有理数

所有的有理数之和是多少?

0因为任意一个有理数都存在相反数 两个互为相反数的有理数之和为0 所有的有理数即为互为相反数的数的集合 所以所有有理数之和为0
大鱼炖火锅2023-08-11 08:48:221

有理数的加减乘除的运算法则

绝对值几何意义:数轴上一个数到原点的距离代数意义:负数的相反数,非负数本身乘除法:同号为正,异号为负,有0为0
水元素sl2023-08-10 10:28:481

有理数加减乘除规则是什么?

一、有理数乘法法则  1、两数相乘,同号得正,异号得负,把绝对值相乘;  2、任何数和 0 相乘,得 0.  二、多个有理数相乘  1、几个不等于 0 的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负 数,当负因数的个数为偶数时,为正数;  2、几个数相乘,如果其中有一个为 0,积为 0.  三、有理数除法法则  1、除以一个不等于 0 的数,等于乘以这个数的倒数;  2、两数相除,同号得正数,异号得负数,并把绝对值相除;  3、0 除以任何一个不为 0 的数都得 0.  四、有理数加减乘除混合运算法则  1、先乘除后加减;  2、先算小括号,再算中括号,最后算大括号.五、有理数加减法原则1、有理数加法法则 同号两数相加,取相同的符号,并把绝对值相加。 异号两数相加,绝对值相等时,和为零。 绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值; 一个数同零相加仍得这个数。2、 有理数减法法则 减去一个数,等于加上这个数的相反数。 减法运算变加法运算,减数变成它的相反数。 被减数不变。
hi投2023-08-10 10:28:482

有理数的加减乘除法则分别是什么?

1 有理数加减乘除规则是什么?1、有理数的加法法则:同号两数相加,取相同的符号,并把其绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;一个数与零相加,仍得这个数。2、有理数的减法法则:减去一个数,等于加上这个数的相反数。3、有理数的乘法法则:两数相乘,同号得正,异号得负,并把其绝对值相乘;任何数与零相乘,都得零;几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数个时,积为负;当负因数的个数为偶数个时,积为正。4、有理数的除法法则:两数相除,同号得正,异号得负,并把其绝对值相除;零除以任何一个不为零的数,都得零;除以一个数等于乘以这个数的倒数(零不能作除数)。二、乘方乘方的定义:求几个相同因数积的运算。乘方的结果叫做幂。在an中a叫做底数,n叫做指数。读作a的n次方,看作是a的n次方的结果时,也可读作a的n次幂。有理数的乘方运算有如下规律:正数的任何次幂都是正数;负数的偶次幂是正数,负数的奇次幂是负数;任何数的偶次幂都是非负数,即:an≥0(n为偶数)。根据乘方的意义转化为乘方,再根据乘法法则进行计算;根据乘方的性质,先判断幂的符号,再计算幂的绝对值。(1)有理数的加法法则:1. 同号两数相加,和取相同的符号,并把绝对值相加;2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3. 一个数与零相加仍得这个数;4. 两个互为相反数相加和为零。⑵有理数的减法法则:减去一个数等于加上这个数的相反数。补充:去括号与添括号:去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。⑶有理数的乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘;②任何数与零相乘都得零;③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;④几个有理数相乘,若其中有一个为零,积就为零。⑷有理数的除法法则:法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;法则二:除以一个数等于乘以这个数的倒数。
Jm-R2023-08-10 10:28:472

有理数加减乘除的运算规则是什么?

你好,有理数的运算法则是:一、加法法则:1、同号两数相加,取与加数相同的符号,并把绝对值相加。例如:2+5=|2|+|5|=7,(-2)+(-5)=-|2|+(-|5|)=-7.2、异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。例如:2+(-7)=-(|-7|-|2|)=-53.互为相反数的两个数相加得0;一个数同0相加,仍得这个数。4.加法交换律:两个数相加,加数位置改变,和不变。例如:1+2=2+15.三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。例如:(1+2)+3=1+(2+3)二、减法法则:1、减去一个数,等于加上这个数的相反数。例如:1-(-1-5)=1+1+5=7三、乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,积为0。例如:23=|2||3|=6,(-2)3=-|2||3|=-62、若两个数的积为1,那么这两个数互为倒数。(0无倒数)例如:正负1的倒数就是它本身。3、乘法交换律:两个数相乘,交换因数的位置,积不变。例如:1×2=2×14、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。例如:(1×2)×3=1×(2×3)5、乘法分配律:一个数与两个数相乘,就是这个数分别与两个数相乘,再把积相加。例如:1×(2+3)=1×2+1×3四、除法法则:(除法是乘法的逆运算)1、两数相除,同号得正,异号得负,并把绝对值相除;0除以任何不为0的数得0.例如:-2/1=-|2|/|1|=-2.2、除以一个数(不为0),等于乘以这个数的倒数。
ardim2023-08-10 10:28:452

什么是,有理数,什么是实数,什么是代数式

有理数是整数和分数的统称,一切有理数都可以化成分数的形式实数是有理数和无理数.其中无理数就是无限不循环小数,有理数就包括整数和分数.数学上,实数直观地定义为和数轴上的点一一对应的数.本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”. 代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.例如:ax+2b,-2/3,b^2/26,√a+√2等. 注意: 1、不包括等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈. 2、可以有绝对值.例如:|x|,|-2.25| 等.
大鱼炖火锅2023-08-08 09:22:321

求概念:自然数,素数(质数),复数,有理数,无理数,实数

http://baike.baidu.com/view/19911.htmhttp://baike.baidu.com/view/10626.htmhttp://baike.baidu.com/view/10078.htmhttp://baike.baidu.com/view/1197.htmhttp://baike.baidu.com/view/1167.htmhttp://baike.baidu.com/view/14749.htm
meira2023-08-08 09:06:282

“有理数 无理数 实数 自然数 质数” 概念!

你们书上没有?
北境漫步2023-08-08 09:06:243

无限循环小数是有理数吗?

这条问题的解答应该是是有理数如果认同回答请点个赞,谢谢
北有云溪2023-08-08 09:05:323

把有理数(尤其是无限循环小数)转化为分数的方法

由于它的小数部分位数是无限的,显然不可能写成十分之几、百分之几、千分之几……的数。其实,循环小数化分数难就难在无限的小数位数。所以我就从这里入手,想办法“剪掉”无限循环小数的“大尾巴”。策略就是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“大尾巴”完全相同,然后这两个数相减,“大尾巴”不就剪掉了吗!我们来看两个例子: ⑴ 把0.4747……和0.33……化成分数。 想1: 0.4747……×100=47.4747…… 0.4747……×100-0.4747……=47.4747……-0.4747…… (100-1)×0.4747……=47 即99×0.4747…… =47 那么 0.4747……=47/99 想2: 0.33……×10=3.33…… 0.33……×10-0.33……=3.33…-0.33…… (10-1) ×0.33……=3 即9×0.33……=3 那么0.33……=3/9=1/3 由此可见, 纯循环小数化分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。 ⑵把0.4777……和0.325656……化成分数。 想1:0.4777……×10=4.777……① 0.4777……×100=47.77……② 用②-①即得: 0.4777……×90=47-4 所以, 0.4777……=43/90 想2:0.325656……×100=32.5656……① 0.325656……×10000=3256.56……② 用②-①即得: 0.325656……×9900=3256.5656……-32.5656…… 0.325656……×9900=3256-32 所以, 0.325656……=3224/9900
西柚不是西游2023-08-08 09:05:301

无限循环小数是有理数吗?

无限循环小数属于有理数
gitcloud2023-08-08 09:05:302

万有引力常数G,是有理数还是无理数?为什么?

在万有引力定律中,对于相隔一定距离的两个物体,它们之间的引力大小正比于它们质量的乘积,比例系数被称为万有引力常数(G)。根据目前最为精确的测量,万有引力常数为6.67408 10^-11 m^3/kg/s^2,相对标准不确定度为46 ppm(百万分之四十六)。鉴于万有引力常数是一个小数,那么,它究竟是有理数还是无理数呢?事实上,万有引力常数并非真正意义上的常数,它可以是一个有理数,也可以是一个无理数。原因在于万有引力常数是有量纲的,它的大小会随着单位制的变化而改变,可以变成任意数值。在国际单位制下,万有引力常数与米、千克和秒有关,而这些单位都是人为定义的。1米有多长与光速有关,而光速是物理学家根据此前的光速测量值而定义的。1千克有多重与普朗克常数有关,而普朗克常数也根据测量值被定义成一个确切数值。1秒的长度定义基于铯-133原子基态的两个超精细能级之间跃迁时所辐射电磁波的周期。在这种情况下,无论如何测量万有引力常数,都无法知晓它究竟是有理数还是无理数。另一方面,在普朗克单位制下,万有引力常数的量纲变为1。此时,万有引力常数是一个有理数。无量纲化的好处是让物理学公式变得简单,便于运算。虽然我们一直把万有引力常数视作一个物理学常数,但有理论表明,万有引力常数会随着时间的推移而改变。根据狄拉克的大数假说,万有引力常数与宇宙的年龄成反比,这意味着随着宇宙的演化,万有引力常数会变得越来越小。不过,目前对遥远宇宙(也就是早期宇宙)的测量表明,万有引力常数似乎没有发生变化。在物理学常数中,也只有无量纲的常数才是真正意义上的常数,谈论它们的有理性才是有意义的。例如,精细结构常数α:通过日全食证实广义相对论的爱丁顿认为,精细结构常数是一个有理数,它等于137的倒数。但通过实验表明,精细结构常数等于比137大一点的数的倒数。在数学中,数学家能够通过严格的逻辑来证明圆周率(π)、自然常数(e)都是无理数。但迄今为止,物理学家无法通过类似的方法来证明一个物理常数是不是无理数。物理学家知道它们数值的唯一方法是通过实验进行测量,而测量是有误差的。总之,我们不知道万有引力常数以及其他物理常数到底是有理数还是无理数。任何具有非零误差边界的数都可以用有理数近似,而且我们可能永远无法从第一原理中推导出物理常数。 物理常数都是测量值,这不像数学常数(比如 π 、e),有绝对确定无疑的理论推导,所以无所谓有理数或无理数。 说实话,个人观点是万有引力是果,不是因,是空间固有的场物质和天体相对运动造成的,也就是说,个人观点是万有引力常数G压根不是常数,是一个受定域性影响的可变量,我们所处的宇宙环境下的万有引力常数G,个人认为它叫系数更准确,有理无理的问题,个人也是有些疑惑它的物理内涵,如果我们定义现在国际单位制下直径是1米的圆的周长为单位一,直径无理了吗?0是有理数有没有问题呢? 极限和0的问题,个人观点都是大问题,两车相向而行,最后相撞,相撞前最小距离是多少?用微积分,dx 0解释?无穷小 0?两车的质子中子可以0距离接触吗?费米子可以“重合”吗?奇点存在?奇点是实心的?物理里有绝对0?体积可以为0?等等问题,我认为现有理论是有问题或者说是含糊不清的。 一家之言仅供参考。 万有引力常数还是一个变数,在地球上两个1千克的铁球,拿到银河系中心附近其间的万有引力肯定不相等,也就是说万有引力常数一定会随时空变化。 你这问题很有意义。物理常数,准确说都是某个时空拓扑上的度规,或叫拓扑不变量。例如,正方形拓扑不变量是根号2,这是无理数;正立方体是根号3,也是无理数;圆的拓扑不变量是兀,也是无理数。函数空间中的著名无理数就是欧拉公式给出的e了。 拓扑,即使由有限元构造的,其势也是连续统,与无理数集等势。目前,集合中的最高势就是连续统,还没发现高于连续统的。 我有一猜想,任何一无理数都是一个拓扑不变量,任何一无理数都定义了一时空拓扑。 物理常量,像G、h、c…,都是无理数,只能形式地表达。这都由于物质在时空中都是自洽拓扑结构形式存在的缘故。物质无限可分吗?物质既不是无限可分,又不是无限不可分;物质就是那样存在在时空拓扑结构中,就是那样自洽运动地,存在在时空中。宇宙有起源吗?是由奇点炸来的吗?宇宙既不是有起源的,又不是没起源的,但它确实是自洽存在的! 物理常数的“无理性”,就是源自物质时空拓扑的自洽性;“自洽、开放”运动决定了物质时空拓的,“近似守恒”而产生的“发展运动”。 万有引力常数G,是有理数还是无理数?为什么? 首先所谓的万有引力常数是认为引力是由质量产生的,由牛顿万有引力定律设定的一个常数,爱因斯坦场方程也引用了这个常数,主要都是描述星球之间所谓的引力的。而这个常数却是在地球测量到的,那这个所谓的引力常数和星球之间力的常数是不是一样呢?没有任何根据认为它们一样,但科学上也就这么引用过去了,至于这样想当然的认为它们一样有没有道理就没有人去追纠了。 那么到底引力之间是不是和质量有一个常数呢?引力并不是质量产生的,而是周围空间的智慧力量维持着天体运行的稳定而施加的力,保证着天体体系的正常运动。其实,科学家们早就知道了,如果只有引力天体早晚聚到一起去的。别说什么大爆炸的力量,大爆炸产生宇宙只是假说,是从宇宙膨胀反推出来的,但这个推理过程是错误的!实际上宇宙是从某一时刻开始膨胀的,并不是从所谓的奇点爆炸开始的。 物体周围空间力量对物体的作用力是和物体的质量成正比,但它也不是都一样。太阳系这样,别的星系不一样,都不是一样的,到了银河系就更不一样了。古代讲天人合一,天体就像人体细胞里的小微粒一样,不同的细胞里的微粒作用力是不一样的,不同的人的细胞微粒作用力就更不一样了,而且还随着时间变化的。 现在的引力常数不是星际间的引力常数,这个所谓的引力常数对不同的恒星系是不一样的,不同的银河系也不一样,而且是随着时间变化的。也不是一个固定的有理数或无理数。 有理数啊,因为它就是一个比值 常数,作为一个测定常数,说明,这是一个无法精确确定的值,那么其精确值是有理数还是无理数,这个基本上永远无法确认,只能说,目前的测定值是一个有理数,这和π是不同的,π是可以有数学上的具体极限表达式的,而万有引力常数G是没有具体的数学表达式的,就像你去讨论东方明珠到底多高,你也得不到一个绝对准确的数值,实物与数学不要混淆,实物往往都不可能追求绝对精确的度量,只有数学可以! 本人认为:万有引力常数G与是不是有理数与无理数没什么关系!且此常数是不是真的恒定不变也未可知!万有引力常数只是表达两个带质量物体间的相互作用力的大小,在日常使用时,其均是近似值,并不是准确的实际值!因为任何客观实体均是由带电荷、质量和自旋磁矩的电子和质子构成的。且电子总是以超高速度围绕由质子和中子(由电子和质子构成的)组成的原子核运动的。而通常测定的万有引力常数G都是利用巨量原子构成的宏观物质间的相互作用测定出来的,并未考虑原子自身的运动和相互作用。而是将宏观物体看到一个整体来考虑的。这样测量出来的万有引力常数G与真实值当然会存在较大的差异。 万有引力常数G的真实值应该是单位距离上的两个电子,或电子与质子或中,或质子与质,或质子与中,或中子与中子间的万有引力相互作用力的大小与其质量的比值。目前人们并不清楚电子与电子、电子与质子、质子与质子、质子与中子等相互间的万有引力常数是否相同。更无从知晓其是有理数还是无理数。 关于万有引力的传递速度,本人提出了一个实测方案。希望大家参与讨论。确切地说任何自然界的常量都是无理数,除非我们的度量衡是依据这些常量制定的。典型的就是圆周率,质子的重量,光速。
苏州马小云2023-08-08 09:00:021

万有引力常数G,是有理数还是无理数?为什么?

无理数,因为小数点后面的数字不会断了,并且在不断的延伸和发展,没有出现停下来的情况。
mlhxueli 2023-08-08 09:00:024

,有理数中最小的正整数是多少

有理数中,最小的正整数是1,最大的负整数是-1,最大的非正数是0,最小的非负数是0. 故答案为:1;-1;0;0.
Jm-R2023-08-07 09:16:532

在有理数中,最小的正整数是___.

在有理数中,最小的正整数是1. 故答案为:1.
meira2023-08-07 09:16:511

自然数,正整数,整数,有理数 ,实数的概念是什么?都包不包括0?

整数有理数实数包括零
mlhxueli 2023-08-07 09:16:284

出30道有理数方程题,最好有答案

1,下列方程(1)-x2+2=0 (2)2x2-3x=0 (3)-3x2=0 (3)-3x2=0 (4)x2+=0 (5)=5x (6)2x2-3=(x-3)(x2+1)中是一元二次方程的有( ) A,2个 B,3个 C,4个 D,5个 2,下列配方正确的是( ) x2+3x=(x+)2- (2)x2+2x+5=(x+1)2+4 (3)x2-x+=(x-)2+ (4)3x2+6x+1=3(x+1)2-2 A,(1)(3) B,(2)(4) C,(1)(4) D,(2)(3) 3,方程(x-1)2+(2x+1)2=9x的一次项系数是( ) A,2 B,5 C,-7 D,7 4,方程x2-3x+2-m=0有实根,则m的取值范围是( ) A,m>- B,m≥ C,m≥- D,m> 5,方程(m+1)x2-(2m+2)x+3m-1=0有一个根为0,则m的值为( ) A, B, C,- D,- 6,方程x2-mx+=0的大根与小根的差是( ) A,0 B,1 C,m D,m+1 7,如果关於x的方程3ax2-2(a-1)x+a=0有实数根,则a的取值范围是( ) A,a<且a≠0 B,a≥ C,a≤且a≠0 D,a≤ 8,若方程2x(kx-4)-x2+6=0没有实数根,则k的最小整数值是( ) A,1 B,2 C,3 D,4 9,一元二次方程一根比另一根大8,且两根之和为6,那麽这个方程是( ) A,x2-6x-7=0 B,x2-6x+7=0 C,x2+6x-7=0 D,x2+6x+7=0 10,方程3=2x-6变形为有理方程应是( ) A,4x2-33x+54=0 B,4x2-27x+42=0 C,4x2+21x+42=0 D,4x2-33x+38=0 11,通过换元,把方程3x2+15x+2=2化为整式方程,下面的换元中,正确的是设( ) A,=y B,3x2+15x=y C,=y D,x2+5x+1=y 12,去分母解关於x的方程产生增根,则m的值是( ) A,2 B,1 C,-1 D,以上答案都不对 13,下面四组数①②③④中,是方程组的解的是( ) A,①和④ B,②和④ C,①和② D,③和④ 14,已知方程组,有两个相等的实数解,则m的值为( ) A,1 B,-1 C, D,±1
wpBeta2023-08-06 10:54:331

有理数的加减法法则及技巧

  有理数的加减法法则及技巧,可能很多人同学都没有关注这一方面。为了帮助大家更好的解决问题。下面是由我为大家整理的“有理数的加减法法则及技巧”,仅供参考,欢迎大家阅读。    有理数的加减法法则   有理数的加法法则:符号相同的两数相加,取相同的符号,并把绝对值相加;符号相反的两数相加,绝对值相等时,和为零;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加仍得这个数。有理数的减法法则:减去一个数,等于加上这个数的相反数。    有理数的运算法则   1有理数的加法同样拥有交换律和结合律(和整数得交换律和结合律一样)用字母表示为:交换律:a+b=b+a 两个数相加,交换加数的位置,和不变。结合律:a+b+c=(a+b)+c=a+(b+c)。三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。   有理数减法法则:减去一个数,等于加上这个数的相反数。其中:两变:减法运算变加法运算,减数变成它的相反数。一不变:被减数不变。可以表示成: a-b=a+(-b)。    有理数的加减法技巧   在有理数的计算中,若能根据算式的结构特征,选择适当的方法,灵活运用计算技巧,就可以化繁为简,化难为易,提高运算的速度和准确性.    一、正数、负数分别相加   例1计算 6+(-3)+7+(-8)+5+(-12)+14+(-9).   分析:从左到右,逐项依次相加,较为复杂,而运用加法交换律和结合律,把正数、负数分别相加就能使问题单纯化.   解:6+(-3)+7+(-8)+5+(-12)+14+(-9)   =(6+7+5+14)+[(-3)+(-8)+(-12)+(-9)]   =32+(-32)=0.    二、整数、分数(小数)分别相加   例2计算 7.1146-(-9)+(-3)-3-2+2.8854.   分析:如果逐项依次相加,比较复杂,而运用加法交换律和结合律,将整数、分数、小数分别相加,可使问题简化.   解:7.1146-(-9)+(-3)-3-2+2.8854   =(7.1146+2.8854)+[ 9+ (-3)]+[(-3)+(-2)]   =10+6+(-5)=10.    三、分离整数后分别相加   例3 计算-4-(+7)-(-13)+(-3)-5.26+10.26 .   分析:带分数相加,可把整数与分数分离后,把它们的整数部分与分数部分(或小数部分)分别结合相加.   解:-4-(+7)-(-13)+(-3)-5.26+10.26   =-4-7+13-3-5.26+10.26   =(-4-7+13-3-5+10)+(--+-)-0.26+0.26   =4+(-+)=4+(-1)=2.    四、同分母或便于通分的分数分别相加   例4计算-+-2+---.   分析:整体通分计算,运算量大,可将同分母或便于通分的分数分别相加.   解:-+-2+---   =(-+)+(--)+(-2-)   =--3=-3.    五、和为整数的数结合相加   例5计算(-3)+(+15.8)+(-16)-0.75+(-5)+(+4)   分析:根据算式的结构特征,可将和为整数的数结合相加.   解:(-3)+(+15.8)+(-16)-0.75+(-5)+(+4)   =(-3-16)+(15.8-5)+(-0.75+4)   =-20+10+4=-6.    六、和为零的数结合相加   例6计算1-2-3+4+5-6-7+8+…+2005-2006-2007+2008-2009+2010   分析:逐项运算,显然不可取,若根据算式的结构特征,将和为零的数结合相加,就可以巧妙地解答题目.   解:1-2-3+4+5-6-7+8+…+2005-2006-2007+2008-2009+2010   =(1-2-3+4)+(5-6-7+8)+…+(2005-2006-2007+2008)+(-2009+2010)   =0+0+…+0+1=1.    七、去掉绝对值符号后再结合相加   例7计算|-1|+|-|+|-|+…+|-|   分析:若先算出绝对值符号内各式的值,再去绝对值符号,然后进行运算,费时费力,故应该先确定绝对值符号内各式的正负,再去绝对值符号,然后再结合相加.   解:|-1|+|-|+|-|+…+|-|   =(1-)+(-)+(-)+…+(-)   =1+(-)+(-)+…+(-)-   =1-=.    八、先“借”后“还”   例8计算   11+192+1993+19994+199995+1999996+19999997+199999998.   分析:由于数值较大,直接计算,容易出错,我们可以先分别“借”来9,8,7,6,5,4,3,2,再“还”9,8,7,6,5,4,3,2,这样运算量就小多了.   解:11+192+1993+19994+199995+1999996+19999997+199999998   =(11+9)+(192+8)+(1993+7)+(19994+6)+(199995+5) +(1999996+4)+ (19999997+3)+ (199999998+2)-(9+8+7+6+5+4+3+2)   =222222220-44=222222176.    九、拆分组合   例9计算 199+298+397+…+991+1090+1189+…+9802+9901.   分析:这道题加数多,数值大,直接计算比较困难,若根据算式特征,拆分组合,可将计算过程简化.   解:199+298+397+…+991+1090+1189+…+9802+9901   =(100+200+300+…+9900)+(99+98+98+…+2+1)   =00+   =495000+4950=499950.   练习:   1. 计算(+ )+(-3.5)+(-6)+(+1.5)+(+6)+(+ ).   2. 计算2006-2007-2008+2009.   3. 计算-1-2+4-5+1-10.8.   答案:1.-1;2.-;3.-14.
善士六合2023-08-06 10:52:111

求七年级上册有理数试卷 要求如下:填空题、选择题、应用题各十题…… 难度中等 给30分

填空题:①0.5的相反数是( )。②二分之一的倒数的相反数是( )。③非整数指的是( )和( )。 ④气温下降了—3℃的实际意义是( )。⑤某食物的保存温度是(20±2),此食物应在( )℃下保存。⑥有理数中,不是正整数也不是负整数的是( )。⑦负数在0的( )边。⑧正数在0的( )边。⑨0是正数和负数的( )⑩在数轴上越靠右的数越( )。选择题:1.(-0.5)+(+1)-(-8)= ( ) A.-7.5 B.+7.5 C.+8.5 D.72.1下列说法错误的是( )A. 所有的有理数均能可以数轴上的点表示。B. 数轴上的原点表示数0。C. 数轴上表示数-a的点在原点的左边。D .0是正数与负数的分界点。3.下列说法正确的是:( )A .正数和负数统称为有理数。B .整数和分数统称有理数。C .正整数和负整数统称为整数。D .分数包括分数和负小数。4.列说法正确的是:( )①互为相反数的两个数的的绝对值相等。②正数和零的绝对值都等于它本身。③只有负数的绝对值是它的相反数。④一个数的绝对值相反数一定是负数。A、1个 B、2个 C、3个 D、4个5.、2u2212的相反数是( )A、-二分之一 B、-2 C、二分之一 D、2应用题:1.向东为正向西为负:小明向东走了17米,又向西走了21米,问,他现在在哪个方向?距原点几米?2.绝对值大于1.25小于3.6的整数有几个?3.|X|=1.5,那么,X+8=几?4.某人骑电动车行驶(向东为正向西为负):-7,+10,+9,-5,-12,-8,+9。现在她在哪个方向?多少米?5.某登山队在山腰处(向下为负向上为正),先走-8,-2,+10,-5,+0。他们现在距原点几米?
此后故乡只2023-08-06 10:52:112

什么是正有理数

正有理数
可桃可挑2023-08-05 17:36:565

有理数的含义

01有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 简单来讲,能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。实数(R)可以分为有理数(Q)和无理数,其中无理数就是无限不循环小数,有理数就是有限小数和无限循环小数;其中有理数又可以分为整数(Z)和分数;整数按照能否被2整除又可以分为奇数(不能被2整除的整数)和偶数(能被2整除的整数)。有理数(Q)有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。比如4=4.0, 4/5=0.8。无理数(R-Q)无理数也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。二者区别有理数和无理数都能写成小数形式,但是,有理数可以写为有限小数和无限循环小数,而无理数只能写为无限不循环小数。有理数可以写为整数之比,而无理数不能。简单来讲,能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。
u投在线2023-08-05 17:36:541

有理数的定义和分类

有理数的定义:有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。分类:整数、分数。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。其性质有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。有理数a、b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
拌三丝2023-08-05 17:36:531

有理数的概念及分类

有理数的定义:有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。分类:整数、分数。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。其性质有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。有理数a、b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
CarieVinne 2023-08-05 17:36:511

啥叫有理数

有理数的概念: 有理数为整数(正整数 0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。有理数为整数(正整数 0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。一、有理数的定义。有理数有两种分类,分别是正有理数,包括正整数和正分数;负有理数,包括负整数和负分数。1、正有理数指的是数学术语,除了负数、0、无理数的数字,正有理数能精确地表示为两个整数之比。2、负有理数就是小于零并能用小数表示的数。如-3、123,-1。3、有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。二、有理数名字的由来。“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。
陶小凡2023-08-05 17:36:511

什么是有理数?

有理数是整数和分数的统称,一切有理数都可以化成分数的形式。有理数域是整数环的分式域,同时也是能包含所有整数的最小的关于加减乘除(除法里除数不能为0)运算完全封闭的数集。有理数的定义有很多种等价的方式比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后。然后把包含全部整数的关于加减乘除(除数不为0)运算完全封闭的数域中最小的那个交错有理数域,里面的元素(当然包括所有的整数,和他们任意的加减乘除(除数不为0)之后得到的数也被包含在内)就称为有理数。(根据代数学的理论可以推导出里面所有的元素骑士就是m/n的分式形式,注:整数m也能写成m/1的分式形式)还有一种定义方式是基于实数的(在分析、拓扑里常用)事先用交换线性连续统的方式定义实数集。然后定义有理数为满足一定条件的实数即可。
北营2023-08-05 17:36:511

什么叫有理数?什么又叫有理式?

整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。   任何一个有理数都可以在数轴上表示。   无限不循环小数和开方开不尽的数开方根叫作无理数 ,比如π,3.1415926535897932384626......   而有理数恰恰与它相反,整数和分数统称为有理数   其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。   这一定义在数的十进制和其他进位制(如二进制)下都适用。   数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο? ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。   所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。   有理数包括:   1)自然数:数0,1,2,3,……叫做自然数。   2)正数:比0大的数叫做正数。   3)负数:在正数前面加上“—”(读作“负”)号的数叫做负数。负数都小于0。   4)整数:正整数、0、负整数统称为整数。   5)分数:正分数、负分数统称为分数。   6)奇数:不是2的倍数的整数叫做奇数。如-3,-1,1,5等。所有的奇数都可用2n-1或2n+1表示,n为整数。   7)偶数:是2的倍数的整数叫做偶数。如-2,0,4,8等。所有的偶数都可用2n表示,n为整数。   8)质数:如果一个大于1的整数,除了1和它本身外,没有其他因数,这个数就称为质数,又称素数,如2,3,11,13等。2是最小的质数。   9)合数:如果一个大于1的整数,除了1和它本身外,还有其他因数,这个数就称为合数,如4,6,9,15等。4是最小的合数。   10)互质数:如果两个正整数,除了1以外没有其他因数,这两个整数称为互质数,如2和5,9和13等。 有理式是代数式的一种。包括分式和整式。这种代数式中对于字母只进行有限次加、减、乘、除和正整数次乘方这些运算。例如2x + 2y,,等都是有理式。在代数式的分类中,所指的运算都是针对字母的。如代数式,开方运算没有针对字母,所以仍属有理式,不算无理式。另外,分类是就形式而说的。如代数式,虽然恒等于有理式(x+1)2,但仍不能看作有理式(应属无理式)。
wpBeta2023-08-05 17:36:511

有理数的定义是什么

有理数是整数和分数的统称,一切有理数都可以化成分数的形式。有理数域是整数环的分式域,同时也是能包含所有整数的最小的关于加减乘除(除法里除数不能为0)运算完全封闭的数集。有理数的定义有很多种等价的方式比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后。然后把包含全部整数的关于加减乘除(除数不为0)运算完全封闭的数域中最小的那个交错有理数域,里面的元素(当然包括所有的整数,和他们任意的加减乘除(除数不为0)之后得到的数也被包含在内)就称为有理数。(根据代数学的理论可以推导出里面所有的元素骑士就是m/n的分式形式,注:整数m也能写成m/1的分式形式)还有一种定义方式是基于实数的(在分析、拓扑里常用)事先用交换线性连续统的方式定义实数集。然后定义有理数为满足一定条件的实数即可。
北营2023-08-05 17:36:501

什么是有理数?

有理数是整数和分数的统称,一切有理数都可以化成分数的形式。有理数域是整数环的分式域,同时也是能包含所有整数的最小的关于加减乘除(除法里除数不能为0)运算完全封闭的数集。有理数的定义有很多种等价的方式比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后。然后把包含全部整数的关于加减乘除(除数不为0)运算完全封闭的数域中最小的那个交错有理数域,里面的元素(当然包括所有的整数,和他们任意的加减乘除(除数不为0)之后得到的数也被包含在内)就称为有理数。(根据代数学的理论可以推导出里面所有的元素骑士就是m/n的分式形式,注:整数m也能写成m/1的分式形式)还有一种定义方式是基于实数的(在分析、拓扑里常用)事先用交换线性连续统的方式定义实数集。然后定义有理数为满足一定条件的实数即可
肖振2023-08-05 17:36:501

有理数的定义是什么?

有理数就是所有的整数和分数。
kikcik2023-08-05 17:36:492

有理数的定义有理数是什么意思

1、有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。2、整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。3、有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
铁血嘟嘟2023-08-05 17:36:491

有理数指什么数?

1、有理数定义:有理数为整数(正整数、0、负整数)和分数的统称 。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。2、有理数性质:在数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。3、有理数包括:整数、分数。直观表示可以看下图:扩展资料:有理数运算定律:1、加法运算律:(1)加法交换律:两个数相加,交换加数的位置,和不变,即 (a+b)+c=a+(b+c)。(2)加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即 a+b=b+a。2、减法运算律:减法运算律:减去一个数,等于加上这个数的相反数。即:a-b=a+(-b)。3、乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积不变,即 ab=ba。(2)乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即 (ab)c=a(bc)。(3)乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即a(a+b)=ab+ac。参考资料:百度百科_有理数
铁血嘟嘟2023-08-05 17:36:491

有理数是怎样定义的?

有理数是整数和分数的统称,一切有理数都可以化成分数的形式。1,2,3,-1,-2,-339+[-23]+0+[-16]= 0[-18]+29+[-52]+60= 19[-3]+[-2]+[-1]+0+1+2= -3[-301]+125+301+[-75]= 50[-1]+[-1/2]+3/4+[-1/4]= -1[-7/2]+5/6+[-0.5]+4/5+19/6= 1.25[-26.54]+[-6.14]+18.54+6.14= -81.125+[-17/5]+[-1/8]+[-0.6]= -3[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)5+21*8/2-6-59扩展资料:有理数为整数(正整数、0、负整数)和分数的统称 。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。参考资料来源:百度百科-有理数
meira2023-08-05 17:36:491

有理数的分类

有理数的分类:一、按有理数的定义分类:有理数分为:整数和分数。(一)整数分为三大类:1、正整数,即大于0的整数如,1,2,3······直到n。2、零,既不是正整数,也不是负整数,它是介于正整数和负整数的数。3、负整数,即小于0的整数如,-1,-2,-3······直到-n。(n为正整数)。(二)分数的两种类型:正分数、负分数。二、按有理数的性质分类:有理数分为正有理数、零、负有理数。正有理数分为正整数、正分数;负有理数分为负整数、负分数。1、有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用。有理数分类的话可以分为两种,分别是正有理数和负有理数。2、正有理数包括正整数和正分数,正有理数是指除了负数、0、无理数的数字,正有理数能精确地表示为两个整数之比。3、负有理数包括负整数和负分数合,负有理数就是小于零并能用小数表示的数。有理数集的数可分为正有理数、负有理数和零。
再也不做站长了2023-08-05 17:36:481

有理数的定义

有理数的定义:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数为整数和分数的统称,其中正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。有理数和无理数的三点不同一、两者的含义不同:1、有理数的含义:数学中,有理数是一个整数a和一个正整数b的比,例如3/8,通常为a/b,0也是有理数;2、无理数的含义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。二、两者的特征不同:1、有理数的特征:有理数的小数部分是有限或为无限循环的数;2、无理数的特征:无理数的小数部分是无限不循环的数。三、两者的实质不同:1、有理数的实质:有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零;由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数;2、无理数的实质:无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
此后故乡只2023-08-05 17:36:481

有理数的定义,有理数是什么意思

1、有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。2、整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。3、有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。更多关于有理数的定义,有理数是什么意思,进入:https://m.abcgonglue.com/ask/d9eb5c1616107248.html?zd查看更多内容
余辉2023-08-05 17:36:481

有理数的定义和性质有哪些

有理数为整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。 有理数的定义 有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。 0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。 数轴是研究数学的重要模型,也是“数形结合”的重要体现。数轴是一条可以向两端无限延伸的直线,数轴的三要素:原点、单位长度、正方向是根据实际需要“规定”的,通常选取向右的方向为数轴的正方向。任何一个有理数都可以用数轴上的一个点表示。 有理数的性质 有理数具有封闭性,即有理数之间相互加减乘除的结果也是一个有理数。 有理数具有有序性,即任意几个有理数之间大于、等于、小于三者必居其一。 在数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
无尘剑 2023-08-05 17:36:471

什么是有理数什么是有理数的性质?

1、有理数定义:有理数为整数(正整数、0、负整数)和分数的统称 。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。2、有理数性质:在数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。3、有理数包括:整数、分数。直观表示可以看下图:扩展资料:有理数运算定律:1、加法运算律:(1)加法交换律:两个数相加,交换加数的位置,和不变,即 (a+b)+c=a+(b+c)。(2)加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即 a+b=b+a。2、减法运算律:减法运算律:减去一个数,等于加上这个数的相反数。即:a-b=a+(-b)。3、乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积不变,即 ab=ba。(2)乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即 (ab)c=a(bc)。(3)乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即a(a+b)=ab+ac。参考资料:百度百科_有理数
此后故乡只2023-08-05 17:36:461

什么叫做有理数?

我不知道只是复制别人的看我的还不如看楼上的。。。有理数是整数和分数的统称,一切有理数都可以化成分数的形式。有理数域是整数环的分式域,同时也是能包含所有整数的最小的关于加减乘除(除法里除数不能为0)运算完全封闭的数集。有理数的定义有很多种等价的方式比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后。然后把包含全部整数的关于加减乘除(除数不为0)运算完全封闭的数域中最小的那个交错有理数域,里面的元素(当然包括所有的整数,和他们任意的加减乘除(除数不为0)之后得到的数也被包含在内)就称为有理数。(根据代数学的理论可以推导出里面所有的元素骑士就是m/n的分式形式,注:整数m也能写成m/1的分式形式)还有一种定义方式是基于实数的(在分析、拓扑里常用)事先用交换线性连续统的方式定义实数集。然后定义有理数为满足一定条件的实数即可。
tt白2023-08-05 17:36:462

有理数中的按定义分类和按性质分类是什么意思?有理数的定义和性质的区别是什么?

小菜G的建站之路2023-08-05 17:36:461

有理数是什么?

有理数=m/nm,n是整数,n不等於0
凡尘2023-08-05 17:36:464

有理数的定义

有理数的定义:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数为整数和分数的统称,其中正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。有理数和无理数的三点不同一、两者的含义不同:1、有理数的含义:数学中,有理数是一个整数a和一个正整数b的比,例如3/8,通常为a/b,0也是有理数;2、无理数的含义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。二、两者的特征不同:1、有理数的特征:有理数的小数部分是有限或为无限循环的数;2、无理数的特征:无理数的小数部分是无限不循环的数。三、两者的实质不同:1、有理数的实质:有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零;由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数;2、无理数的实质:无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
小白2023-08-05 17:36:441

有理数的定义是什么?

有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。扩展资料:有理数的基本运算法则:(1)加法运算1、同号两数相加,取与加数相同的符号,并把绝对值相加。2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。3、互为相反数的两数相加得0。4、一个数同0相加仍得这个数。5、互为相反数的两个数,可以先相加。6、符号相同的数可以先相加。7、分母相同的数可以先相加。8、几个数相加能得整数的可以先相加。(2)减法运算减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。(3)乘法运算1、同号得正,异号得负,并把绝对值相乘。2、任何数与零相乘,都得零。3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。4、几个数相乘,有一个因数为零,积就为零。5、几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。
善士六合2023-08-05 17:36:441

有理数的定义

有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。 1、有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。 2、整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是数与代数领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。 3、有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
ardim2023-08-05 17:36:441

有理数的定义

整数和分数统称为有理数,
真颛2023-08-05 17:36:442

有理数的定义是什么

有理数是整数和分数的集合,有理数的小数部分是有限或为无限循环的数。下面是有理数的相关知识,供大家参考。 有理数的定义 有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。 0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。 数轴是研究数学的重要模型,也是“数形结合”的重要体现。数轴是一条可以向两端无限延伸的直线,数轴的三要素:原点、单位长度、正方向是根据实际需要“规定”的,通常选取向右的方向为数轴的正方向。任何一个有理数都可以用数轴上的一个点表示。 有理数的性质 1.顺序性 对于任意两个有理数a、b,在a<b、a=b、a>b三种关系中,有且只有一种成立。 如果a<b,那么b>a。(不等的对逆性) 如果a<b,b<c,那么a<c。(不等的传递性) 如果a=b,b=c,那么a=c。(相等的传递性) 如果a=b,那么b=a。(相等的反身性) 2.对加、减、乘、除(0不为除数) 四则运算的封闭性,即任意一对有理数,对应的和、差、积、商(0不为除数)仍为有理数。 3.稠密性,即任意两个有理数之间存在着无限多个有理数。 集合关系 由于有理数集中所有元素均为有理数,因此可得: 整数集、分数集、小数集、自然数集,都是有理数集的一个子集。 即:有理数包含整数、分数、小数、自然数等(不考虑重复列举关系) 有理数集是实数集的一个子集,也是复数集的一个子集。 即:有理数是实数(或复数)的一部分。
可桃可挑2023-08-05 17:36:441

有理数的定义是什么

有理数是整数和分数的统称,一切有理数都可以化成分数的形式。有理数域是整数环的分式域,同时也是能包含所有整数的最小的关于加减乘除(除法里除数不能为0)运算完全封闭的数集。有理数的定义有很多种等价的方式比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后。然后把包含全部整数的关于加减乘除(除数不为0)运算完全封闭的数域中最小的那个交错有理数域,里面的元素(当然包括所有的整数,和他们任意的加减乘除(除数不为0)之后得到的数也被包含在内)就称为有理数。(根据代数学的理论可以推导出里面所有的元素骑士就是m/n的分式形式,注:整数m也能写成m/1的分式形式)还有一种定义方式是基于实数的(在分析、拓扑里常用)事先用交换线性连续统的方式定义实数集。然后定义有理数为满足一定条件的实数即可。
苏萦2023-08-05 17:36:441

什么叫有理数,有理数的定义

数学上,有理数是一个整数a和一个非零整数b的比,例如3/8,通则为a/b,故又称作分数。有理数是整数和分数的集合,整数亦可看做是分母为一的分数。有理数的小数部分有限或为循环。不是有理数的实数遂称为无理数。
u投在线2023-08-05 17:36:441

有理数的定义

有理数都可以写成分数的形式 额...貌似0不可以 其他应该都可以
Chen2023-08-05 17:36:432

有理数的含义

有理数是整数和分数的统称,一切有理数都可以化成分数的形式。有理数域是整数环的分式域,同时也是能包含所有整数的最小的关于加减乘除(除法里除数不能为0)运算完全封闭的数集。有理数的定义有很多种等价的方式比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后。然后把包含全部整数的关于加减乘除(除数不为0)运算完全封闭的数域中最小的那个交错有理数域,里面的元素(当然包括所有的整数,和他们任意的加减乘除(除数不为0)之后得到的数也被包含在内)就称为有理数。(根据代数学的理论可以推导出里面所有的元素骑士就是m/n的分式形式,注:整数m也能写成m/1的分式形式)还有一种定义方式是基于实数的(在分析、拓扑里常用)事先用交换线性连续统的方式定义实数集。然后定义有理数为满足一定条件的实数即可
meira2023-08-05 17:36:421

什么叫有理数 有理数的定义

有理数的定义我已经为大家找来了,我还为大家带来了其他内容,快来了解一下吧。 有理数的定义 有理数指整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数的小数部分是有限或循环小数。不是有理数的实数遂称为无理数。 有理数的简介 与有理数相对的无理数,有时候也被我们直接叫做“无限不循环小数”,所谓的“无限不循环小数”指的就是,这种小数的小数点之后的数字是无限且不会产生循环的数。这种“无限不循坏小数”,即无理数,它是无法用分数形式来表示的。 作为“数与代数”领域中重要内容之一的有理数,在我们现如今的世纪生活当中,其实是有着非常广泛的运用的。有理数这一数学概念起源于西方,在数学当中,我们通常会使用大写的字母Q来代表有理数的集合。 与无理数的区别 有理数是整数和分数的统称,而无理数是无限不循环小数。有理数的性质是一个整数a和一个正整数b的比,无理数的性质是由整数的比率或分数构成的数字。有理数集是整数集的扩张,而无理数是指实数范围内,不能表示成两个整数之比的数。 以上内容就是我为大家找来的有理数相关内容,希望可以帮助到大家。
苏州马小云2023-08-05 17:36:421

有理数的含义

01有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 简单来讲,能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。实数(R)可以分为有理数(Q)和无理数,其中无理数就是无限不循环小数,有理数就是有限小数和无限循环小数;其中有理数又可以分为整数(Z)和分数;整数按照能否被2整除又可以分为奇数(不能被2整除的整数)和偶数(能被2整除的整数)。有理数(Q)有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。比如4=4.0, 4/5=0.8。无理数(R-Q)无理数也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。二者区别有理数和无理数都能写成小数形式,但是,有理数可以写为有限小数和无限循环小数,而无理数只能写为无限不循环小数。有理数可以写为整数之比,而无理数不能。简单来讲,能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。
大鱼炖火锅2023-08-05 17:36:421

有理数的概念是什么

有理数的概念包含有理数分类的原则和方法,相反数、数轴、绝对值的概念和特点。  1、有理数的分类:有理数包括整数和分数,整数又包括正整数,0和负整数,分数包括正分数和负分数。“分类”的原则:(1)相称(不重、不漏);(2)有标准。  2、非负数:正数与零的统称。  3、相反数:(1)定义:如果两个数的和为0,那么这两个数互为相反数。  (2)求相反数的公式:a的相反数为-a。(3)性质:①a≠0时,a≠-a;②a与-a在数轴上的位置关于原点对称;③两个相反数的和为0,商为-1。  4、数轴:   定义(“三要素”):具有原点、正方向、单位长度的直线叫数轴。   作用:(1)直观地比较实数的大小;(2)明确体现绝对值意义;(3)所有的有理数可以在数轴上表示出来,所有的无理数如都可以在数轴上表示出来,故数轴上的点有的表示有理数,有的表示无理数,数轴上的点与实数是一一对应关系。  5、绝对值:(1)代数定义:正数的绝对值是它的本身,0的绝对值是它的本身,负数的绝对值是它的相反数。  (2)几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
LuckySXyd2023-08-05 17:36:421

有理数,无理数的定义是什么?

有理数:有理数分为正有理数,负有理数,0。有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,只要是无限循环小数的都叫有理数。如:3.12121212121212……无理数:无限不循环小数。无理数应满足三个条件:①是小数;②是无限小数;③不循环.圆周率π=3.141592653……复数:形如a+bi的数。式中a,b为实数,i是一个满足i2=-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。实数:有理数和无理数统称为实数整数:整数包括正整数,负整数和0. 如正整数:1、2、3...... 负整数:-1、-2、-3......自然数:自然数,就是人们数数时产生的数(如“有3个苹果”),所以用来表示物体个数的数叫做自然数。一个物体也没有,当然可以用“0”来表示,所以“0”也是自然数。
hi投2023-08-05 17:36:411

实数╲有理数的含义

整数:自然数 (例如 1、2、3)、负的自然数 (例如 ?1、?2、?3) 与零合起来统称为整数。 有理数:数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο? ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。有理数的小数部分有限或为循环。 实数:数学上,实数直观地定义为和数线上的点一一对应的数。本来实数只唤作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 表示。而 Rn 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。
豆豆staR2023-08-05 17:36:411

有理数包括哪些数?

包括正有理数和负有理数,0。或者是整数,分数。不包括虚数
北境漫步2023-08-05 17:36:403

有理数的定义和性质分别是什么

整数与分数统称为有理数。有理数包括:正有理数、0、有理数。接下来给大家分享有理数的定义和性质。 有理数的定义 有理数是指整数(正整数、0、负整数)和分数的统称,有理数是整数和分数的集合。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。 有理数的性质 (1)顺序性 对于任意两个有理数a、b,在a>b,a=b,a<b三种关系中,有且只有一种成立。(三岐性) 如果a<b,b<c,那么a<c。(不等的传递性) 如果a=b,b=c,那么a=c。(相等的传递性) 如果a=b,那么b=a.(相等的反身性) (2)封闭性 任意一对有理数,对应的和、差、积、商(0不为除数)仍为有理数。 (3)稠密性 任意两个有理数之间存在着无限多个有理数。 无理数的定义 无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。
陶小凡2023-08-05 17:36:401

有理数和无理数的定义

数学万花筒绚丽多姿,变化万千。一个小小的数学知识只不过是整片数学之海中的一朵小浪花,就好比有理数知识只不过是数学这颗参天大树中的一个小分支。接下来小编将带领大家一同去了解有理数与无理数之间的定义。有理数的定义有理数是整数和分数的统称。无理数的定义无理数是所有不是有理数字的实数。无理数也叫做无限不循环小数,是实数范围内不能表示成两个整数之比的数。实数是有理数和无理数的总称。有理数概念有理数是整数和分数的集合。有理数集可以用大写黑正体符号Q代表,是元素为全体有理数的集合。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。无理数概念无理数可以通过非终止的连续分数来处理,是实数范围内不能表示成两个整数之比的数,如圆周率、圆周长与其直径的比值、欧拉数e、黄金比例p等等。无理数,也称为无限不循环小数,最早由毕达哥拉斯学派弟子希伯索斯发现。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”有理数和无理数的区别性质的区别有理数是两个整数的比,总能写成整数、有限小数或无限循环小数。无理数不能写成两个整数之比,是无限不循环小数。结构的区别有理数是整数和分数的统称。无理数是所有不是有理数的实数。范围区别有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行。无理数是指实数范围内不能表示成两个整数之比的数。
可桃可挑2023-08-05 17:36:391

什么是有理数的概念及特征?

有理数是整数和分数的统称,1切有理数都可以化成份数的情势。有理数可分为整数和分数也可分为3种,1;正有理数,2;0,3;负有理数。除无穷不循环小数之外的实数统称有理数。英文:rationalnumber读音:yǒulǐshù整数和分数统称为有理数,任何1个有理数都可以写成份数m/n(m,n都是整数,且n≠0)的情势。任何1个有理数都可以在数轴上表示。其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无穷循环小数。这1定义在数的10进制和其他进位制(如2进制)下都适用。数学上,有理数是1个整数a和1个非零整数b的比(ratio),通常写作a/b,故又称作分数。希腊文称为λογο,原意为“成比例的数”(rationalnumber),但中文翻译不恰当,逐步变成“有道理的数”。无穷不循环小数称之为无理数(例如:圆周率π)有理数和无理数统称为实数。
北营2023-08-05 17:36:391

数学中的有理数包括什么

有理数包括:正整数、0、负整数、正分数、负分数。我已经为大家整理好了相关内容,快来学习一下吧。 有理数包含什么 整数:正整数、零、负整数 分数:正分数、负分数 什么是有理数 有理数,是数学这一科学当中对数字的一种概念定义,有理数是整数与分数这两类数字所构成的集合的一种统称,实际上我们也可以将该集合当中的整数看做是分母数字等于1的分数,与有理数相对的概念就是无理数。 有理数运算定律 加法运算律: (1)加法交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a。 (2)加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即a+b+c=a+(b+c)。 减法运算律: (1)减法运算律:减去一个数,等于加上这个数的相反数。即:a-b=a+(-b)。 (2)减法结合律:三个数连减,可以先将两个减的数相加,然后再减,差不变,即:a-b-c=a-(b+c)。 (3)减法交换律:三个数连减,可以调换两个减数的位置,差不变,即:a-b-c =a-c-b 乘法运算律: (1)乘法交换律:两个数相乘,交换因数的位置,积不变,即ab=ba。 (2)乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即abc=a(bc)。 (3)乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即a(b+c)=ab+ac。 以上内容就是我为大家找来的有理数相关内容,希望可以帮助到大家。
u投在线2023-08-05 17:36:391

有理数怎么分类?

一)整数和分数统称为有理数;二)有理数包括正数、零和负数。
Jm-R2023-08-05 17:36:393

高等数学有理数的定义

其实这个定义是让P/Q定义所有的有理数而不重复。首先,按照定义,P和Q必须互质,所以不能取P=20,Q=5;要想得到有理数4的话,直接取P=4,Q=1就行了。否则的话,有理数4有无数种定义方法,如8/2,12/3,16/4……这个定义可以让每个有理数都只有一种定义方法,例如1只能定义为1/1,2只能定义为2/1等等,不信你可以再举例试试看
无尘剑 2023-08-05 17:36:391

有理数的定义是什么?

有理数是整数和分数的统称,一切有理数都可以化成分数的形式。有理数域是整数环的分式域,同时也是能包含所有整数的最小的关于加减乘除(除法里除数不能为0)运算完全封闭的数集。有理数的定义有很多种等价的方式比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后。然后把包含全部整数的关于加减乘除(除数不为0)运算完全封闭的数域中最小的那个交错有理数域,里面的元素(当然包括所有的整数,和他们任意的加减乘除(除数不为0)之后得到的数也被包含在内)就称为有理数。(根据代数学的理论可以推导出里面所有的元素骑士就是m/n的分式形式,注:整数m也能写成m/1的分式形式)还有一种定义方式是基于实数的(在分析、拓扑里常用)事先用交换线性连续统的方式定义实数集。然后定义有理数为满足一定条件的实数即可
豆豆staR2023-08-05 17:36:371

什么叫做有理数?

有理数是整数和分数的统称0也是
北境漫步2023-08-05 17:36:371

有理数按定义怎么分类

1、按有理数的定义分类有理数分为:整数和分数。整数分为正整数、零、负整数;分数分为:正分数、负分数。2、按有理数的性质分类有理数分为正有理数、零、负有理数。正有理数分为正整数、正分数;负有理数分为负整数、实数的分类1、可以分为整数,分数整数又可分为正整数,0,负整数。分数又可分为正分数,负分数。2、可以分为正数,0,负数正数又可分为正整数,正分数。负数又可分为负整数,负分数。
LuckySXyd2023-08-05 17:36:371

有理数是什么,有理数的定义

数学上,有理数是一个整数a和一个非零整数b的比,例如3/8,通则为a/b,故又称作分数.有理数是整数和分数的集合,整数亦可看做是分母为一的分数.有理数的小数部分有限或为循环.不是有理数的实数遂称为无理数.
无尘剑 2023-08-05 17:36:371

有理数和无理数的定义及分类

有理数为整数和分数的统称,不是有理数的实数称为无理数。接下来给大家分享有理数和无理数的定义及分类。 有理数的定义 有理数是指整数(正整数、0、负整数)和分数的统称,有理数是整数和分数的集合。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。 有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。 有理数的分类 (一)按有理数的定义分类: (1)整数:整数就是像-3,-2,-1,0,1,2,3,10等这样的数。整数包括正整数、0、负整数。其中零和正整数统称自然数。 (2)分数:分数是一个整数a和一个正整数b的不等于整数的比。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。 (二)按有理数的性质分类: (1)正有理数:除了负数、0、无理数的数字都是正有理数。正有理数还被分为正整数和正分数。 (2)0:0是介于-1和1之间的整数,是最小的自然数,也是有理数。 (3)负有理数:负有理数指小于0的有理数,就是小于零并能用小数表示的数。 无理数的定义 无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。 无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率等。
小白2023-08-05 17:36:371

有理数定义是什么?

拜托,是定义,不要别的.
瑞瑞爱吃桃2023-08-05 17:36:375

有理数的定义

有理数的定义:整数和分数的统称,即整数和分数的集合。整数包括了正整数、0、负整数,可以看作是分母为一的分数。不是有理数的实数称为无理数。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。 有理数集可以表示为整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算可以随意运算。 有理数的分类有两种,按不同的标准如下: 1、按照有理数的性质分类:(1)有理数,包括整数、分数和0。(2)无理数......无限不循环小数。有理数是“数与代数”这个领域中的很重要内容之一,在现实生活中有很广泛的应用,是继续学习方程、不等式、实数、代数式、直角坐标系、函数、统计等多种数学内容以及与其相关学科知识的基础。
肖振2023-08-05 17:36:361

有理数的定义

有理数的定义:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数为整数和分数的统称,其中正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。有理数和无理数的三点不同一、两者的含义不同:1、有理数的含义:数学中,有理数是一个整数a和一个正整数b的比,例如3/8,通常为a/b,0也是有理数;2、无理数的含义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。二、两者的特征不同:1、有理数的特征:有理数的小数部分是有限或为无限循环的数;2、无理数的特征:无理数的小数部分是无限不循环的数。三、两者的实质不同:1、有理数的实质:有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零;由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数;2、无理数的实质:无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
北有云溪2023-08-05 17:36:351

有理数的定义是什么?

01 有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。 实数(R)可以分为有理数(Q)和无理数,其中无理数就是无限不循环小数,有理数就是有限小数和无限循环小数;其中有理数又可以分为整数(Z)和分数;整数按照能否被2整除又可以分为奇数(不能被2整除的整数)和偶数(能被2整除的整数)。 有理数(Q) 有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。比如4=4.0, 4/5=0.8。 加法运算 1、同号两数相加,取与加数相同的符号,并把绝对值相加。 2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 3、互为相反数的两数相加得0。 4、一个数同0相加仍得这个数。 5、互为相反数的两个数,可以先相加。 6、符号相同的数可以先相加。 7、分母相同的数可以先相加。 8、几个数相加能得整数的可以先相加 减法运算 减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。 乘法运算 1、同号得正,异号得负,并把绝对值相乘。 2、任何数与零相乘,都得零。 3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。 4、几个数相乘,有一个因数为零,积就为零。 5、几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。 除法运算 1、除以一个不等于零的数,等于乘这个数的倒数。 2、两数相除,同号得正,异号得负,并把绝对值相除。零除以任意一个不等于零的数,都得零。 注意: 零不能做除数和分母。 有理数的除法与乘法是互逆运算。 在做除法运算时,根据同号得正,异号得负的法则先确定符号,再把绝对值相除。若在算式中带有带分数,一般先化成假分数进行计算。若不能整除,则除法运算都转化为乘法运算。 乘方运算 1、负数的奇数次幂是负数,负数的偶数次幂是正数。例如:(-2)?(-2的3次方)=-8,(-2)?(-2的2次方)=4。 2、正数的任何次幂都是正数,零的任何正数次幂都是零。例如:2(2的2次方)=4,2 (2的3次方)=8,0(0的3次方)=0。 3、零的零次幂无意义。 4、由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成。 5、1的任何次幂都是1,-1的偶次幂是1,奇次幂是-1。 有理数运算定律 加法运算律: 1、加法交换律:两个数相加,交换加数的位置,和不变。 2、加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即(a+b)+c=a+(b+c)a+b。 减法运算律: 减去一个数,等于加上这个数的相反数。即:a-b=a+(-b)。 乘法运算律: 1、乘法交换律:两个数相乘,交换因数的位置,积不变。 2、乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变。 3、乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即:a(b+c)=ab+ac(ab)c=a(bc)ab=ba。
FinCloud2023-08-05 17:36:351

有理数定义是什么?

有理数的定义为:有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数,因而有理数集的数可分为正有理数、负有理数和零。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。有理数加法的运算法则:1、同号两数相加,取与加数相同的符号,并把绝对值相加。2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。3、互为相反数的两数相加得0。4、一个数同0相加仍得这个数。5、互为相反数的两个数,可以先相加。
九万里风9 2023-08-05 17:36:341

3.设 A={x|x 是有理数}, B={x|x 是无理数},求 AB, AB?

A={x|x 是有理数}, B={x|x 是无理数},A∪B = RA∩B = Φ
Ntou1232023-08-05 17:26:422

小数是有理数吗

小数是有理数,有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。小数分为两类,一种是有限小数,一种是无限小数;有限小数如0.25、6.25等,这些也可以写成分数的形式,所以有限小数是有理数;而无限小数又分为两种,一种是无限循环小数,一种是无限不循环小数;无限循环小数如0.3181818……可以写为7/22,所以无限循环小数是有理数。 有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。 有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
苏州马小云2023-08-04 11:22:001

下列不是有理数的是(  ) A.-3.14 B.0 C. 7 3

A、-3.14是负数,是有理数,故本选项正确;B、0是有理数,正确;C、 7 3 是分数,是有理数,故本选项正确;D、π是无理数,不是有理数,故本选项错误.故选D.
苏州马小云2023-08-04 11:22:001

有理数是什么,说通俗一点?

有理数包括整数分数和0
gitcloud2023-08-04 11:21:595

π是正数,为什么不是有理数

π是正数,但不是有理数。因为无理数是:无限不循环小数。π是无限不循环的小数。
u投在线2023-08-04 11:21:582

不是有理数的数有哪些

实数范围内,有有理数和无理数.有理数包括有限小数,无限循环小数.不是有理数就是无理数,比如 1、 根号3,(根号3)+1 2、 无限不循环小数也是例如 4.35422513688123333567……3、 兀
人类地板流精华2023-08-04 11:21:581

有理数的范围是什么?

有理数包括整数、小数、分数。整数:正整数、零(也可以说正整数)、负整数。小数:正小数、负小数。正小数和负小数又分为:有限小数、无限小数。无限小数又分为:无限循环小数、无限不循环小数(无限不循环小数不是有理数!)。分数分为:正分数、负分数。特别注意:无限不循环小数、pi、根号质数不是有理数!
善士六合2023-08-04 11:21:581

如何判断一个数是无理数还是有理数?

无理数与有理数的区别1、把有理数和无理数都写成小数形式时,有理数能写成整数、小数或无限循环小数,比如4=4.0,4/5=0.8,1/3=0.33333……而无理数只能写成无限不循环小数,比如√2=1.414213562…………根据这一点,人们把无理数定义为无限不循环小数.2、无理数不能写成两整数之比,举例不对,1分之根号2,根号2本身就不是整数。利用有理数和无理数的主要区别,可以证明√2是无理数。证明:假设√2不是无理数,而是有理数。既然√2是有理数,它必然可以写成两个整数之比的形式:√2=p/q又由于p和q没有公因数可以约去,所以可以认为p/q为最简分数,即最简分数形式。把√2=p/q两边平方得2=(p^2)/(q^2)即2(q^2)=p^2由于2q^2是偶数,p必定为偶数,设p=2m由2(q^2)=4(m^2)得q^2=2m^2同理q必然也为偶数,设q=2n既然p和q都是偶数,他们必定有公因数2,这与前面假设p/q是最简分数矛盾。这个矛盾是由假设√2是有理数引起的。因此√2是无理数。1.判断a√b是否无理数(a,b是整数)若a√b是有理数,它必然可以写成两个整数之比的形式:a√b=c/d(c/d是最简分数)两边a次方得b=c^a/d^a即c^a=b*(d^a)c^a一定是b的整数倍,设c^a=b^n*p同理b*(d^a)必然也为b的整数倍,设b*(d^a)=b*(b^m*q).其中p和q都不是b的整数倍左边b的因子数是a的倍数,要想等式成立,右边b的因子数必是a的倍数,推出当且仅当b是完全a次方数,a√b才是有理数,否则为无理数。
瑞瑞爱吃桃2023-08-04 11:21:585

有理数包括无限不循环小数吗

在有理数的概念当中,它包括的各种数是不包括无限不循环小数的,也就是无限不循环,小数不是有理数,只有循环小数可以是有理数
墨然殇2023-08-04 11:21:5615
 1 2 3 4 5 6  下一页  尾页