- 苏州马小云
-
一 选择题(每小题4分,共20分):
1.下列等式从左到右的变形是因式分解的是…………………………………………( )
(A)(x+2)(x–2)=x2-4
(B)x2-4+3x=(x+2)(x–2)+3x
(C)x2-3x-4=(x-4)(x+1)
(D)x2+2x-3=(x+1)2-4
3.当二次三项式 4x2+kx+25=0是完全平方式时,k的值是…………………( )
(A)20
(B) 10
(C)-20
(D)绝对值是20的数
4.若 a=-4b,则对a的任何值多项式 a2+3ab-4b2+2 的值………………( )
(A)总是2
(B)总是0
(C)总是1
(D)是不确定的值
二 把下列各式分解因式(每小题8分,共48分):
1.xn+4-169xn+2 (n是自然数)
2.(a+2b)2-10(a+2b)+25;
3.2xy+9-x2-y2
四 (本题12 分)
作乘法:
1.这两个乘法的结果是什么?所得的这两个等式是否可以作为因式分解的公式使用?用它可以分解有怎样特点的多项式?
五.选作题(本题20分):证明:比4个连续正整数的乘积大1的数一定是某整数的平方.
1.C;3.D;5.A.
二 把下列各式分解因式(每小题8分,共48分):
1.xn+4-169xn+2 (n是自然数);
解:xn+4-169xn+2
=xn+2(x2-169)
=xn+2(x+13)(x-13);
2.(a+2b)2-10(a+2b)+25;
解:(a+2b)2-10(a+2b)+25
=(a+2b-5)2;
3.2xy+9-x2-y2;
解:2xy+9-x2-y2
=9-x2+2xy-y2
=9-(x2-2xy+y2)
=32-(x-y)2
=(3 +x-y)(3-x+y);
- 小菜G的建站之路
-
http://wenku.baidu.com/view/d5cb58323968011ca30091ff.html
- 康康map
-
(2x+1)y2+(2x+1)2y=_________
- Chen
-
whereuff1f
求40道因式分解题+答案
1、下列各式从左到右的变形属于因式分解的是( ) A. B. C. D. 2、观察下列各式:① ;② ;③ ;④ ;⑤ ;⑥ .其中可以用提公因式法分解因式的有( ) A.①②⑤ B.②④⑤ C.②④⑥ D.①②⑤⑥ 3、多项式 分解因式时应提取的公因式为( ) A.3mn B. C. D. 4、下列因式分解中,正确的有 ①4a-a3b2=a(4-a2b2);②x2y-2xy+xy=xy(x-2);③-a+ab-ac=-a(a-b-c);④9abc-6a2b=3abc(3-2a);⑤ x2y+ xy2= xy(x+y) A.0个 B.1个 C.2个 D.5个 5、若 ,则A为( ) A. B. C. D. 6、把多项式 (n为大于2的正整数)分解因式为( ) A. B. C. D. 7、把多项式 分解因式的结果是( ) A. B. C. D. 8、把一个多项式化成几个整式_______的形式,叫做把这个多项式因式分解. 9、利用因式分解计算32×3.14+5.4×31.4+0.14×314=________. 10、分别写出下列多项式的公因式: (1) : ; (2) : ; (3) : ; (4) : ; 11、已知a+b=13,ab=40,则 的结果为______________. 12、用提公因式法分解下列各式: (1) (2) 13、当x=2,y= 时,求代数式 的值. 15.4第1课时参考答案: 1、D(点拨:判断是不是因式分解必须满足两点,一是等式左边是多项式,二是等式的整式积的形式) 2、D(点拨:看能否使用提公因式法因式分解的关键是多项式中各项是否有公因式的存在) 3、B(点拨:公因式的系数取各系数的最大公约数,相同字母取最低指数幂,保证提取后的多项式第一项符号为正) 4、B(点拨:①正确;②提取公因式后漏项了;③最后一项提取公因式后应该+c;④公因式应该是3ab;⑤⑥) 5、D(点拨:可用 除以 ) 6、D(点拨:公因式是相同字母的最低次幂,然后用 除以公因式即可) 7、C(点拨:本题的公因式为 ,提公因式一定要提尽) 8、乘积 9、314 10、(1) ;(2) ;(3) ;(4) 11、520 12、(1)原式= ; (2)原式= ; 13、 = = =x(x+y) 把x=2,y= 代入,原式=2×(2+ )=5 第二课时 公式法(一) 跟踪训练: 1、下列各式中,不能用平方差公式分解因式的是( ) A. B. C.49 D. 2、分解因式结果为 的多项式是( ) A. B. C. D. 3、把多项式 因式进行分解因式,其结果是( ) A. B. C. D. 4、把 分解因式的结果是( ) A. B. C. D. 5、将多项式 分解因式为( ) A. B. C. D. 6、在有理数范围内把 分解因式,结果中因式的个数有( ) A.3个 B.4个 C.5个 D.6个 7、已知长方形的面积是 ,一边长是 ,则另一边长是___________. 8、已知x、y互为相反数,且 =4,则x=________,y=________. 9、分解因式: =________________. 10、利用因式分解计算: =_____________. 11、已知 , ,则x=________,y=__________. 12、已知 , ,则代数式 的值为_______________. 15.4第2课时参考答案: 1、B(点拨:能运用平方差的公式特点,一是左边有两项可以表达成平方的形式,这两项前面的符号一正一负) 2、D(点拨:原式= ) 3、D(点拨: ,然后运用平方差公式) 4、D(点拨:有公因式,先提取公因式,再运用平方差公式) 5、D(点拨:先将前两项运用平方差公式因式分解,然后再提取公因式 ) 6、C(点拨: = ) 7、 8、 - 9、 10、-12.996(点拨:原式= = ) 11、 12、8 跟踪训练: 1、( )2+20xy+25 =( )2. 2、已知 ,则 =__________. 3、已知 ,则x+y=________. 4、若 是完全平方式,则实数m的值是( ) A.-5 B.3 C.7 D.7或-1 5、若二项式 加上一个单项式后成为一个完全平方式,则这样的单项式共有( ) A.1个 B.2个 C.3个 D.4个 6、利用因式分解计算: =_______________. 7、在实数范围内分解因式: =_____________________. 8、将下列各式因式分解 (1) (2) (3) (4) 9、分解因式: =( ) , ( )-20(x+y)=( ) . 10、因式分解 的结果为_________________________. 11、已知x+y=7,xy=10.求 (1) 的值;(2) 12、如果 ,求 的值. 15.4第3课时参考答案: 1、2x 2x+5y 2、 3、-2 4、D(点拨:中间一项应该是x和2的积的两倍,所以m-3=±4) 5、C(点拨:如果已知的两项是平方和,则缺少的项应该是积的两倍±4x;如果 是积的两倍,缺少的是一个平方项 ;如果4是积的两倍,则缺少的项为 ,最后一个是分式,不符合要求) 6、90000 7、 8、(1) ;(2) ;(3) ;(4) 9、x+y+4 25 2x+2y-5 10、 11、(1)∵x+y=7,xy=10,∴ , ∴ ,∴ ,∴ =58 (2)∵ ,∴ ,∴ =841 ∴ =641 ∴ = =441 12、∵ ,∴ , ∴ = =-3×5+7=-8 一、耐心选一选,你会开心(每题6分,共30分) 1、下列从左到右的变形是分解因式的是( ) A. B. C. D. 2、 不能被下列那个数整除( ) A.2003 B.2002 C.2001 D.1001 3、已知m-n=3,mn=1,则 的值为( ) A.5 B.7 C.9 D.11 4、将多项式 分解因式为( ) A. B. C. D. 5、如果4x-3是多项式 的一个因式,则a等于( ) A.-6 B.6 C.-9 D.9 二、精心填一填,你会轻松(每题6分,共30分) 6、分解因式: =______________________. 7、多项式 , 的公因式是__________________. 8、用分解因式法计算 =__________________. 9、多项式 加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是_______________________(填上一个你认为正确的即可) 10、已知多项式 分解因式的结果是 ,则a=______,b=______,c=_________. 三、细心做一做,你会成功(共40分) 11、(8分)分解因式 (1) (2) (3) (4) 12、(8分)计算: 13、(8分)已知 , ,则 的值是多少? 综合创新 14、(8分)证明: 能被13整除. 15、(8分)若多项式 分解因式得 ,求: 的值. 中考链接 16.(2007四川德阳)已知 ,则 的值是( ) A. B. C. D. 17.(2007云南)已知x+y = –5,xy = 6,则 的值是( ) A. B. C. D. 18.(2007广东河池)分解因式: . 19. (2007山东烟台)请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果 . 20. (2007安徽芜湖)因式分 . 15.4本节自测参考答案: 夯实基础 1、C(点拨:因式分解的特征,左边是几个整式的乘积的形式) 2、C(点拨: =2003×(2003-1)=2003×2002) 3、D(点拨: ,将m-n=3,mn=1) 4、D(点拨: = = ) 5、A(点拨:令4x-3=0,解得x=0.75,把x=0.75代入 =0中,求得a=-6) 6、 7、a-b 8、10000 9、 或± 10、12 -5 -3 11、(1) ;(2) ;(3) 12、 13、14 综合创新 14、证明:∵ = =13(2n+13) ∴ 能被13整除 15、∵ = ,∴m=1,n=-12, ∴ =-12×(-11)=132 中考链接 16.C 17. B 18. 19.答案不唯一,如 20.2023-07-21 20:43:121
因式分解,整式的乘法的练习题,各十道,要答案
因式分解练习题:1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 2. x^3-x^2+x-1 解法:=(x^3-x^2)+(x-1) =x^2(x-1)+ (x-1) =(x-1)(x^2+1) 3. x2-x-y2-y 解法:=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1)4、bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).5、x^2+3x-40 =x^2+3x+2.25-42.25 =(x+1.5)^2-(6.5)^2 =(x+8)(x-5).6、(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则 原式=(y+1)(y+2)-12 =y^2+3y+2-12=y^2+3y-10 =(y+5)(y-2) =(x^2+x+5)(x^2+x-2) =(x^2+x+5)(x+2)(x-1).7、m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 8、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)9、(ab+b)2u2212(a+b)2 = (ab+b+a+b)(ab+bu2212au2212b) = (ab+2b+a)(abu2212a) = a(bu22121)(ab+2b+a).10、3x^6-3x^2=3x^2(x^4-1)=3x^2(x^2+1)(x^2-1)=3x^2(x^2+1)(x+1)(x-1)2023-07-21 20:43:341
因式分解的题目+答案!
一、填空题 (1)x2+2x-15=(x-3)(_____) (2)6xy-x2-5y2=-(x-y)(_____). (3)________=(x+2)(x-3). (4)分解因式x2+6x-7=__________. (5)若多项式x2+bx+c可分解为(x+3)(x-4), 则b=_____, c=_____. (6)若x2+7x=18成立,则x值为_____。 (7)若x2-3xy-4y2=0,且x+y≠0,则x=_____. (8)(x-y)2+15(x-y)+14=(_____+1)(x-y+_____). (9)多项式 x2+3x+2, x2-2x-8, x2+x-2的公因式为_____。 (10)已知a, b为整数,且m2-5m-6=(m+a)(m+b), 则a=_____,b=_____. 二、选择题 (1)若x2+2x+y2-6y+10=0,则下列结果正确的是( )。 A、x=1, y=3 B、x=-1,y=-3 C、x=-1,y=3 D、x=1,y=-3 (2)若x2-ax-15=(x+1)(x-15),则a的值是( )。 A、15 B、-15 C、14 D、-14 (3)如果3a-b=2,那么9a2-6ab+b2等于( )。 A、2 B、4 C、6 D、8 (4)若x+y=4, x2+y2=6,则xy的值是( )。 A、10 B、5 C、8 D、4 (5)分解因式(x2+2x)2+2(x2+2x)+1的正确结果是( )。 A、(x2+2x+1)2 B、(x2-2x+1)2 C、(x+1)4 D、(x-1)4 (6)-(2x-y)(2x+y)是下列哪一个多项式分解因式的结果( )。 A、4x2-y2 B、4x2+y2 C、-4x2-y2 D、-4x2+y2 (7)若x2+2(m-3)x+16是完全平方式,则m的值应为( )。 A、-5 B、7 C、-1 D、7或-1 (8)已知x3-12x+16有一个因式为x+4, 把它分解因式后应当是( )。 A、(x+4)(x-2)2 B、(x+4)(x2+x+1) C、(x+4)(x+2)2 D、(x+4)(x2-x+1) 三、因式分解 (1) x(x+y+z)+yz (2) x2m+xm+ (3) a2b2-a2-b2-4ab+1 (4) a2(x-y)2-2a(x-y)3+(x-y)4 (5) x4-6x2+5 (6) x4-7x2+1 (7) 3a8-48b8 (8) x2+4y2+9z2-4xy-6xz+12yz 四、解答题 1.已知a2+9b2-2a+6b+2=0,求a,b的值。 2.求证:不论x取什么有理数,多项式-2x4+12x3-18x2的值都不会是正数。 3.已知n为正整数,试证明(n+5)2-(n-1)2的值一定被12整除。 4.已知x+y=4, xy=3,求(1) 3x2+3y2; (2) (x-y)2. 5.设a>0, b>0, c>0且a、b、c中任意两数之和大于第三个数,求证:a2-b2-c2-2bc<0. 五、利用因式分解计算: (1)已知长方形的周长是16cm, 它的两边长a、b是整数,满足a-b-a2+2ab-b2+2=0,求长方形面积。 (2)如图1,一条水渠,其横断面为梯形,根据图中的长度,求出横断面面积的代数式,并计算出当a=2, b=0.8时的面积。 (3)如图2,在半径为R的圆形钢板上,冲去半径为r的四个小圆,利用因式分解计算当R=7.8cm, r=1.1cm时剩余部分的面积(π取3.14,结果保留三位有效数字)。 答案: 一、(1) x+5 (2) x-5y (3) x2-x-6 (4) (x+7)(x-1) (5) -1, -12 (6) -9或2 (7) 4y (8) x-y, 14 (9) x+2 (10) -6或1,1或-6 二、(1)C (2)C (3)B (4)B (5)C (6)D (7)D (8)A 三、(1) (x+y)(x+z) (2) (xm+)2 (3) (ab-1-a-b)(ab-1+a+b) (4) (x-y)2(a-x+y)2 (5) (x+1)(x-1)(x2-5) (6) (x2+3x+1)(x2-3x+1) (7) 3(a4+4b4)(a2+2b2)(a2-2b2) (8) (x-2y-3z)2 四、1、a=1, b=- 2、证明:-2x4+12x3-18x2=-2x2(x2-6x+9)=-2x2(x-3)2≤0. 3、证明:(n+5)2-(n-1)2=(n+5+n-1)(n+5-n+1)=6(2n+4)=12(n+2). ∴ (n+5)2-(n-1)2能被12整除。 4、(1) 30 (2) 4 5、提示:将求证左边分组分解成四个整式乘积,然后利用已知条件对每个因式的符号进行讨论。 五、(1) 由题意得 a+b=8, (a-b+1)(a-b-2)=0, ∴ a-b=-1或a-b=2. ∵ a与b是整数, ∴a-b=-1不合题意。 ∵ a-b=2, ∴ a=5, b=3. ∴ ab=15,即长方形的面积为15cm2。 (2) 3.36 (3) 176cm2 一、填空题 (1)x2+2x-15=(x-3)(_____) (2)6xy-x2-5y2=-(x-y)(_____). (3)________=(x+2)(x-3). (4)分解因式x2+6x-7=__________. (5)若多项式x2+bx+c可分解为(x+3)(x-4), 则b=_____, c=_____. (6)若x2+7x=18成立,则x值为_____。 (7)若x2-3xy-4y2=0,且x+y≠0,则x=_____. (8)(x-y)2+15(x-y)+14=(_____+1)(x-y+_____). (9)多项式 x2+3x+2, x2-2x-8, x2+x-2的公因式为_____。 (10)已知a, b为整数,且m2-5m-6=(m+a)(m+b), 则a=_____,b=_____. 二、选择题 (1)若x2+2x+y2-6y+10=0,则下列结果正确的是( )。 A、x=1, y=3 B、x=-1,y=-3 C、x=-1,y=3 D、x=1,y=-3 (2)若x2-ax-15=(x+1)(x-15),则a的值是( )。 A、15 B、-15 C、14 D、-14 (3)如果3a-b=2,那么9a2-6ab+b2等于( )。 A、2 B、4 C、6 D、8 (4)若x+y=4, x2+y2=6,则xy的值是( )。 A、10 B、5 C、8 D、4 (5)分解因式(x2+2x)2+2(x2+2x)+1的正确结果是( )。 A、(x2+2x+1)2 B、(x2-2x+1)2 C、(x+1)4 D、(x-1)4 (6)-(2x-y)(2x+y)是下列哪一个多项式分解因式的结果( )。 A、4x2-y2 B、4x2+y2 C、-4x2-y2 D、-4x2+y2 (7)若x2+2(m-3)x+16是完全平方式,则m的值应为( )。 A、-5 B、7 C、-1 D、7或-1 (8)已知x3-12x+16有一个因式为x+4, 把它分解因式后应当是( )。 A、(x+4)(x-2)2 B、(x+4)(x2+x+1) C、(x+4)(x+2)2 D、(x+4)(x2-x+1) 三、因式分解 (1) x(x+y+z)+yz (2) x2m+xm+ (3) a2b2-a2-b2-4ab+1 (4) a2(x-y)2-2a(x-y)3+(x-y)4 (5) x4-6x2+5 (6) x4-7x2+1 (7) 3a8-48b8 (8) x2+4y2+9z2-4xy-6xz+12yz 四、解答题 1.已知a2+9b2-2a+6b+2=0,求a,b的值。 2.求证:不论x取什么有理数,多项式-2x4+12x3-18x2的值都不会是正数。 3.已知n为正整数,试证明(n+5)2-(n-1)2的值一定被12整除。 4.已知x+y=4, xy=3,求(1) 3x2+3y2; (2) (x-y)2. 5.设a>0, b>0, c>0且a、b、c中任意两数之和大于第三个数,求证:a2-b2-c2-2bc<0. 五、利用因式分解计算: (1)已知长方形的周长是16cm, 它的两边长a、b是整数,满足a-b-a2+2ab-b2+2=0,求长方形面积。 (2)如图1,一条水渠,其横断面为梯形,根据图中的长度,求出横断面面积的代数式,并计算出当a=2, b=0.8时的面积。 (3)如图2,在半径为R的圆形钢板上,冲去半径为r的四个小圆,利用因式分解计算当R=7.8cm, r=1.1cm时剩余部分的面积(π取3.14,结果保留三位有效数字)。 答案: 一、(1) x+5 (2) x-5y (3) x2-x-6 (4) (x+7)(x-1) (5) -1, -12 (6) -9或2 (7) 4y (8) x-y, 14 (9) x+2 (10) -6或1,1或-6 二、(1)C (2)C (3)B (4)B (5)C (6)D (7)D (8)A 三、(1) (x+y)(x+z) (2) (xm+)2 (3) (ab-1-a-b)(ab-1+a+b) (4) (x-y)2(a-x+y)2 (5) (x+1)(x-1)(x2-5) (6) (x2+3x+1)(x2-3x+1) (7) 3(a4+4b4)(a2+2b2)(a2-2b2) (8) (x-2y-3z)2 四、1、a=1, b=- 2、证明:-2x4+12x3-18x2=-2x2(x2-6x+9)=-2x2(x-3)2≤0. 3、证明:(n+5)2-(n-1)2=(n+5+n-1)(n+5-n+1)=6(2n+4)=12(n+2). ∴ (n+5)2-(n-1)2能被12整除。 4、(1) 30 (2) 4 5、提示:将求证左边分组分解成四个整式乘积,然后利用已知条件对每个因式的符号进行讨论。 五、(1) 由题意得 a+b=8, (a-b+1)(a-b-2)=0, ∴ a-b=-1或a-b=2. ∵ a与b是整数, ∴a-b=-1不合题意。 ∵ a-b=2, ∴ a=5, b=3. ∴ ab=15,即长方形的面积为15cm2。 (2) 3.36 (3) 176cm2 (7)x2-9x+18= 。 (8)2x2-5x-3= 。 (9)12x2-50x+8= 。 40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。 41.因式分解2ax2-3x+2ax-3= 。 42.因式分解9x2-66x+121= 。 43.因式分解8-2x2= 。 44.因式分解x2-x+14 = 。 45.因式分解9x2-30x+25= 。 46.因式分解-20x2+9x+20= 。 47.因式分解12x2-29x+15= 。 48.因式分解36x2+39x+9= 。 49.因式分解21x2-31x-22= 。 50.因式分解9x4-35x2-4= 。 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。 52.因式分解2ax2-3x+2ax-3= 。 53.因式分解x(y+2)-x-y-1= 。 54.因式分解(x2-3x)+(x-3)2= 。 55.因式分解9x2-66x+121= 。 56.因式分解8-2x2= 。 57.因式分解x4-1= 。 58.因式分解x2+4x-xy-2y+4= 。 59.因式分解4x2-12x+5= 。 60.因式分解21x2-31x-22= 。 61.因式分解4x2+4xy+y2-4x-2y-3= 。 62.因式分解9x5-35x3-4x= 。 63.因式分解下列各式: (1)3x2-6x= 。 (2)49x2-25= 。 (3)6x2-13x+5= 。 (4)x2+2-3x= 。 (5)12x2-23x-24= 。 (6)(x+6)(x-6)-(x-6)= 。 (7)3(x+2)(x-5)-(x+2)(x-3)= 。 (8)9x2+42x+49= 。 64.9x2-30x+k可化为完全平方式(3x+a)2,则k= a= 。 65.若x2+mx-15可分解为(x+n)(x-3),m、n皆为整数,则m= n= 。 66.求下列各式的和或差或积或商。 (1)(6512 )2-(3412 )2= 。 (2)(7913 )2+2×7913 ×23 +49 = 。 (3)1998×0.48-798×0.48-798×0.52+1998×0.52= 。 67.因式分解下列各式: (1)(x+2)-2(x+2)2= 。 (2)36x2+39x+9= 。 (3)2x2+ax-6x-3a= 。 (4)22x2-31x-21= 。 68.利用平方差,和的平方或差的平方公式,填填看 (1)49x2-1=( +1)( -1) (2)x2+26x+ =(x+ )2 (3)x2-20x+ =(x- )2 (4)25x2-49y2=(5x+ )(5x- ) (5) -66x+121=( -11)2 69.利用公式求下列各式的值 (1)求5992-4992= (2)求(7512 )2-(2412 )2= (3)求392+39×22+112= (4)求172-34×5+52= (5)若2x+5y=13 +7 ,x-4y=7 -13 求2x2-3xy-20y2= 70.因式分解3ax2-6ax= 。 71.因式分解(x+1)x-5x= 。 72.因式分解(2x+1)(x-3)-(2x+1)(x-5)= 73.因式分解xy+2x-5y-10= 74.因式分解x2y2-x2-y2-6xy+4= 。 三、计算题 1.因式分解x3+2x2+2x+1 2.因式分解a2b2-a2-b2+1 3.试用除法判别15x2+x-6是不是3x+2的倍式。 4.(1)判别3x+2是不是6x2+x-2的因式?(写出计算式) (2)如果是,请因式分解6x2+x-2。 5.a=19912 ,b=9912 ,(1)求a2-2ab+b2之值? (2)a2-b2之值? 6.判别2x+1是否4x2+8x+3的因式?如果是,请因式分解4x2+8x+3。 7.因式分解(1)3ax2-2x+3ax-2 (2)(x2-3x)+(x-3)2+2x-6。 8.设6x2-13x+k为3x-2的倍式,求k之值。 9.判别3x是不是x2之因式?(要说明理由) 10.若-2x2+ax-12,能被2x-3整除,求 (1)a=? (2)将-2x2+ax-12因式分解。 11.(1)因式分解ab-cd+ad-bc (2)利用(1)求1990×29-1991×71+1990×71-29×1991的值。 12.利用平方差公式求1992-992=? 13.利用乘法公式求(6712 )2-(3212 )2=? 14.因式分解下列各式: (1)(2x+3)(x-2)+(x+1)(2x+3) (2)9x2-66x+121 15.请同学用曾经学过的各种不同因式分解的方法因式分解16x2-24x+9 (1)方法1: (2)方法2: 16.因式分解下列各式: (1)4x2-25 (2)x2-4xy+4y2 (3)利用(1)(2)之方法求a2-b2+2bc-c2 17.因式分解 (1)8x2-18 (2)x2-(a-b)x-ab 18.因式分解下列各式 (1)9x4+35x2-4 (2)x2-y2-2yz-z2 (3)a(b2-c2)-c(a2-b2) 19.因式分解(2x+1)(x+1)+(2x+1)(x-3) 20.因式分解39x2-38x+8 21.利用因式分解求(6512 )2-(3412 )2之值 22.因式分解a(b2-c2)-c(a2-b2) 23.a、b、c是整数,若a2+b2+c2+4a-8b-14c+69=0,求a+2b-3c的值 24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2 25.因式分解xy2-2xy-3x-y2-2y-1 26.因式分解4x2-6ax+18a2 27.因式分解20a3bc-9a2b2c-20ab3c 28.因式分解2ax2-5x+2ax-5 29.因式分解4x3+4x2-25x-25 30.因式分解(1-xy)2-(y-x)2 31.因式分解 (1)mx2-m2-x+1 (2)a2-2ab+b2-1 32.因式分解下列各式 (1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2 33.因式分解:xy2-2xy-3x-y2-2y-1 34.因式分解y2(x-y)+z2(y-x) 35.设x+1是2x2+ax-3的因式,(1)求a=? (2)求2x2+ax-3=0之二根 36.(1)因式分解x2+x+y2-y-2xy=? (2)承(1)若x-y=99求x2+x+y2-y-2xy之值?2023-07-21 20:43:441
因式分解练习题(要有答案)
2023-07-21 20:43:551
因式分解练习题及答案, 要初二的因式分解题,要计算题,不要填空的,50道,
因式分解(x+2)(x-3)+(x+2)(x+4)= . 41.因式分解2ax2-3x+2ax-3= . 42.因式分解9x2-66x+121= . 43.因式分解8-2x2= . 44.因式分解x2-x+14 = . 45.因式分解9x2-30x+25= . 46.因式分解-20x2+9x+20= . 47.因式分解12x2-29x+15= . 48.因式分解36x2+39x+9= . 49.因式分解21x2-31x-22= . 50.因式分解9x4-35x2-4= . 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= . 52.因式分解2ax2-3x+2ax-3= . 53.因式分解x(y+2)-x-y-1= . 54.因式分解(x2-3x)+(x-3)2= . 55.因式分解9x2-66x+121= . 56.因式分解8-2x2= . 57.因式分解x4-1= . 58.因式分解x2+4x-xy-2y+4= . 59.因式分解4x2-12x+5= . 60.因式分解21x2-31x-22= . 61.因式分解4x2+4xy+y2-4x-2y-3= . 62.因式分解9x5-35x3-4x= . 63.因式分解下列各式: (1)3x2-6x= . (2)49x2-25= . (3)6x2-13x+5= . (4)x2+2-3x= . (5)12x2-23x-24= . (6)(x+6)(x-6)-(x-6)= . (7)3(x+2)(x-5)-(x+2)(x-3)= . (8)9x2+42x+49= . (1)(x+2)-2(x+2)2= . (2)36x2+39x+9= . (3)2x2+ax-6x-3a= . (4)22x2-31x-21= . 70.因式分解3ax2-6ax= . 71.因式分解(x+1)x-5x= . 72.因式分解(2x+1)(x-3)-(2x+1)(x-5)= 73.因式分解xy+2x-5y-10= 74.因式分解x2y2-x2-y2-6xy+4= x3+2x2+2x+1 a2b2-a2-b2+1 (1)3ax2-2x+3ax-2 (x2-3x)+(x-3)2+2x-6 1)(2x+3)(x-2)+(x+1)(2x+3) 9x2-66x+121 17.因式分解 (1)8x2-18 (2)x2-(a-b)x-ab 18.因式分解下列各式 (1)9x4+35x2-4 (2)x2-y2-2yz-z2 (3)a(b2-c2)-c(a2-b2) 19.因式分解(2x+1)(x+1)+(2x+1)(x-3) 20.因式分解39x2-38x+8 21.利用因式分解求(6512 )2-(3412 )2之值 22.因式分解a(b2-c2)-c(a2-b2) 24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2 25.因式分解xy2-2xy-3x-y2-2y-1 26.因式分解4x2-6ax+18a2 27.因式分解20a3bc-9a2b2c-20ab3c 28.因式分解2ax2-5x+2ax-5 29.因式分解4x3+4x2-25x-25 30.因式分解(1-xy)2-(y-x)2 31.因式分解 (1)mx2-m2-x+1 (2)a2-2ab+b2-1 32.因式分解下列各式 (1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2 33.xy2-2xy-3x-y2-2y-1 34.因式分解y2(x-y)+z2(y-x) 1)因式分解x2+x+y2-y-2xy= 35.因式分解x2-25= . 36.因式分解x2-20x+100= . 37.因式分解x2+4x+3= . 38.因式分解4x2-12x+5= . 39.因式分解下列各式: (1)3ax2-6ax= . (2)x(x+2)-x= . (3)x2-4x-ax+4a= . (4)25x2-49= . (5)36x2-60x+25= . (6)4x2+12x+9= . (7)x2-9x+18= . (8)2x2-5x-3= . (9)12x2-50x+8= . (1) 答案:a(bu22121)(ab+2b+a) 说明:(ab+b)2u2212(a+b)2 = (ab+b+a+b)(ab+bu2212au2212b) = (ab+2b+a)(abu2212a) = a(bu22121)(ab+2b+a). (2) 答案:(xu2212a)4 说明:(a2u2212x2)2u22124ax(xu2212a)2 = [(a+x)(au2212x)]2u22124ax(xu2212a)2 = (a+x)2(au2212x)2u22124ax(xu2212a)2 = (xu2212a)2[(a+x)2u22124ax] = (xu2212a)2(a2+2ax+x2u22124ax) = (xu2212a)2(xu2212a)2 = (xu2212a)4. (3) 答案:7xnu22121(xu22121)2 说明:原式 = 7xnu22121 u2022x2u22127xnu22121 u20222x+7xnu22121 = 7xnu22121(x2u22122x+1) = 7xnu22121(xu22121)2.2023-07-21 20:44:061
因式分解练习题及答案,求!!!
因式分解(x+2)(x-3)+(x+2)(x+4)= 。 41.因式分解2ax2-3x+2ax-3= 。 42.因式分解9x2-66x+121= 。 43.因式分解8-2x2= 。 44.因式分解x2-x+14 = 。 45.因式分解9x2-30x+25= 。 46.因式分解-20x2+9x+20= 。 47.因式分解12x2-29x+15= 。 48.因式分解36x2+39x+9= 。 49.因式分解21x2-31x-22= 。 50.因式分解9x4-35x2-4= 。 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。 52.因式分解2ax2-3x+2ax-3= 。 53.因式分解x(y+2)-x-y-1= 。 54.因式分解(x2-3x)+(x-3)2= 。 55.因式分解9x2-66x+121= 。 56.因式分解8-2x2= 。 57.因式分解x4-1= 。 58.因式分解x2+4x-xy-2y+4= 。 59.因式分解4x2-12x+5= 。 60.因式分解21x2-31x-22= 。 61.因式分解4x2+4xy+y2-4x-2y-3= 。 62.因式分解9x5-35x3-4x= 。 63.因式分解下列各式: (1)3x2-6x= 。 (2)49x2-25= 。 (3)6x2-13x+5= 。 (4)x2+2-3x= 。 (5)12x2-23x-24= 。 (6)(x+6)(x-6)-(x-6)= 。 (7)3(x+2)(x-5)-(x+2)(x-3)= 。 (8)9x2+42x+49= 。 (1)(x+2)-2(x+2)2= 。 (2)36x2+39x+9= 。 (3)2x2+ax-6x-3a= 。 (4)22x2-31x-21= 。 70.因式分解3ax2-6ax= 。 71.因式分解(x+1)x-5x= 。 72.因式分解(2x+1)(x-3)-(2x+1)(x-5)= 73.因式分解xy+2x-5y-10= 74.因式分解x2y2-x2-y2-6xy+4= x3+2x2+2x+1 a2b2-a2-b2+1 (1)3ax2-2x+3ax-2 (x2-3x)+(x-3)2+2x-6 1)(2x+3)(x-2)+(x+1)(2x+3) 9x2-66x+121 17.因式分解 (1)8x2-18 (2)x2-(a-b)x-ab 18.因式分解下列各式 (1)9x4+35x2-4 (2)x2-y2-2yz-z2 (3)a(b2-c2)-c(a2-b2) 19.因式分解(2x+1)(x+1)+(2x+1)(x-3) 20.因式分解39x2-38x+8 21.利用因式分解求(6512 )2-(3412 )2之值 22.因式分解a(b2-c2)-c(a2-b2) 24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2 25.因式分解xy2-2xy-3x-y2-2y-1 26.因式分解4x2-6ax+18a2 27.因式分解20a3bc-9a2b2c-20ab3c 28.因式分解2ax2-5x+2ax-5 29.因式分解4x3+4x2-25x-25 30.因式分解(1-xy)2-(y-x)2 31.因式分解 (1)mx2-m2-x+1 (2)a2-2ab+b2-1 32.因式分解下列各式 (1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2 33.因式分解:xy2-2xy-3x-y2-2y-1 34.因式分解y2(x-y)+z2(y-x) 1)因式分解x2+x+y2-y-2xy= 35.因式分解x2-25= 。 36.因式分解x2-20x+100= 。 37.因式分解x2+4x+3= 。 38.因式分解4x2-12x+5= 。 39.因式分解下列各式: (1)3ax2-6ax= 。 (2)x(x+2)-x= 。 (3)x2-4x-ax+4a= 。 (4)25x2-49= 。 (5)36x2-60x+25= 。 (6)4x2+12x+9= 。 (7)x2-9x+18= 。 (8)2x2-5x-3= 。 (9)12x2-50x+8= 。 (1) 答案:a(bu22121)(ab+2b+a) 说明:(ab+b)2u2212(a+b)2 = (ab+b+a+b)(ab+bu2212au2212b) = (ab+2b+a)(abu2212a) = a(bu22121)(ab+2b+a). (2) 答案:(xu2212a)4 说明:(a2u2212x2)2u22124ax(xu2212a)2 = [(a+x)(au2212x)]2u22124ax(xu2212a)2 = (a+x)2(au2212x)2u22124ax(xu2212a)2 = (xu2212a)2[(a+x)2u22124ax] = (xu2212a)2(a2+2ax+x2u22124ax) = (xu2212a)2(xu2212a)2 = (xu2212a)4. (3) 答案:7xnu22121(xu22121)2 说明:原式 = 7xnu22121 u2022x2u22127xnu22121 u20222x+7xnu22121 = 7xnu22121(x2u22122x+1) = 7xnu22121(xu22121)2.2023-07-21 20:44:198
因式分解练习题
例1分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明(4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理)若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.对于二次三项式ax2+bx+c,将a和c分别分解撑两个因数的乘积,a=a1u2022a2,c=c1u2022c2,且满足b=a1u2022c2+a2u2022c1,往往写成十字的形式,将二次三项式进行分解。例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=〔x+(2y-3)〕〔2x+(-11y+1)〕=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.2023-07-21 20:44:521
八年级上册数学因式分解(人教版)练习题 及答案
楼主抄袭~~~~~2023-07-21 20:45:032
因式分解练习题及答案
1.((m+3n)的平方-12nm)除以(m-3n)2.若多项式3x的平方+7x-k有一个因式是(3x+4),其中k为常数,则k = 时。3.学习了用平方差公式分解因式后,在完成了老师布置的练习时,小名将一道题记错了符号,他记成了-4x的平方-y的平方,请你帮小名想一想,老师布置的原题可能是 .4.2010的三次方-2*2010的平方-2008——————————————————(分号)= 2010的三次方+2010的平方-20115.4x的平方=(x-2)的平方6.若x的平方+mx-n能分解成(x-2)(x-5),则m= ,n= 。2023-07-21 20:45:251
数学因式分解100道
因式分解练习题 一、填空题: 2.(a-3)(3-2a)=_______(3-a)(3-2a); 12.若m2-3m+2=(m+a)(m+b),则a=______,b=______; 15.当m=______时,x2+2(m-3)x+25是完全平方式. 二、选择题: 1.下列各式的因式分解结果中,正确的是 [ ] A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1) C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c) 2.多项式m(n-2)-m2(2-n)分解因式等于 [ ] A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是 [ ] A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1 C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-8 4.下列各式中,能用平方差公式分解因式的是 [ ] A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b2 5.若9x2+mxy+16y2是一个完全平方式,那么m的值是 [ ] A.-12 B.±24 C.12 D.±12 6.把多项式an+4-an+1分解得 [ ] A.an(a4-a) B.an-1(a3-1) C.an+1(a-1)(a2-a+1) D.an+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为 [ ] A.8 B.7 C.10 D.12 8.已知x2+y2+2x-6y+10=0,那么x,y的值分别为 [ ] A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-3 9.把(m2+3m)4-8(m2+3m)2+16分解因式得 [ ] A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2) C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)2 10.把x2-7x-60分解因式,得 [ ] A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12) 11.把3x2-2xy-8y2分解因式,得 [ ] A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得 [ ] A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b) 13.把x4-3x2+2分解因式,得 [ ] A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1) C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1) 14.多项式x2-ax-bx+ab可分解因式为 [ ] A.-(x+a)(x+b) B.(x-a)(x+b) C.(x-a)(x-b) D.(x+a)(x+b) 15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是 [ ] A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12 C.x2-4x-12或x2+4x-12 D.以上都可以 16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有 [ ] A.1个 B.2个 C.3个 D.4个 17.把9-x2+12xy-36y2分解因式为 [ ] A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3) C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3) 18.下列因式分解错误的是 [ ] A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3) C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1) 19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为 [ ] A.互为倒数或互为负倒数 B.互为相反数 C.相等的数 D.任意有理数 20.对x4+4进行因式分解,所得的正确结论是 [ ] A.不能分解因式 B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8) 21.把a4+2a2b2+b4-a2b2分解因式为 [ ] A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab) C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)2 22.-(3x-1)(x+2y)是下列哪个多项式的分解结果 [ ] A.3x2+6xy-x-2y B.3x2-6xy+x-2y C.x+2y+3x2+6xy D.x+2y-3x2-6xy 23.64a8-b2因式分解为 [ ] A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b) C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为 [ ] A.(5x-y)2 B.(5x+y)2 C.(3x-2y)(3x+2y) D.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为 [ ] A.(3x-2y-1)2 B.(3x+2y+1)2 C.(3x-2y+1)2 D.(2y-3x-1)2 26.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为 [ ] A.(3a-b)2 B.(3b+a)2 C.(3b-a)2 D.(3a+b)2 27.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为 [ ] A.c(a+b)2 B.c(a-b)2 C.c2(a+b)2 D.c2(a-b) 28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为 [ ] A.0 B.1 C.-1 D.4 29.分解因式3a2x-4b2y-3b2x+4a2y,正确的是 [ ] A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是 [ ] A.2(a+b-2c) B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c) 三、因式分解: 1.m2(p-q)-p+q; 2.a(ab+bc+ac)-abc; 3.x4-2y4-2x3y+xy3; 4.abc(a2+b2+c2)-a3bc+2ab2c2; 5.a2(b-c)+b2(c-a)+c2(a-b); 6.(x2-2x)2+2x(x-2)+1; 7.(x-y)2+12(y-x)z+36z2; 8.x2-4ax+8ab-4b2; 9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx); 10.(1-a2)(1-b2)-(a2-1)2(b2-1)2; 11.(x+1)2-9(x-1)2; 12.4a2b2-(a2+b2-c2)2; 13.ab2-ac2+4ac-4a; 14.x3n+y3n; 15.(x+y)3+125; 16.(3m-2n)3+(3m+2n)3; 17.x6(x2-y2)+y6(y2-x2); 18.8(x+y)3+1; 19.(a+b+c)3-a3-b3-c3; 20.x2+4xy+3y2; 21.x2+18x-144; 22.x4+2x2-8; 23.-m4+18m2-17; 24.x5-2x3-8x; 25.x8+19x5-216x2; 26.(x2-7x)2+10(x2-7x)-24; 27.5+7(a+1)-6(a+1)2; 28.(x2+x)(x2+x-1)-2; 29.x2+y2-x2y2-4xy-1; 30.(x-1)(x-2)(x-3)(x-4)-48; 31.x2-y2-x-y; 32.ax2-bx2-bx+ax-3a+3b; 33.m4+m2+1; 34.a2-b2+2ac+c2; 35.a3-ab2+a-b; 36.625b4-(a-b)4; 37.x6-y6+3x2y4-3x4y2; 38.x2+4xy+4y2-2x-4y-35; 39.m2-a2+4ab-4b2; 40.5m-5n-m2+2mn-n2. 四、证明(求值): 1.已知a+b=0,求a3-2b3+a2b-2ab2的值. 2.求证:四个连续自然数的积再加上1,一定是一个完全平方数. 3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2). 4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值. 5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值. 6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积. 7.若x,y为任意有理数,比较6xy与x2+9y2的大小. 8.两个连续偶数的平方差是4的倍数. 参考答案: 一、填空题: 7.9,(3a-1) 10.x-5y,x-5y,x-5y,2a-b 11.+5,-2 12.-1,-2(或-2,-1) 14.bc+ac,a+b,a-c 15.8或-2 二、选择题: 1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D 10.B 11.C 12.C 13.B 14.C 15.D 16.B 17.B 18.D 19.A 20.B 21.B 22.D 23.C 24.A 25.A 26.C 27.C 28.C 29.D 30.D 三、因式分解: 1.(p-q)(m-1)(m+1). 8.(x-2b)(x-4a+2b). 11.4(2x-1)(2-x). 20.(x+3y)(x+y). 21.(x-6)(x+24). 27.(3+2a)(2-3a). 31.(x+y)(x-y-1). 38.(x+2y-7)(x+2y+5). 四、证明(求值): 2.提示:设四个连续自然数为n,n+1,n+2,n+3 6.提示:a=-18. ∴a=-18.2023-07-21 20:45:351
因式分解的练习题
交叉分解`~2023-07-21 20:46:315
100道因式分解题
啊啊数学书上有啊2023-07-21 20:46:547
初一因式分解练习题 (几个计算题 而已。求老师 哥哥 姐姐 解答 谢谢~) 不要只有答案 求过程 结果 。
求采纳2023-07-21 20:47:421
因式分解的练习题30道(有难度的)
每一个 ± 符号,都有正负两种情况,每一组绝对值,就都有 4个分解因式,8个整式乘法,如果把 8 个整式乘法都算出来,再做因式分解,题目就不只 30个x" ± 5x ± 6,( x ± 1 )( x ± 6 ),( x ± 2 )( x ± 3 ),正如第一象限(正,正)x" + 10x + 24,( x + 2 )( x + 12 ),( x + 4 )( x + 6 ),第二象限(负,正)x" - 10x + 24,( x - 2 )( x + 12 ),( x - 4 )( x + 6 ),第三象限(负,负)x" - 10x - 24,( x - 2 )( x - 12 ),( x - 4 )( x - 6 ),第四象限(正,负)x" + 10x - 24,( x + 2 )( x - 12 ),( x + 4 )( x - 6 ),想一想完全平方x" ± 10x + 25 = ( x ± 5 )",我们也应该得到提醒;x" ± 15x ± 54,( x ± 3 )( x ± 18 ),( x ± 6 )( x ± 9 ),x" ± 20x ± 96,( x ± 4 )( x ± 24 ),( x ± 8 )( x ± 12 ),x" ± 25x ± 150,( x ± 5 )( x ± 30 ),( x ± 10 )( x ± 15 ),8x" ± 26xy ± 15y",( 2x ± y )( 4x ± 15y ),( 4x ± 3y )( 2x ± 5y )。工夫不负有心人,开动脑筋,找找规律,掌握分解因式的技巧、窍门,发现、感受其中的奥秘……必然其乐无穷!祝你成功!学习进步!2023-07-21 20:48:082
七下数学整式乘法,因式分解,化简求值习题越多越好
因式分解练习题:1.5ax+5bx+3ay+3by解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)2.x^3-x^2+x-1解法:=(x^3-x^2)+(x-1)=x^2(x-1)+ (x-1)=(x-1)(x^2+1)3.x2-x-y2-y解法:=(x2-y2)-(x+y)=(x+y)(x-y)-(x+y)=(x+y)(x-y-1)4、bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b)=c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).5、x^2+3x-40=(x+8)(x-5).6、(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则原式=(y+1)(y+2)-12=y^2+3y+2-12=y^2+3y-10=(y+5)(y-2)=(x^2+x+5)(x^2+x-2)=(x^2+x+5)(x+2)(x-1).7、m +5n-mn-5m m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 8、分解因式bc(b+c)+ca(c-a)-ab(a+b) bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)9、(ab+b)2u2212(a+b)2= (ab+b+a+b)(ab+bu2212au2212b)= (ab+2b+a)(abu2212a)= a(bu22121)(ab+2b+a).10、3x^6-3x^2=3x^2(x^4-1)=3x^2(x^2+1)(x^2-1)=3x^2(x^2+1)(x+1)(x-1)2023-07-21 20:48:171
求初中因式分解的练习题
x^2-2x+1=(x-3)(x+1)2023-07-21 20:48:264
数学高手请帮忙解答因式分解练习题!
5x(X^4-3x^2y-4y^2)=5x(x^2-4y)(x^2+y)(3ab-2xy)(ab-5xy)要好好学习哦,希望能够帮助你!2023-07-21 20:48:354
分解因式练习题 综合运用
一般是四则运算和一些基本的公式的展开与约去,多做些题就好了2023-07-21 20:48:534
因式分解练习题(2-x)(2+x)+(x+4)(x-1)的答案
=(2-x)(2 x) (2 2 x)(-1 x)=(2-x)(2 x) (2 x)(-1 x) 2(-1 x)=(2 x)(2-x x-1) 2(x-1)=(2 x) 2(x 2)-6=3(x 2)-6=3(x 2-2)=3x2023-07-21 20:48:591
初中数学,因式分解练习题
(1)=(y-2)(xy+5x-y+2)(2)=(x^2-2x-4)(x^2-2x-19)2023-07-21 20:49:083
因式分解题目,求解!
x(3x-y)2023-07-21 20:49:167
初二数学因式分解:十字相乘法。下面有11道练习题。希望哪位大侠能帮我解出来!要过程!图也要!
式子列出来,图你还不会画吗?2023-07-21 20:50:234
求初二下学期因式分解方法、练习题和答案,谢谢!
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式. (1)因式分解与整式乘法是相反方向的变形.(2)因式分解是恒等变形,因此可以用整式乘法来检验.2023-07-21 20:51:021
七年级下册因式分解要点,公式,习题和答案
分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. 分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号. 当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。当然可能要综合其他分法,且分组方法也不一定唯一。 第4课 因式分解 〖知识点〗 因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。 〖大纲要求〗 理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。 〖考查重点与常见题型〗 考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。 因式分解知识点 多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有: (1)提公因式法 如多项式 其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式. (2)运用公式法,即用 写出结果. (3)十字相乘法 对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则 对于一般的二次三项式 寻找满足 a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则 (4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. 分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号. §2.2提公因式法 教学目的和要求: 经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式(多项式中的字母指数仅限于正整数的情况);进一步了解分解因式的意义,加强学生的直觉思维并渗透化归的思想方法. 教学重点和难点: 重点:是让学生理解提公因式的意义与原理。 难点:能确定多项式各项的公因式 关键:是让学生理解提公因式的意义与原理。 2. (1)多项式ab+bc各项都含有相同的因式吗?多项式3x2+x呢?多项式mb2+nb呢? (2)将上面的多项式分别写成几个因式的乘积,说明你的理由,并与同位交流。 答案:(1)多项式ab+bc各项都含有相同的因式b,多项式3x2+x各项都含有相同的公因式x,多项mb2+nb各项都含有相同的公因式b。 2.3运用公式法 教学目的和要求: 经历通过整式乘法的平方差公式、完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力;运用公式法(直接用公式不超过两次)分解因式(指数是正整数) 教学重点和难点: 重点:发展学生的逆向思维和推理能力 难点:能够理解、归纳因式分解变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性.因式分解的方法 因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,轮换对称法,剩余定理法等。[编辑本段]基本方法 ⑴提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 例如:-am+bm+cm=-m(a-b-c); a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。 注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式 ⑵公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式:a^2-b^2=(a+b)(a-b); 完全平方公式:a^2±2ab+b^2=(a±b)^2; 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2); 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2); 完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.1.因式分解abc+ab-4a=a(bc+b-4) 2.因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2) 3.因式分解xy+6-2x-3y=(x-3)(y-2) 4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b) 6.因式分解a4-9a2b2=a^2(a+3b)(a-3b) 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 10.因式分解a2-a-b2-b=(a+b)(a-b-1) 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 12.因式分解(a+3)2-6(a+3)=(a+3)(a-3) 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) 14.16x2-81=(4x+9)(4x-9) 15.9x2-30x+25=(3x-5)^2 16.x2-7x-30=(x-10)(x+3) 17.3ax2-6ax=3ax(x-2) 18.x(x+2)-x=x(x+1) 19.x2-4x-ax+4a=(x-4)(x-a) 20.25x2-49=(5x-9)(5x+9) 21.36x2-60x+25=(6x-5)^2 22.4x2+12x+9=(2x+3)^2 23.x2-9x+18=(x-3)(x-6) 24.2x2-5x-3=(x-3)(2x+1) 25.12x2-50x+8=2(6x-1)(x-4) 26.3x2-6x=3x(x-2) 27.49x2-25=(7x+5)(7x-5) 28.6x2-13x+5=(2x-1)(3x-5) 29.x2+2-3x=(x-1)(x-2) 30.12x2-23x-24=(3x-8)(4x+3) 31.(x+6)(x-6)-(x-6)=(x-6)(x+5) 32.3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2) 33.9x2+42x+49=(3x+7)^2 。34..因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1) 35.因式分解x2-25=(x+5)(x-5) 36.因式分解x2-20x+100=(x-10)^2 37.因式分解x2+4x+3=(x+1)(x+3) 38.因式分解4x2-12x+5=(2x-1)(2x-5) 39.因式分解下列各式: 40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1) 41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3) 42.因式分解9x2-66x+121=(3x-11)^2 43.因式分解8-2x2=2(2+x)(2-x) 44.因式分解x2-x+14 =整数内无法分解 45.因式分解9x2-30x+25=(3x-5)^2 46.因式分解-20x2+9x+20=(-4x+5)(5x+4) 47.因式分解12x2-29x+15=(4x-3)(3x-5) 48.因式分解36x2+39x+9=3(3x+1)(4x+3) 49.因式分解21x2-31x-22=(21x+11)(x-2) 50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2) 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1) 52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3) 53.因式分解x(y+2)-x-y-1=(x-1)(y+1) 54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3) 55.因式分解9x2-66x+121=(3x-11)^2 56.因式分解8-2x2=2(2-x)(2+x) 57.因式分解x4-1=(x-1)(x+1)(x^2+1) 58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2) 59.因式分解4x2-12x+5=(2x-1)(2x-5) 60.因式分解21x2-31x-22=(21x+11)(x-2)2023-07-21 20:51:281
帮我写出50道因式分解50道解方程10道应用题初一下册的(答案和题目都要)
你真的是老师吗?2023-07-21 20:51:392
因式分解公式法 练习题和答案
1.将下列各式分解因式 (1)3p2﹣6pq (2)2x2 +8x+8 2.将下列各式分解因式 (1)x3y﹣xy (2)3a3﹣6a2b+3ab2 . 3.分解因式 (1)a2(x﹣y)+16(y﹣x) (2)(x2+y2)2﹣4x2y 2 4.分解因式: (1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y) 2 5.因式分解: (1)2am2 ﹣8a (2)4x3 +4x2 y+xy 2 6.将下列各式分解因式: (1)3x﹣12x3 (2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2 y﹣2xy2 +y 3 (2)(x+2y)2﹣y 1)n2 (m﹣2)﹣n(2﹣m) (2)(x﹣1)(x﹣3)+1 9.分解因式:a2 ﹣4a+4﹣b2 10.分解因式:a2 ﹣b2 ﹣2a+1 11.把下列各式分解因式: (1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a 2 (3)(1+y)2 ﹣2x2 (1﹣y2 )+x4 (1﹣y)2 (4)x4 +2x3 +3x2 +2x+1 12.把下列各式分解因式: (1)4x3﹣31x+15; (2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4; (3)x5 +x+1; (4)x3 +5x2 +3x﹣9; (5)2a4 ﹣a3 ﹣6a2 ﹣a+2http://wenku.baidu.com/linkurl=_ANny3eznD_MHg70L9F4dgsr10h1X6A5c_6VTDkcOW21af6uB7L7t1EClGylam0a5E-AubuIDLYE-6G-FFLOrUkuBq6yLH6OfEMTz0NW3ri 中的2023-07-21 20:52:041
给我十道分解因式的题,要有详细答案
1、下列各式从左到右的变形属于因式分解的是( ) A. B. C. D. 2、观察下列各式:① ;② ;③ ;④ ;⑤ ;⑥ .其中可以用提公因式法分解因式的有( ) A.①②⑤ B.②④⑤ C.②④⑥ D.①②⑤⑥ 3、多项式 分解因式时应提取的公因式为( ) A.3mn B. C. D. 4、下列因式分解中,正确的有 ①4a-a3b2=a(4-a2b2);②x2y-2xy+xy=xy(x-2);③-a+ab-ac=-a(a-b-c);④9abc-6a2b=3abc(3-2a);⑤ x2y+ xy2= xy(x+y) A.0个 B.1个 C.2个 D.5个 5、若 ,则A为( ) A. B. C. D. 6、把多项式 (n为大于2的正整数)分解因式为( ) A. B. C. D. 7、把多项式 分解因式的结果是( ) A. B. C. D. 8、把一个多项式化成几个整式_______的形式,叫做把这个多项式因式分解. 9、利用因式分解计算32×3.14+5.4×31.4+0.14×314=________. 10、分别写出下列多项式的公因式: (1) : ; (2) : ; (3) : ; (4) : ; 11、已知a+b=13,ab=40,则 的结果为______________. 12、用提公因式法分解下列各式: (1) (2) 13、当x=2,y= 时,求代数式 的值. 15.4第1课时参考答案: 1、D(点拨:判断是不是因式分解必须满足两点,一是等式左边是多项式,二是等式的整式积的形式) 2、D(点拨:看能否使用提公因式法因式分解的关键是多项式中各项是否有公因式的存在) 3、B(点拨:公因式的系数取各系数的最大公约数,相同字母取最低指数幂,保证提取后的多项式第一项符号为正) 4、B(点拨:①正确;②提取公因式后漏项了;③最后一项提取公因式后应该+c;④公因式应该是3ab;⑤⑥) 5、D(点拨:可用 除以 ) 6、D(点拨:公因式是相同字母的最低次幂,然后用 除以公因式即可) 7、C(点拨:本题的公因式为 ,提公因式一定要提尽) 8、乘积 9、314 10、(1) ;(2) ;(3) ;(4) 11、520 12、(1)原式= ; (2)原式= ; 13、解: = = =x(x+y) 把x=2,y= 代入,原式=2×(2+ )=5 第二课时 公式法(一) 跟踪训练: 1、下列各式中,不能用平方差公式分解因式的是( ) A. B. C.49 D. 2、分解因式结果为 的多项式是( ) A. B. C. D. 3、把多项式 因式进行分解因式,其结果是( ) A. B. C. D. 4、把 分解因式的结果是( ) A. B. C. D. 5、将多项式 分解因式为( ) A. B. C. D. 6、在有理数范围内把 分解因式,结果中因式的个数有( ) A.3个 B.4个 C.5个 D.6个 7、已知长方形的面积是 ,一边长是 ,则另一边长是___________. 8、已知x、y互为相反数,且 =4,则x=________,y=________. 9、分解因式: =________________. 10、利用因式分解计算: =_____________. 11、已知 , ,则x=________,y=__________. 12、已知 , ,则代数式 的值为_______________. 15.4第2课时参考答案: 1、B(点拨:能运用平方差的公式特点,一是左边有两项可以表达成平方的形式,这两项前面的符号一正一负) 2、D(点拨:原式= ) 3、D(点拨: ,然后运用平方差公式) 4、D(点拨:有公因式,先提取公因式,再运用平方差公式) 5、D(点拨:先将前两项运用平方差公式因式分解,然后再提取公因式 ) 6、C(点拨: = ) 7、 8、 - 9、 10、-12.996(点拨:原式= = ) 11、 12、8 跟踪训练: 1、( )2+20xy+25 =( )2. 2、已知 ,则 =__________. 3、已知 ,则x+y=________. 4、若 是完全平方式,则实数m的值是( ) A.-5 B.3 C.7 D.7或-1 5、若二项式 加上一个单项式后成为一个完全平方式,则这样的单项式共有( ) A.1个 B.2个 C.3个 D.4个 6、利用因式分解计算: =_______________. 7、在实数范围内分解因式: =_____________________. 8、将下列各式因式分解 (1) (2) (3) (4) 9、分解因式: =( ) , ( )-20(x+y)=( ) . 10、因式分解 的结果为_________________________. 11、已知x+y=7,xy=10.求 (1) 的值;(2) 12、如果 ,求 的值. 15.4第3课时参考答案: 1、2x 2x+5y 2、 3、-2 4、D(点拨:中间一项应该是x和2的积的两倍,所以m-3=±4) 5、C(点拨:如果已知的两项是平方和,则缺少的项应该是积的两倍±4x;如果 是积的两倍,缺少的是一个平方项 ;如果4是积的两倍,则缺少的项为 ,最后一个是分式,不符合要求) 6、90000 7、 8、(1) ;(2) ;(3) ;(4) 9、x+y+4 25 2x+2y-5 10、 11、解:(1)∵x+y=7,xy=10,∴ , ∴ ,∴ ,∴ =58 (2)∵ ,∴ ,∴ =841 ∴ =641 ∴ = =441 12、∵ ,∴ , ∴ = =-3×5+7=-8 一、耐心选一选,你会开心(每题6分,共30分) 1、下列从左到右的变形是分解因式的是( ) A. B. C. D. 2、 不能被下列那个数整除( ) A.2003 B.2002 C.2001 D.1001 3、已知m-n=3,mn=1,则 的值为( ) A.5 B.7 C.9 D.11 4、将多项式 分解因式为( ) A. B. C. D. 5、如果4x-3是多项式 的一个因式,则a等于( ) A.-6 B.6 C.-9 D.9 二、精心填一填,你会轻松(每题6分,共30分) 6、分解因式: =______________________. 7、多项式 , 的公因式是__________________. 8、用分解因式法计算 =__________________. 9、多项式 加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是_______________________(填上一个你认为正确的即可) 10、已知多项式 分解因式的结果是 ,则a=______,b=______,c=_________. 三、细心做一做,你会成功(共40分) 11、(8分)分解因式 (1) (2) (3) (4) 12、(8分)计算: 13、(8分)已知 , ,则 的值是多少? 综合创新 14、(8分)证明: 能被13整除. 15、(8分)若多项式 分解因式得 ,求: 的值. 中考链接 16.(2007四川德阳)已知 ,则 的值是( ) A. B. C. D. 17.(2007云南)已知x+y = –5,xy = 6,则 的值是( ) A. B. C. D. 18.(2007广东河池)分解因式: . 19. (2007山东烟台)请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果 . 20. (2007安徽芜湖)因式分解: . 15.4本节自测参考答案: 夯实基础 1、C(点拨:因式分解的特征,左边是几个整式的乘积的形式) 2、C(点拨: =2003×(2003-1)=2003×2002) 3、D(点拨: ,将m-n=3,mn=1) 4、D(点拨: = = ) 5、A(点拨:令4x-3=0,解得x=0.75,把x=0.75代入 =0中,求得a=-6) 6、 7、a-b 8、10000 9、 或± 10、12 -5 -3 11、(1) ;(2) ;(3) 12、 13、14 综合创新 14、证明:∵ = =13(2n+13) ∴ 能被13整除 15、∵ = ,∴m=1,n=-12, ∴ =-12×(-11)=132 中考链接 16.C 17. B 18. 19.答案不唯一,如 20. 182023-07-21 20:52:231
初三因式分解练习题及答案40题
因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2) 因式分解xy+6-2x-3y=(x-3)(y-2)因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)因式分解a4-9a2b2=a^2(a+3b)(a-3b)若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 因式分解a2-a-b2-b=(a+b)(a-b-1) 因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 因式分解(a+3)2-6(a+3)=(a+3)(a-3) 因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4) 16x2-81=(4x+9)(4x-9) 9x2-30x+25=(3x-5)^2 x2-7x-30=(x-10)(x+3)因式分解x2-25=(x+5)(x-5) 因式分解x2-20x+100=(x-10)^2 因式分解x2+4x+3=(x+1)(x+3) 因式分解4x2-12x+5=(2x-1)(2x-5) 3ax2-6ax=3ax(x-2)x(x+2)-x=x(x+1) x2-4x-ax+4a=(x-4)(x-a) 25x2-49=(5x-9)(5x+9) 36x2-60x+25=(6x-5)^2 4x2+12x+9=(2x+3)^2 x2-9x+18=(x-3)(x-6) 2x2-5x-3=(x-3)(2x+1) 12x2-50x+8=2(6x-1)(x-4) 因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1) 因式分解2ax2-3x+2ax-3= (x+1)(2ax-3) 因式分解9x2-66x+121=(3x-11)^2 因式分解8-2x2=2(2+x)(2-x) 因式分解x2-x+14 =整数内无法分解 因式分解9x2-30x+25=(3x-5)^2 因式分解-20x2+9x+20=(-4x+5)(5x+4) 因式分解12x2-29x+15=(4x-3)(3x-5) 因式分解36x2+39x+9=3(3x+1)(4x+3)因式分解21x2-31x-22=(21x+11)(x-2) 因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2) 因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1) 因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)因式分解x(y+2)-x-y-1=(x-1)(y+1) 因式分解(x2-3x)+(x-3)2=(x-3)(2x-3) 因式分解9x2-66x+121=(3x-11)^2 因式分解8-2x2=2(2-x)(2+x) 因式分解x4-1=(x-1)(x+1)(x^2+1) 因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)因式分解4x2-12x+5=(2x-1)(2x-5) 因式分解21x2-31x-22=(21x+11)(x-2) 因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2) 3x2-6x=3x(x-2) 49x2-25=(7x+5)(7x-5) 6x2-13x+5=(2x-1)(3x-5) x2+2-3x=(x-1)(x-2) 12x2-23x-24=(3x-8)(4x+3) (x+6)(x-6)-(x-6)=(x-6)(x+5) 3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2) 9x2+42x+49=(3x+7)^2 。 x^2-x-2=(x-2)(x+1) x^2-x-6=(x-3)(x+2) 2x^2-x-3=(2x-3)(x+1) 5x^2-2x-7=(5x-7)(x+1) 20x^2+9x-20=(5x-4)(4x+5)2023-07-21 20:52:351
100道 因式分解题与答案 快
1.把下列各式分解因式 (1)12a3b2-9a2b+3ab; (2)a(x+y)-(a-b)(x+y); (3)121x2-144y2; (4)4(a-b)2-(x-y)2; (5)(x-2)2+10(x-2)+25; (6)a3(x+y)2-4a3c2. 2.用简便方法计算 (1)6.42-3.62; (2)21042-1042 (3)1.42×9-2.32×36 第二章 分解因式综合练习 一、选择题 1.下列各式中从左到右的变形,是因式分解的是( ) (A)(a+3)(a-3)=a2-9 (B)x2+x-5=(x-2)(x+3)+1 (C)a2b+ab2=ab(a+b) (D)x2+1=x(x+ ) 2.下列各式的因式分解中正确的是( ) (A)-a2+ab-ac= -a(a+b-c) (B)9xyz-6x2y2=3xyz(3-2xy) (C)3a2x-6bx+3x=3x(a2-2b) (D) xy2+ x2y= xy(x+y) 3.把多项式m2(a-2)+m(2-a)分解因式等于( ) (A)(a-2)(m2+m) (B)(a-2)(m2-m) (C)m(a-2)(m-1) (D)m(a-2)(m+1) 4.下列多项式能分解因式的是( ) (A)x2-y (B)x2+1 (C)x2+y+y2 (D)x2-4x+4 5.下列多项式中,不能用完全平方公式分解因式的是( ) (A) (B) (C) (D) 6.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( ) (A)4x (B)-4x (C)4x4 (D)-4x4 7.下列分解因式错误的是( ) (A)15a2+5a=5a(3a+1) (B)-x2-y2= -(x2-y2)= -(x+y)(x-y) (C)k(x+y)+x+y=(k+1)(x+y) (D)a3-2a2+a=a(a-1)2 8.下列多项式中不能用平方差公式分解的是( ) (A)-a2+b2 (B)-x2-y2 (C)49x2y2-z2 (D)16m4-25n2p2 9.下列多项式:①16x5-x;②(x-1)2-4(x-1)+4;③(x+1)4-4x(x+1)+4x2;④-4x2-1+4x,分解因式后,结果含有相同因式的是( ) (A)①② (B)②④ (C)③④ (D)②③ 10.两个连续的奇数的平方差总可以被 k整除,则k等于( ) (A)4 (B)8 (C)4或-4 (D)8的倍数 二、填空题 11.分解因式:m3-4m= . 12.已知x+y=6,xy=4,则x2y+xy2的值为 . 13.将xn-yn分解因式的结果为(x2+y2)(x+y)(x-y),则n的值为 . 14.若ax2+24x+b=(mx-3)2,则a= ,b= ,m= .(第15题图) 15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是 . 三、(每小题6分,共24分) 16.分解因式:(1)-4x3+16x2-26x (2) a2(x-2a)2- a(2a-x)3 (3)56x3yz+14x2y2z-21xy2z2 (4)mn(m-n)-m(n-m) 17.分解因式:(1) 4xy–(x2-4y2) (2)- (2a-b)2+4(a - b)2 18.分解因式:(1)-3ma3+6ma2-12ma (2) a2(x-y)+b2(y-x) 19、分解因式 (1) ; (2) ; (3) ; 20.分解因式:(1) ax2y2+2axy+2a (2)(x2-6x)2+18(x2-6x)+81 (3) –2x2n-4xn 21.将下列各式分解因式: (1) ; (2) ; (3) ; 22.分解因式(1) ; (2) ; 23.用简便方法计算: (1)57.6×1.6+28.8×36.8-14.4×80 (2)39×37-13×34 (3).13.7 24.试说明:两个连续奇数的平方差是这两个连续奇数和的2倍. 25.如图,在一块边长为a厘米的正方形纸板四角,各剪去一个边长为 b(b< )厘米的正方形,利用因式分解计算当a=13.2,b=3.4时,剩余部分的面积. 26.将下列各式分解因式 (1) (2) ; (3) (4) (5) (6) (7) (8) (9) (10)(x2+y2)2-4x2y2 (12).x6n+2+2x3n+2+x2 (13).9(a+1)2(a-1)2-6(a2-1)(b2-1)+(b+1)2(b-1)2 27.已知(4x-2y-1)2+ =0,求4x2y-4x2y2+xy2的值. 28.已知:a=10000,b=9999,求a2+b2-2ab-6a+6b+9的值. 29.证明58-1解被20∽30之间的两个整数整除 30.写一个多项式,再把它分解因式(要求:多项式含有字母m和n,系数、次数不限,并能先用提取公因式法再用公式法分解). 31.观察下列各式: 12+(1×2)2+22=9=32 22+(2×3)2+32=49=72 32+(3×4)2+42=169=132 …… 你发现了什么规律?请用含有n(n为正整数)的等式表示出来,并说明其中的道理. 32.阅读下列因式分解的过程,再回答所提出的问题: 1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)] =(1+x)2(1+x) =(1+x)3 (1)上述分解因式的方法是 ,共应用了 次. (2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,则需应用上述方法 次,结果是 . (3)分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数). 34.若a、b、c为△ABC的三边,且满足a2+b2+c2-ab-bc-ca=0.探索△ABC的形状,并说明理由. 35.阅读下列计算过程: 99×99+199=992+2×99+1=(99+1)2=100 2=10 4 1.计算: 999×999+1999=____________=_______________=_____________=_____________; 9999×9999+19999=__________=_______________=______________=_______________. 2.猜想9999999999×9999999999+19999999999等于多少?写出计算过程. 36.有若干个大小相同的小球一个挨一个摆放,刚好摆成一个等边三角形(如图1);将这些小球换一种摆法,仍一个挨一个摆放,又刚好摆成一个正方形(如图2).试问:这种小球最少有多少个? 图1 图22023-07-21 20:52:531
求二十道分解因式的练习题
因式分解练习题 一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是[ ]A.a2b+7ab-b=b(a2+7a)B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy)D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于[ ]A.(n-2)(m+m2) B.(n-2)(m-m2)C.m(n-2)(m+1) D.m(n-2)(m-1)3.在下列等式中,属于因式分解的是[ ]A.a(x-y)+b(m+n)=ax+bm-ay+bnB.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b)D.x2-7x-8=x(x-7)-84.下列各式中,能用平方差公式分解因式的是[ ]A.a2+b2 B.-a2+b2C.-a2-b2 D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是[ ]A.-12 B.±24C.12 D.±126.把多项式an+4-an+1分解得[ ]A.an(a4-a) B.an-1(a3-1)C.an+1(a-1)(a2-a+1) D.an+1(a-1)(a2+a+1)7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为[ ]A.8 B.7C.10 D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为[ ]A.x=1,y=3 B.x=1,y=-3C.x=-1,y=3 D.x=1,y=-39.把(m2+3m)4-8(m2+3m)2+16分解因式得[ ]A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)210.把x2-7x-60分解因式,得[ ]A.(x-10)(x+6) B.(x+5)(x-12)C.(x+3)(x-20) D.(x-5)(x+12)11.把3x2-2xy-8y2分解因式,得[ ]A.(3x+4)(x-2) B.(3x-4)(x+2)C.(3x+4y)(x-2y) D.(3x-4y)(x+2y)12.把a2+8ab-33b2分解因式,得[ ]A.(a+11)(a-3) B.(a-11b)(a-3b)C.(a+11b)(a-3b) D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得[ ]A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为[ ]A.-(x+a)(x+b) B.(x-a)(x+b)C.(x-a)(x-b) D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是[ ]A.x2-11x-12或x2+11x-12B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有[ ]A.1个 B.2个C.3个 D.4个17.把9-x2+12xy-36y2分解因式为[ ]A.(x-6y+3)(x-6x-3)B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3)D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是[ ]A.a2-bc+ac-ab=(a-b)(a+c)B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2)D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为[ ]A.互为倒数或互为负倒数 B.互为相反数C.相等的数 D.任意有理数20.对x4+4进行因式分解,所得的正确结论是[ ]A.不能分解因式 B.有因式x2+2x+2C.(xy+2)(xy-8) D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为[ ]A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab)C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果[ ]A.3x2+6xy-x-2y B.3x2-6xy+x-2yC.x+2y+3x2+6xy D.x+2y-3x2-6xy23.64a8-b2因式分解为[ ]A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b)C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b)24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为[ ]A.(5x-y)2 B.(5x+y)2C.(3x-2y)(3x+2y) D.(5x-2y)225.(2y-3x)2-2(3x-2y)+1因式分解为[ ]A.(3x-2y-1)2 B.(3x+2y+1)2C.(3x-2y+1)2 D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为[ ]A.(3a-b)2 B.(3b+a)2C.(3b-a)2 D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为[ ]A.c(a+b)2 B.c(a-b)2C.c2(a+b)2 D.c2(a-b)28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为[ ]A.0 B.1C.-1 D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的是[ ]A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y)C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y)30.分解因式2a2+4ab+2b2-8c2,正确的是[ ]A.2(a+b-2c) B.2(a+b+c)(a+b-c)C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c)三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;31.x2-y2-x-y;32.ax2-bx2-bx+ax-3a+3b;33.m4+m2+1;34.a2-b2+2ac+c2;35.a3-ab2+a-b;36.625b4-(a-b)4;37.x6-y6+3x2y4-3x4y2;38.x2+4xy+4y2-2x-4y-35;39.m2-a2+4ab-4b2;40.5m-5n-m2+2mn-n2.四、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.参考答案:一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b11.+5,-212.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2二、选择题:1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D 10.B 11.C 12.C 13.B 14.C 15.D 16.B 17.B 18.D 19.A 20.B 21.B 22.D 23.C 24.A 25.A 26.C 27.C 28.C 29.D 30.D三、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+24).27.(3+2a)(2-3a).31.(x+y)(x-y-1).38.(x+2y-7)(x+2y+5).四、证明(求值):2.提示:设四个连续自然数为n,n+1,n+2,n+36.提示:a=-18.∴a=-18.2023-07-21 20:53:051
举一些关于因式分解的题目,另附过程和答案,(有易有难),谢谢~
我先说简单的 分解因式题目带答案因式分解3a3b2c-6a2b2c2+9ab2c3= 3.因式分解xy+6-2x-3y= 4.因式分解x2(x-y)+y2(y-x)= 5.因式分解2x2-(a-2b)x-ab= 6.因式分解a4-9a2b2= 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4= 8.因式分解ab(x2-y2)+xy(a2-b2)= 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)= 10.因式分解a2-a-b2-b= 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2= 12.因式分解(a+3)2-6(a+3)= 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2= abc+ab-4a= 。 (2)16x2-81= 。 (3)9x2-30x+25= 。 (4)x2-7x-30= 35.因式分解x2-25= 。 36.因式分解x2-20x+100= 。 37.因式分解x2+4x+3= 。 38.因式分解4x2-12x+5= 。 39.因式分解下列各式: (1)3ax2-6ax= 。 (2)x(x+2)-x= 。 (3)x2-4x-ax+4a= 。 (4)25x2-49= 。 (5)36x2-60x+25= 。 (6)4x2+12x+9= 。 (7)x2-9x+18= 。 (8)2x2-5x-3= 。 (9)12x2-50x+8= 。 40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。 41.因式分解2ax2-3x+2ax-3= 。 42.因式分解9x2-66x+121= 。 43.因式分解8-2x2= 。 44.因式分解x2-x+14 = 。 45.因式分解9x2-30x+25= 。 46.因式分解-20x2+9x+20= 。 47.因式分解12x2-29x+15= 。 48.因式分解36x2+39x+9= 。 49.因式分解21x2-31x-22= 。 50.因式分解9x4-35x2-4= 。 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。 52.因式分解2ax2-3x+2ax-3= 。 53.因式分解x(y+2)-x-y-1= 。 54.因式分解(x2-3x)+(x-3)2= 。 55.因式分解9x2-66x+121= 。 56.因式分解8-2x2= 。 57.因式分解x4-1= 。 58.因式分解x2+4x-xy-2y+4= 。 59.因式分解4x2-12x+5= 。 60.因式分解21x2-31x-22= 。 61.因式分解4x2+4xy+y2-4x-2y-3= 。 62.因式分解9x5-35x3-4x= 。 63.因式分解下列各式: (1)3x2-6x= 。 (2)49x2-25= 。 (3)6x2-13x+5= 。 (4)x2+2-3x= 。 (5)12x2-23x-24= 。 (6)(x+6)(x-6)-(x-6)= 。 (7)3(x+2)(x-5)-(x+2)(x-3)= 。 (8)9x2+42x+49= 。因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2) 3.因式分解xy+6-2x-3y=(x-3)(y-2) 4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b) 6.因式分解a4-9a2b2=a^2(a+3b)(a-3b) 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 10.因式分解a2-a-b2-b=(a+b)(a-b-1) 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 12.因式分解(a+3)2-6(a+3)=(a+3)(a-3) 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4) (2)16x2-81=(4x+9)(4x-9) (3)9x2-30x+25=(3x-5)^2 (4)x2-7x-30=(x-10)(x+3) 35.因式分解x2-25=(x+5)(x-5) 36.因式分解x2-20x+100=(x-10)^2 37.因式分解x2+4x+3=(x+1)(x+3) 38.因式分解4x2-12x+5=(2x-1)(2x-5) 39.因式分解下列各式: (1)3ax2-6ax=3ax(x-2) (2)x(x+2)-x=x(x+1) (3)x2-4x-ax+4a=(x-4)(x-a) (4)25x2-49=(5x-9)(5x+9) (5)36x2-60x+25=(6x-5)^2 (6)4x2+12x+9=(2x+3)^2 (7)x2-9x+18=(x-3)(x-6) (8)2x2-5x-3=(x-3)(2x+1) (9)12x2-50x+8=2(6x-1)(x-4) 40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1) 41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3) 42.因式分解9x2-66x+121=(3x-11)^2 43.因式分解8-2x2=2(2+x)(2-x) 44.因式分解x2-x+14 =整数内无法分解 45.因式分解9x2-30x+25=(3x-5)^2 46.因式分解-20x2+9x+20=(-4x+5)(5x+4) 47.因式分解12x2-29x+15=(4x-3)(3x-5) 48.因式分解36x2+39x+9=3(3x+1)(4x+3) 49.因式分解21x2-31x-22=(21x+11)(x-2) 50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2) 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1) 52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3) 53.因式分解x(y+2)-x-y-1=(x-1)(y+1) 54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3) 55.因式分解9x2-66x+121=(3x-11)^2 56.因式分解8-2x2=2(2-x)(2+x) 57.因式分解x4-1=(x-1)(x+1)(x^2+1) 58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2) 59.因式分解4x2-12x+5=(2x-1)(2x-5) 60.因式分解21x2-31x-22=(21x+11)(x-2) 61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1) 62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2) 63.因式分解下列各式: (1)3x2-6x=3x(x-2) (2)49x2-25=(7x+5)(7x-5) (3)6x2-13x+5=(2x-1)(3x-5) (4)x2+2-3x=(x-1)(x-2) (5)12x2-23x-24=(3x-8)(4x+3) (6)(x+6)(x-6)-(x-6)=(x-6)(x+5) (7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2) (8)9x2+42x+49=(3x+7)^2 。2023-07-21 20:53:121
因式分解,50道题
您好!点击以下链接即可下载因式分解练习题,答案很全哦!http://www.223t.com/UserFiles/2007050721055798663.rar如果你懒得下载,就请看以下这些题目,不过这些没有答案;说明:x的平方本来应该表示为x^2,但在以下题目中,统统表示成x2,例如下列第一道题目9x2-1就表示9·x的平方-1. 一、填空题1、因式分解: 9x2-1=_________________, 4x2-4x+1=_________________. a4-b4=_________________, an+2-an=____________________ 2、多项式x2+mx+36是一个完全平方式,则m=_____________. 3、多项式x2+ax+b可以因式分解成(x-1)(x+3)则a=_______, b=______. 4、如果x=3时,多项式x3-4x2-9x+m的值为0,则m=_________,多项式因式分解的结果为_______________________. 二、选择题 1、下列从左到右的变形,属于因式分解的是……………………………………( ) (A)(a+3)(a-3)=a2-9 (B)4a2+4a+3=(2a+1)2+2 (C)x2-1=(x+1)(x-1) (D)-2m(m2-3m+1)=-2m3+6m2-2m 2、下列各式,能用完全平方因式分解的多项式的个数为………………………( ) ①-a2-b2+2ab ②a2-ab+b2 ③a2-a+14 ④4a2+4a-1 (A)1个 (B)2个 (C)3个 (D)4个 3、用因式分解多项式3xy+6y2-x-2y时,分解正确的个数………………… ( ) ①3xy+6y2-x-2y =(3xy-x)+(6y2-2y) ②3xy+6y2-x-2y=(3xy+6y2)-(x+2y) ③3xy+6y2-x-2y=(3xy-2y)+(6y2-x) (A)0个 (B)1个 (C)2个 (D)3个 三、选择题)1.下列多项式中何者含有2x+3的因式 (1)2x3+3 (2)4x2-9 (3)6x2-11x+3 (4)2x2+x+3 ( )2.下列何者是2x2-11x-21的因式? (1)(x-6) (2)(x+7) (3)(2x-3) (4)(2x+3) ( )3.下列何者为甲×丙+乙×丙的因式 (1)甲+乙×丙 (2)甲+乙 (3)甲+丙 (4)丙+乙。 ( )4.下列各式中,何者不是x2-4的因式? (1)x+2 (2)x-2 (3)x2-4 (4)x2。 ( )5.a2-b2的因式不可能是下列那一个? (1)a2+b2 (2)a+b (3)a-b (4)a2-b2。 ( )6.下列何者错误? (1)(-a+b)2=a2-2ab+b2 (2)(a-b)(a+b)=a2-b2 (3)(a-b)2=a2-2ab-b2 (4)(4+3)2=42+8×3+32。 ( )7.下列各式中,何者是2x2-11x-21的因式? (1)2x-3 (2)x+7 (3)x-7 (4)2x+7。 ( )8.下列何者为2x2+3x+1与4x2-4x-3的公因式? (1)x+1 (2)x+2 (3)2x-3 (4)2x+1。 ( )9.因式分解(a+2)2-3(a+2)= (1)(a+2)(a-3) (2)(a+2)(a+3) (3)(a+2)(a+1) (4)(a+2)(a-1)。 ( )10.下列何者正确? (1)a2-b2=(a-b)2 (2)a2-2ab+b2=(a+b)(a-b) (3)a2+2ab+b2=(a+b)2 (4)a2+b2=(a+b)(a-b)。 ( )11.因式分解9x2-1= (1)(9x+1)(9x-1) (2)(3x-1)2 (3)(3x+1)(3x-1) (4)(9x-1)2。 ( )12.若5x2-7x-6=(5x+a)(x+b),则 (1)a=-3 (2)b=-2 (3)ab=6 (4)a+b=5。 ( )13.x2+mx+n=(x+a)(x+b),若m<0,n>0,则 (1)a>0,b>0 (2)a<0,b<0 (3)a>0,b<0 (4)a<0,b>0。 ( )14.找出下列何者是15x2+x-2的因式? (1)5x-2 (2)15x+2 (3)3x-1 (4)3x+1。 ( )15.下列何者是(x-4)(x-5)-42的因式? (1)x-2 (2)x+11 (3)x-11 (4)x+3。 ( )16.若6x2-25x+4=(ax+b)(cx+d)则下列何者正确? (1)abcd=25 (2)a+b+c+d=24 (3)若a=1,则必cd=6 (4)若a=1,则必d=-1。 ( )17.4a2-1等於下列何式? (1)(4a-1)2 (2)(2a-1)2 (3)(4a+1)(4a-1) (4)(2a+1)(2a-1)。 ( )18.x2+y2等於 (1)(x+y)2 (2)(x+y)2+2xy (3)(x-y)2+2xy (4)(x-y)2-2xy。 ( )19.你能利用2片边长xcm的正方形,9片长宽各为x,1cm的长方形和4片边长1cm的正方形,拼出长为(x+4)cm的长方形,其宽为 (1)(2x+1)cm (2)(x+3)cm (3)(2x+4)cm (4)(2x+2)cm。 ( )20.下列何式是2x2+3x+1与4x2-4x-3的因式? (1)2x-1 (2)2x+1 (3)2x-3 (4)x+1。 ( )21.下列那一个式子不是9x2-25的因式? (1)3x+5 (2)3x-5 (3)9x+5 (4)9x2-25。 ( )22.因式分解x2-3x+2=(x+a)(a+b)则 (1)a+b=3 (2)a>0,b<0 (3)ab=-2 (4)a>0,b>0。 ( )23.下列各二次式,何者有因式x-1? (1)x2+5x+6 (2)x2-5x-6 (3)x2+5x-6 (4)x2-5x+6。 ( )24.(-x+y)2等於 (1)-(x-y)2 (2)(x-y)2 (3)(x+y)2 (4)(-x-y)2。 ( )25.若x+y=-5,x-y=15 ,则x2-y2= (1)-5 (2)-1 (3)-15 (4)1。 ( )26.x2+px+q=(x+a)(x+b),若a<0,b<0,则 (1)p>0 (2)q<0 (3)pq>0 (4)q>0。 ( )27.若(x-5)2-(x-5)-12可分解为(x+a)(x+b),则a+b等於 (1)-11 (2)9 (3)11 (4)-9。 ( )28.ax-cx-by+cy+bx-ay可分解为下列何式? (1)(x-y)(a-b-c) (2)(x+y)(a+b-c) (3)(x-y)(a-b+c) (4)(x-y)(a+b-c)。 ( )29.下列何者正确? (1)x2+2ax+x=x(x+2a) (2)2x2-8=x2-4=(x-2)(x+2) (3)36x2-84x+49=(7-6x)2 (4)x2-6=(x-2)(x+3)。 四、填充题 1.若2x3+3x2+mx+1为x+1的倍式,则m= 2.因式分解3a3b2c-6a2b2c2+9ab2c3= 3.因式分解xy+6-2x-3y= 4.因式分解x2(x-y)+y2(y-x)= 5.因式分解2x2-(a-2b)x-ab= 6.因式分解a4-9a2b2= 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4= 8.因式分解ab(x2-y2)+xy(a2-b2)= 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)= 10.因式分解a2-a-b2-b= 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2= 12.因式分解(a+3)2-6(a+3)= 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2= 14.若2×4×(32+1)×(34+1)×(38+1)×(316+1)=3n-1,求n= 。 15.利用平方差公式,求标准分解式4891= 。 16.2x+1是不是4x2+5x-1的因式?答: 。 17.若6x2-7x+m是2x-3的倍式,则m= 18.x2+2x+1与x2-1的公因式为 。 19.若x+2是x2+kx-8的因式,求k= 。 20.若4x2+8x+3是2x+1的倍式请因式分解4x2+8x+3= 。 21.2x+1是4x2+8x+3的因式,请因式分解4x2+8x+3= 。 22.(1)x+2 (2)x+4 (3)x+6 (4)x-6 (5)x2+2x3+24 上列何者x2-2x-24的因式 (全对才给分) 23.因式分解下列各式: (1)abc+ab-4a= 。 (2)16x2-81= 。 (3)9x2-30x+25= 。 (4)x2-7x-30= 。 24.若x2+ax-12=(x+b)(x-2),其中a、b均为整数,则ab= 。 25.请将适当的数填入空格中:x2-16x+ =(x- )2。 26.因式分解下列各式: (1)xy-xz+x= ;(2)6(x+1)-y(x+1)= (3)x2-5x-px+5p= ;(4)15x2-11x-14= 27.设7x2-19x-6=(7x+a)(bx-3),且a,b为整数,则2a+b= 28.利用乘法公式展开99982-4= 。 29.计算(1.99)2-4×1.99+4之值为 。 30.若x2+ax-12可分解为(x+6)(x+b),且a,b为整数,则a+b= 。 31.已知9x2-mx+25=(3x-n)2,且n为正整数,则m+n= 。 32.若2x3+11x2+18x+9=(x+1)(ax+3)(x+b),则a-b= 。 33.2992-3992= 34.填入适当的数使其能成为完全平方式4x2-20x+ 。 35.因式分解x2-25= 。 36.因式分解x2-20x+100= 。 37.因式分解x2+4x+3= 。 38.因式分解4x2-12x+5= 。 39.因式分解下列各式: (1)3ax2-6ax= 。 (2)x(x+2)-x= 。 (3)x2-4x-ax+4a= 。 (4)25x2-49= 。 (5)36x2-60x+25= 。 (6)4x2+12x+9= 。 (7)x2-9x+18= 。 (8)2x2-5x-3= 。 (9)12x2-50x+8= 。 40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。 41.因式分解2ax2-3x+2ax-3= 。 42.因式分解9x2-66x+121= 。 43.因式分解8-2x2= 。 44.因式分解x2-x+14 = 。 45.因式分解9x2-30x+25= 。 46.因式分解-20x2+9x+20= 。 47.因式分解12x2-29x+15= 。 48.因式分解36x2+39x+9= 。 49.因式分解21x2-31x-22= 。 50.因式分解9x4-35x2-4= 。 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。 52.因式分解2ax2-3x+2ax-3= 。 53.因式分解x(y+2)-x-y-1= 。 54.因式分解(x2-3x)+(x-3)2= 。 55.因式分解9x2-66x+121= 。 56.因式分解8-2x2= 。 57.因式分解x4-1= 。 58.因式分解x2+4x-xy-2y+4= 。 59.因式分解4x2-12x+5= 。 60.因式分解21x2-31x-22= 。 61.因式分解4x2+4xy+y2-4x-2y-3= 。 62.因式分解9x5-35x3-4x= 。 63.因式分解下列各式: (1)3x2-6x= 。 (2)49x2-25= 。 (3)6x2-13x+5= 。 (4)x2+2-3x= 。 (5)12x2-23x-24= 。 (6)(x+6)(x-6)-(x-6)= 。 (7)3(x+2)(x-5)-(x+2)(x-3)= 。 (8)9x2+42x+49= 。 64.9x2-30x+k可化为完全平方式(3x+a)2,则k= a= 。 65.若x2+mx-15可分解为(x+n)(x-3),m、n皆为整数,则m= n= 。 66.求下列各式的和或差或积或商。 (1)(6512 )2-(3412 )2= 。 (2)(7913 )2+2×7913 ×23 +49 = 。 (3)1998×0.48-798×0.48-798×0.52+1998×0.52= 。 67.因式分解下列各式: (1)(x+2)-2(x+2)2= 。 (2)36x2+39x+9= 。 (3)2x2+ax-6x-3a= 。 (4)22x2-31x-21= 。 68.利用平方差,和的平方或差的平方公式,填填看 (1)49x2-1=( +1)( -1) (2)x2+26x+ =(x+ )2 (3)x2-20x+ =(x- )2 (4)25x2-49y2=(5x+ )(5x- ) (5) -66x+121=( -11)2 69.利用公式求下列各式的值 (1)求5992-4992= (2)求(7512 )2-(2412 )2= (3)求392+39×22+112= (4)求172-34×5+52= (5)若2x+5y=13 +7 ,x-4y=7 -13 求2x2-3xy-20y2= 70.因式分解3ax2-6ax= 。 71.因式分解(x+1)x-5x= 。 72.因式分解(2x+1)(x-3)-(2x+1)(x-5)= 73.因式分解xy+2x-5y-10= 74.因式分解x2y2-x2-y2-6xy+4= 。 五、计算题 1.因式分解x3+2x2+2x+1 2.因式分解a2b2-a2-b2+1 3.试用除法判别15x2+x-6是不是3x+2的倍式。 4.(1)判别3x+2是不是6x2+x-2的因式?(写出计算式) (2)如果是,请因式分解6x2+x-2。 5.a=19912 ,b=9912 ,(1)求a2-2ab+b2之值? (2)a2-b2之值? 6.判别2x+1是否4x2+8x+3的因式?如果是,请因式分解4x2+8x+3。 7.因式分解(1)3ax2-2x+3ax-2 (2)(x2-3x)+(x-3)2+2x-6。 8.设6x2-13x+k为3x-2的倍式,求k之值。 9.判别3x是不是x2之因式?(要说明理由) 10.若-2x2+ax-12,能被2x-3整除,求 (1)a=? (2)将-2x2+ax-12因式分解。 11.(1)因式分解ab-cd+ad-bc (2)利用(1)求1990×29-1991×71+1990×71-29×1991的值。 12.利用平方差公式求1992-992=? 13.利用乘法公式求(6712 )2-(3212 )2=? 14.因式分解下列各式: (1)(2x+3)(x-2)+(x+1)(2x+3) (2)9x2-66x+121 15.请同学用曾经学过的各种不同因式分解的方法因式分解16x2-24x+9 (1)方法1: (2)方法2: 16.因式分解下列各式: (1)4x2-25 (2)x2-4xy+4y2 (3)利用(1)(2)之方法求a2-b2+2bc-c2 17.因式分解 (1)8x2-18 (2)x2-(a-b)x-ab 18.因式分解下列各式 (1)9x4+35x2-4 (2)x2-y2-2yz-z2 (3)a(b2-c2)-c(a2-b2) 19.因式分解(2x+1)(x+1)+(2x+1)(x-3) 20.因式分解39x2-38x+8 21.利用因式分解求(6512 )2-(3412 )2之值 22.因式分解a(b2-c2)-c(a2-b2) 23.a、b、c是整数,若a2+b2+c2+4a-8b-14c+69=0,求a+2b-3c的值 24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2 25.因式分解xy2-2xy-3x-y2-2y-1 26.因式分解4x2-6ax+18a2 27.因式分解20a3bc-9a2b2c-20ab3c 28.因式分解2ax2-5x+2ax-5 29.因式分解4x3+4x2-25x-25 30.因式分解(1-xy)2-(y-x)2 31.因式分解 (1)mx2-m2-x+1 (2)a2-2ab+b2-1 32.因式分解下列各式 (1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2 33.因式分解:xy2-2xy-3x-y2-2y-1 34.因式分解y2(x-y)+z2(y-x) 35.设x+1是2x2+ax-3的因式,(1)求a=? (2)求2x2+ax-3=0之二根 36.(1)因式分解x2+x+y2-y-2xy=? (2)承(1)若x-y=99求x2+x+y2-y-2xy之值?2023-07-21 20:53:221
帮我出几道因式分解,带答案的,长一点?!!!
额,你为什么还要再问一遍?2023-07-21 20:53:551
求30道初2分解因式题及答案
1、下列各式从左到右的变形属于因式分解的是( ) A. B. C. D. 2、观察下列各式:① ;② ;③ ;④ ;⑤ ;⑥ .其中可以用提公因式法分解因式的有( ) A.①②⑤ B.②④⑤ C.②④⑥ D.①②⑤⑥ 3、多项式 分解因式时应提取的公因式为( ) A.3mn B. C. D. 4、下列因式分解中,正确的有 ①4a-a3b2=a(4-a2b2);②x2y-2xy+xy=xy(x-2);③-a+ab-ac=-a(a-b-c);④9abc-6a2b=3abc(3-2a);⑤ x2y+ xy2= xy(x+y) A.0个 B.1个 C.2个 D.5个 5、若 ,则A为( ) A. B. C. D. 6、把多项式 (n为大于2的正整数)分解因式为( ) A. B. C. D. 7、把多项式 分解因式的结果是( ) A. B. C. D. 8、把一个多项式化成几个整式_______的形式,叫做把这个多项式因式分解. 9、利用因式分解计算32×3.14+5.4×31.4+0.14×314=________. 10、分别写出下列多项式的公因式: (1) : ; (2) : ; (3) : ; (4) : ; 11、已知a+b=13,ab=40,则 的结果为______________. 12、用提公因式法分解下列各式: (1) (2) 13、当x=2,y= 时,求代数式 的值. 15.4第1课时参考答案: 1、D(点拨:判断是不是因式分解必须满足两点,一是等式左边是多项式,二是等式的整式积的形式) 2、D(点拨:看能否使用提公因式法因式分解的关键是多项式中各项是否有公因式的存在) 3、B(点拨:公因式的系数取各系数的最大公约数,相同字母取最低指数幂,保证提取后的多项式第一项符号为正) 4、B(点拨:①正确;②提取公因式后漏项了;③最后一项提取公因式后应该+c;④公因式应该是3ab;⑤⑥) 5、D(点拨:可用 除以 ) 6、D(点拨:公因式是相同字母的最低次幂,然后用 除以公因式即可) 7、C(点拨:本题的公因式为 ,提公因式一定要提尽) 8、乘积 9、314 10、(1) ;(2) ;(3) ;(4) 11、520 12、(1)原式= ; (2)原式= ; 13、解: = = =x(x+y) 把x=2,y= 代入,原式=2×(2+ )=5 第二课时 公式法(一) 跟踪训练: 1、下列各式中,不能用平方差公式分解因式的是( ) A. B. C.49 D. 2、分解因式结果为 的多项式是( ) A. B. C. D. 3、把多项式 因式进行分解因式,其结果是( ) A. B. C. D. 4、把 分解因式的结果是( ) A. B. C. D. 5、将多项式 分解因式为( ) A. B. C. D. 6、在有理数范围内把 分解因式,结果中因式的个数有( ) A.3个 B.4个 C.5个 D.6个 7、已知长方形的面积是 ,一边长是 ,则另一边长是___________. 8、已知x、y互为相反数,且 =4,则x=________,y=________. 9、分解因式: =________________. 10、利用因式分解计算: =_____________. 11、已知 , ,则x=________,y=__________. 12、已知 , ,则代数式 的值为_______________. 15.4第2课时参考答案: 1、B(点拨:能运用平方差的公式特点,一是左边有两项可以表达成平方的形式,这两项前面的符号一正一负) 2、D(点拨:原式= ) 3、D(点拨: ,然后运用平方差公式) 4、D(点拨:有公因式,先提取公因式,再运用平方差公式) 5、D(点拨:先将前两项运用平方差公式因式分解,然后再提取公因式 ) 6、C(点拨: = ) 7、 8、 - 9、 10、-12.996(点拨:原式= = ) 11、 12、8 跟踪训练: 1、( )2+20xy+25 =( )2. 2、已知 ,则 =__________. 3、已知 ,则x+y=________. 4、若 是完全平方式,则实数m的值是( ) A.-5 B.3 C.7 D.7或-1 5、若二项式 加上一个单项式后成为一个完全平方式,则这样的单项式共有( ) A.1个 B.2个 C.3个 D.4个 6、利用因式分解计算: =_______________. 7、在实数范围内分解因式: =_____________________. 8、将下列各式因式分解 (1) (2) (3) (4) 9、分解因式: =( ) , ( )-20(x+y)=( ) . 10、因式分解 的结果为_________________________. 11、已知x+y=7,xy=10.求 (1) 的值;(2) 12、如果 ,求 的值. 15.4第3课时参考答案: 1、2x 2x+5y 2、 3、-2 4、D(点拨:中间一项应该是x和2的积的两倍,所以m-3=±4) 5、C(点拨:如果已知的两项是平方和,则缺少的项应该是积的两倍±4x;如果 是积的两倍,缺少的是一个平方项 ;如果4是积的两倍,则缺少的项为 ,最后一个是分式,不符合要求) 6、90000 7、 8、(1) ;(2) ;(3) ;(4) 9、x+y+4 25 2x+2y-5 10、 11、解:(1)∵x+y=7,xy=10,∴ , ∴ ,∴ ,∴ =58 (2)∵ ,∴ ,∴ =841 ∴ =641 ∴ = =441 12、∵ ,∴ , ∴ = =-3×5+7=-8 一、耐心选一选,你会开心(每题6分,共30分) 1、下列从左到右的变形是分解因式的是( ) A. B. C. D. 2、 不能被下列那个数整除( ) A.2003 B.2002 C.2001 D.1001 3、已知m-n=3,mn=1,则 的值为( ) A.5 B.7 C.9 D.11 4、将多项式 分解因式为( ) A. B. C. D. 5、如果4x-3是多项式 的一个因式,则a等于( ) A.-6 B.6 C.-9 D.9 二、精心填一填,你会轻松(每题6分,共30分) 6、分解因式: =______________________. 7、多项式 , 的公因式是__________________. 8、用分解因式法计算 =__________________. 9、多项式 加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是_______________________(填上一个你认为正确的即可) 10、已知多项式 分解因式的结果是 ,则a=______,b=______,c=_________. 三、细心做一做,你会成功(共40分) 11、(8分)分解因式 (1) (2) (3) (4) 12、(8分)计算: 13、(8分)已知 , ,则 的值是多少? 综合创新 14、(8分)证明: 能被13整除. 15、(8分)若多项式 分解因式得 ,求: 的值. 中考链接 16.(2007四川德阳)已知 ,则 的值是( ) A. B. C. D. 17.(2007云南)已知x+y = –5,xy = 6,则 的值是( ) A. B. C. D. 18.(2007广东河池)分解因式: . 19. (2007山东烟台)请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果 . 20. (2007安徽芜湖)因式分解: . 15.4本节自测参考答案: 夯实基础 1、C(点拨:因式分解的特征,左边是几个整式的乘积的形式) 2、C(点拨: =2003×(2003-1)=2003×2002) 3、D(点拨: ,将m-n=3,mn=1) 4、D(点拨: = = ) 5、A(点拨:令4x-3=0,解得x=0.75,把x=0.75代入 =0中,求得a=-6) 6、 7、a-b 8、10000 9、 或± 10、12 -5 -3 11、(1) ;(2) ;(3) 12、 13、14 综合创新 14、证明:∵ = =13(2n+13) ∴ 能被13整除 15、∵ = ,∴m=1,n=-12, ∴ =-12×(-11)=132 中考链接 16.C 17. B 18. 19.答案不唯一,如 20 1)-6ax^3y+8x^2y^2-2x^2y =2x^2y(-3ax+4y-1) (2)3a^2(x-y)^3-4b^2(y-x)^2 =(x-y)^2(3a^2-4b^2) =(x-y)^2(3^0.5a+2b)(3^0.5a-2b) (3)(x+y)(m-a)-3y(a-m)^2+(a-m)^3 =(a-m)[(a-m)^2-3y(a-m)-(x-y)] 此题是不是有错,按照道理后面这一项还可以再分解的,是关于(a-m)的分解式 (4)8x(a-1)-4(1-a) =4(a-1)(2x+1) (5)m(1-a)+mn(1-a)+1-a =(1-a)(m+mn+1) 此题是不是有错,按照道理后面这一项还可以再分解的 例如:m+n+mn+1=(m+1)(n+1) (1)16x4-64y4 =16(x^4-4y^4) =16(x^2+2y^2)(x-2^0.5y)(x+2^0.5y) (2)16x6-1/4 =1/4(64x^6-1) =1/4(8x^3-1)(8x^3+1) =1/4(2x-1)(4x^2+2x+1)(2x+1)(4x^2-2x+1) (3)(a6+b4)2-4a6b4 =a^12+2a^6b^4+b^8-4a^6b^4 =a^12-2a^6b^4+b^8 =(a^6-b^4)^2 =(a^3+b^2)^2(a^3-b^2)^2 (5)-2m8+512 =-2(m^8-256) =-2(m^4-16)(m^4+16) =-2(m^2-4)(m^2+4)(m^4+16) =-2(m-2)(m+2)(m^2+4)(m^4+16) (6) (x+y)3-64 =(x+y-4)(x^2+2xy+y^2+4x+4y+16) 或m3-64n3 =(m-4n)(m^2+4mn+16n^2) 1- 14 x2 4x –2 x2 – 2 ( x- y )3 –(y- x) x2 –y2 – x + y x2 –y2 -1 ( x + y) (x – y ) x2 + 1 x2 -2-( x -1x )2 a3-a2-2a 4m2-9n2-4m+1 3a2+bc-3ac-ab 9-x2+2xy-y2 2x2-3x-1 -2x2+5xy+2y2 10a(x-y)2-5b(y-x) an+1-4an+4an-1 x3(2x-y)-2x+y x(6x-1)-1 2ax-10ay+5by+6x 1-a2-ab-14 b2 a4+4 (x2+x)(x2+x-3)+2 x5y-9xy5 -4x2+3xy+2y2 4a-a5 2x2-4x+1 4y2+4y-5 3X2-7X+2 8xy(x-y)-2(y-x)3 x6-y6 x3+2xy-x-xy2 (x+y)(x+y-1)-12 4ab-(1-a2)(1-b2) -3m2-2m+4 a2-a-6 2(y-z)+81(z-y) 9m2-6m+2n-n2 ab(c2+d2)+cd(a2+b2) a4-3a2-4 x4+4y4 a2+2ab+b2-2a-2b+1 x2-2x-4 4x2+8x-1 2x2+4xy+y2 - m2 – n2 + 2mn + 1 (a + b)3d – 4(a + b)2cd+4(a + b)c2d (x + a)2 – (x – a)2 –x5y – xy +2x3y x6 – x4 – x2 + 1 (x +3) (x +2) +x2 – 9 (x –y)3 +9(x – y) –6(x – y)2 (a2 + b2 –1 )2 – 4a2b2 (ax + by)2 + (bx – ay)2 x2 + 2ax – 3a2 3a3b2c-6a2b2c2+9ab2c3 xy+6-2x-3y x2(x-y)+y2(y-x) 2x2-(a-2b)x-ab a4-9a2b2 ab(x2-y2)+xy(a2-b2) (x+y)(a-b-c)+(x-y)(b+c-a) a2-a-b2-b (3a-b)2-4(3a-b)(a+3b)+4(a+3b)2 (a+3)2-6(a+3) (x+1)2(x+2)-(x+1)(x+2)2 35.因式分解x2-25= 。 36.因式分解x2-20x+100= 。 37.因式分解x2+4x+3= 。 38.因式分解4x2-12x+5= 。 39.因式分解下列各式: (1)3ax2-6ax= 。 (2)x(x+2)-x= 。 (3)x2-4x-ax+4a= 。 (4)25x2-49= 。 (5)36x2-60x+25= 。 (6)4x2+12x+9= 。 (7)x2-9x+18= 。 (8)2x2-5x-3= 。 (9)12x2-50x+8= 。 40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。 41.因式分解2ax2-3x+2ax-3= 。 42.因式分解9x2-66x+121= 。 43.因式分解8-2x2= 。 44.因式分解x2-x+14 = 。 45.因式分解9x2-30x+25= 。 46.因式分解-20x2+9x+20= 。 47.因式分解12x2-29x+15= 。 48.因式分解36x2+39x+9= 。 49.因式分解21x2-31x-22= 。 50.因式分解9x4-35x2-4= 。 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。 52.因式分解2ax2-3x+2ax-3= 。 53.因式分解x(y+2)-x-y-1= 。 54.因式分解(x2-3x)+(x-3)2= 。 55.因式分解9x2-66x+121= 。 56.因式分解8-2x2= 。 57.因式分解x4-1= 。 58.因式分解x2+4x-xy-2y+4= 。 59.因式分解4x2-12x+5= 。 60.因式分解21x2-31x-22= 。 61.因式分解4x2+4xy+y2-4x-2y-3= 。 62.因式分解9x5-35x3-4x= 。 63.因式分解下列各式: (1)3x2-6x= 。 (2)49x2-25= 。 (3)6x2-13x+5= 。 (4)x2+2-3x= 。 (5)12x2-23x-24= 。 (6)(x+6)(x-6)-(x-6)= 。 (7)3(x+2)(x-5)-(x+2)(x-3)= 。 (8)9x2+42x+49= 。 (1)(x+2)-2(x+2)2= 。 (2)36x2+39x+9= 。 (3)2x2+ax-6x-3a= 。 (4)22x2-31x-21= 。 70.因式分解3ax2-6ax= 。 71.因式分解(x+1)x-5x= 。 72.因式分解(2x+1)(x-3)-(2x+1)(x-5)= 73.因式分解xy+2x-5y-10= 74.因式分解x2y2-x2-y2-6xy+4= x3+2x2+2x+1 a2b2-a2-b2+1 (1)3ax2-2x+3ax-2 (x2-3x)+(x-3)2+2x-6 1)(2x+3)(x-2)+(x+1)(2x+3) 9x2-66x+121 17.因式分解 (1)8x2-18 (2)x2-(a-b)x-ab 18.因式分解下列各式 (1)9x4+35x2-4 (2)x2-y2-2yz-z2 (3)a(b2-c2)-c(a2-b2) 19.因式分解(2x+1)(x+1)+(2x+1)(x-3) 20.因式分解39x2-38x+8 21.利用因式分解求(6512 )2-(3412 )2之值 22.因式分解a(b2-c2)-c(a2-b2) 24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2 25.因式分解xy2-2xy-3x-y2-2y-1 26.因式分解4x2-6ax+18a2 27.因式分解20a3bc-9a2b2c-20ab3c 28.因式分解2ax2-5x+2ax-5 29.因式分解4x3+4x2-25x-25 30.因式分解(1-xy)2-(y-x)2 31.因式分解 (1)mx2-m2-x+1 (2)a2-2ab+b2-1 32.因式分解下列各式 (1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2 33.因式分解:xy2-2xy-3x-y2-2y-1 34.因式分解y2(x-y)+z2(y-x) 1)因式分解x2+x+y2-y-2xy=很高兴能帮到你~~!!我在各个地方找到滴都一点点打到上面了,选我为最佳答案喔2023-07-21 20:54:041
高分求因式分解练习题
因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2) 3.因式分解xy+6-2x-3y=(x-3)(y-2) 4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b) 6.因式分解a4-9a2b2=a^2(a+3b)(a-3b) 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 10.因式分解a2-a-b2-b=(a+b)(a-b-1) 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 12.因式分解(a+3)2-6(a+3)=(a+3)(a-3) 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4) (2)16x2-81=(4x+9)(4x-9) (3)9x2-30x+25=(3x-5)^2 (4)x2-7x-30=(x-10)(x+3) 35.因式分解x2-25=(x+5)(x-5) 36.因式分解x2-20x+100=(x-10)^2 37.因式分解x2+4x+3=(x+1)(x+3) 38.因式分解4x2-12x+5=(2x-1)(2x-5) 39.因式分解下列各式: (1)3ax2-6ax=3ax(x-2) (2)x(x+2)-x=x(x+1) (3)x2-4x-ax+4a=(x-4)(x-a) (4)25x2-49=(5x-9)(5x+9) (5)36x2-60x+25=(6x-5)^2 (6)4x2+12x+9=(2x+3)^2 (7)x2-9x+18=(x-3)(x-6) (8)2x2-5x-3=(x-3)(2x+1) (9)12x2-50x+8=2(6x-1)(x-4) 40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1) 41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3) 42.因式分解9x2-66x+121=(3x-11)^2 43.因式分解8-2x2=2(2+x)(2-x) 44.因式分解x2-x+14 =整数内无法分解 45.因式分解9x2-30x+25=(3x-5)^2 46.因式分解-20x2+9x+20=(-4x+5)(5x+4) 47.因式分解12x2-29x+15=(4x-3)(3x-5) 48.因式分解36x2+39x+9=3(3x+1)(4x+3) 49.因式分解21x2-31x-22=(21x+11)(x-2) 50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2) 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1) 52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3) 53.因式分解x(y+2)-x-y-1=(x-1)(y+1) 54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3) 55.因式分解9x2-66x+121=(3x-11)^2 56.因式分解8-2x2=2(2-x)(2+x) 57.因式分解x4-1=(x-1)(x+1)(x^2+1) 58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2) 59.因式分解4x2-12x+5=(2x-1)(2x-5) 60.因式分解21x2-31x-22=(21x+11)(x-2) 61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1) 62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2) 63.因式分解下列各式: (1)3x2-6x=3x(x-2) (2)49x2-25=(7x+5)(7x-5) (3)6x2-13x+5=(2x-1)(3x-5) (4)x2+2-3x=(x-1)(x-2) (5)12x2-23x-24=(3x-8)(4x+3) (6)(x+6)(x-6)-(x-6)=(x-6)(x+5) (7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2) (8)9x2+42x+49=(3x+7)^2 。1.若(2x)nu221281 = (4x2+9)(2x+3)(2xu22123),那么n的值是( ) A.2 B. 4 C.6 D.8 2.若9x2u221212xy+m是两数和的平方式,那么m的值是( ) A.2y2 B.4y 2 C.±4y2 D.±16y2 3.把多项式a4u2212 2a2b2+b4因式分解的结果为( ) A.a2(a2u22122b2)+b4 B.(a2u2212b2)2 C.(au2212b)4 D.(a+b)2(au2212b)2 4.把(a+b)2u22124(a2u2212b2)+4(au2212b)2分解因式为( ) A.( 3au2212b)2 B.(3b+a)2 C.(3bu2212a)2 D.( 3a+b)2 5.计算:(u2212)2001+(u2212)2000的结果为( ) A.(u2212)2003 B.u2212(u2212)2001 C. D.u2212 6.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( ) A.M>N B.M≥N C.M≤N D.不能确定 7.对于任何整数m,多项式( 4m+5)2u22129都能( ) A.被8整除 B.被m整除 C.被(mu22121)整除 D.被(2nu22121)整除 8.将u22123x2nu22126xn分解因式,结果是( ) A.u22123xn(xn+2) B.u22123(x2n+2xn) C.u22123xn(x2+2) D.3(u2212x2nu22122xn) 9.下列变形中,是正确的因式分解的是( ) A. 0.09m2u2212 n2 = ( 0.03m+ )( 0.03mu2212) B.x2u221210 = x2u22129u22121 = (x+3)(xu22123)u22121 C.x4u2212x2 = (x2+x)(x2u2212x) D.(x+a)2u2212(xu2212a)2 = 4ax 10.多项式(x+yu2212z)(xu2212y+z)u2212(y+zu2212x)(zu2212xu2212y)的公因式是( ) A.x+yu2212z B.xu2212y+z C.y+zu2212x D.不存在 11.已知x为任意有理数,则多项式xu22121u2212x2的值( ) A.一定为负数 B.不可能为正数 C.一定为正数 D.可能为正数或负数或零 二、解答题: 分解因式: (1)(ab+b)2u2212(a+b)2 (2)(a2u2212x2)2u22124ax(xu2212a)2 (3)7xn+1u221214xn+7xnu22121(n为不小于1的整数) 答案: 一、选择题: 1.B 说明:右边进行整式乘法后得16x4u221281 = (2x)4u221281,所以n应为4,答案为B. 2.B 说明:因为9x2u221212xy+m是两数和的平方式,所以可设9x2u221212xy+m = (ax+by)2,则有9x2u221212xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = u221212,b2y2 = m;得到a = 3,b = u22122;或a = u22123,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B. 3.D 说明:先运用完全平方公式,a4u2212 2a2b2+b4 = (a2u2212b2)2,再运用两数和的平方公式,两数分别是a2、u2212b2,则有(a2u2212b2)2 = (a+b)2(au2212b)2,在这里,注意因式分解要分解到不能分解为止;答案为D. 4.C 说明:(a+b)2u22124(a2u2212b2)+4(au2212b)2 = (a+b)2u22122(a+b)[2(au2212b)]+[2(au2212b)]2 = [a+bu22122(au2212b)]2 = (3bu2212a)2;所以答案为C. 5.B 说明:(u2212)2001+(u2212)2000 = (u2212)2000[(u2212)+1] = ()2000 u2022= ()2001 = u2212(u2212)2001,所以答案为B. 6.B 说明:因为Mu2212N = x2+y2u22122xy = (xu2212y)2≥0,所以M≥N. 7.A 说明:( 4m+5)2u22129 = ( 4m+5+3)( 4m+5u22123) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1). 8.A 9.D 说明:选项A,0.09 = 0.32,则 0.09m2u2212 n2 = ( 0.3m+n)( 0.3mu2212n),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2u2212x)可继续分解为x2(x+1)(xu22121);所以答案为D. 10.A 说明:本题的关键是符号的变化:zu2212xu2212y = u2212(x+yu2212z),而xu2212y+z≠y+zu2212x,同时xu2212y+z≠u2212(y+zu2212x),所以公因式为x+yu2212z. 11.B 说明:xu22121u2212x2 = u2212(1u2212x+x2) = u2212(1u2212x)2≤0,即多项式xu22121u2212x2的值为非正数,正确答案应该是B. 二、解答题: (1) 答案:a(bu22121)(ab+2b+a) 说明:(ab+b)2u2212(a+b)2 = (ab+b+a+b)(ab+bu2212au2212b) = (ab+2b+a)(abu2212a) = a(bu22121)(ab+2b+a). (2) 答案:(xu2212a)4 说明:(a2u2212x2)2u22124ax(xu2212a)2 = [(a+x)(au2212x)]2u22124ax(xu2212a)2 = (a+x)2(au2212x)2u22124ax(xu2212a)2 = (xu2212a)2[(a+x)2u22124ax] = (xu2212a)2(a2+2ax+x2u22124ax) = (xu2212a)2(xu2212a)2 = (xu2212a)4. (3) 答案:7xnu22121(xu22121)2 说明:原式 = 7xnu22121 u2022x2u22127xnu22121 u20222x+7xnu22121 = 7xnu22121(x2u22122x+1) = 7xnu22121(xu22121)2.2023-07-21 20:54:151
整式的乘除与因式分解练习题
你可以去书店找,网上不一定好~ 类似奥数的,或练习2023-07-21 20:54:453
因式分解练习题及答案,最好多一点题目^_^o~ 努力!
3.因式分解xy+6-2x-3y=(x-3)(y-2) 4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b) 6.因式分解a4-9a2b2=a^2(a+3b)(a-3b) 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 10.因式分解a2-a-b2-b=(a+b)(a-b-1) 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 12.因式分解(a+3)2-6(a+3)=(a+3)(a-3) 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4) (2)16x2-81=(4x+9)(4x-9) (3)9x2-30x+25=(3x-5)^2 (4)x2-7x-30=(x-10)(x+3) 35.因式分解x2-25=(x+5)(x-5) 36.因式分解x2-20x+100=(x-10)^2 37.因式分解x2+4x+3=(x+1)(x+3) 38.因式分解4x2-12x+5=(2x-1)(2x-5) 39.因式分解下列各式: (1)3ax2-6ax=3ax(x-2) (2)x(x+2)-x=x(x+1) (3)x2-4x-ax+4a=(x-4)(x-a) (4)25x2-49=(5x-9)(5x+9) (5)36x2-60x+25=(6x-5)^2 (6)4x2+12x+9=(2x+3)^2 (7)x2-9x+18=(x-3)(x-6) (8)2x2-5x-3=(x-3)(2x+1) (9)12x2-50x+8=2(6x-1)(x-4)2023-07-21 20:55:052
求初二上因式分解和整式乘除练习题200道(要答案)
第15章 整式的乘除与因式分解第4节 因式分解 第一课时 提公因式法 跟踪训练:1、下列各式从左到右的变形属于因式分解的是( ) A. B. C. D. 2、观察下列各式:① ;② ;③ ;④ ;⑤ ;⑥ .其中可以用提公因式法分解因式的有( ) A.①②⑤ B.②④⑤ C.②④⑥ D.①②⑤⑥3、多项式 分解因式时应提取的公因式为( ) A.3mn B. C. D. 4、下列因式分解中,正确的有①4a-a3b2=a(4-a2b2);②x2y-2xy+xy=xy(x-2);③-a+ab-ac=-a(a-b-c);④9abc-6a2b=3abc(3-2a);⑤ x2y+ xy2= xy(x+y)A.0个 B.1个 C.2个 D.5个5、若 ,则A为( ) A. B. C. D. 6、把多项式 (n为大于2的正整数)分解因式为( ) A. B. C. D. 7、把多项式 分解因式的结果是( )A. B. C. D. 8、把一个多项式化成几个整式_______的形式,叫做把这个多项式因式分解.9、利用因式分解计算32×3.14+5.4×31.4+0.14×314=________.10、分别写出下列多项式的公因式:(1) : ;(2) : ;(3) : ;(4) : ;11、已知a+b=13,ab=40,则 的结果为______________.12、用提公因式法分解下列各式:(1) (2) 13、当x=2,y= 时,求代数式 的值.15.4第1课时参考答案:1、D(点拨:判断是不是因式分解必须满足两点,一是等式左边是多项式,二是等式的整式积的形式) 2、D(点拨:看能否使用提公因式法因式分解的关键是多项式中各项是否有公因式的存在) 3、B(点拨:公因式的系数取各系数的最大公约数,相同字母取最低指数幂,保证提取后的多项式第一项符号为正) 4、B(点拨:①正确;②提取公因式后漏项了;③最后一项提取公因式后应该+c;④公因式应该是3ab;⑤⑥) 5、D(点拨:可用 除以 ) 6、D(点拨:公因式是相同字母的最低次幂,然后用 除以公因式即可) 7、C(点拨:本题的公因式为 ,提公因式一定要提尽) 8、乘积 9、314 10、(1) ;(2) ;(3) ;(4) 11、520 12、(1)原式= ; (2)原式= ;13、解: = = =x(x+y)把x=2,y= 代入,原式=2×(2+ )=5第二课时 公式法(一)跟踪训练:1、下列各式中,不能用平方差公式分解因式的是( ) A. B. C.49 D. 2、分解因式结果为 的多项式是( ) A. B. C. D. 3、把多项式 因式进行分解因式,其结果是( ) A. B. C. D. 4、把 分解因式的结果是( )A. B. C. D. 5、将多项式 分解因式为( ) A. B. C. D. 6、在有理数范围内把 分解因式,结果中因式的个数有( ) A.3个 B.4个 C.5个 D.6个7、已知长方形的面积是 ,一边长是 ,则另一边长是___________.8、已知x、y互为相反数,且 =4,则x=________,y=________.9、分解因式: =________________.10、利用因式分解计算: =_____________.11、已知 , ,则x=________,y=__________.12、已知 , ,则代数式 的值为_______________.15.4第2课时参考答案:1、B(点拨:能运用平方差的公式特点,一是左边有两项可以表达成平方的形式,这两项前面的符号一正一负) 2、D(点拨:原式= ) 3、D(点拨: ,然后运用平方差公式) 4、D(点拨:有公因式,先提取公因式,再运用平方差公式) 5、D(点拨:先将前两项运用平方差公式因式分解,然后再提取公因式 ) 6、C(点拨: = ) 7、 8、 - 9、 10、-12.996(点拨:原式= = ) 11、 12、8跟踪训练:1、( )2+20xy+25 =( )2.2、已知 ,则 =__________.3、已知 ,则x+y=________.4、若 是完全平方式,则实数m的值是( ) A.-5 B.3 C.7 D.7或-15、若二项式 加上一个单项式后成为一个完全平方式,则这样的单项式共有( ) A.1个 B.2个 C.3个 D.4个6、利用因式分解计算: =_______________.7、在实数范围内分解因式: =_____________________.8、将下列各式因式分解 (1) (2) (3) (4) 9、分解因式: =( ) , ( )-20(x+y)=( ) .10、因式分解 的结果为_________________________.11、已知x+y=7,xy=10.求 (1) 的值;(2) 12、如果 ,求 的值.15.4第3课时参考答案:1、2x 2x+5y 2、 3、-2 4、D(点拨:中间一项应该是x和2的积的两倍,所以m-3=±4) 5、C(点拨:如果已知的两项是平方和,则缺少的项应该是积的两倍±4x;如果 是积的两倍,缺少的是一个平方项 ;如果4是积的两倍,则缺少的项为 ,最后一个是分式,不符合要求) 6、90000 7、 8、(1) ;(2) ;(3) ;(4) 9、x+y+4 25 2x+2y-5 10、 11、解:(1)∵x+y=7,xy=10,∴ , ∴ ,∴ ,∴ =58(2)∵ ,∴ ,∴ =841 ∴ =641∴ = =44112、∵ ,∴ ,∴ = =-3×5+7=-8一、耐心选一选,你会开心(每题6分,共30分)1、下列从左到右的变形是分解因式的是( ) A. B. C. D. 2、 不能被下列那个数整除( ) A.2003 B.2002 C.2001 D.10013、已知m-n=3,mn=1,则 的值为( ) A.5 B.7 C.9 D.114、将多项式 分解因式为( ) A. B. C. D. 5、如果4x-3是多项式 的一个因式,则a等于( ) A.-6 B.6 C.-9 D.9二、精心填一填,你会轻松(每题6分,共30分)6、分解因式: =______________________.7、多项式 , 的公因式是__________________.8、用分解因式法计算 =__________________.9、多项式 加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是_______________________(填上一个你认为正确的即可)10、已知多项式 分解因式的结果是 ,则a=______,b=______,c=_________.三、细心做一做,你会成功(共40分)11、(8分)分解因式(1) (2) (3) (4) 12、(8分)计算: 13、(8分)已知 , ,则 的值是多少?综合创新14、(8分)证明: 能被13整除.15、(8分)若多项式 分解因式得 ,求: 的值.中考链接16.(2007四川德阳)已知 ,则 的值是( )A. B. C. D. 17.(2007云南)已知x+y = –5,xy = 6,则 的值是( )A. B. C. D. 18.(2007广东河池)分解因式: .19. (2007山东烟台)请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果 .20. (2007安徽芜湖)因式分解: .15.4本节自测参考答案:夯实基础1、C(点拨:因式分解的特征,左边是几个整式的乘积的形式)2、C(点拨: =2003×(2003-1)=2003×2002)3、D(点拨: ,将m-n=3,mn=1)4、D(点拨: = = )5、A(点拨:令4x-3=0,解得x=0.75,把x=0.75代入 =0中,求得a=-6)6、 7、a-b8、100009、 或± 10、12 -5 -311、(1) ;(2) ;(3) 12、 13、14综合创新14、证明:∵ = =13(2n+13) ∴ 能被13整除15、∵ = ,∴m=1,n=-12, ∴ =-12×(-11)=132中考链接16.C17. B18. 19.答案不唯一,如 20.2023-07-21 20:55:151
求100道因式分解及附带每题答案!
因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2c(a^2-2ac+3c^2)2.因式分解xy+6-2x-3y=(x-3)(y-2)3.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^24.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)5.因式分解a4-9a2b2=a^2(a+3b)(a-3b)8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14=整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2.x^2+7x+12=(x+3)(x+4)x^2-7x+12=(x-3)(x-4)x^2+8x+12=(x+2)(x+6)x^2-8x+12=(x-2)(x-6)x^2+13x+12=(x+1)(x+12)x^2-13x+12=(x-1)(x-12)12x^2+7x+1=(3x+1)(4x+1)12x^2-7x+1=(3x-1)(4x-1)12x^2+8x+1=(2x+1)(6x+1)12x^2-8x+1=(2x-1)(6x-1)12x^2+13x+1=(x+1)(12x+1)12x^2-13x+1=(x-1)(12x-1)x^2+6x+8=(x+2)(x+4)x^2-6x+8=(x-2)(x-4)x^2+9x+8=(x+1)(x+8)x^2-9x+8=(x-1)(x-8)8x^2+6x+1=(2x+1)(4x+1)8x^2-6x+1=(2x-1)(4x-1)8x^2+9x+1=(x+1)(8x+1)8x^2-9x+1=(x-1)(8x-1)x^2+7x+10=(x+2)(x+5)x^2-7x+10=(x-2)(x-5)x^2+5x+4=(x+1)(x+4)x^2-5x+4=(x-1)(x-4)x^2+5x+6=(x+2)(x+3)x^2-5x+6=(x-2)x-3)x^2-5x-6=(x-6)(x+1)x^2+5x-6=(x+6)(x-1)x^2+4x+3=(x+1)(x+3)x^2-4x+3=(x-1)(x-3)x^2-3x-4=(x-4)(x+1)x^2+3x-4=(x+4)(x-1)2023-07-21 20:55:381
给我一些八年级数学整式的乘除与因式分解的练习题
不会2023-07-21 20:55:461
请帮忙出100道简单的初二因式分解题 (象x y类型) 急用!!!!!!!!1
恩2023-07-21 20:56:035
求因式分解五道习题答案
第一题:(3a)(a+2b)第二题:(x+y-5)^2第三题:(2a-3b)^2第四题:(x+2)^2(x-2)^2第五题:(x^2+y^2-2)^22023-07-21 20:56:241
求初二上册因式分解练习题及答案30道
1.若(2x)nu221281 = (4x2+9)(2x+3)(2xu22123),那么n的值是( ) A.2 B. 4 C.6 D.8 2.若9x2u221212xy+m是两数和的平方式,那么m的值是( ) A.2y2 B.4y 2 C.±4y2 D.±16y2 3.把多项式a4u2212 2a2b2+b4因式分解的结果为( ) A.a2(a2u22122b2)+b4 B.(a2u2212b2)2 C.(au2212b)4 D.(a+b)2(au2212b)2 4.把(a+b)2u22124(a2u2212b2)+4(au2212b)2分解因式为( ) A.( 3au2212b)2 B.(3b+a)2 C.(3bu2212a)2 D.( 3a+b)2 5.计算:(u2212)2001+(u2212)2000的结果为( ) A.(u2212)2003 B.u2212(u2212)2001 C. D.u2212 6.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( ) A.M>N B.M≥N C.M≤N D.不能确定 7.对于任何整数m,多项式( 4m+5)2u22129都能( ) A.被8整除 B.被m整除 C.被(mu22121)整除 D.被(2nu22121)整除 8.将u22123x2nu22126xn分解因式,结果是( ) A.u22123xn(xn+2) B.u22123(x2n+2xn) C.u22123xn(x2+2) D.3(u2212x2nu22122xn) 9.下列变形中,是正确的因式分解的是( ) A. 0.09m2u2212 n2 = ( 0.03m+ )( 0.03mu2212) B.x2u221210 = x2u22129u22121 = (x+3)(xu22123)u22121 C.x4u2212x2 = (x2+x)(x2u2212x) D.(x+a)2u2212(xu2212a)2 = 4ax 10.多项式(x+yu2212z)(xu2212y+z)u2212(y+zu2212x)(zu2212xu2212y)的公因式是( ) A.x+yu2212z B.xu2212y+z C.y+zu2212x D.不存在 11.已知x为任意有理数,则多项式xu22121u2212x2的值( ) A.一定为负数 B.不可能为正数 C.一定为正数 D.可能为正数或负数或零 二、解答题: 分解因式: (1)(ab+b)2u2212(a+b)2 (2)(a2u2212x2)2u22124ax(xu2212a)2 (3)7xn+1u221214xn+7xnu22121(n为不小于1的整数) 答案: 一、选择题: 1.B 说明:右边进行整式乘法后得16x4u221281 = (2x)4u221281,所以n应为4,答案为B. 2.B 说明:因为9x2u221212xy+m是两数和的平方式,所以可设9x2u221212xy+m = (ax+by)2,则有9x2u221212xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = u221212,b2y2 = m;得到a = 3,b = u22122;或a = u22123,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B. 3.D 说明:先运用完全平方公式,a4u2212 2a2b2+b4 = (a2u2212b2)2,再运用两数和的平方公式,两数分别是a2、u2212b2,则有(a2u2212b2)2 = (a+b)2(au2212b)2,在这里,注意因式分解要分解到不能分解为止;答案为D. 4.C 说明:(a+b)2u22124(a2u2212b2)+4(au2212b)2 = (a+b)2u22122(a+b)[2(au2212b)]+[2(au2212b)]2 = [a+bu22122(au2212b)]2 = (3bu2212a)2;所以答案为C. 5.B 说明:(u2212)2001+(u2212)2000 = (u2212)2000[(u2212)+1] = ()2000 u2022= ()2001 = u2212(u2212)2001,所以答案为B. 6.B 说明:因为Mu2212N = x2+y2u22122xy = (xu2212y)2≥0,所以M≥N. 7.A 说明:( 4m+5)2u22129 = ( 4m+5+3)( 4m+5u22123) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1). 8.A 9.D 说明:选项A,0.09 = 0.32,则 0.09m2u2212 n2 = ( 0.3m+n)( 0.3mu2212n),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2u2212x)可继续分解为x2(x+1)(xu22121);所以答案为D. 10.A 说明:本题的关键是符号的变化:zu2212xu2212y = u2212(x+yu2212z),而xu2212y+z≠y+zu2212x,同时xu2212y+z≠u2212(y+zu2212x),所以公因式为x+yu2212z. 11.B 说明:xu22121u2212x2 = u2212(1u2212x+x2) = u2212(1u2212x)2≤0,即多项式xu22121u2212x2的值为非正数,正确答案应该是B. 二、解答题: (1) 答案:a(bu22121)(ab+2b+a) 说明:(ab+b)2u2212(a+b)2 = (ab+b+a+b)(ab+bu2212au2212b) = (ab+2b+a)(abu2212a) = a(bu22121)(ab+2b+a). (2) 答案:(xu2212a)4 说明:(a2u2212x2)2u22124ax(xu2212a)2 = [(a+x)(au2212x)]2u22124ax(xu2212a)2 = (a+x)2(au2212x)2u22124ax(xu2212a)2 = (xu2212a)2[(a+x)2u22124ax] = (xu2212a)2(a2+2ax+x2u22124ax) = (xu2212a)2(xu2212a)2 = (xu2212a)4. (3) 答案:7xnu22121(xu22121)2 说明:原式 = 7xnu22121 u2022x2u22127xnu22121 u20222x+7xnu22121 = 7xnu22121(x2u22122x+1) = 7xnu22121(xu22121)2.抱歉,没有那么多,希望对你有帮助2023-07-21 20:56:341
初二数学因式分解复习题
一、选择题1、下列各式中从左到右的变形属于分解因式的是()A.a(a+b-1)=a2+ab-aB.a2–a-2=a(a-1)-2C.-4a2+9b2=(-2a+3b)(2a+3b)D.2x+1=x(2+1/x)2、下列各式分解因是正确的是()A.x2y+7xy+y=y(x2+7x)B.3a2b+3ab+6b=3b(a2+a+2)C.6xyz-8xy2=2xyz(3-4y)D.-4x+2y-6z=2(2x+y-3z)3、下列多项式中,能用提公因式法分解因式的是()A.x2-yB.x2+2xC.x2+y2D.x2-xy+y24、2(a-b)3-(b-a)2分解因式的正确结果是()A.(a-b)2(2a-2b+1)B.2(a-b)(a-b-1)C.(b-a)2(2a-2b-1)D.(a-b)2(2a-b-1)5、下列多项式分解因式正确的是()A.1+4a-4a2=(1-2a)2B.4-4a+a2=(a-2)2C.1+4x2=(1+2x)2D.x2+xy+y2=(x+y)26、运用公式法计算992,应该是()A.(100-1)2B.(100+1)(100-1)C.(99+1)(99-1)D.(99+1)22023-07-21 20:56:464
求数学初二因式分解计算题20题附答案
1.m2(p-q)-p+q; 2.a(ab+bc+ac)-abc; 3.x4-2y4-2x3y+xy3; 4.abc(a2+b2+c2)-a3bc+2ab2c2; 5.a2(b-c)+b2(c-a)+c2(a-b); 6.(x2-2x)2+2x(x-2)+1; 7.(x-y)2+12(y-x)z+36z2; 8.x2-4ax+8ab-4b2; 9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx); 10.(1-a2)(1-b2)-(a2-1)2(b2-1)2; 11.(x+1)2-9(x-1)2; 12.4a2b2-(a2+b2-c2)2; 13.ab2-ac2+4ac-4a; 14.x3n+y3n; 15.(x+y)3+125; 16.(3m-2n)3+(3m+2n)3; 17.x6(x2-y2)+y6(y2-x2); 18.8(x+y)3+1; 19.(a+b+c)3-a3-b3-c3; 答案 1.(p-q)(m-1)(m+1). 8.(x-2b)(x-4a+2b). 11.4(2x-1)(2-x). 20.(x+3y)(x+y). 21.(x-6)(x+24).2023-07-21 20:56:581
出15道因式分解题带答案。
xy+6-2x-3y=(x-3)(y-2) 4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2 5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b) 6.因式分解a4-9a2b2=a^2(a+3b)(a-3b) 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2 8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by) 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c) 10.因式分解a2-a-b2-b=(a+b)(a-b-1) 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2 12.因式分解(a+3)2-6(a+3)=(a+3)(a-3) 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4) (2)16x2-81=(4x+9)(4x-9) (3)9x2-30x+25=(3x-5)^2 (4)x2-7x-30=(x-10)(x+3)2023-07-21 20:57:391
100道关于分解因式的题(有答案的)
1- 14 x2 4x –2 x2 – 2 ( x- y )3 –(y- x) x2 –y2 – x + y x2 –y2 -1 ( x + y) (x – y ) x2 + 1 x2 -2-( x -1x )2 a3-a2-2a 4m2-9n2-4m+1 3a2+bc-3ac-ab 9-x2+2xy-y2 2x2-3x-1 -2x2+5xy+2y2 10a(x-y)2-5b(y-x) an+1-4an+4an-1 x3(2x-y)-2x+y x(6x-1)-1 2ax-10ay+5by+6x 1-a2-ab-14 b2 a4+4 (x2+x)(x2+x-3)+2 x5y-9xy5 -4x2+3xy+2y2 4a-a5 2x2-4x+1 4y2+4y-5 3X2-7X+2 8xy(x-y)-2(y-x)3 x6-y6 x3+2xy-x-xy2 (x+y)(x+y-1)-12 4ab-(1-a2)(1-b2) -3m2-2m+4 a2-a-6 2(y-z)+81(z-y) 9m2-6m+2n-n2 ab(c2+d2)+cd(a2+b2) a4-3a2-4 x4+4y4 a2+2ab+b2-2a-2b+1 x2-2x-4 4x2+8x-1 2x2+4xy+y2 - m2 – n2 + 2mn + 1 (a + b)3d – 4(a + b)2cd+4(a + b)c2d (x + a)2 – (x – a)2 –x5y – xy +2x3y x6 – x4 – x2 + 1 (x +3) (x +2) +x2 – 9 (x –y)3 +9(x – y) –6(x – y)2 (a2 + b2 –1 )2 – 4a2b2 (ax + by)2 + (bx – ay)2 x2 + 2ax – 3a2 3a3b2c-6a2b2c2+9ab2c3 xy+6-2x-3y x2(x-y)+y2(y-x) 2x2-(a-2b)x-ab a4-9a2b2 ab(x2-y2)+xy(a2-b2) (x+y)(a-b-c)+(x-y)(b+c-a) a2-a-b2-b (3a-b)2-4(3a-b)(a+3b)+4(a+3b)2 (a+3)2-6(a+3) (x+1)2(x+2)-(x+1)(x+2)2 35.因式分解x2-25= 。 36.因式分解x2-20x+100= 。 37.因式分解x2+4x+3= 。 38.因式分解4x2-12x+5= 。 39.因式分解下列各式: (1)3ax2-6ax= 。 (2)x(x+2)-x= 。 (3)x2-4x-ax+4a= 。 (4)25x2-49= 。 (5)36x2-60x+25= 。 (6)4x2+12x+9= 。 (7)x2-9x+18= 。 (8)2x2-5x-3= 。 (9)12x2-50x+8= 。 40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。 41.因式分解2ax2-3x+2ax-3= 。 42.因式分解9x2-66x+121= 。 43.因式分解8-2x2= 。 44.因式分解x2-x+14 = 。 45.因式分解9x2-30x+25= 。 46.因式分解-20x2+9x+20= 。 47.因式分解12x2-29x+15= 。 48.因式分解36x2+39x+9= 。 49.因式分解21x2-31x-22= 。 50.因式分解9x4-35x2-4= 。 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。 52.因式分解2ax2-3x+2ax-3= 。 53.因式分解x(y+2)-x-y-1= 。 54.因式分解(x2-3x)+(x-3)2= 。 55.因式分解9x2-66x+121= 。 56.因式分解8-2x2= 。 57.因式分解x4-1= 。 58.因式分解x2+4x-xy-2y+4= 。 59.因式分解4x2-12x+5= 。 60.因式分解21x2-31x-22= 。 61.因式分解4x2+4xy+y2-4x-2y-3= 。 62.因式分解9x5-35x3-4x= 。 63.因式分解下列各式: (1)3x2-6x= 。 (2)49x2-25= 。 (3)6x2-13x+5= 。 (4)x2+2-3x= 。 (5)12x2-23x-24= 。 (6)(x+6)(x-6)-(x-6)= 。 (7)3(x+2)(x-5)-(x+2)(x-3)= 。 (8)9x2+42x+49= 。 (1)(x+2)-2(x+2)2= 。 (2)36x2+39x+9= 。 (3)2x2+ax-6x-3a= 。 (4)22x2-31x-21= 。 70.因式分解3ax2-6ax= 。 71.因式分解(x+1)x-5x= 。 72.因式分解(2x+1)(x-3)-(2x+1)(x-5)= 73.因式分解xy+2x-5y-10= 74.因式分解x2y2-x2-y2-6xy+4= x3+2x2+2x+1 a2b2-a2-b2+1 (1)3ax2-2x+3ax-2 (x2-3x)+(x-3)2+2x-6 1)(2x+3)(x-2)+(x+1)(2x+3) 9x2-66x+121 17.因式分解 (1)8x2-18 (2)x2-(a-b)x-ab 18.因式分解下列各式 (1)9x4+35x2-4 (2)x2-y2-2yz-z2 (3)a(b2-c2)-c(a2-b2) 19.因式分解(2x+1)(x+1)+(2x+1)(x-3) 20.因式分解39x2-38x+8 21.利用因式分解求(6512 )2-(3412 )2之值 22.因式分解a(b2-c2)-c(a2-b2) 24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2 25.因式分解xy2-2xy-3x-y2-2y-1 26.因式分解4x2-6ax+18a2 27.因式分解20a3bc-9a2b2c-20ab3c 28.因式分解2ax2-5x+2ax-5 29.因式分解4x3+4x2-25x-25 30.因式分解(1-xy)2-(y-x)2 31.因式分解 (1)mx2-m2-x+1 (2)a2-2ab+b2-1 32.因式分解下列各式 (1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2 33.因式分解:xy2-2xy-3x-y2-2y-1 34.因式分解y2(x-y)+z2(y-x) 1)因式分解x2+x+y2-y-2xy=2023-07-21 20:57:491
跪求五十道七年级下册因式分解带答案,答案一定要完整
分解:的1.x中2 -25 = 2×2-20X +100 = 3。 X 2 +4×3 = 4。 4X-12X +5 = 5。 3AX 2 6AX = 6.x的第(x +2)-X = 7.x的2至4倍,斧头+4 = 8.25x 2 -49 = 9.36x 2-60X +25 = 10.4倍2 +12×9 = 11.x的2-9X +18 = 12.2倍2-5X-3 = > 13.12x-50X +8 = 14。第(x +2)(3)+(2)(4)= 15。 2AX 2-3X +2 AX-3 = 16。 9X-66X +121 = 17。 8 - 2×2 = 18。 X 2-X 14 = 19。 9X-30X +25 = 20.-20×2 +9 +20 = 21。 12X-29X +15 = 22。 36X +39所述+9 = 23。 21X-31X-22 = 24。 9X4-35X 2 -4 = 25。 (2×1)(×1)+(2×1)(3)= 26。 2AX 2-3X +2 AX-3 = 27。 ×(式y +2)的x-y-1 = 28。 (×2 3×)+(-3)2 = 29。 9X-66X +121 = 30。 8 2×2 = 31。 X4-1 = 32。 ×2 +4 X-XY-2Y +4 = 33。 4X-12X +5 = 34。 21X-31X-22 = 35。 4X 2 +4 XY + Y2-4X-2Y-3 = 36。 9X5-35x3-4X = 37.3x 2-6X = 38.49x 2 -25 = 39.6x-13X +5 = 40.x 2 +2-3 X = 41.12×2-23X-24 = 42。 (6)(6) - (6)= 43.3第(x +2)(5) - (2)(3)= 44.9x 2 +42所述+49 = 45。 (2)-2(x +2)2 = 46.36x 2 +39×9 = 47.2x 2 + AX??-6X-3A = 48.22x 2-31X -21 = 49.3ax 2 6AX = 50。 (X +1)×5倍= 51。 (2×1)(3) - (2×1)(5)= 52.XY 2的X年5年-10 = 53。 X2Y2-×2-γ2-6xy 4 = 54.8x2-18 55。组x2 - (从头)×-ab的 56.9x4 35×2-4 57.x2-Y2-2yz-z2的 58.a(的b2-c2)的-C(A2-b2的) 59。 (2×1)(×1)+(2×1)(3) 60。 39x2-38X +8 61 7(X-1)2 +4(X-1)(Y +2) - 20(Y +2)2 62。 XY2-2XY-3X-Y2-2Y-1 63。 4X2-6AX +18 A2 64。 9a2b2c-20ab3c 20a3bc- 65。 2ax2-5X +2 AX-5 66。的4x3 +4 X2-25X-25 67。 (1-xy)2 - (YX)2 68.mx2-M2-X +1 69.a2-2AB + B2-1 70.5x2-45 71.81 X3-9X 72.x2-Y2-5X-5年 73.x2-Y2 +2 YZ-Z2 74。 XY2-2XY-3倍-Y2-2Y-1 75.y2(的x-y)+ z2的(γ-x)的2023-07-21 20:58:072
求初二因式分解题及其答案100道
25x^2-16y^2=(5x+4x)(5x-4x)2023-07-21 20:58:173
100道关于分解因式的题(有答案的)
1- 14 x2 4x –2 x2 – 2 ( x- y )3 –(y- x) x2 –y2 – x + y x2 –y2 -1 ( x + y) (x – y ) x2 + 1 x2 -2-( x -1x )2 a3-a2-2a 4m2-9n2-4m+1 3a2+bc-3ac-ab 9-x2+2xy-y2 2x2-3x-1 -2x2+5xy+2y2 10a(x-y)2-5b(y-x) an+1-4an+4an-1 x3(2x-y)-2x+y x(6x-1)-1 2ax-10ay+5by+6x 1-a2-ab-14 b2 a4+4 (x2+x)(x2+x-3)+2 x5y-9xy5 -4x2+3xy+2y2 4a-a5 2x2-4x+1 4y2+4y-5 3X2-7X+2 8xy(x-y)-2(y-x)3 x6-y6 x3+2xy-x-xy2 (x+y)(x+y-1)-12 4ab-(1-a2)(1-b2) -3m2-2m+4 a2-a-6 2(y-z)+81(z-y) 9m2-6m+2n-n2 ab(c2+d2)+cd(a2+b2) a4-3a2-4 x4+4y4 a2+2ab+b2-2a-2b+1 x2-2x-4 4x2+8x-1 2x2+4xy+y2 - m2 – n2 + 2mn + 1 (a + b)3d – 4(a + b)2cd+4(a + b)c2d (x + a)2 – (x – a)2 –x5y – xy +2x3y x6 – x4 – x2 + 1 (x +3) (x +2) +x2 – 9 (x –y)3 +9(x – y) –6(x – y)2 (a2 + b2 –1 )2 – 4a2b2 (ax + by)2 + (bx – ay)2 x2 + 2ax – 3a2 3a3b2c-6a2b2c2+9ab2c3 xy+6-2x-3y x2(x-y)+y2(y-x) 2x2-(a-2b)x-ab a4-9a2b2 ab(x2-y2)+xy(a2-b2) (x+y)(a-b-c)+(x-y)(b+c-a) a2-a-b2-b (3a-b)2-4(3a-b)(a+3b)+4(a+3b)2 (a+3)2-6(a+3) (x+1)2(x+2)-(x+1)(x+2)2 35.因式分解x2-25= 。 36.因式分解x2-20x+100= 。 37.因式分解x2+4x+3= 。 38.因式分解4x2-12x+5= 。 39.因式分解下列各式: (1)3ax2-6ax= 。 (2)x(x+2)-x= 。 (3)x2-4x-ax+4a= 。 (4)25x2-49= 。 (5)36x2-60x+25= 。 (6)4x2+12x+9= 。 (7)x2-9x+18= 。 (8)2x2-5x-3= 。 (9)12x2-50x+8= 。 40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。 41.因式分解2ax2-3x+2ax-3= 。 42.因式分解9x2-66x+121= 。 43.因式分解8-2x2= 。 44.因式分解x2-x+14 = 。 45.因式分解9x2-30x+25= 。 46.因式分解-20x2+9x+20= 。 47.因式分解12x2-29x+15= 。 48.因式分解36x2+39x+9= 。 49.因式分解21x2-31x-22= 。 50.因式分解9x4-35x2-4= 。 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。 52.因式分解2ax2-3x+2ax-3= 。 53.因式分解x(y+2)-x-y-1= 。 54.因式分解(x2-3x)+(x-3)2= 。 55.因式分解9x2-66x+121= 。 56.因式分解8-2x2= 。 57.因式分解x4-1= 。 58.因式分解x2+4x-xy-2y+4= 。 59.因式分解4x2-12x+5= 。 60.因式分解21x2-31x-22= 。 61.因式分解4x2+4xy+y2-4x-2y-3= 。 62.因式分解9x5-35x3-4x= 。 63.因式分解下列各式: (1)3x2-6x= 。 (2)49x2-25= 。 (3)6x2-13x+5= 。 (4)x2+2-3x= 。 (5)12x2-23x-24= 。 (6)(x+6)(x-6)-(x-6)= 。 (7)3(x+2)(x-5)-(x+2)(x-3)= 。 (8)9x2+42x+49= 。 (1)(x+2)-2(x+2)2= 。 (2)36x2+39x+9= 。 (3)2x2+ax-6x-3a= 。 (4)22x2-31x-21= 。 70.因式分解3ax2-6ax= 。 71.因式分解(x+1)x-5x= 。 72.因式分解(2x+1)(x-3)-(2x+1)(x-5)= 73.因式分解xy+2x-5y-10= 74.因式分解x2y2-x2-y2-6xy+4= x3+2x2+2x+1 a2b2-a2-b2+1 (1)3ax2-2x+3ax-2 (x2-3x)+(x-3)2+2x-6 1)(2x+3)(x-2)+(x+1)(2x+3) 9x2-66x+121 17.因式分解 (1)8x2-18 (2)x2-(a-b)x-ab 18.因式分解下列各式 (1)9x4+35x2-4 (2)x2-y2-2yz-z2 (3)a(b2-c2)-c(a2-b2) 19.因式分解(2x+1)(x+1)+(2x+1)(x-3) 20.因式分解39x2-38x+8 21.利用因式分解求(6512 )2-(3412 )2之值 22.因式分解a(b2-c2)-c(a2-b2) 24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2 25.因式分解xy2-2xy-3x-y2-2y-1 26.因式分解4x2-6ax+18a2 27.因式分解20a3bc-9a2b2c-20ab3c 28.因式分解2ax2-5x+2ax-5 29.因式分解4x3+4x2-25x-25 30.因式分解(1-xy)2-(y-x)2 31.因式分解 (1)mx2-m2-x+1 (2)a2-2ab+b2-1 32.因式分解下列各式 (1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2 33.因式分解:xy2-2xy-3x-y2-2y-1 34.因式分解y2(x-y)+z2(y-x) 1)因式分解x2+x+y2-y-2xy=2023-07-21 20:58:261