14.找出下列何者是15x2+x-2的因式? (1)5x-2 (2)15x+2 (3)3x-1 (4)3x+1。 ( )15.下列何者是(x-4)(x-5)-42的因式? (1)x-2 (2)x+11 (3)x-11 (4)x+3。 ( )16.若6x2-25x+4=(ax+b)(cx+d)则下列何者正确? (1)abcd=25 (2)a+b+c+d=24 (3)若a=1,则必cd=6 (4)若a=1,则必d=-1。 ( )17.4a2-1等於下列何式? (1)(4a-1)2 (2)(2a-1)2 (3)(4a+1)(4a-1) (4)(2a+1)(2a-1)。 ( )18.x2+y2等於 (1)(x+y)2 (2)(x+y)2+2xy (3)(x-y)2+2xy (4)(x-y)2-2xy。 ( )19.你能利用2片边长xcm的正方形,9片长宽各为x,1cm的长方形和4片边长1cm的正方形,拼出长为(x+4)cm的长方形,其宽为 (1)(2x+1)cm (2)(x+3)cm (3)(2x+4)cm (4)(2x+2)cm。 ( )20.下列何式是2x2+3x+1与4x2-4x-3的因式? (1)2x-1 (2)2x+1 (3)2x-3 (4)x+1。 ( )21.下列那一个式子不是9x2-25的因式? (1)3x+5 (2)3x-5 (3)9x+5 (4)9x2-25。 ( )22.因式分解x2-3x+2=(x+a)(a+b)则 (1)a+b=3 (2)a>0,b<0 (3)ab=-2 (4)a>0,b>0。 ( )23.下列各二次式,何者有因式x-1? (1)x2+5x+6 (2)x2-5x-6 (3)x2+5x-6 (4)x2-5x+6。 ( )24.(-x+y)2等於 (1)-(x-y)2 (2)(x-y)2 (3)(x+y)2 (4)(-x-y)2。 ( )25.若x+y=-5,x-y=15 ,则x2-y2= (1)-5 (2)-1 (3)-15 (4)1。 ( )26.x2+px+q=(x+a)(x+b),若a<0,b<0,则 (1)p>0 (2)q<0 (3)pq>0 (4)q>0。 ( )27.若(x-5)2-(x-5)-12可分解为(x+a)(x+b),则a+b等於 (1)-11 (2)9 (3)11 (4)-9。 ( )28.ax-cx-by+cy+bx-ay可分解为下列何式? (1)(x-y)(a-b-c) (2)(x+y)(a+b-c) (3)(x-y)(a-b+c) (4)(x-y)(a+b-c)。 ( )29.下列何者正确? (1)x2+2ax+x=x(x+2a) (2)2x2-8=x2-4=(x-2)(x+2) (3)36x2-84x+49=(7-6x)2 (4)x2-6=(x-2)(x+3)。 四、填充题 1.若2x3+3x2+mx+1为x+1的倍式,则m= 2.因式分解3a3b2c-6a2b2c2+9ab2c3= 3.因式分解xy+6-2x-3y= 4.因式分解x2(x-y)+y2(y-x)= 5.因式分解2x2-(a-2b)x-ab= 6.因式分解a4-9a2b2= 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4= 8.因式分解ab(x2-y2)+xy(a2-b2)= 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)= 10.因式分解a2-a-b2-b= 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2= 12.因式分解(a+3)2-6(a+3)= 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2= 14.若2×4×(32+1)×(34+1)×(38+1)×(316+1)=3n-1,求n= 。 15.利用平方差公式,求标准分解式4891= 。 16.2x+1是不是4x2+5x-1的因式?答: 。 17.若6x2-7x+m是2x-3的倍式,则m= 18.x2+2x+1与x2-1的公因式为 。 19.若x+2是x2+kx-8的因式,求k= 。 20.若4x2+8x+3是2x+1的倍式请因式分解4x2+8x+3= 。 21.2x+1是4x2+8x+3的因式,请因式分解4x2+8x+3= 。 22.(1)x+2 (2)x+4 (3)x+6 (4)x-6 (5)x2+2x3+24 上列何者x2-2x-24的因式 (全对才给分) 23.因式分解下列各式: (1)abc+ab-4a= 。 (2)16x2-81= 。 (3)9x2-30x+25= 。 (4)x2-7x-30= 。 24.若x2+ax-12=(x+b)(x-2),其中a、b均为整数,则ab= 。 25.请将适当的数填入空格中:x2-16x+ =(x- )2。 26.因式分解下列各式: (1)xy-xz+x= ;(2)6(x+1)-y(x+1)= (3)x2-5x-px+5p= ;(4)15x2-11x-14= 27.设7x2-19x-6=(7x+a)(bx-3),且a,b为整数,则2a+b= 28.利用乘法公式展开99982-4= 。 29.计算(1.99)2-4×1.99+4之值为 。 30.若x2+ax-12可分解为(x+6)(x+b),且a,b为整数,则a+b= 。 31.已知9x2-mx+25=(3x-n)2,且n为正整数,则m+n= 。 32.若2x3+11x2+18x+9=(x+1)(ax+3)(x+b),则a-b= 。 33.2992-3992= 34.填入适当的数使其能成为完全平方式4x2-20x+ 。 35.因式分解x2-25= 。 36.因式分解x2-20x+100= 。 37.因式分解x2+4x+3= 。 38.因式分解4x2-12x+5= 。 39.因式分解下列各式: (1)3ax2-6ax= 。 (2)x(x+2)-x= 。 (3)x2-4x-ax+4a= 。 (4)25x2-49= 。 (5)36x2-60x+25= 。 (6)4x2+12x+9= 。 (7)x2-9x+18= 。 (8)2x2-5x-3= 。 (9)12x2-50x+8= 。 40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。 41.因式分解2ax2-3x+2ax-3= 。 42.因式分解9x2-66x+121= 。 43.因式分解8-2x2= 。 44.因式分解x2-x+14 = 。 45.因式分解9x2-30x+25= 。 46.因式分解-20x2+9x+20= 。 47.因式分解12x2-29x+15= 。 48.因式分解36x2+39x+9= 。 49.因式分解21x2-31x-22= 。 50.因式分解9x4-35x2-4= 。 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。 52.因式分解2ax2-3x+2ax-3= 。 53.因式分解x(y+2)-x-y-1= 。 54.因式分解(x2-3x)+(x-3)2= 。 55.因式分解9x2-66x+121= 。 56.因式分解8-2x2= 。 57.因式分解x4-1= 。 58.因式分解x2+4x-xy-2y+4= 。 59.因式分解4x2-12x+5= 。 60.因式分解21x2-31x-22= 。 61.因式分解4x2+4xy+y2-4x-2y-3= 。 62.因式分解9x5-35x3-4x= 。 63.因式分解下列各式: (1)3x2-6x= 。 (2)49x2-25= 。 (3)6x2-13x+5= 。 (4)x2+2-3x= 。 (5)12x2-23x-24= 。 (6)(x+6)(x-6)-(x-6)= 。 (7)3(x+2)(x-5)-(x+2)(x-3)= 。 (8)9x2+42x+49= 。 64.9x2-30x+k可化为完全平方式(3x+a)2,则k= a= 。 65.若x2+mx-15可分解为(x+n)(x-3),m、n皆为整数,则m= n= 。 66.求下列各式的和或差或积或商。 (1)(6512 )2-(3412 )2= 。 (2)(7913 )2+2×7913 ×23 +49 = 。 (3)1998×0.48-798×0.48-798×0.52+1998×0.52= 。 67.因式分解下列各式: (1)(x+2)-2(x+2)2= 。 (2)36x2+39x+9= 。 (3)2x2+ax-6x-3a= 。 (4)22x2-31x-21= 。 68.利用平方差,和的平方或差的平方公式,填填看 (1)49x2-1=( +1)( -1) (2)x2+26x+ =(x+ )2 (3)x2-20x+ =(x- )2 (4)25x2-49y2=(5x+ )(5x- ) (5) -66x+121=( -11)2 69.利用公式求下列各式的值 (1)求5992-4992= (2)求(7512 )2-(2412 )2= (3)求392+39×22+112= (4)求172-34×5+52= (5)若2x+5y=13 +7 ,x-4y=7 -13 求2x2-3xy-20y2= 70.因式分解3ax2-6ax= 。 71.因式分解(x+1)x-5x= 。 72.因式分解(2x+1)(x-3)-(2x+1)(x-5)= 73.因式分解xy+2x-5y-10= 74.因式分解x2y2-x2-y2-6xy+4= 。 五、计算题 1.因式分解x3+2x2+2x+1 2.因式分解a2b2-a2-b2+1 3.试用除法判别15x2+x-6是不是3x+2的倍式。 4.(1)判别3x+2是不是6x2+x-2的因式?(写出计算式) (2)如果是,请因式分解6x2+x-2。 5.a=19912 ,b=9912 ,(1)求a2-2ab+b2之值? (2)a2-b2之值? 6.判别2x+1是否4x2+8x+3的因式?如果是,请因式分解4x2+8x+3。 7.因式分解(1)3ax2-2x+3ax-2 (2)(x2-3x)+(x-3)2+2x-6。 8.设6x2-13x+k为3x-2的倍式,求k之值。 9.判别3x是不是x2之因式?(要说明理由) 10.若-2x2+ax-12,能被2x-3整除,求 (1)a=? (2)将-2x2+ax-12因式分解。 11.(1)因式分解ab-cd+ad-bc (2)利用(1)求1990×29-1991×71+1990×71-29×1991的值。 12.利用平方差公式求1992-992=? 13.利用乘法公式求(6712 )2-(3212 )2=? 14.因式分解下列各式: (1)(2x+3)(x-2)+(x+1)(2x+3) (2)9x2-66x+121 15.请同学用曾经学过的各种不同因式分解的方法因式分解16x2-24x+9 (1)方法1: (2)方法2: 16.因式分解下列各式: (1)4x2-25 (2)x2-4xy+4y2 (3)利用(1)(2)之方法求a2-b2+2bc-c2 17.因式分解 (1)8x2-18 (2)x2-(a-b)x-ab 18.因式分解下列各式 (1)9x4+35x2-4 (2)x2-y2-2yz-z2 (3)a(b2-c2)-c(a2-b2) 19.因式分解(2x+1)(x+1)+(2x+1)(x-3) 20.因式分解39x2-38x+8 21.利用因式分解求(6512 )2-(3412 )2之值 22.因式分解a(b2-c2)-c(a2-b2) 23.a、b、c是整数,若a2+b2+c2+4a-8b-14c+69=0,求a+2b-3c的值 24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2 25.因式分解xy2-2xy-3x-y2-2y-1 26.因式分解4x2-6ax+18a2 27.因式分解20a3bc-9a2b2c-20ab3c 28.因式分解2ax2-5x+2ax-5 29.因式分解4x3+4x2-25x-25 30.因式分解(1-xy)2-(y-x)2 31.因式分解 (1)mx2-m2-x+1 (2)a2-2ab+b2-1 32.因式分解下列各式 (1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2 33.因式分解:xy2-2xy-3x-y2-2y-1 34.因式分解y2(x-y)+z2(y-x) 35.设x+1是2x2+ax-3的因式,(1)求a=? (2)求2x2+ax-3=0之二根 36.(1)因式分解x2+x+y2-y-2xy=? (2)承(1)若x-y=99求x2+x+y2-y-2xy之值?
余辉2023-07-23 13:39:431

100道 因式分解题与答案 快

1.把下列各式分解因式 (1)12a3b2-9a2b+3ab; (2)a(x+y)-(a-b)(x+y); (3)121x2-144y2; (4)4(a-b)2-(x-y)2; (5)(x-2)2+10(x-2)+25; (6)a3(x+y)2-4a3c2. 2.用简便方法计算 (1)6.42-3.62; (2)21042-1042 (3)1.42×9-2.32×36 第二章 分解因式综合练习 一、选择题 1.下列各式中从左到右的变形,是因式分解的是( ) (A)(a+3)(a-3)=a2-9 (B)x2+x-5=(x-2)(x+3)+1 (C)a2b+ab2=ab(a+b) (D)x2+1=x(x+ ) 2.下列各式的因式分解中正确的是( ) (A)-a2+ab-ac= -a(a+b-c) (B)9xyz-6x2y2=3xyz(3-2xy) (C)3a2x-6bx+3x=3x(a2-2b) (D) xy2+ x2y= xy(x+y) 3.把多项式m2(a-2)+m(2-a)分解因式等于( ) (A)(a-2)(m2+m) (B)(a-2)(m2-m) (C)m(a-2)(m-1) (D)m(a-2)(m+1) 4.下列多项式能分解因式的是( ) (A)x2-y (B)x2+1 (C)x2+y+y2 (D)x2-4x+4 5.下列多项式中,不能用完全平方公式分解因式的是( ) (A) (B) (C) (D) 6.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( ) (A)4x (B)-4x (C)4x4 (D)-4x4 7.下列分解因式错误的是( ) (A)15a2+5a=5a(3a+1) (B)-x2-y2= -(x2-y2)= -(x+y)(x-y) (C)k(x+y)+x+y=(k+1)(x+y) (D)a3-2a2+a=a(a-1)2 8.下列多项式中不能用平方差公式分解的是( ) (A)-a2+b2 (B)-x2-y2 (C)49x2y2-z2 (D)16m4-25n2p2 9.下列多项式:①16x5-x;②(x-1)2-4(x-1)+4;③(x+1)4-4x(x+1)+4x2;④-4x2-1+4x,分解因式后,结果含有相同因式的是( ) (A)①② (B)②④ (C)③④ (D)②③ 10.两个连续的奇数的平方差总可以被 k整除,则k等于( ) (A)4 (B)8 (C)4或-4 (D)8的倍数 二、填空题 11.分解因式:m3-4m= . 12.已知x+y=6,xy=4,则x2y+xy2的值为 . 13.将xn-yn分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为 . 14.若ax2+24x+b=(mx-3)2,则a= ,b= ,m= .(第15题图) 15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是 . 三、(每小题6分,共24分) 16.分解因式:(1)-4x3+16x2-26x (2) a2(x-2a)2- a(2a-x)3 (3)56x3yz+14x2y2z-21xy2z2 (4)mn(m-n)-m(n-m) 17.分解因式:(1) 4xy–(x2-4y2) (2)- (2a-b)2+4(a - b)2 18.分解因式:(1)-3ma3+6ma2-12ma (2) a2(x-y)+b2(y-x) 19、分解因式 (1) ; (2) ; (3) ; 20.分解因式:(1) ax2y2+2axy+2a (2)(x2-6x)2+18(x2-6x)+81 (3) –2x2n-4xn 21.将下列各式分解因式: (1) ; (2) ; (3) ; 22.分解因式(1) ; (2) ; 23.用简便方法计算: (1)57.6×1.6+28.8×36.8-14.4×80 (2)39×37-13×34 (3).13.7 24.试说明:两个连续奇数的平方差是这两个连续奇数和的2倍. 25.如图,在一块边长为a厘米的正方形纸板四角,各剪去一个边长为 b(b< )厘米的正方形,利用因式分解计算当a=13.2,b=3.4时,剩余部分的面积. 26.将下列各式分解因式 (1) (2) ; (3) (4) (5) (6) (7) (8) (9) (10)(x2+y2)2-4x2y2 (12).x6n+2+2x3n+2+x2 (13).9(a+1)2(a-1)2-6(a2-1)(b2-1)+(b+1)2(b-1)2 27.已知(4x-2y-1)2+ =0,求4x2y-4x2y2+xy2的值. 28.已知:a=10000,b=9999,求a2+b2-2ab-6a+6b+9的值. 29.证明58-1解被20∽30之间的两个整数整除 30.写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解). 31.观察下列各式: 12+(1×2)2+22=9=32 22+(2×3)2+32=49=72 32+(3×4)2+42=169=132 …… 你发现了什么规律?请用含有n(n为正整数)的等式表示出来,并说明其中的道理. 32.阅读下列因式分解的过程,再回答所提出的问题: 1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)] =(1+x)2(1+x) =(1+x)3 (1)上述分解因式的方法是 ,共应用了 次. (2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,则需应用上述方法 次,结果是 . (3)分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数). 34.若a、b、c为△ABC的三边,且满足a2+b2+c2-ab-bc-ca=0.探索△ABC的形状,并说明理由. 35.阅读下列计算过程: 99×99+199=992+2×99+1=(99+1)2=100 2=10 4 1.计算: 999×999+1999=____________=_______________=_____________=_____________; 9999×9999+19999=__________=_______________=______________=_______________. 2.猜想9999999999×9999999999+19999999999等于多少?写出计算过程. 36.有若干个大小相同的小球一个挨一个摆放,刚好摆成一个等边三角形(如图1);将这些小球换一种摆法,仍一个挨一个摆放,又刚好摆成一个正方形(如图2).试问:这种小球最少有多少个? 图1 图2
hi投2023-07-23 13:39:141

初三因式分解练习题及答案40题

因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2) 因式分解xy+6-2x-3y=(x-3)(y-2)因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)因式分解a4-9a2b2=a^2(a+3b)(a-3b)若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 因式分解a2-a-b2-b=(a+b)(a-b-1) 因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 因式分解(a+3)2-6(a+3)=(a+3)(a-3) 因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4) 16x2-81=(4x+9)(4x-9) 9x2-30x+25=(3x-5)^2 x2-7x-30=(x-10)(x+3)因式分解x2-25=(x+5)(x-5) 因式分解x2-20x+100=(x-10)^2 因式分解x2+4x+3=(x+1)(x+3) 因式分解4x2-12x+5=(2x-1)(2x-5) 3ax2-6ax=3ax(x-2)x(x+2)-x=x(x+1) x2-4x-ax+4a=(x-4)(x-a) 25x2-49=(5x-9)(5x+9) 36x2-60x+25=(6x-5)^2 4x2+12x+9=(2x+3)^2 x2-9x+18=(x-3)(x-6) 2x2-5x-3=(x-3)(2x+1) 12x2-50x+8=2(6x-1)(x-4) 因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1) 因式分解2ax2-3x+2ax-3= (x+1)(2ax-3) 因式分解9x2-66x+121=(3x-11)^2 因式分解8-2x2=2(2+x)(2-x) 因式分解x2-x+14 =整数内无法分解 因式分解9x2-30x+25=(3x-5)^2 因式分解-20x2+9x+20=(-4x+5)(5x+4) 因式分解12x2-29x+15=(4x-3)(3x-5) 因式分解36x2+39x+9=3(3x+1)(4x+3)因式分解21x2-31x-22=(21x+11)(x-2) 因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2) 因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1) 因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)因式分解x(y+2)-x-y-1=(x-1)(y+1) 因式分解(x2-3x)+(x-3)2=(x-3)(2x-3) 因式分解9x2-66x+121=(3x-11)^2 因式分解8-2x2=2(2-x)(2+x) 因式分解x4-1=(x-1)(x+1)(x^2+1) 因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)因式分解4x2-12x+5=(2x-1)(2x-5) 因式分解21x2-31x-22=(21x+11)(x-2) 因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2) 3x2-6x=3x(x-2) 49x2-25=(7x+5)(7x-5) 6x2-13x+5=(2x-1)(3x-5) x2+2-3x=(x-1)(x-2) 12x2-23x-24=(3x-8)(4x+3) (x+6)(x-6)-(x-6)=(x-6)(x+5) 3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2) 9x2+42x+49=(3x+7)^2 。 x^2-x-2=(x-2)(x+1) x^2-x-6=(x-3)(x+2) 2x^2-x-3=(2x-3)(x+1) 5x^2-2x-7=(5x-7)(x+1) 20x^2+9x-20=(5x-4)(4x+5)
水元素sl2023-07-23 13:39:131

帮我写出50道因式分解50道解方程10道应用题初一下册的(答案和题目都要)

你真的是老师吗?
tt白2023-07-23 13:39:122

因式分解公式法 练习题和答案

1.将下列各式分解因式 (1)3p2﹣6pq (2)2x2 +8x+8 2.将下列各式分解因式 (1)x3y﹣xy (2)3a3﹣6a2b+3ab2 . 3.分解因式 (1)a2(x﹣y)+16(y﹣x) (2)(x2+y2)2﹣4x2y 2 4.分解因式: (1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y) 2 5.因式分解: (1)2am2 ﹣8a (2)4x3 +4x2 y+xy 2 6.将下列各式分解因式: (1)3x﹣12x3 (2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2 y﹣2xy2 +y 3 (2)(x+2y)2﹣y 1)n2 (m﹣2)﹣n(2﹣m) (2)(x﹣1)(x﹣3)+1 9.分解因式:a2 ﹣4a+4﹣b2 10.分解因式:a2 ﹣b2 ﹣2a+1 11.把下列各式分解因式: (1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a 2 (3)(1+y)2 ﹣2x2 (1﹣y2 )+x4 (1﹣y)2 (4)x4 +2x3 +3x2 +2x+1 12.把下列各式分解因式: (1)4x3﹣31x+15; (2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4; (3)x5 +x+1; (4)x3 +5x2 +3x﹣9; (5)2a4 ﹣a3 ﹣6a2 ﹣a+2http://wenku.baidu.com/linkurl=_ANny3eznD_MHg70L9F4dgsr10h1X6A5c_6VTDkcOW21af6uB7L7t1EClGylam0a5E-AubuIDLYE-6G-FFLOrUkuBq6yLH6OfEMTz0NW3ri 中的
北营2023-07-23 13:39:121

七年级下册因式分解要点,公式,习题和答案

分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. 分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号. 当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。当然可能要综合其他分法,且分组方法也不一定唯一。 第4课 因式分解 〖知识点〗 因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。 〖大纲要求〗 理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。 〖考查重点与常见题型〗 考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。 因式分解知识点 多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有: (1)提公因式法 如多项式 其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式. (2)运用公式法,即用 写出结果. (3)十字相乘法 对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则 对于一般的二次三项式 寻找满足 a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则 (4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. 分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号. §2.2提公因式法 教学目的和要求: 经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式(多项式中的字母指数仅限于正整数的情况);进一步了解分解因式的意义,加强学生的直觉思维并渗透化归的思想方法. 教学重点和难点: 重点:是让学生理解提公因式的意义与原理。 难点:能确定多项式各项的公因式 关键:是让学生理解提公因式的意义与原理。 2. (1)多项式ab+bc各项都含有相同的因式吗?多项式3x2+x呢?多项式mb2+nb呢? (2)将上面的多项式分别写成几个因式的乘积,说明你的理由,并与同位交流。 答案:(1)多项式ab+bc各项都含有相同的因式b,多项式3x2+x各项都含有相同的公因式x,多项mb2+nb各项都含有相同的公因式b。 2.3运用公式法 教学目的和要求: 经历通过整式乘法的平方差公式、完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力;运用公式法(直接用公式不超过两次)分解因式(指数是正整数) 教学重点和难点: 重点:发展学生的逆向思维和推理能力 难点:能够理解、归纳因式分解变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性.因式分解的方法  因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,轮换对称法,剩余定理法等。[编辑本段]基本方法  ⑴提公因式法  各项都含有的公共的因式叫做这个多项式各项的公因式。  如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。  具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。  如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。  例如:-am+bm+cm=-m(a-b-c);  a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。  注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式  ⑵公式法  如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。  平方差公式:a^2-b^2=(a+b)(a-b);  完全平方公式:a^2±2ab+b^2=(a±b)^2;  注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。  立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);   立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);  完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.1.因式分解abc+ab-4a=a(bc+b-4) 2.因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2) 3.因式分解xy+6-2x-3y=(x-3)(y-2) 4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b) 6.因式分解a4-9a2b2=a^2(a+3b)(a-3b) 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 10.因式分解a2-a-b2-b=(a+b)(a-b-1) 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 12.因式分解(a+3)2-6(a+3)=(a+3)(a-3) 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) 14.16x2-81=(4x+9)(4x-9) 15.9x2-30x+25=(3x-5)^2 16.x2-7x-30=(x-10)(x+3) 17.3ax2-6ax=3ax(x-2) 18.x(x+2)-x=x(x+1) 19.x2-4x-ax+4a=(x-4)(x-a) 20.25x2-49=(5x-9)(5x+9) 21.36x2-60x+25=(6x-5)^2 22.4x2+12x+9=(2x+3)^2 23.x2-9x+18=(x-3)(x-6) 24.2x2-5x-3=(x-3)(2x+1) 25.12x2-50x+8=2(6x-1)(x-4) 26.3x2-6x=3x(x-2) 27.49x2-25=(7x+5)(7x-5) 28.6x2-13x+5=(2x-1)(3x-5) 29.x2+2-3x=(x-1)(x-2) 30.12x2-23x-24=(3x-8)(4x+3) 31.(x+6)(x-6)-(x-6)=(x-6)(x+5) 32.3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2) 33.9x2+42x+49=(3x+7)^2 。34..因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1) 35.因式分解x2-25=(x+5)(x-5) 36.因式分解x2-20x+100=(x-10)^2 37.因式分解x2+4x+3=(x+1)(x+3) 38.因式分解4x2-12x+5=(2x-1)(2x-5) 39.因式分解下列各式: 40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1) 41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3) 42.因式分解9x2-66x+121=(3x-11)^2 43.因式分解8-2x2=2(2+x)(2-x) 44.因式分解x2-x+14 =整数内无法分解 45.因式分解9x2-30x+25=(3x-5)^2 46.因式分解-20x2+9x+20=(-4x+5)(5x+4) 47.因式分解12x2-29x+15=(4x-3)(3x-5) 48.因式分解36x2+39x+9=3(3x+1)(4x+3) 49.因式分解21x2-31x-22=(21x+11)(x-2) 50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2) 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1) 52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3) 53.因式分解x(y+2)-x-y-1=(x-1)(y+1) 54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3) 55.因式分解9x2-66x+121=(3x-11)^2 56.因式分解8-2x2=2(2-x)(2+x) 57.因式分解x4-1=(x-1)(x+1)(x^2+1) 58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2) 59.因式分解4x2-12x+5=(2x-1)(2x-5) 60.因式分解21x2-31x-22=(21x+11)(x-2)
左迁2023-07-23 13:39:111

求初二下学期因式分解方法、练习题和答案,谢谢!

把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式. (1)因式分解与整式乘法是相反方向的变形.(2)因式分解是恒等变形,因此可以用整式乘法来检验.
苏州马小云2023-07-23 13:38:441

因式分解题目,求解!

x(3x-y)
善士六合2023-07-23 13:38:437

初二数学因式分解:十字相乘法。下面有11道练习题。希望哪位大侠能帮我解出来!要过程!图也要!

式子列出来,图你还不会画吗?
铁血嘟嘟2023-07-23 13:38:434

因式分解练习题(2-x)(2+x)+(x+4)(x-1)的答案

=(2-x)(2 x) (2 2 x)(-1 x)=(2-x)(2 x) (2 x)(-1 x) 2(-1 x)=(2 x)(2-x x-1) 2(x-1)=(2 x) 2(x 2)-6=3(x 2)-6=3(x 2-2)=3x
u投在线2023-07-23 13:38:421

初中数学,因式分解练习题

(1)=(y-2)(xy+5x-y+2)(2)=(x^2-2x-4)(x^2-2x-19)
苏萦2023-07-23 13:38:423

数学高手请帮忙解答因式分解练习题!

5x(X^4-3x^2y-4y^2)=5x(x^2-4y)(x^2+y)(3ab-2xy)(ab-5xy)要好好学习哦,希望能够帮助你!
北营2023-07-23 13:38:044

因式分解的练习题30道(有难度的)

每一个 ± 符号,都有正负两种情况,每一组绝对值,就都有 4个分解因式,8个整式乘法,如果把 8 个整式乘法都算出来,再做因式分解,题目就不只 30个x" ± 5x ± 6,( x ± 1 )( x ± 6 ),( x ± 2 )( x ± 3 ),正如第一象限(正,正)x" + 10x + 24,( x + 2 )( x + 12 ),( x + 4 )( x + 6 ),第二象限(负,正)x" - 10x + 24,( x - 2 )( x + 12 ),( x - 4 )( x + 6 ),第三象限(负,负)x" - 10x - 24,( x - 2 )( x - 12 ),( x - 4 )( x - 6 ),第四象限(正,负)x" + 10x - 24,( x + 2 )( x - 12 ),( x + 4 )( x - 6 ),想一想完全平方x" ± 10x + 25 = ( x ± 5 )",我们也应该得到提醒;x" ± 15x ± 54,( x ± 3 )( x ± 18 ),( x ± 6 )( x ± 9 ),x" ± 20x ± 96,( x ± 4 )( x ± 24 ),( x ± 8 )( x ± 12 ),x" ± 25x ± 150,( x ± 5 )( x ± 30 ),( x ± 10 )( x ± 15 ),8x" ± 26xy ± 15y",( 2x ± y )( 4x ± 15y ),( 4x ± 3y )( 2x ± 5y )。工夫不负有心人,开动脑筋,找找规律,掌握分解因式的技巧、窍门,发现、感受其中的奥秘……必然其乐无穷!祝你成功!学习进步!
康康map2023-07-23 13:38:032

七下数学整式乘法,因式分解,化简求值习题越多越好

因式分解练习题:1.5ax+5bx+3ay+3by解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)2.x^3-x^2+x-1解法:=(x^3-x^2)+(x-1)=x^2(x-1)+ (x-1)=(x-1)(x^2+1)3.x2-x-y2-y解法:=(x2-y2)-(x+y)=(x+y)(x-y)-(x+y)=(x+y)(x-y-1)4、bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b)=c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).5、x^2+3x-40=(x+8)(x-5).6、(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则原式=(y+1)(y+2)-12=y^2+3y+2-12=y^2+3y-10=(y+5)(y-2)=(x^2+x+5)(x^2+x-2)=(x^2+x+5)(x+2)(x-1).7、m +5n-mn-5m m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 8、分解因式bc(b+c)+ca(c-a)-ab(a+b) bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)9、(ab+b)2u2212(a+b)2= (ab+b+a+b)(ab+bu2212au2212b)= (ab+2b+a)(abu2212a)= a(bu22121)(ab+2b+a).10、3x^6-3x^2=3x^2(x^4-1)=3x^2(x^2+1)(x^2-1)=3x^2(x^2+1)(x+1)(x-1)
真颛2023-07-23 13:38:031

求初中因式分解的练习题

x^2-2x+1=(x-3)(x+1)
拌三丝2023-07-23 13:38:034

初一因式分解练习题 (几个计算题 而已。求老师 哥哥 姐姐 解答 谢谢~) 不要只有答案 求过程 结果 。

求采纳
苏州马小云2023-07-23 13:38:021

100道因式分解题

啊啊数学书上有啊
水元素sl2023-07-23 13:38:017

因式分解的练习题

交叉分解`~
北境漫步2023-07-23 13:38:005

因式分解练习题及答案

1.((m+3n)的平方-12nm)除以(m-3n)2.若多项式3x的平方+7x-k有一个因式是(3x+4),其中k为常数,则k = 时。3.学习了用平方差公式分解因式后,在完成了老师布置的练习时,小名将一道题记错了符号,他记成了-4x的平方-y的平方,请你帮小名想一想,老师布置的原题可能是 .4.2010的三次方-2*2010的平方-2008——————————————————(分号)= 2010的三次方+2010的平方-20115.4x的平方=(x-2)的平方6.若x的平方+mx-n能分解成(x-2)(x-5),则m= ,n= 。
大鱼炖火锅2023-07-23 13:37:361

数学因式分解100道

因式分解练习题 一、填空题: 2.(a-3)(3-2a)=_______(3-a)(3-2a); 12.若m2-3m+2=(m+a)(m+b),则a=______,b=______; 15.当m=______时,x2+2(m-3)x+25是完全平方式. 二、选择题: 1.下列各式的因式分解结果中,正确的是 [ ] A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1) C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c) 2.多项式m(n-2)-m2(2-n)分解因式等于 [ ] A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是 [ ] A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1 C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-8 4.下列各式中,能用平方差公式分解因式的是 [ ] A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b2 5.若9x2+mxy+16y2是一个完全平方式,那么m的值是 [ ] A.-12 B.±24 C.12 D.±12 6.把多项式an+4-an+1分解得 [ ] A.an(a4-a) B.an-1(a3-1) C.an+1(a-1)(a2-a+1) D.an+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为 [ ] A.8 B.7 C.10 D.12 8.已知x2+y2+2x-6y+10=0,那么x,y的值分别为 [ ] A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-3 9.把(m2+3m)4-8(m2+3m)2+16分解因式得 [ ] A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2) C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)2 10.把x2-7x-60分解因式,得 [ ] A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12) 11.把3x2-2xy-8y2分解因式,得 [ ] A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得 [ ] A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b) 13.把x4-3x2+2分解因式,得 [ ] A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1) C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1) 14.多项式x2-ax-bx+ab可分解因式为 [ ] A.-(x+a)(x+b) B.(x-a)(x+b) C.(x-a)(x-b) D.(x+a)(x+b) 15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是 [ ] A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12 C.x2-4x-12或x2+4x-12 D.以上都可以 16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有 [ ] A.1个 B.2个 C.3个 D.4个 17.把9-x2+12xy-36y2分解因式为 [ ] A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3) C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3) 18.下列因式分解错误的是 [ ] A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3) C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1) 19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为 [ ] A.互为倒数或互为负倒数 B.互为相反数 C.相等的数 D.任意有理数 20.对x4+4进行因式分解,所得的正确结论是 [ ] A.不能分解因式 B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8) 21.把a4+2a2b2+b4-a2b2分解因式为 [ ] A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab) C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)2 22.-(3x-1)(x+2y)是下列哪个多项式的分解结果 [ ] A.3x2+6xy-x-2y B.3x2-6xy+x-2y C.x+2y+3x2+6xy D.x+2y-3x2-6xy 23.64a8-b2因式分解为 [ ] A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b) C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为 [ ] A.(5x-y)2 B.(5x+y)2 C.(3x-2y)(3x+2y) D.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为 [ ] A.(3x-2y-1)2 B.(3x+2y+1)2 C.(3x-2y+1)2 D.(2y-3x-1)2 26.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为 [ ] A.(3a-b)2 B.(3b+a)2 C.(3b-a)2 D.(3a+b)2 27.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为 [ ] A.c(a+b)2 B.c(a-b)2 C.c2(a+b)2 D.c2(a-b) 28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为 [ ] A.0 B.1 C.-1 D.4 29.分解因式3a2x-4b2y-3b2x+4a2y,正确的是 [ ] A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是 [ ] A.2(a+b-2c) B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c) 三、因式分解: 1.m2(p-q)-p+q; 2.a(ab+bc+ac)-abc; 3.x4-2y4-2x3y+xy3; 4.abc(a2+b2+c2)-a3bc+2ab2c2; 5.a2(b-c)+b2(c-a)+c2(a-b); 6.(x2-2x)2+2x(x-2)+1; 7.(x-y)2+12(y-x)z+36z2; 8.x2-4ax+8ab-4b2; 9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx); 10.(1-a2)(1-b2)-(a2-1)2(b2-1)2; 11.(x+1)2-9(x-1)2; 12.4a2b2-(a2+b2-c2)2; 13.ab2-ac2+4ac-4a; 14.x3n+y3n; 15.(x+y)3+125; 16.(3m-2n)3+(3m+2n)3; 17.x6(x2-y2)+y6(y2-x2); 18.8(x+y)3+1; 19.(a+b+c)3-a3-b3-c3; 20.x2+4xy+3y2; 21.x2+18x-144; 22.x4+2x2-8; 23.-m4+18m2-17; 24.x5-2x3-8x; 25.x8+19x5-216x2; 26.(x2-7x)2+10(x2-7x)-24; 27.5+7(a+1)-6(a+1)2; 28.(x2+x)(x2+x-1)-2; 29.x2+y2-x2y2-4xy-1; 30.(x-1)(x-2)(x-3)(x-4)-48; 31.x2-y2-x-y; 32.ax2-bx2-bx+ax-3a+3b; 33.m4+m2+1; 34.a2-b2+2ac+c2; 35.a3-ab2+a-b; 36.625b4-(a-b)4; 37.x6-y6+3x2y4-3x4y2; 38.x2+4xy+4y2-2x-4y-35; 39.m2-a2+4ab-4b2; 40.5m-5n-m2+2mn-n2. 四、证明(求值): 1.已知a+b=0,求a3-2b3+a2b-2ab2的值. 2.求证:四个连续自然数的积再加上1,一定是一个完全平方数. 3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2). 4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值. 5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值. 6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积. 7.若x,y为任意有理数,比较6xy与x2+9y2的大小. 8.两个连续偶数的平方差是4的倍数. 参考答案: 一、填空题: 7.9,(3a-1) 10.x-5y,x-5y,x-5y,2a-b 11.+5,-2 12.-1,-2(或-2,-1) 14.bc+ac,a+b,a-c 15.8或-2 二、选择题: 1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D 10.B 11.C 12.C 13.B 14.C 15.D 16.B 17.B 18.D 19.A 20.B 21.B 22.D 23.C 24.A 25.A 26.C 27.C 28.C 29.D 30.D 三、因式分解: 1.(p-q)(m-1)(m+1). 8.(x-2b)(x-4a+2b). 11.4(2x-1)(2-x). 20.(x+3y)(x+y). 21.(x-6)(x+24). 27.(3+2a)(2-3a). 31.(x+y)(x-y-1). 38.(x+2y-7)(x+2y+5). 四、证明(求值): 2.提示:设四个连续自然数为n,n+1,n+2,n+3 6.提示:a=-18. ∴a=-18.
kikcik2023-07-23 13:37:361

初二因式分解练习题

whereuff1f
Chen2023-07-23 13:37:364

因式分解练习题

例1分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明(4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理)若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.对于二次三项式ax2+bx+c,将a和c分别分解撑两个因数的乘积,a=a1u2022a2,c=c1u2022c2,且满足b=a1u2022c2+a2u2022c1,往往写成十字的形式,将二次三项式进行分解。例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=〔x+(2y-3)〕〔2x+(-11y+1)〕=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.
九万里风9 2023-07-23 13:37:351

八年级上册数学因式分解(人教版)练习题 及答案

楼主抄袭~~~~~
小菜G的建站之路2023-07-23 13:37:352

因式分解练习题及答案,求!!!

因式分解(x+2)(x-3)+(x+2)(x+4)= 。 41.因式分解2ax2-3x+2ax-3= 。 42.因式分解9x2-66x+121= 。 43.因式分解8-2x2= 。 44.因式分解x2-x+14 = 。 45.因式分解9x2-30x+25= 。 46.因式分解-20x2+9x+20= 。 47.因式分解12x2-29x+15= 。 48.因式分解36x2+39x+9= 。 49.因式分解21x2-31x-22= 。 50.因式分解9x4-35x2-4= 。 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。 52.因式分解2ax2-3x+2ax-3= 。 53.因式分解x(y+2)-x-y-1= 。 54.因式分解(x2-3x)+(x-3)2= 。 55.因式分解9x2-66x+121= 。 56.因式分解8-2x2= 。 57.因式分解x4-1= 。 58.因式分解x2+4x-xy-2y+4= 。 59.因式分解4x2-12x+5= 。 60.因式分解21x2-31x-22= 。 61.因式分解4x2+4xy+y2-4x-2y-3= 。 62.因式分解9x5-35x3-4x= 。 63.因式分解下列各式: (1)3x2-6x= 。 (2)49x2-25= 。 (3)6x2-13x+5= 。 (4)x2+2-3x= 。 (5)12x2-23x-24= 。 (6)(x+6)(x-6)-(x-6)= 。 (7)3(x+2)(x-5)-(x+2)(x-3)= 。 (8)9x2+42x+49= 。 (1)(x+2)-2(x+2)2= 。 (2)36x2+39x+9= 。 (3)2x2+ax-6x-3a= 。 (4)22x2-31x-21= 。 70.因式分解3ax2-6ax= 。 71.因式分解(x+1)x-5x= 。 72.因式分解(2x+1)(x-3)-(2x+1)(x-5)= 73.因式分解xy+2x-5y-10= 74.因式分解x2y2-x2-y2-6xy+4= x3+2x2+2x+1 a2b2-a2-b2+1 (1)3ax2-2x+3ax-2 (x2-3x)+(x-3)2+2x-6 1)(2x+3)(x-2)+(x+1)(2x+3) 9x2-66x+121 17.因式分解 (1)8x2-18 (2)x2-(a-b)x-ab 18.因式分解下列各式 (1)9x4+35x2-4 (2)x2-y2-2yz-z2 (3)a(b2-c2)-c(a2-b2) 19.因式分解(2x+1)(x+1)+(2x+1)(x-3) 20.因式分解39x2-38x+8 21.利用因式分解求(6512 )2-(3412 )2之值 22.因式分解a(b2-c2)-c(a2-b2) 24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2 25.因式分解xy2-2xy-3x-y2-2y-1 26.因式分解4x2-6ax+18a2 27.因式分解20a3bc-9a2b2c-20ab3c 28.因式分解2ax2-5x+2ax-5 29.因式分解4x3+4x2-25x-25 30.因式分解(1-xy)2-(y-x)2 31.因式分解 (1)mx2-m2-x+1 (2)a2-2ab+b2-1 32.因式分解下列各式 (1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2 33.因式分解:xy2-2xy-3x-y2-2y-1 34.因式分解y2(x-y)+z2(y-x) 1)因式分解x2+x+y2-y-2xy= 35.因式分解x2-25= 。 36.因式分解x2-20x+100= 。 37.因式分解x2+4x+3= 。 38.因式分解4x2-12x+5= 。 39.因式分解下列各式: (1)3ax2-6ax= 。 (2)x(x+2)-x= 。 (3)x2-4x-ax+4a= 。 (4)25x2-49= 。 (5)36x2-60x+25= 。 (6)4x2+12x+9= 。 (7)x2-9x+18= 。 (8)2x2-5x-3= 。 (9)12x2-50x+8= 。 (1) 答案:a(bu22121)(ab+2b+a) 说明:(ab+b)2u2212(a+b)2 = (ab+b+a+b)(ab+bu2212au2212b) = (ab+2b+a)(abu2212a) = a(bu22121)(ab+2b+a). (2) 答案:(xu2212a)4 说明:(a2u2212x2)2u22124ax(xu2212a)2 = [(a+x)(au2212x)]2u22124ax(xu2212a)2 = (a+x)2(au2212x)2u22124ax(xu2212a)2 = (xu2212a)2[(a+x)2u22124ax] = (xu2212a)2(a2+2ax+x2u22124ax) = (xu2212a)2(xu2212a)2 = (xu2212a)4. (3) 答案:7xnu22121(xu22121)2 说明:原式 = 7xnu22121 u2022x2u22127xnu22121 u20222x+7xnu22121 = 7xnu22121(x2u22122x+1) = 7xnu22121(xu22121)2.
苏萦2023-07-23 13:37:348

因式分解练习题及答案, 要初二的因式分解题,要计算题,不要填空的,50道,

因式分解(x+2)(x-3)+(x+2)(x+4)= . 41.因式分解2ax2-3x+2ax-3= . 42.因式分解9x2-66x+121= . 43.因式分解8-2x2= . 44.因式分解x2-x+14 = . 45.因式分解9x2-30x+25= . 46.因式分解-20x2+9x+20= . 47.因式分解12x2-29x+15= . 48.因式分解36x2+39x+9= . 49.因式分解21x2-31x-22= . 50.因式分解9x4-35x2-4= . 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= . 52.因式分解2ax2-3x+2ax-3= . 53.因式分解x(y+2)-x-y-1= . 54.因式分解(x2-3x)+(x-3)2= . 55.因式分解9x2-66x+121= . 56.因式分解8-2x2= . 57.因式分解x4-1= . 58.因式分解x2+4x-xy-2y+4= . 59.因式分解4x2-12x+5= . 60.因式分解21x2-31x-22= . 61.因式分解4x2+4xy+y2-4x-2y-3= . 62.因式分解9x5-35x3-4x= . 63.因式分解下列各式: (1)3x2-6x= . (2)49x2-25= . (3)6x2-13x+5= . (4)x2+2-3x= . (5)12x2-23x-24= . (6)(x+6)(x-6)-(x-6)= . (7)3(x+2)(x-5)-(x+2)(x-3)= . (8)9x2+42x+49= . (1)(x+2)-2(x+2)2= . (2)36x2+39x+9= . (3)2x2+ax-6x-3a= . (4)22x2-31x-21= . 70.因式分解3ax2-6ax= . 71.因式分解(x+1)x-5x= . 72.因式分解(2x+1)(x-3)-(2x+1)(x-5)= 73.因式分解xy+2x-5y-10= 74.因式分解x2y2-x2-y2-6xy+4= x3+2x2+2x+1 a2b2-a2-b2+1 (1)3ax2-2x+3ax-2 (x2-3x)+(x-3)2+2x-6 1)(2x+3)(x-2)+(x+1)(2x+3) 9x2-66x+121 17.因式分解 (1)8x2-18 (2)x2-(a-b)x-ab 18.因式分解下列各式 (1)9x4+35x2-4 (2)x2-y2-2yz-z2 (3)a(b2-c2)-c(a2-b2) 19.因式分解(2x+1)(x+1)+(2x+1)(x-3) 20.因式分解39x2-38x+8 21.利用因式分解求(6512 )2-(3412 )2之值 22.因式分解a(b2-c2)-c(a2-b2) 24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2 25.因式分解xy2-2xy-3x-y2-2y-1 26.因式分解4x2-6ax+18a2 27.因式分解20a3bc-9a2b2c-20ab3c 28.因式分解2ax2-5x+2ax-5 29.因式分解4x3+4x2-25x-25 30.因式分解(1-xy)2-(y-x)2 31.因式分解 (1)mx2-m2-x+1 (2)a2-2ab+b2-1 32.因式分解下列各式 (1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2 33.xy2-2xy-3x-y2-2y-1 34.因式分解y2(x-y)+z2(y-x) 1)因式分解x2+x+y2-y-2xy= 35.因式分解x2-25= . 36.因式分解x2-20x+100= . 37.因式分解x2+4x+3= . 38.因式分解4x2-12x+5= . 39.因式分解下列各式: (1)3ax2-6ax= . (2)x(x+2)-x= . (3)x2-4x-ax+4a= . (4)25x2-49= . (5)36x2-60x+25= . (6)4x2+12x+9= . (7)x2-9x+18= . (8)2x2-5x-3= . (9)12x2-50x+8= . (1) 答案:a(bu22121)(ab+2b+a) 说明:(ab+b)2u2212(a+b)2 = (ab+b+a+b)(ab+bu2212au2212b) = (ab+2b+a)(abu2212a) = a(bu22121)(ab+2b+a). (2) 答案:(xu2212a)4 说明:(a2u2212x2)2u22124ax(xu2212a)2 = [(a+x)(au2212x)]2u22124ax(xu2212a)2 = (a+x)2(au2212x)2u22124ax(xu2212a)2 = (xu2212a)2[(a+x)2u22124ax] = (xu2212a)2(a2+2ax+x2u22124ax) = (xu2212a)2(xu2212a)2 = (xu2212a)4. (3) 答案:7xnu22121(xu22121)2 说明:原式 = 7xnu22121 u2022x2u22127xnu22121 u20222x+7xnu22121 = 7xnu22121(x2u22122x+1) = 7xnu22121(xu22121)2.
北有云溪2023-07-23 13:37:301

因式分解的题目+答案!

一、填空题 (1)x2+2x-15=(x-3)(_____) (2)6xy-x2-5y2=-(x-y)(_____). (3)________=(x+2)(x-3). (4)分解因式x2+6x-7=__________. (5)若多项式x2+bx+c可分解为(x+3)(x-4), 则b=_____, c=_____. (6)若x2+7x=18成立,则x值为_____。 (7)若x2-3xy-4y2=0,且x+y≠0,则x=_____. (8)(x-y)2+15(x-y)+14=(_____+1)(x-y+_____). (9)多项式 x2+3x+2, x2-2x-8, x2+x-2的公因式为_____。 (10)已知a, b为整数,且m2-5m-6=(m+a)(m+b), 则a=_____,b=_____. 二、选择题 (1)若x2+2x+y2-6y+10=0,则下列结果正确的是( )。 A、x=1, y=3 B、x=-1,y=-3 C、x=-1,y=3 D、x=1,y=-3 (2)若x2-ax-15=(x+1)(x-15),则a的值是( )。 A、15 B、-15 C、14 D、-14 (3)如果3a-b=2,那么9a2-6ab+b2等于( )。 A、2 B、4 C、6 D、8 (4)若x+y=4, x2+y2=6,则xy的值是( )。 A、10 B、5 C、8 D、4 (5)分解因式(x2+2x)2+2(x2+2x)+1的正确结果是( )。 A、(x2+2x+1)2 B、(x2-2x+1)2 C、(x+1)4 D、(x-1)4 (6)-(2x-y)(2x+y)是下列哪一个多项式分解因式的结果( )。 A、4x2-y2 B、4x2+y2 C、-4x2-y2 D、-4x2+y2 (7)若x2+2(m-3)x+16是完全平方式,则m的值应为( )。 A、-5 B、7 C、-1 D、7或-1 (8)已知x3-12x+16有一个因式为x+4, 把它分解因式后应当是( )。 A、(x+4)(x-2)2 B、(x+4)(x2+x+1) C、(x+4)(x+2)2 D、(x+4)(x2-x+1) 三、因式分解 (1) x(x+y+z)+yz (2) x2m+xm+ (3) a2b2-a2-b2-4ab+1 (4) a2(x-y)2-2a(x-y)3+(x-y)4 (5) x4-6x2+5 (6) x4-7x2+1 (7) 3a8-48b8 (8) x2+4y2+9z2-4xy-6xz+12yz 四、解答题 1.已知a2+9b2-2a+6b+2=0,求a,b的值。 2.求证:不论x取什么有理数,多项式-2x4+12x3-18x2的值都不会是正数。 3.已知n为正整数,试证明(n+5)2-(n-1)2的值一定被12整除。 4.已知x+y=4, xy=3,求(1) 3x2+3y2; (2) (x-y)2. 5.设a>0, b>0, c>0且a、b、c中任意两数之和大于第三个数,求证:a2-b2-c2-2bc<0. 五、利用因式分解计算: (1)已知长方形的周长是16cm, 它的两边长a、b是整数,满足a-b-a2+2ab-b2+2=0,求长方形面积。 (2)如图1,一条水渠,其横断面为梯形,根据图中的长度,求出横断面面积的代数式,并计算出当a=2, b=0.8时的面积。 (3)如图2,在半径为R的圆形钢板上,冲去半径为r的四个小圆,利用因式分解计算当R=7.8cm, r=1.1cm时剩余部分的面积(π取3.14,结果保留三位有效数字)。 答案: 一、(1) x+5 (2) x-5y (3) x2-x-6 (4) (x+7)(x-1) (5) -1, -12 (6) -9或2 (7) 4y (8) x-y, 14 (9) x+2 (10) -6或1,1或-6 二、(1)C (2)C (3)B (4)B (5)C (6)D (7)D (8)A 三、(1) (x+y)(x+z) (2) (xm+)2 (3) (ab-1-a-b)(ab-1+a+b) (4) (x-y)2(a-x+y)2 (5) (x+1)(x-1)(x2-5) (6) (x2+3x+1)(x2-3x+1) (7) 3(a4+4b4)(a2+2b2)(a2-2b2) (8) (x-2y-3z)2 四、1、a=1, b=- 2、证明:-2x4+12x3-18x2=-2x2(x2-6x+9)=-2x2(x-3)2≤0. 3、证明:(n+5)2-(n-1)2=(n+5+n-1)(n+5-n+1)=6(2n+4)=12(n+2). ∴ (n+5)2-(n-1)2能被12整除。 4、(1) 30 (2) 4 5、提示:将求证左边分组分解成四个整式乘积,然后利用已知条件对每个因式的符号进行讨论。 五、(1) 由题意得 a+b=8, (a-b+1)(a-b-2)=0, ∴ a-b=-1或a-b=2. ∵ a与b是整数, ∴a-b=-1不合题意。 ∵ a-b=2, ∴ a=5, b=3. ∴ ab=15,即长方形的面积为15cm2。 (2) 3.36 (3) 176cm2 一、填空题 (1)x2+2x-15=(x-3)(_____) (2)6xy-x2-5y2=-(x-y)(_____). (3)________=(x+2)(x-3). (4)分解因式x2+6x-7=__________. (5)若多项式x2+bx+c可分解为(x+3)(x-4), 则b=_____, c=_____. (6)若x2+7x=18成立,则x值为_____。 (7)若x2-3xy-4y2=0,且x+y≠0,则x=_____. (8)(x-y)2+15(x-y)+14=(_____+1)(x-y+_____). (9)多项式 x2+3x+2, x2-2x-8, x2+x-2的公因式为_____。 (10)已知a, b为整数,且m2-5m-6=(m+a)(m+b), 则a=_____,b=_____. 二、选择题 (1)若x2+2x+y2-6y+10=0,则下列结果正确的是( )。 A、x=1, y=3 B、x=-1,y=-3 C、x=-1,y=3 D、x=1,y=-3 (2)若x2-ax-15=(x+1)(x-15),则a的值是( )。 A、15 B、-15 C、14 D、-14 (3)如果3a-b=2,那么9a2-6ab+b2等于( )。 A、2 B、4 C、6 D、8 (4)若x+y=4, x2+y2=6,则xy的值是( )。 A、10 B、5 C、8 D、4 (5)分解因式(x2+2x)2+2(x2+2x)+1的正确结果是( )。 A、(x2+2x+1)2 B、(x2-2x+1)2 C、(x+1)4 D、(x-1)4 (6)-(2x-y)(2x+y)是下列哪一个多项式分解因式的结果( )。 A、4x2-y2 B、4x2+y2 C、-4x2-y2 D、-4x2+y2 (7)若x2+2(m-3)x+16是完全平方式,则m的值应为( )。 A、-5 B、7 C、-1 D、7或-1 (8)已知x3-12x+16有一个因式为x+4, 把它分解因式后应当是( )。 A、(x+4)(x-2)2 B、(x+4)(x2+x+1) C、(x+4)(x+2)2 D、(x+4)(x2-x+1) 三、因式分解 (1) x(x+y+z)+yz (2) x2m+xm+ (3) a2b2-a2-b2-4ab+1 (4) a2(x-y)2-2a(x-y)3+(x-y)4 (5) x4-6x2+5 (6) x4-7x2+1 (7) 3a8-48b8 (8) x2+4y2+9z2-4xy-6xz+12yz 四、解答题 1.已知a2+9b2-2a+6b+2=0,求a,b的值。 2.求证:不论x取什么有理数,多项式-2x4+12x3-18x2的值都不会是正数。 3.已知n为正整数,试证明(n+5)2-(n-1)2的值一定被12整除。 4.已知x+y=4, xy=3,求(1) 3x2+3y2; (2) (x-y)2. 5.设a>0, b>0, c>0且a、b、c中任意两数之和大于第三个数,求证:a2-b2-c2-2bc<0. 五、利用因式分解计算: (1)已知长方形的周长是16cm, 它的两边长a、b是整数,满足a-b-a2+2ab-b2+2=0,求长方形面积。 (2)如图1,一条水渠,其横断面为梯形,根据图中的长度,求出横断面面积的代数式,并计算出当a=2, b=0.8时的面积。 (3)如图2,在半径为R的圆形钢板上,冲去半径为r的四个小圆,利用因式分解计算当R=7.8cm, r=1.1cm时剩余部分的面积(π取3.14,结果保留三位有效数字)。 答案: 一、(1) x+5 (2) x-5y (3) x2-x-6 (4) (x+7)(x-1) (5) -1, -12 (6) -9或2 (7) 4y (8) x-y, 14 (9) x+2 (10) -6或1,1或-6 二、(1)C (2)C (3)B (4)B (5)C (6)D (7)D (8)A 三、(1) (x+y)(x+z) (2) (xm+)2 (3) (ab-1-a-b)(ab-1+a+b) (4) (x-y)2(a-x+y)2 (5) (x+1)(x-1)(x2-5) (6) (x2+3x+1)(x2-3x+1) (7) 3(a4+4b4)(a2+2b2)(a2-2b2) (8) (x-2y-3z)2 四、1、a=1, b=- 2、证明:-2x4+12x3-18x2=-2x2(x2-6x+9)=-2x2(x-3)2≤0. 3、证明:(n+5)2-(n-1)2=(n+5+n-1)(n+5-n+1)=6(2n+4)=12(n+2). ∴ (n+5)2-(n-1)2能被12整除。 4、(1) 30 (2) 4 5、提示:将求证左边分组分解成四个整式乘积,然后利用已知条件对每个因式的符号进行讨论。 五、(1) 由题意得 a+b=8, (a-b+1)(a-b-2)=0, ∴ a-b=-1或a-b=2. ∵ a与b是整数, ∴a-b=-1不合题意。 ∵ a-b=2, ∴ a=5, b=3. ∴ ab=15,即长方形的面积为15cm2。 (2) 3.36 (3) 176cm2 (7)x2-9x+18= 。 (8)2x2-5x-3= 。 (9)12x2-50x+8= 。 40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。 41.因式分解2ax2-3x+2ax-3= 。 42.因式分解9x2-66x+121= 。 43.因式分解8-2x2= 。 44.因式分解x2-x+14 = 。 45.因式分解9x2-30x+25= 。 46.因式分解-20x2+9x+20= 。 47.因式分解12x2-29x+15= 。 48.因式分解36x2+39x+9= 。 49.因式分解21x2-31x-22= 。 50.因式分解9x4-35x2-4= 。 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。 52.因式分解2ax2-3x+2ax-3= 。 53.因式分解x(y+2)-x-y-1= 。 54.因式分解(x2-3x)+(x-3)2= 。 55.因式分解9x2-66x+121= 。 56.因式分解8-2x2= 。 57.因式分解x4-1= 。 58.因式分解x2+4x-xy-2y+4= 。 59.因式分解4x2-12x+5= 。 60.因式分解21x2-31x-22= 。 61.因式分解4x2+4xy+y2-4x-2y-3= 。 62.因式分解9x5-35x3-4x= 。 63.因式分解下列各式: (1)3x2-6x= 。 (2)49x2-25= 。 (3)6x2-13x+5= 。 (4)x2+2-3x= 。 (5)12x2-23x-24= 。 (6)(x+6)(x-6)-(x-6)= 。 (7)3(x+2)(x-5)-(x+2)(x-3)= 。 (8)9x2+42x+49= 。 64.9x2-30x+k可化为完全平方式(3x+a)2,则k= a= 。 65.若x2+mx-15可分解为(x+n)(x-3),m、n皆为整数,则m= n= 。 66.求下列各式的和或差或积或商。 (1)(6512 )2-(3412 )2= 。 (2)(7913 )2+2×7913 ×23 +49 = 。 (3)1998×0.48-798×0.48-798×0.52+1998×0.52= 。 67.因式分解下列各式: (1)(x+2)-2(x+2)2= 。 (2)36x2+39x+9= 。 (3)2x2+ax-6x-3a= 。 (4)22x2-31x-21= 。 68.利用平方差,和的平方或差的平方公式,填填看 (1)49x2-1=( +1)( -1) (2)x2+26x+ =(x+ )2 (3)x2-20x+ =(x- )2 (4)25x2-49y2=(5x+ )(5x- ) (5) -66x+121=( -11)2 69.利用公式求下列各式的值 (1)求5992-4992= (2)求(7512 )2-(2412 )2= (3)求392+39×22+112= (4)求172-34×5+52= (5)若2x+5y=13 +7 ,x-4y=7 -13 求2x2-3xy-20y2= 70.因式分解3ax2-6ax= 。 71.因式分解(x+1)x-5x= 。 72.因式分解(2x+1)(x-3)-(2x+1)(x-5)= 73.因式分解xy+2x-5y-10= 74.因式分解x2y2-x2-y2-6xy+4= 。 三、计算题 1.因式分解x3+2x2+2x+1 2.因式分解a2b2-a2-b2+1 3.试用除法判别15x2+x-6是不是3x+2的倍式。 4.(1)判别3x+2是不是6x2+x-2的因式?(写出计算式) (2)如果是,请因式分解6x2+x-2。 5.a=19912 ,b=9912 ,(1)求a2-2ab+b2之值? (2)a2-b2之值? 6.判别2x+1是否4x2+8x+3的因式?如果是,请因式分解4x2+8x+3。 7.因式分解(1)3ax2-2x+3ax-2 (2)(x2-3x)+(x-3)2+2x-6。 8.设6x2-13x+k为3x-2的倍式,求k之值。 9.判别3x是不是x2之因式?(要说明理由) 10.若-2x2+ax-12,能被2x-3整除,求 (1)a=? (2)将-2x2+ax-12因式分解。 11.(1)因式分解ab-cd+ad-bc (2)利用(1)求1990×29-1991×71+1990×71-29×1991的值。 12.利用平方差公式求1992-992=? 13.利用乘法公式求(6712 )2-(3212 )2=? 14.因式分解下列各式: (1)(2x+3)(x-2)+(x+1)(2x+3) (2)9x2-66x+121 15.请同学用曾经学过的各种不同因式分解的方法因式分解16x2-24x+9 (1)方法1: (2)方法2: 16.因式分解下列各式: (1)4x2-25 (2)x2-4xy+4y2 (3)利用(1)(2)之方法求a2-b2+2bc-c2 17.因式分解 (1)8x2-18 (2)x2-(a-b)x-ab 18.因式分解下列各式 (1)9x4+35x2-4 (2)x2-y2-2yz-z2 (3)a(b2-c2)-c(a2-b2) 19.因式分解(2x+1)(x+1)+(2x+1)(x-3) 20.因式分解39x2-38x+8 21.利用因式分解求(6512 )2-(3412 )2之值 22.因式分解a(b2-c2)-c(a2-b2) 23.a、b、c是整数,若a2+b2+c2+4a-8b-14c+69=0,求a+2b-3c的值 24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2 25.因式分解xy2-2xy-3x-y2-2y-1 26.因式分解4x2-6ax+18a2 27.因式分解20a3bc-9a2b2c-20ab3c 28.因式分解2ax2-5x+2ax-5 29.因式分解4x3+4x2-25x-25 30.因式分解(1-xy)2-(y-x)2 31.因式分解 (1)mx2-m2-x+1 (2)a2-2ab+b2-1 32.因式分解下列各式 (1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2 33.因式分解:xy2-2xy-3x-y2-2y-1 34.因式分解y2(x-y)+z2(y-x) 35.设x+1是2x2+ax-3的因式,(1)求a=? (2)求2x2+ax-3=0之二根 36.(1)因式分解x2+x+y2-y-2xy=? (2)承(1)若x-y=99求x2+x+y2-y-2xy之值?
meira2023-07-23 13:37:291

因式分解练习题(要有答案)

阿啵呲嘚2023-07-23 13:37:291

求40道因式分解题+答案

1、下列各式从左到右的变形属于因式分解的是( ) A. B. C. D. 2、观察下列各式:① ;② ;③ ;④ ;⑤ ;⑥ .其中可以用提公因式法分解因式的有( ) A.①②⑤ B.②④⑤ C.②④⑥ D.①②⑤⑥ 3、多项式 分解因式时应提取的公因式为( ) A.3mn B. C. D. 4、下列因式分解中,正确的有 ①4a-a3b2=a(4-a2b2);②x2y-2xy+xy=xy(x-2);③-a+ab-ac=-a(a-b-c);④9abc-6a2b=3abc(3-2a);⑤ x2y+ xy2= xy(x+y) A.0个 B.1个 C.2个 D.5个 5、若 ,则A为( ) A. B. C. D. 6、把多项式 (n为大于2的正整数)分解因式为( ) A. B. C. D. 7、把多项式 分解因式的结果是( ) A. B. C. D. 8、把一个多项式化成几个整式_______的形式,叫做把这个多项式因式分解. 9、利用因式分解计算32×3.14+5.4×31.4+0.14×314=________. 10、分别写出下列多项式的公因式: (1) : ; (2) : ; (3) : ; (4) : ; 11、已知a+b=13,ab=40,则 的结果为______________. 12、用提公因式法分解下列各式: (1) (2) 13、当x=2,y= 时,求代数式 的值. 15.4第1课时参考答案: 1、D(点拨:判断是不是因式分解必须满足两点,一是等式左边是多项式,二是等式的整式积的形式) 2、D(点拨:看能否使用提公因式法因式分解的关键是多项式中各项是否有公因式的存在) 3、B(点拨:公因式的系数取各系数的最大公约数,相同字母取最低指数幂,保证提取后的多项式第一项符号为正) 4、B(点拨:①正确;②提取公因式后漏项了;③最后一项提取公因式后应该+c;④公因式应该是3ab;⑤⑥) 5、D(点拨:可用 除以 ) 6、D(点拨:公因式是相同字母的最低次幂,然后用 除以公因式即可) 7、C(点拨:本题的公因式为 ,提公因式一定要提尽) 8、乘积 9、314 10、(1) ;(2) ;(3) ;(4) 11、520 12、(1)原式= ; (2)原式= ; 13、 = = =x(x+y) 把x=2,y= 代入,原式=2×(2+ )=5 第二课时 公式法(一) 跟踪训练: 1、下列各式中,不能用平方差公式分解因式的是( ) A. B. C.49 D. 2、分解因式结果为 的多项式是( ) A. B. C. D. 3、把多项式 因式进行分解因式,其结果是( ) A. B. C. D. 4、把 分解因式的结果是( ) A. B. C. D. 5、将多项式 分解因式为( ) A. B. C. D. 6、在有理数范围内把 分解因式,结果中因式的个数有( ) A.3个 B.4个 C.5个 D.6个 7、已知长方形的面积是 ,一边长是 ,则另一边长是___________. 8、已知x、y互为相反数,且 =4,则x=________,y=________. 9、分解因式: =________________. 10、利用因式分解计算: =_____________. 11、已知 , ,则x=________,y=__________. 12、已知 , ,则代数式 的值为_______________. 15.4第2课时参考答案: 1、B(点拨:能运用平方差的公式特点,一是左边有两项可以表达成平方的形式,这两项前面的符号一正一负) 2、D(点拨:原式= ) 3、D(点拨: ,然后运用平方差公式) 4、D(点拨:有公因式,先提取公因式,再运用平方差公式) 5、D(点拨:先将前两项运用平方差公式因式分解,然后再提取公因式 ) 6、C(点拨: = ) 7、 8、 - 9、 10、-12.996(点拨:原式= = ) 11、 12、8 跟踪训练: 1、( )2+20xy+25 =( )2. 2、已知 ,则 =__________. 3、已知 ,则x+y=________. 4、若 是完全平方式,则实数m的值是( ) A.-5 B.3 C.7 D.7或-1 5、若二项式 加上一个单项式后成为一个完全平方式,则这样的单项式共有( ) A.1个 B.2个 C.3个 D.4个 6、利用因式分解计算: =_______________. 7、在实数范围内分解因式: =_____________________. 8、将下列各式因式分解 (1) (2) (3) (4) 9、分解因式: =( ) , ( )-20(x+y)=( ) . 10、因式分解 的结果为_________________________. 11、已知x+y=7,xy=10.求 (1) 的值;(2) 12、如果 ,求 的值. 15.4第3课时参考答案: 1、2x 2x+5y 2、 3、-2 4、D(点拨:中间一项应该是x和2的积的两倍,所以m-3=±4) 5、C(点拨:如果已知的两项是平方和,则缺少的项应该是积的两倍±4x;如果 是积的两倍,缺少的是一个平方项 ;如果4是积的两倍,则缺少的项为 ,最后一个是分式,不符合要求) 6、90000 7、 8、(1) ;(2) ;(3) ;(4) 9、x+y+4 25 2x+2y-5 10、 11、(1)∵x+y=7,xy=10,∴ , ∴ ,∴ ,∴ =58 (2)∵ ,∴ ,∴ =841 ∴ =641 ∴ = =441 12、∵ ,∴ , ∴ = =-3×5+7=-8 一、耐心选一选,你会开心(每题6分,共30分) 1、下列从左到右的变形是分解因式的是( ) A. B. C. D. 2、 不能被下列那个数整除( ) A.2003 B.2002 C.2001 D.1001 3、已知m-n=3,mn=1,则 的值为( ) A.5 B.7 C.9 D.11 4、将多项式 分解因式为( ) A. B. C. D. 5、如果4x-3是多项式 的一个因式,则a等于( ) A.-6 B.6 C.-9 D.9 二、精心填一填,你会轻松(每题6分,共30分) 6、分解因式: =______________________. 7、多项式 , 的公因式是__________________. 8、用分解因式法计算 =__________________. 9、多项式 加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是_______________________(填上一个你认为正确的即可) 10、已知多项式 分解因式的结果是 ,则a=______,b=______,c=_________. 三、细心做一做,你会成功(共40分) 11、(8分)分解因式 (1) (2) (3) (4) 12、(8分)计算: 13、(8分)已知 , ,则 的值是多少? 综合创新 14、(8分)证明: 能被13整除. 15、(8分)若多项式 分解因式得 ,求: 的值. 中考链接 16.(2007四川德阳)已知 ,则 的值是( ) A. B. C. D. 17.(2007云南)已知x+y = –5,xy = 6,则 的值是( ) A. B. C. D. 18.(2007广东河池)分解因式: . 19. (2007山东烟台)请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果 . 20. (2007安徽芜湖)因式分 . 15.4本节自测参考答案: 夯实基础 1、C(点拨:因式分解的特征,左边是几个整式的乘积的形式) 2、C(点拨: =2003×(2003-1)=2003×2002) 3、D(点拨: ,将m-n=3,mn=1) 4、D(点拨: = = ) 5、A(点拨:令4x-3=0,解得x=0.75,把x=0.75代入 =0中,求得a=-6) 6、 7、a-b 8、10000 9、 或± 10、12 -5 -3 11、(1) ;(2) ;(3) 12、 13、14 综合创新 14、证明:∵ = =13(2n+13) ∴ 能被13整除 15、∵ = ,∴m=1,n=-12, ∴ =-12×(-11)=132 中考链接 16.C 17. B 18. 19.答案不唯一,如 20.
FinCloud2023-07-23 13:37:281

因式分解,整式的乘法的练习题,各十道,要答案

因式分解练习题:1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 2. x^3-x^2+x-1 解法:=(x^3-x^2)+(x-1) =x^2(x-1)+ (x-1) =(x-1)(x^2+1) 3. x2-x-y2-y 解法:=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1)4、bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).5、x^2+3x-40 =x^2+3x+2.25-42.25 =(x+1.5)^2-(6.5)^2 =(x+8)(x-5).6、(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则 原式=(y+1)(y+2)-12 =y^2+3y+2-12=y^2+3y-10 =(y+5)(y-2) =(x^2+x+5)(x^2+x-2) =(x^2+x+5)(x+2)(x-1).7、m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 8、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)9、(ab+b)2u2212(a+b)2 = (ab+b+a+b)(ab+bu2212au2212b) = (ab+2b+a)(abu2212a) = a(bu22121)(ab+2b+a).10、3x^6-3x^2=3x^2(x^4-1)=3x^2(x^2+1)(x^2-1)=3x^2(x^2+1)(x+1)(x-1)
FinCloud2023-07-23 13:37:281

什么叫因式分解,谁能教我?

根据性质啊例我的数学也还很好,因式分解也不太难的,有技巧的我的老师告诉我们,做因式分解要有技巧,也要按照定义去做,送你四句话,也是我的老师给我们的:首先提取公因式,然后考虑用公式分组分的要合适结果必是连乘式如果老师讲的少,你还可以试试自学!!①如果多项式的各项有公因式,那么先提公因式;②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;④分解因式,必须进行到每一个多项式因式都不能再分解为止.比如...x^2+6x-7这个式子由于一次幂x前系数为6所以,我们可以想到,7-1=6那正好这个式子的常数项为-7因此我们想到将-7看成7*(-1)于是我们作十字相成x+7x-1的到(x+7)·(x-1)如什么十字相乘法,提公因式,立方和立方差,平方差,完全平方,求根公式
可桃可挑2023-07-21 08:48:424

给出三个单项式:a2,b2,2ab.(1)在上面三个单项式中任选两个相减,并进行因式分解;(2)当a=2010,b

(1)a2-b2=(a+b)(a-b),b2-a2=(b+a)(b-a),a2-2ab=a(a-2b),2ab-a2=a(2b-a),b2-2ab+b(b-2a),2ab-b2=b(2a-b);(写对任何一个式子给五分)(2)a2+b2-2ab=(a-b)2,当a=2010,b=2009时,原式=(a-b)2=(2010-2009)2=1.
kikcik2023-07-21 08:47:591

(1)计算: ;(2)给出三个多项式: ,请你选择其中两个进行加法运算,并把结果因式分解。

解:(1)原式= ;(2)如选择多项式: 则: 。
北境漫步2023-07-21 08:47:481

给出三个多项式:2/1x2+3x+1,2/1x2+3x+1,2/1x2-x,请你选择其中两个进行加法运算,并把结果进行因式分解.

弱弱的问下这个2/1x2+3x+1是神马意思
CarieVinne 2023-07-21 08:47:381

(1)计算: (2)给出三个多项式: 请你选择其中两个进行加法运算,并把结果因式分解。

(1)解:原式= (2)解:如选择多项式:   则: (1)根据算术平方根、幂得性质计算。(2)先选择其中两个多项式相加.然后进行合并同类项,最后进行因式分解得到结果
再也不做站长了2023-07-21 08:47:221

给出三个多项式: x 2 -x, x 2 +x-1, x 2 +3x+1,请你选择其中两个进行加法运算,并把结果因式分解

答案见解析. 试题分析:因式分解的一般步骤是:1.提公因式;2.公式法(平方差公式的逆用a 2 - b 2 =(a+b)(a-b)和完全平方公式的逆用a 2 ±2ab+b 2 = (a±b) 2 );3.十字相乘法,如选择: x 2 +x-1, x 2 +3x+1,则: x 2 +x-1+ x 2 +3x+1=x 2 +4x=x(x+4);如选择: x 2 -x, x 2 +x-1,则: x 2 -x+ x 2 +x-1= x 2 -1=(x+1)(x-1);如选择: x 2 -x , x 2 +3x+1,则: x 2 -x + x 2 +3x+1= x 2 +2x+1=(x+1) 2 .试题解析:如选择: x 2 +x-1, x 2 +3x+1,则: x 2 +x-1+ x 2 +3x+1=x 2 +4x=x(x+4);如选择: x 2 -x, x 2 +x-1,则: x 2 -x+ x 2 +x-1= x 2 -1=(x+1)(x-1);如选择: x 2 -x , x 2 +3x+1,则: x 2 -x + x 2 +3x+1= x 2 +2x+1=(x+1) 2 .
wpBeta2023-07-21 08:47:161

a的立方-a用因式分解怎么算?

a^3-a =a(a^2-1) =a(a+1)(a-1)
铁血嘟嘟2023-07-18 14:10:391

整式加减、整式的乘法、乘法公式、整式的除法、因式分解的公式

一楼的那位好夸张哦
余辉2023-07-17 08:36:561

2^29-1因式分解

=2^29-2^0=2^(29-0)=2^29
黑桃花2023-07-15 09:33:364

多项式展开和因式分解的意义是什么

因式分解常用来解一些特殊的多项式方程多项式展开常用于概率统计,伯努力实验等
苏州马小云2023-07-14 07:34:452

二次三项式如何在实数范围内因式分解

其实我可纳闷这个问题,你既然都用求根公式了,为啥还要再带回去分解因式二次方程ax^2+bx+c=0的两个根为当b^2-4ac>=0时为x=[-b±(b^2-4ac)^(1/2)]/2a;当b^2-4ac<0时为x=[-b±i(4ac-b^2)^(1/2)]/2a
无尘剑 2023-07-12 08:48:371
 1 2 3  下一页  尾页