求40道有理数混合运算练习题 要带答案
(1)(-3)×(-5)2; (2)〔(-3)×(-5)〕2; (3)(-3)2-(-6); (4)(-4×32)-(-4×3)2. 审题:运算顺序如何? 解:(1)(-3)×(-5)2=(-3)×25=-75. (2)〔(-3)×(-5)〕2=(15)2=225. (3)(-3)2-(-6)=9-(-6)=9+6=15. (4)(-4×32)-(-4×3)2 =(-4×9)-(-12)2 =-36-144 =-180. 注意:搞清(1),(2)的运算顺序,(1)中先乘方,再相乘,(2)中先计算括号内的,然后再乘方.(3)中先乘方,再相减,(4)中的运算顺序要分清,第一项(-4×32)里,先乘方再相乘,第二项(-4×3)2中,小括号里先相乘,再乘方,最后相减. 课堂练习 计算: (1)-72; (2)(-7)2; (3)-(-7)2; (7)(-8÷23)-(-8÷2)3. 例4 计算 (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4. 审题:(1)存在哪几级运算? (2)运算顺序如何确定? 解: (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4 =4-(-25)×(-1)+87÷(-3)×1(先乘方) =4-25-29(再乘除) =-50.(最后相加) 注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1. 课堂练习 计算: (1)-9+5×(-6)-(-4)2÷(-8); (2)2×(-3)3-4×(-3)+15. 3.在带有括号的运算中,先算小括号,再算中括号,最后算大括号. 课堂练习 计算: 三、小结 教师引导学生一起总结有理数混合运算的规律. 1.先乘方,再乘除,最后加减; 2.同级运算从左到右按顺序运算; 3.若有括号,先小再中最后大,依次计算. 四、作业 1.计算: 2.计算: (1)-8+4÷(-2); (2)6-(-12)÷(-3); (3)361(-4)+(-28)÷7; (4)(-7)(-5)-90÷(-15); 3.计算: 4.计算: (7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5. 5*.计算(题中的字母均为自然数): (1)(-12)2÷(-4)3-2×(-1)2n-1; (4)〔(-2)4+(-4)261(-1)7〕2m61(53+35). 第二份 初一数学测试(六) (第一章 有理数 2001、10、18) 命题人:孙朝仁 得分 一、 选择题:(每题3分,共30分) 1.|-5|等于………………………………………………………………( ) (A)-5 (B)5 (C)±5 (D)0.2 2.在数轴上原点及原点右边的点所表示的数是……………………( ) (A)正数 (B)负数 (C)非正数 (D)非负数 3.用代数式表示“ 、b两数积与m的差”是………………………( ) (A) (B) (C) (D) 4.倒数等于它本身的数有………………………………………………( ) (A)1个 (B)2个 (C)3个 (D)无数个 5.在 (n是正整数)这六数中,负数的个数是……………………………………………………………………( ) (A)1个 (B)2个 (C)3个 (D)4个 6.若数轴上的点A、B分别与有理数a、b对应,则下列关系正确的是( ) (A)a<b (B)-a<b (C)|a|<|b| (D)-a>-b 61 61 61 7.若|a-2|=2-a,则数a在数轴上的对应点在 (A) 表示数2的点的左侧 (B)表示数2的点的右侧……………( ) (C) 表示数2的点或表示数2的点的左侧 (D)表示数2的点或表示数2的点的左侧 8.计算 的结果是……………………………( ) (A) (B) (C) (D) 9.下列说法正确的是…………………………………………………………( ) (A) 有理数就是正有理数和负有理数(B)最小的有理数是0 (C)有理数都可以在数轴上找到表示它的一个点(D)整数不能写成分数形式 10.下列说法中错误的是………………………………………………………( ) (A) 任何正整数都是由若干个“1”组成 (B) 在自然数集中,总可以进行的运算是加法、减法、乘法 (C) 任意一个自然数m加上正整数n等于m进行n次加1运算 (D)分数 的特征性质是它与数m的乘积正好等于n 二、 填空题:(每题4分,共32分) 11.-0.2的相反数是 ,倒数是 。 12.冰箱冷藏室的温度是3℃,冷冻室的温度比冷藏室的温度低15℃,则冷冻室温度是 ℃。 13.紧接在奇数a后面的三个偶数是 。 14.绝对值不大于4的负整数是 。 15.计算: = 。 16.若a<0,b>0,|a|>|b|,则a+b 0。(填“>”或“=”或“<”号) 17.在括号内的横线上填写适当的项:2x-(3a-4b+c)=(2x-3a)-( )。 18.观察下列算式,你将发现其中的规律: ; ; ; ; ;……请用同一个字母表示数,将上述式子中的规律用等式表示出来: 。 三、 计算(写出计算过程):(每题7分,共28分) 19. 20. 21. (n为正整数) 22. 四、若 。(1)求a、b的值;(本题4分) (2)求 的值。(本题6分) 第三份 初一数学测试(六) (第一章 有理数 2001、10、18) 命题人:孙朝仁 班级 姓名 得分 一、 选择题:(每题3分,共30分) 1.|-5|等于………………………………………………………( ) (A)-5 (B)5 (C)±5 (D)0.2 2.在数轴上原点及原点右边的点所表示的数是………………( ) (A)正数 (B)负数 (C)非正数 (D)非负数 3.用代数式表示“ 、b两数积与m的差”是………………( ) (A) (B) (C) (D) 4.-12+11-8+39=(-12-8)+(11+39)是应用了 ( ) A、加法交换律B、加法结合律 C、加法交换律和结合律D、乘法分配律 5.将6-(+3)-(-7)+(-2)改写成省略加号的和应是 ( ) A、-6-3+7-2 B、6-3-7-2 C、6-3+7-2 D、6+3-7-2 6.若|x|=3,|y|=7,则x-y的值是 ( ) A、±4 B、±10 C、-4或-10 D、±4,±10 7.若a×b<0,必有 ( ) A、a>0,b<0 B、a<0,b>0 C、a、b同号 D、a、b异号 8.如果两个有理数的和是正数,积是负数,那么这两个有理数 ( ) A、都是正数 B、绝对值大的那个数正数,另一个是负数 C、都是负数 D、绝对值大的那个数负数,另一个是正数 9.文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在 ( ) A、文具店 B、玩具店 C、文具店西边40米 D、玩具店东边-60米 10.已知有理数 、 在数轴上的位置如图 61 61 61 所示,那么在①a>0,②-b<0,③a-b>0, ④a+b>0四个关系式中,正确的有 ( ) A、4个 B、3个 C、2个 D、1个 二、 判断题:(对的画“+”,错的画“○”,每题1分,共6分) 11.0.3既不是整数又不是分数,因而它也不是有理数。 ( ) 12.一个有理数的绝对值等于这个数的相反数,这个数是负数。 ( ) 13.收入增加5元记作+5元,那么支出减少5元记作-5元。 ( ) 14.若a是有理数,则-a一定是负数。 ( ) 15.零减去一个有理数,仍得这个数。 ( ) 16.几个有理数相乘,若负因数的个数为奇数个,则积为负。 ( ) 三、 填空题:(每题3分,共18分) 17.在括号内填上适当的项,使等式成立:a+b-c+d=a+b-( )。 18.比较大小: │- │ │- │.(填“>”或“<”号) 19.如图,数轴上标出的点中任意相邻两点间的距离都相等,则a的值= 。 61 61 61 61 61 61 61 61 61 20.一个加数是0.1,和是-27.9,另一个加数是 。 21.-9,+6,-3三数的和比它们的绝对值的和小 。 22.等式 ×〔(-5)+(-13)〕= 根据的运算律是 。 四、 在下列横线上,直接填写结果:(每题2分,共12分) 23.-2+3= ;24.-27+(-51)= ; 25.-18-34= ; 26.-24-(-17)= ;27.-14×5= ; 28.-18×(-2)= 。 五、 计算(写出计算过程):(29、30每题6分,31、32每题7分,共26分) 29.(-6)-(-7)+(-5)-(+9) 30. 31. 32.(-5)×(-3 )-15×1 +〔 -( )×24〕 六、 下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)。 ⑴如果现在的北京时间是7:00,那么现在的纽约时间是多少? ⑵小华现在想给远在巴黎的外公打电话,你认为合适吗?(每小题4分) *是乘号。 [-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3) 5+21*8/2-6-59 68/21-8-11*8+61 -2/9-7/9-56 4.6-(-3/4+1.6-4-3/4) 1/2+3+5/6-7/12 [2/3-4-1/4*(-0.4)]/1/3+2 22+(-4)+(-2)+4*3 -2*8-8*1/2+8/1/8 (2/3+1/2)/(-1/12)*(-12) (-28)/(-6+4)+(-1) 2/(-2)+0/7-(-8)*(-2) (1/4-5/6+1/3+2/3)/1/2 18-6/(-3)*(-2) (5+3/8*8/30/(-2)-3 (-84)/2*(-3)/(-6) 1/2*(-4/15)/2/3 -3x+2y-5x-7y 有理数的加减混合运算 【【同步达纲练习】 1.选择题: (1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( ) A.-2-3-5-4+3 B.-2+3+5-4+3 C.-2-3+5-4+3 D.-2-3-5+4+3 (2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( ) A.-10 B.-9 C.8 D.-23 (3)-7,-12,+2的代数和比它们的绝对值的和小( ) A.-38 B.-4 C.4 D.38 (4)若 +(b+3)2=0,则b%铁血嘟嘟2023-07-30 09:36:191
七年级有理数加减法计算题,难一点的,有分数!
为什么这么说,容易的,也有分数,请说清楚一点,还有要注意标点符号哦,呵呵!小白2023-07-30 09:36:196
35道有理数混合运算 带答案的 急啊!!!
4.23-17-(+23)=______.5.-7-9+(-13)=______.6.-11+|12-(39-8)|=______.7.-9-|5-(9-45)|=______.8.-5.6+4.7-|-3.8-3.8|=______.9.-|-0.2|+[0.6-(0.8-5.4)]=______.12.9.53-8-(2-|-11.64+1.53-1.36|)=______.13.73.17-(812.03-|219.83+518|)=______.*是乘号。 [-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3) 5+21*8/2-6-59 68/21-8-11*8+61 -2/9-7/9-56 4.6-(-3/4+1.6-4-3/4) 1/2+3+5/6-7/12 [2/3-4-1/4*(-0.4)]/1/3+2 22+(-4)+(-2)+4*3 -2*8-8*1/2+8/1/8 (2/3+1/2)/(-1/12)*(-12) (-28)/(-6+4)+(-1) 2/(-2)+0/7-(-8)*(-2) (1/4-5/6+1/3+2/3)/1/2 18-6/(-3)*(-2) (5+3/8*8/30/(-2)-3 (-84)/2*(-3)/(-6) 1/2*(-4/15)/2/3 -3x+2y-5x-7y 有理数的加减混合运算 【【同步达纲练习】 1.选择题: (1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( ) A.-2-3-5-4+3 B.-2+3+5-4+3 C.-2-3+5-4+3 D.-2-3-5+4+3 (2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( ) A.-10 B.-9 C.8 D.-23 (3)-7,-12,+2的代数和比它们的绝对值的和小( ) A.-38 B.-4 C.4 D.38 (4)若 +(b+3)2=0,则b-a- 的值是( ) A.-4 B.-2 C.-1 D.1 (5)下列说法正确的是( ) A.两个负数相减,等于绝对值相减 B.两个负数的差一定大于零 C.正数减去负数,实际是两个正数的代数和 D.负数减去正数,等于负数加上正数的绝对值 (6)算式-3-5不能读作( ) A.-3与5的差 B.-3与-5的和 C.-3与-5的差 D.-3减去5 2.填空题:(4′×4=16′) (1)-4+7-9=- - + ; (2)6-11+4+2=- + - + ; (3)(-5)+(+8)-(+2)-(-3)= + - + ; (4)5-(-3 )-(+7)-2 =5+ - - + - . 3.把下列各式写成省略括号的和的形式,并说出它们的两种读法:(8′×2=16′) (1)(-21)+(+16)-(-13)-(+7)+(-6); (2)-2 -(- )+(-0.5)+(+2)-(+ )-2. 4.计算题(6′×4=24′) (1)-1+2-3+4-5+6-7; (2)-50-28+(-24)-(-22); (3)-19.8-(-20.3)-(+20.2)-10.8; (4)0.25- +(-1 )-(+3 ). 5.当x=-3.7,y=-1.8,z=-1.5时,求下列代数式的值(5′×4=20′) (1)x+y-z; (2)-x-y+z; (3)-x+y+z; (4)x-y-z. 【素质优化训练】 (1) (-7)-(+5)+(+3)-(-9)=-7 5 3 9; (2)-(+2 )-(-1 )-(+3 )+(- ) =( 2 )+( 1 )+( 3 )+( ); (3)-14 5 (-3)=-12; (4)-12 (-7) (-5) (-6)=-16; (5)b-a-(+c)+(-d)= a b c d; 2.当x= ,y=- ,z=- 时,分别求出下列代数式的值; (1)x-(-y)+(-z); (2)x+(-y)-(+z); (3)-(-x)-y+z; (4)-x-(-y)+z. 3.就下列给的三组数,验证等式: a-(b-c+d)=a-b+c-d是否成立. (1)a=-2,b=-1,c=3,d=5; (2)a=23 ,b=-8,c=-1 ,d=1 . 4.计算题 (1)-1-23.33-(+76.76); (2)1-2*2*2*2; (3)(-6-24.3)-(-12+9.1)+(0-2.1); (4)-1+8-7 【生活实际运用】 某水利勘察队,第一天向上游走5 千米,第二天又向上游走5 ,第三天向下游走4 千米,第四天又向下游走4.5千米,这时勘察队在出发点的哪里?相距多少千米? 参考答案: 【同步达纲练习】 1.(1)C;(2)B;(3)D;(4)A;(5)C;(6)C 2.(1)4,(-7),(-9) (2)(-6),(-11),(-4),2; (3)-5,8,2,3; (4)3,7,2; 3.略4.(1)-4; (2)-80; (3)-30.5 (4)-5 5.(1)-4; (2)4; (3)0.4; (4)-0.4. 【素质优化训练】 1.(1)-,+,+; (2)-,+,-,-; (3)+,+; (4)-,+,+; (5)-,+,-,-. 2.(1) (2) (3) (4)- 3.(1) (2)都成立. 4.(1)- (2) (3)-29.5 (4)-1 第(4)题注意同号的数、互为相反数先分别结合。 【生活实际运用】 1.上游1 千米肖振2023-07-30 09:36:181
20道有理数的加减法混合运算题带答案
得到题目:(1) (-9)-(-13)+(-20)+(-2)(2) 3+13-(-7)/6(3) (-2)-8-14-13(4) (-7)*(-1)/7+8(5) (-11)*4-(-18)/18(6) 4+(-11)-1/(-3)(7) (-17)-6-16/(-18)(8) 5/7+(-1)-(-8)(9) (-1)*(-1)+15+1(10) 3-(-5)*3/(-15)(11) 6*(-14)-(-14)+(-13)(12) (-15)*(-13)-(-17)-(-4)(13) (-20)/13/(-7)+11(14) 8+(-1)/7+(-4)(15) (-13)-(-9)*16*(-12)(16) (-1)+4*19+(-2)(17) (-17)*(-9)-20+(-6)(18) (-5)/12-(-16)*(-15)(19) (-3)-13*(-5)*13(20) 5+(-7)+17-10(21) (-10)-(-16)-13*(-16)(22) (-14)+4-19-12(23) 5*13/14/(-10)(24) 3*1*17/(-10)(25) 6+(-12)+15-(-15)(26) 15/9/13+(-7)(27) 2/(-10)*1-(-8)(28) 11/(-19)+(-14)-5(29) 19-16+18/(-11)(30) (-1)/19+(-5)+1(31) (-5)+19/10*(-5)(32) 11/(-17)*(-13)*12(33) (-8)+(-10)/8*17(34) 7-(-12)/(-1)+(-12)(35) 12+12-19+20(36) (-13)*(-11)*20+(-4)(37) 17/(-2)-2*(-19)(38) 1-12*(-16)+(-9)(39) 13*(-14)-15/20(40) (-15)*(-13)-6/(-9)(41) 15*(-1)/12+7(42) (-13)+(-16)+(-14)-(-6)(43) 14*12*(-20)*(-13)(44) 17-9-20+(-10)(45) 12/(-14)+(-14)+(-2)(46) (-15)-12/(-17)-(-3)(47) 6-3/9/(-8)(48) (-20)*(-15)*10*(-4)(49) 7/(-2)*(-3)/(-14)(50) 13/2*18*(-7)(51) 13*5+6+3(52) (-15)/5/3+(-20)(53) 19*4+17-4(54) (-11)-(-6)*(-4)*(-9)(55) (-16)+16-(-8)*(-13)(56) 16/(-1)/(-10)/(-20)(57) (-1)-(-9)-9/(-19)(58) 13*20*(-13)*4(59) 11*(-6)-3+18(60) (-20)+(-12)+(-1)+(-12)(61) (-19)-3*(-13)*4(62) (-13)/3-5*8(63) (-15)/1+17*(-18)(64) (-13)/3/19/8(65) (-3)/(-13)/20*5(66) 3/12/(-18)-18(67) 5*(-19)/13+(-6)(68) 4+4*(-19)-11(69) (-2)+17-5+(-1)(70) 9+(-3)*19*(-19)(71) (-12)-(-6)+17/2(72) 15*(-5)-(-3)/5(73) (-10)*2/(-1)/4(74) (-8)*16/(-6)+4(75) 2-11+12+10(76) (-3)+(-20)*(-7)*(-9)(77) (-15)+8-17/7(78) (-14)*10+18*2(79) (-7)+2-(-17)*19(80) (-7)/18/1+1(81) 11/(-9)-(-16)/17(82) 15+5*6-(-8)(83) (-13)*(-18)+18/(-6)(84) 11-(-1)/11*(-6)(85) (-4)+(-12)+19/6(86) (-18)/(-1)/(-19)+2(87) 9*(-8)*(-6)/11(88) 20*(-3)*(-5)+1(89) (-18)-2+(-11)/20(90) 15*1+4*17(91) 1-10+(-14)/(-1)(92) 10+(-4)*(-19)+(-12)(93) 15/14/5*7(94) 8+(-13)/3+1(95) (-14)+6+(-2)*(-14)(96) (-5)/(-13)/4+7(97) (-15)/(-2)/(-12)+(-2)(98) (-17)-(-20)-20*(-10)(99) (-7)-10-13/3(100) (-20)+(-18)+11+9答案:1 -182 103/63 -374 95 -436 -(20/3)7 -(199/9)8 54/79 1710 211 -8312 21613 1021/9114 27/715 -174116 7317 12718 -(2885/12)19 84220 521 21422 -4123 -(13/28)24 -(51/10)25 2426 -(268/39)27 39/528 -(372/19)29 15/1130 -(77/19)31 -(29/2)32 1716/1733 -(117/4)34 -1735 2536 285637 59/238 18439 -(731/4)40 587/341 23/442 -3743 4368044 -2245 -(118/7)46 -(192/17)47 145/2448 -1200049 -(3/4)50 -81951 7452 -2153 8954 20555 -10456 -(2/25)57 161/1958 -1352059 -5160 -4561 13762 -(133/3)63 -32164 -(13/456)65 3/5266 -(1297/72)67 -(173/13)68 -8369 970 109271 5/272 -(372/5)73 574 76/375 1376 -126377 -(66/7)78 -10479 31880 11/1881 -(43/153)82 5383 23184 115/1185 -(77/6)86 20/1987 432/1188 30189 -(411/20)90 8391 592 7493 3/294 14/395 2096 369/5297 -(21/8)98 20399 -(64/3)100 -18瑞瑞爱吃桃2023-07-30 09:36:171
有理数的混合运算含答案
[(15*2+10)-20]/2=10黑桃花2023-07-30 09:36:171
30道有理数混合运算及过程答案
练习一(B级) (一)计算题: (1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57)(5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5) (二)用简便方法计算: (1)(-17/4)+(-10/3)+(+13/3)+(11/3) (2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4) (三)已知:X=+17(3/4),Y=-9(5/11),Z=-2.25, 求:(-X)+(-Y)+Z的值 (四)用“>“,“0,则a-ba (C)若ba (D)若a<0,ba (二)填空题: (1)零减去a的相反数,其结果是_____________; (2)若a-b>a,则b是_____________数; (3)从-3.14中减去-π,其差应为____________; (4)被减数是-12(4/5),差是4.2,则减数应是_____________; (5)若b-a<-,则a,b的关系是___________,若a-b<0,则a,b的关系是______________; (6)(+22/3)-( )=-7 (三)判断题: (1)一个数减去一个负数,差比被减数小. (2)一个数减去一个正数,差比被减数小. (3)0减去任何数,所得的差总等于这个数的相反数. (4)若X+(-Y)=Z,则X=Y+Z (5)若a0 练习二(B级) (一)计算: (1)(+1.3)-(+17/7) (2)(-2)-(+2/3) (3)|(-7.2)-(-6.3)+(1.1)| (4)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|) (二)如果|a|=4,|b|=2,且|a+b|=a+b,求a-b的值. (三)若a,b为有理数,且|a|<|b|试比较|a-b|和|a|-|b|的大小 (四)如果|X-1|=4,求X,并在数轴上观察表示数X的点与表示1的点的距离. 练习三(A级) (一)选择题: (1)式子-40-28+19-24+32的正确读法是( ) (A)负40,负28,加19,减24与32的和 (B)负40减负28加19减负24加32 (C)负40减28加19减24加32 (D)负40负28加19减24减负32 (2)若有理数a+b+C<0,则( ) (A)三个数中最少有两个是负数 (B)三个数中有且只有一个负数 (C)三个数中最少有一个是负数 (D)三个数中有两个是正数或者有两个是负数 (3)若m<0,则m和它的相反数的差的绝对值是( ) (A)0 (B)m (C)2m (D)-2m (4)下列各式中与X-y-Z诉值不相等的是( ) (A)X-(Y-Z) (B)X-(Y+Z) (C)(X-y)+(-z) (D)(-y)+(X-Z) (二)填空题: (1)有理数的加减混合运算的一般步骤是:(1)________;(2)_________;(3)________ _______;(4)__________________. (2)当b0,(a+b)(a-1)>0,则必有( ) (A)b与a同号 (B)a+b与a-1同号 (C)a>1 (D)b1 (6)一个有理数和它的相反数的积( ) (A)符号必为正 (B)符号必为负 (C)一不小于零 (D)一定不大于零 (7)若|a-1|*|b+1|=0,则a,b的值( ) (A)a=1,b不可能为-1 (B)b=-1,a不可能为1 (C)a=1或b=1 (D)a与b的值相等 (8)若a*B*C=0,则这三个有理数中( ) (A)至少有一个为零 (B)三个都是零 (C)只有一个为零 (D)不可能有两个以上为零 (二)填空题: (1)有理数乘法法则是:两数相乘,同号__________,异号_______________,并把绝对值_____, 任何数同零相乘都得__________________. (2)若四个有理数a,b,c,d之积是正数,则a,b,c,d中负数的个数可能是______________; (3)计算(-2/199)*(-7/6-3/2+8/3)=________________; (4)计算:(4a)*(-3b)*(5c)*1/6=__________________; (5)计算:(-8)*(1/2-1/4+2)=-4-2+16=10的错误是___________________; (6)计算:(-1/6)*(-6)*(10/7)*(-7/10)=[(-1/6)*(-6)][(+10/7)*(-7/10)]=-1的根据是_______ (三)判断题: (1)两数之积为正,那么这两数一定都是正数; (2)两数之积为负,那么这两个数异号; (3)几个有理数相乘,当因数有偶数个时,积为正; (4)几个有理数相乘,当积为负数时,负因数有奇数个; (5)积比每个因数都大. 练习(四)(B级) (一)计算题: (1)(-4)(+6)(-7) (2)(-27)(-25)(-3)(-4) (3)0.001*(-0.1)*(1.1) (4)24*(-5/4)*(-12/15)*(-0.12) (5)(-3/2)(-4/3)(-5/4)(-6/5)(-7/6)(-8/7) (6)(-24/7)(11/8+7/3-3.75)*24 (二)用简便方法计算: (1)(-71/8)*(-23)-23*(-73/8) (2)(-7/15)*(-18)*(-45/14) (3)(-2.2)*(+1.5)*(-7/11)*(-2/7) (三)当a=-4,b=-3,c=-2,d=-1时,求代数式(ab+cd)(ab-cd)的值. (四)已知1+2+3+.+31+32+33=17*33,计算下式 1-3+2-6+3-9-12+...+31-93+32-96+33-99的值 练习五(A级) (一)选择题: (1)已知a,b是两个有理数,如果它们的商a/b=0,那么( ) (A)a=0且b≠0 (B)a=0 (C)a=0或b=0 (D)a=0或b≠0 (2)下列给定四组数1和1;-1和-1;0和0;-2/3和-3/2,其中互为倒数的是( ) (A)只有 (B)只有 (C)只有 (D)都是 (3)如果a/|b|(b≠0)是正整数,则( ) (A)|b|是a的约数 (B)|b|是a的倍数 (C)a与b同号 (D)a与b异号 (4)如果a>b,那么一定有( ) (A)a+b>a (B)a-b>a (C)2a>ab (D)a/b>1 (二)填空题: (1)当|a|/a=1时,a______________0;当|a|/a=-1时,a______________0;(填>,0,则a___________0; (11)若ab/c0,则b___________0; (12)若a/b>0,b/c(-0.3)4>-106 (B)(-0.3)4>-106>(-0.2)3 (C)-106>(-0.2)3>(-0.3)4 (D)(-0.3)4>(-0.2)3>-106 (4)若a为有理数,且a2>a,则a的取值范围是( ) (A)a<0 (B)01或a<0 (5)下面用科学记数法表示106000,其中正确的是( ) (A)1.06*105 (B)10.6*105 (C)1.06*106 (D)0.106*107 (6)已知1.2363=1.888,则123.63等于( ) (A)1888 (B)18880 (C)188800 (D)1888000 (7)若a是有理数,下列各式总能成立的是( ) (A)(-a)4=a4 (B)(-a)3=A4 (C)-a4=(-a)4 (D)-a3=a3 (8)计算:(-1)1-(-2)2-(-3)3-(-4)4所得结果是( ) (A)288 (B)-288 (C)-234 (D)280 (二)填空题: (1)在23中,3是________,2是_______,幂是________;若把3看作幂,则它的底数是________, 指数是________; (2)根据幂的意义:(-2)3表示________相乘; (-3)2v表示________相乘;-23表示________. (3)平方等于36/49的有理数是________;立方等于-27/64的数是________ (4)把一个大于10的正数记成a*10n(n为正整数)的形成,a的范围是________,这里n比原来的整 数位数少_________,这种记数法称为科学记数法; (5)用科学记数法记出下面各数:4000=___________;950000=________________;地球 的质量约为49800...0克(28位),可记为________; (6)下面用科学记数法记出的数,原来各为多少 105=_____________;2*105=______________; 9.7*107=______________9.756*103=_____________ (7)下列各数分别是几位自然数 7*106是______位数 1.1*109是________位数; 3.78*107是______位数 1010是________位数; (8)若有理数m 0,b0 (B)a-|b|>0 (C)a2+b3>0 (D)a0 (C)a,b互为相反数; (D)-ab (C)a (5)用四舍五入法得到的近似数1.20所表示的准确数a的范围是( ) (A)1.195≤a<1.205 (B)1.15≤a<1.18 (C)1.10≤a<1.30 (D)1.200≤a<1.205 (6)下列说法正确的是( ) (A)近似数3.80的精确度与近似数38的精确度相同; (B)近似数38.0与近似数38的有效数字个数一样 (C)3.1416精确到百分位后,有三个有效数字3,1,4; (D)把123*102记成1.23*104,其有效数字有四个. (二)填空题: (1)写出下列由四舍五入得到的近似值数的精确度与有效数字: (1)近似数85精确到________位,有效数字是________; (2)近似数3万精确到______位,有效数字是________; (3)近似数5200千精确到________,有效数字是_________; (4)近似数0.20精确到_________位,有效数字是_____________. (2)设e=2.71828.,取近似数2.7是精确到__________位,有_______个有效数字; 取近似数2.7183是精确到_________位,有_______个有效数字. (3)由四舍五入得到π=3.1416,精确到0.001的近似值是π=__________; (4)3.1416保留三个有效数字的近似值是_____________; (三)判断题: (1)近似数25.0精确以个痊,有效数字是2,5; (2)近似数4千和近似数4000的精确程度一样; (3)近似数4千和近似数4*10^3的精确程度一样; (4)9.949精确到0.01的近似数是9.95. 练习八(B级) (一)用四舍五入法对下列各数取近似值(要求保留三个有效数字): (1)37.27 (2)810.9 (3)0.0045078 (4)3.079(二)用四舍五入法对下列各数取近似值(要求精确到千位): (1)37890.6 (2)213612.4 (3)1906.57 (三)计算(结果保留两个有效数字): (1)3.14*3.42 (2)972*3.14*1/4康康map2023-07-30 09:36:171
初一上册数学有理数混合运算80道(加减乘除均可)
买教参呗真颛2023-07-30 09:36:172
30道有理数加减法计算题
理数练习 练习一(B级) (一)计算题: (1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5) (二)用简便方法计算: (1)(-17/4)+(-10/3)+(+13/3)+(11/3) (2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4) (三)已知:X=+17(3/4),Y=-9(5/11),Z=-2.25, 求:(-X)+(-Y)+Z的值 (四)用">","0,则a-ba (C)若ba (D)若a<0,ba (二)填空题: (1)零减去a的相反数,其结果是_____________; (2)若a-b>a,则b是_____________数; (3)从-3.14中减去-π,其差应为____________; (4)被减数是-12(4/5),差是4.2,则减数应是_____________; (5)若b-a<-,则a,b的关系是___________,若a-b<0,则a,b的关系是______________; (6)(+22/3)-( )=-7 (三)判断题: (1)一个数减去一个负数,差比被减数小. (2)一个数减去一个正数,差比被减数小. (3)0减去任何数,所得的差总等于这个数的相反数. (4)若X+(-Y)=Z,则X=Y+Z (5)若a<0,b|b|,则a-b>0 练习二(B级) (一)计算: (1)(+1.3)-(+17/7) (2)(-2)-(+2/3) (3)|(-7.2)-(-6.3)+(1.1)| (4)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|) (二)如果|a|=4,|b|=2,且|a+b|=a+b,求a-b的值. (三)若a,b为有理数,且|a|<|b|试比较|a-b|和|a|-|b|的大小 (四)如果|X-1|=4,求X,并在数轴上观察表示数X的点与表示1的点的距离. 练习三(A级) (一)选择题: (1)式子-40-28+19-24+32的正确读法是( ) (A)负40,负28,加19,减24与32的和 (B)负40减负28加19减负24加32 (C)负40减28加19减24加32 (D)负40负28加19减24减负32 (2)若有理数a+b+C<0,则( ) (A)三个数中最少有两个是负数 (B)三个数中有且只有一个负数 (C)三个数中最少有一个是负数 (D)三个数中有两个是正数或者有两个是负数 (3)若m<0,则m和它的相反数的差的绝对值是( ) (A)0 (B)m (C)2m (D)-2m (4)下列各式中与X-y-Z诉值不相等的是( ) (A)X-(Y-Z) (B)X-(Y+Z) (C)(X-y)+(-z) (D)(-y)+(X-Z) (二)填空题: (1)有理数的加减混合运算的一般步骤是:(1)________;(2)_________;(3)________ _______;(4)__________________. (2)当b0,(a+b)(a-1)>0,则必有( ) (A)b与a同号 (B)a+b与a-1同号 (C)a>1 (D)b1 (6)一个有理数和它的相反数的积( ) (A)符号必为正 (B)符号必为负 (C)一不小于零 (D)一定不大于零 (7)若|a-1|*|b+1|=0,则a,b的值( ) (A)a=1,b不可能为-1 (B)b=-1,a不可能为1 (C)a=1或b=1 (D)a与b的值相等 (8)若a*B*C=0,则这三个有理数中( ) (A)至少有一个为零 (B)三个都是零 (C)只有一个为零 (D)不可能有两个以上为零 (二)填空题: (1)有理数乘法法则是:两数相乘,同号__________,异号_______________,并把绝对值_____, 任何数同零相乘都得__________________. (2)若四个有理数a,b,c,d之积是正数,则a,b,c,d中负数的个数可能是______________; (3)计算(-2/199)*(-7/6-3/2+8/3)=________________; (4)计算:(4a)*(-3b)*(5c)*1/6=__________________; (5)计算:(-8)*(1/2-1/4+2)=-4-2+16=10的错误是___________________; (6)计算:(-1/6)*(-6)*(10/7)*(-7/10)=[(-1/6)*(-6)][(+10/7)*(-7/10)]=-1的根据是_______ (三)判断题: (1)两数之积为正,那么这两数一定都是正数; (2)两数之积为负,那么这两个数异号; (3)几个有理数相乘,当因数有偶数个时,积为正; (4)几个有理数相乘,当积为负数时,负因数有奇数个; (5)积比每个因数都大. 练习(四)(B级) (一)计算题: (1)(-4)(+6)(-7) (2)(-27)(-25)(-3)(-4) (3)0.001*(-0.1)*(1.1) (4)24*(-5/4)*(-12/15)*(-0.12) (5)(-3/2)(-4/3)(-5/4)(-6/5)(-7/6)(-8/7) (6)(-24/7)(11/8+7/3-3.75)*24 (二)用简便方法计算: (1)(-71/8)*(-23)-23*(-73/8) (2)(-7/15)*(-18)*(-45/14) (3)(-2.2)*(+1.5)*(-7/11)*(-2/7) (三)当a=-4,b=-3,c=-2,d=-1时,求代数式(ab+cd)(ab-cd)的值. (四)已知1+2+3+......+31+32+33=17*33,计算下式 1-3+2-6+3-9-12+...+31-93+32-96+33-99的值 练习五(A级) (一)选择题: (1)已知a,b是两个有理数,如果它们的商a/b=0,那么( ) (A)a=0且b≠0 (B)a=0 (C)a=0或b=0 (D)a=0或b≠0 (2)下列给定四组数1和1;-1和-1;0和0;-2/3和-3/2,其中互为倒数的是( ) (A)只有 (B)只有 (C)只有 (D)都是 (3)如果a/|b|(b≠0)是正整数,则( ) (A)|b|是a的约数 (B)|b|是a的倍数 (C)a与b同号 (D)a与b异号 (4)如果a>b,那么一定有( ) (A)a+b>a (B)a-b>a (C)2a>ab (D)a/b>1 (二)填空题: (1)当|a|/a=1时,a______________0;当|a|/a=-1时,a______________0;(填>,0,则a___________0; (11)若ab/c0,则b___________0; (12)若a/b>0,b/c(-0.3)4>-106 (B)(-0.3)4>-106>(-0.2)3 (C)-106>(-0.2)3>(-0.3)4 (D)(-0.3)4>(-0.2)3>-106 (4)若a为有理数,且a2>a,则a的取值范围是( ) (A)a<0 (B)0<1 (C)a1 (D)a>1或a<0 (5)下面用科学记数法表示106000,其中正确的是( ) (A)1.06*105 (B)10.6*105 (C)1.06*106 (D)0.106*107 (6)已知1.2363=1.888,则123.63等于( ) (A)1888 (B)18880 (C)188800 (D)1888000 (7)若a是有理数,下列各式总能成立的是( ) (A)(-a)4=a4 (B)(-a)3=A4 (C)-a4=(-a)4 (D)-a3=a3 (8)计算:(-1)1-(-2)2-(-3)3-(-4)4所得结果是( ) (A)288 (B)-288 (C)-234 (D)280 (二)填空题: (1)在23中,3是________,2是_______,幂是________;若把3看作幂,则它的底数是________, 指数是________; (2)根据幂的意义:(-2)3表示________相乘; (-3)2v表示________相乘;-23表示________. (3)平方等于36/49的有理数是________;立方等于-27/64的数是________ (4)把一个大于10的正数记成a*10n(n为正整数)的形成,a的范围是________,这里n比原来的整 数位数少_________,这种记数法称为科学记数法; (5)用科学记数法记出下面各数:4000=___________;950000=________________;地球 的质量约为49800...0克(28位),可记为________; (6)下面用科学记数法记出的数,原来各为多少 105=_____________;2*105=______________; 9.7*107=______________9.756*103=_____________ (7)下列各数分别是几位自然数 7*106是______位数 1.1*109是________位数; 3.78*107是______位数 1010是________位数; (8)若有理数m 0,b0 (B)a-|b|>0 (C)a2+b3>0 (D)a<0 (6)代数式(a+2)2+5取得最小值时的a值为( ) (A)a=0 (B)a=2 (C)a=-2 (D)a0 (B)b-a>0 (C)a,b互为相反数; (D)-ab (C)a (5)用四舍五入法得到的近似数1.20所表示的准确数a的范围是( ) (A)1.195≤a<1.205 (B)1.15≤a<1.18 (C)1.10≤a<1.30 (D)1.200≤a<1.205 (6)下列说法正确的是( ) (A)近似数3.80的精确度与近似数38的精确度相同; (B)近似数38.0与近似数38的有效数字个数一样 (C)3.1416精确到百分位后,有三个有效数字3,1,4; (D)把123*102记成1.23*104,其有效数字有四个. (二)填空题: (1)写出下列由四舍五入得到的近似值数的精确度与有效数字: (1)近似数85精确到________位,有效数字是________; (2)近似数3万精确到______位,有效数字是________; (3)近似数5200千精确到________,有效数字是_________; (4)近似数0.20精确到_________位,有效数字是_____________. (2)设e=2.71828......,取近似数2.7是精确到__________位,有_______个有效数字; 取近似数2.7183是精确到_________位,有_______个有效数字. (3)由四舍五入得到π=3.1416,精确到0.001的近似值是π=__________; (4)3.1416保留三个有效数字的近似值是_____________; (三)判断题: (1)近似数25.0精确以个痊,有效数字是2,5; (2)近似数4千和近似数4000的精确程度一样; (3)近似数4千和近似数4*10^3的精确程度一样; (4)9.949精确到0.01的近似数是9.95. 练习八(B级) (一)用四舍五入法对下列各数取近似值(要求保留三个有效数字): (1)37.27 (2)810.9 (3)0.0045078 (4)3.079 (二)用四舍五入法对下列各数取近似值(要求精确到千位): (1)37890.6 (2)213612.4 (3)1906.57 (三)计算(结果保留两个有效数字): (1)3.14*3.42 (2)972*3.14*1/4 练习九 (一)查表求值: (1)7.042 (2)2.482 (3)9.52 (4)2.0012 (5)123.42 (6)0.12342 (7)1.283 (8)3.4683 (9)(-0.5398)3 (10)53.733 (二)已知2.4682=6.901,不查表求24.682与0.024682的值 (三)已知5.2633=145.7,不查表求 (1)0.52633 (2)0.05263 (3)52.632 (4)52633 (四)已知21.762^2=473.5,那么0.0021762是多少 保留三个有效数字的近似值是多少 (五)查表计算:半径为77cm的球的表面积.(球的面积=4π*r2) 有理数练习题 鉴于部分学校可能会举行入学实验班的选拔考试,可能会涉及到初一的部分内容。我们特地选编了这份由理数练习题,供同学们练习,难度可能高于一些选拔考试的题目(有理数部分)。这份练习题也可以作为初一学习后有理数后使用。 一 填空题 1.-(- )的倒数是_________,相反数是__________,绝对值是__________。 2.若|x|+|y|=0,则x=__________,y=__________。 3.若|a|=|b|,则a与b__________。 4.因为到点2和点6距离相等的点表示的数是4,有这样的关系 ,那么到点100和到点999距离相等的数是_____________;到点 距离相等的点表示的数是____________;到点m和点–n距离相等的点表示的数是________。 5.计算: =_________。 6.已知 ,则 =_________。 7.如果 =2,那么x= . 8.到点3距离4个单位的点表示的有理数是_____________。 9.________________________范围内的有理数经过四舍五入得到的近似数3.142。 10.小于3的正整数有_____. 11. 如果m<0,n>0,|m|>|n|,那么m+n__________0。 12.你能很快算出 吗? 为了解决这个问题,我们考察个位上的数为5的正整数的平方,任意一个个位数为5的正整数可写成10n+5(n为正整数),即求 的值,试分析 ,2,3……这些简单情形,从中探索其规律。 ⑴通过计算,探索规律: 可写成 ; 可写成 ; 可写成 ; 可写成 ; ……………… 可写成________________________________ 可写成________________________________ ⑵根据以上规律,试计算 = 13.观察下面一列数,根据规律写出横线上的数, - ; ;- ; ; ; ;……;第2003个数是 。 14. 把下列各数填在相应的集合内。 整数集合:{ ……} 负数集合:{ ……} 分数集合:{ ……} 非负数集合:{ ……} 正有理数集合:{ ……} 负分数集合:{ ……} 二 选择题 15.(1)下列说法正确的是( ) (A)绝对值较大的数较大; (B)绝对值较大的数较小; (C)绝对值相等的两数相等; (D)相等两数的绝对值相等。 16. 已知a<c<0,b>0,且|a|>|b|>|c|,则|a|+|b|-|c|+|a+b|+|b+c|+|a+c|等于( ) A.-3a+b+c B.3a+3b+c C.a-b+2c D.-a+3b-3c 17.下列结论正确的是( ) A. 近似数1.230和1.23的有效数字一样 B. 近似数79.0是精确到个位的数,它的有效数字是7、9 C. 近似数3.0324有5个有效数字 D. 近似数5千与近似数5000的精确度相同 18.两个有理数相加,如果和比其中任何加数都小,那么这两个加数( ) (A)都是正数 (B)都是负数 (C)互为相反数 (D)异号 19. 如果有理数 ( ) A. 当 B. C. D. 以上说法都不对 20.两个非零有理数的和为正数,那么这两个有理数为( ) (A)都是正数 (B)至少有一个为正数 (C)正数大于负数 (D)正数大于负数的绝对值,或都为正数。 三计算题 21. 求下面各式的值(-48)÷6-(-25)×(-4) (2)5.6+[0.9+4.4-(-8.1)]; (3)120×( ); (4) 22. 某单位一星期内收入和支出情况如下:+853.5元,+237.2元,-325元,+138.5元,-280元,-520元,+103元,那么,这一星期内该单位是盈余还是亏损?盈余或亏损多少元? 提示:本题中正数表示收入,负数表示支出,将七天的收入或支出数相加后,和为正数表示盈余,和为负数表示亏损。 23. 某地一周内每天的最高气温与最低气温记录如下表,哪天的温差最大哪天的温差最小? 星期 一 二 三 四 五 六 七 最高气温 1002C 1102C 1202C 902C 802C 902C 802C 最低气温 202C 002C 102C -102C -202C -302C -102C 24、正式排球比赛,对所使用的排球的重量是有严格规定的。检查5个排球的重量,超过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下表: +15 -10 +30 -20 -40 指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题? 25. 已知 ; ; (1)猜想填空: (2)计算① ②23+43+63+983+……+1003 26.探索规律将连续的偶2,4,6,8,…,排成如下表: 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 … … (1) 十字框中的五个数的和与中间的数和16有什么关系? (2) 设中间的数为x ,用代数式表示十字框中的五个数的和. (3) 若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于201吗?如能,写出这五位数,如不能,说明理由。 27.设y=ax5+bx3+cx-5,其中a,b,c,为常数,已知当x= -5时,y=7,求当x=5时,求y的值。 有理数练习题参考答案 一 填空题 1. 4, - , .提示:题虽简单,但这类概念题在七年级的考试中几乎必考。 2. 0,0.提示:|x|≥0,|y|≥0.∴x=0,y=0. 3.相等或者互为相反数。提示:互为相反数的绝对值相等 。 4. 549.5, , .提示:到数轴上两点相等的数的中点等于这两数和的一半. 5. 0.提示:每相邻的两项的和为0。 6. -8.提示: ,4+a=0,a-2b=0,解得:a= -4,b= -2. = -8. 7. x-3=±2。x=3±2,x=5或x=1. 8. -1或7。提示:点3距离4个单位的点表示的有理数是3±4。 9. 3.1415-3.1424.提示:按照四舍五入的规则。 10.1,2.提示:大于零的整数称为正整数。 11. <0.提示:有理数的加法的符号取决于绝对值大的数。 12. =5625=100×5×(5+1)+25; =7225=100×8×(8+1)+25; =100×10×(10+1)+25=11025. 13. , , .提示:这一列数的第n项可表示为(-1)n . 14. 提示:(1)集合是指具有某一特征的一类事物的全体,注意不要漏掉数0,题目中只是具体的几个符合条件的数,只是一部分,所以通常要加省略号。 (2)非负数表示不是负数的所有有理数,应为正数和零,那么非正数表示什么呢?(答:负数和零) 答案:整数集合:{ ……} 负数集合:{ ……} 分数集合:{ ……} 非负数集合:{ ……} 正有理数集合:{ ……} 负分数集合:{ ……} 二 选择题 15. D.提示:对于两个负数来说,绝对值小的数反而大,所以A错误。对于两个正数来说,绝对值大的数大,所以B错误。互为相反数的两个数的绝对值相等。 16.A.提示:-a+b-(-c)-(a+b)+(b+c)-(a+c)= -3a+b+c 17. C.提示:有效数字的定义是从左边第一位不为零的数字起,到右边最后一个数字结束。18.B 19.C 提示:当n为奇数时, , <0. 当n为偶数时, , <0.所以n为任意自然数时,总有 <0成立. 20. D.提示:两个有理数想加,所得数的符号由绝对值大的数觉得决定。 三计算题 21. 求下面各式的值 (1)-108 (2)19 .提示:先去括号,后计算。 (3)-111 .提示: 120×( ) 120×( ) =120×(- )+120× -120× = -111 (4) .提示; =1- + = 22. 提示:本题中正数表示收入,负数表示支出,将七天的收入或支出数相加后,和为正数表示盈余,和为负数表示亏损。 解:(+853.5)+(+237.2)+(-325)+(+138.5)+(-520)+(-280)+(+103) =[(+853.5)+(+237.2)+(+138.5)+(+103)]+[(-325)+(-520)+(-280)] =(+1332.2)+(-1125) =+207.2 故本星期内该单位盈余,盈余207.2元。 23. 提示:求温差利用减法,即最高温度的差,再比较它们的大小。 解:周一温差:10-2=8(02C) 周二温差:11-0=11(02C) 周三温差:12-1=11(02C) 周四温差:9-(-1)=10(02C) 周五温差:8-(-2)=10(02C) 周六温差:9-(-3)=12(02C) 周日温差:8-(-1)=9(02C) 所以周六温差最大,周一温差最小。 24、 解:第二只排球质量好一些,利用这些数据的绝对值的大小来判断排球的质量,绝对值越小说明越接近规定重量,因此质量也就好一些。 25. (1) (2)①25502500;提示:原式= ②原式= =23×13+23×23+23×33+23×43+23×53+……+23×503 =23(13+23+33+43+53+……+503) =8× =13005000 26. (1) 十字框中的五个数的和等于中间的5倍。 (2) 5x (3) 不能,假设5x=201.x=40.2.不是整数.所以不存在这么一个x. 27.y=ax5+bx3+cx-5,y+5= ax5+bx3+cx,当x=-5时,y+5=12. -(y+5)=-ax5-bx3-cx=a(-x)5+b(-x)3+c(-x) ∴当x=5时,a(-5)5+b(-5)3+c(-5)=-12; a(-5)5+b(-5)3+c(-5)-5= -17北有云溪2023-07-30 09:36:161
有理数的运算练习题(长的)初一版
无聊。gitcloud2023-07-30 09:36:163
求20道有理数的混合运算要过程结果。好的追加分数
善士六合2023-07-30 09:36:162
有理数的加减混合运算练习题100道
1、(-23)+(-12) 2、 -16 +29 3、(-2008)+2008 4、 0+(-7) 5、 0-12 6、 -12-347、 8+(-2) 8、 (5-6)-(7-9) 9、-(-7)+(-2) 10、 1 ―3 +5―7 +9―11+…+97―99 11、(+9)+(-7)+(+10)+(-3)+(-9)12、(-4 )-(+5 )-(-4 )北有云溪2023-07-30 09:36:132
有理数加减混合运算题,要答案的,10道
59+41=100-59+41=-1859+( -41)=18-59+(-41)=-100 -56+0=-56+12+121=133-25+25=093+(-39)=54-36-(-18)=-18125-(-3)-0=128FinCloud2023-07-30 09:36:132
有理数的混合运算练习题要 有过程90道
初一数学有理数的混合运算练习练习一(B级) (一)计算题: (1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57)(5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5) (二)用简便方法计算: (1)(-17/4)+(-10/3)+(+13/3)+(11/3) (2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4) (三)已知:X=+17(3/4),Y=-9(5/11),Z=-2.25, 求:(-X)+(-Y)+Z的值 (四)用“>“,“0,则a-ba (C)若ba (D)若a<0,ba (二)填空题: (1)零减去a的相反数,其结果是_____________; (2)若a-b>a,则b是_____________数; (3)从-3.14中减去-π,其差应为____________; (4)被减数是-12(4/5),差是4.2,则减数应是_____________; (5)若b-a<-,则a,b的关系是___________,若a-b<0,则a,b的关系是______________; (6)(+22/3)-( )=-7 (三)判断题: (1)一个数减去一个负数,差比被减数小. (2)一个数减去一个正数,差比被减数小. (3)0减去任何数,所得的差总等于这个数的相反数. (4)若X+(-Y)=Z,则X=Y+Z (5)若a<0,b|b|,则a-b>0练习二(B级) (一)计算: (1)(+1.3)-(+17/7) (2)(-2)-(+2/3) (3)|(-7.2)-(-6.3)+(1.1)| (4)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|) (二)如果|a|=4,|b|=2,且|a+b|=a+b,求a-b的值. (三)若a,b为有理数,且|a|<|b|试比较|a-b|和|a|-|b|的大小 (四)如果|X-1|=4,求X,并在数轴上观察表示数X的点与表示1的点的距离.练习三(A级) (一)选择题: (1)式子-40-28+19-24+32的正确读法是( ) (A)负40,负28,加19,减24与32的和 (B)负40减负28加19减负24加32 (C)负40减28加19减24加32 (D)负40负28加19减24减负32 (2)若有理数a+b+C<0,则( ) (A)三个数中最少有两个是负数 (B)三个数中有且只有一个负数 (C)三个数中最少有一个是负数 (D)三个数中有两个是正数或者有两个是负数 (3)若m<0,则m和它的相反数的差的绝对值是( ) (A)0 (B)m (C)2m (D)-2m (4)下列各式中与X-y-Z诉值不相等的是( ) (A)X-(Y-Z) (B)X-(Y+Z) (C)(X-y)+(-z) (D)(-y)+(X-Z) (二)填空题: (1)有理数的加减混合运算的一般步骤是:(1)________;(2)_________;(3)________ _______;(4)__________________. (2)当b0,(a+b)(a-1)>0,则必有( ) (A)b与a同号 (B)a+b与a-1同号 (C)a>1 (D)b1 (6)一个有理数和它的相反数的积( ) (A)符号必为正 (B)符号必为负 (C)一不小于零 (D)一定不大于零 (7)若|a-1|*|b+1|=0,则a,b的值( ) (A)a=1,b不可能为-1 (B)b=-1,a不可能为1 (C)a=1或b=1 (D)a与b的值相等 (8)若a*B*C=0,则这三个有理数中( ) (A)至少有一个为零 (B)三个都是零 (C)只有一个为零 (D)不可能有两个以上为零 (二)填空题: (1)有理数乘法法则是:两数相乘,同号__________,异号_______________,并把绝对值_____, 任何数同零相乘都得__________________. (2)若四个有理数a,b,c,d之积是正数,则a,b,c,d中负数的个数可能是______________; (3)计算(-2/199)*(-7/6-3/2+8/3)=________________; (4)计算:(4a)*(-3b)*(5c)*1/6=__________________; (5)计算:(-8)*(1/2-1/4+2)=-4-2+16=10的错误是___________________; (6)计算:(-1/6)*(-6)*(10/7)*(-7/10)=[(-1/6)*(-6)][(+10/7)*(-7/10)]=-1的根据是_______ (三)判断题: (1)两数之积为正,那么这两数一定都是正数; (2)两数之积为负,那么这两个数异号; (3)几个有理数相乘,当因数有偶数个时,积为正; (4)几个有理数相乘,当积为负数时,负因数有奇数个; (5)积比每个因数都大.练习(四)(B级) (一)计算题: (1)(-4)(+6)(-7) (2)(-27)(-25)(-3)(-4) (3)0.001*(-0.1)*(1.1) (4)24*(-5/4)*(-12/15)*(-0.12) (5)(-3/2)(-4/3)(-5/4)(-6/5)(-7/6)(-8/7) (6)(-24/7)(11/8+7/3-3.75)*24 (二)用简便方法计算: (1)(-71/8)*(-23)-23*(-73/8) (2)(-7/15)*(-18)*(-45/14) (3)(-2.2)*(+1.5)*(-7/11)*(-2/7) (三)当a=-4,b=-3,c=-2,d=-1时,求代数式(ab+cd)(ab-cd)的值. (四)已知1+2+3+......+31+32+33=17*33,计算下式 1-3+2-6+3-9-12+...+31-93+32-96+33-99的值练习五(A级) (一)选择题: (1)已知a,b是两个有理数,如果它们的商a/b=0,那么( ) (A)a=0且b≠0 (B)a=0 (C)a=0或b=0 (D)a=0或b≠0 (2)下列给定四组数1和1;-1和-1;0和0;-2/3和-3/2,其中互为倒数的是( ) (A)只有 (B)只有 (C)只有 (D)都是 (3)如果a/|b|(b≠0)是正整数,则( ) (A)|b|是a的约数 (B)|b|是a的倍数 (C)a与b同号 (D)a与b异号 (4)如果a>b,那么一定有( ) (A)a+b>a (B)a-b>a (C)2a>ab (D)a/b>1 (二)填空题: (1)当|a|/a=1时,a______________0;当|a|/a=-1时,a______________0;(填>,0,则a___________0; (11)若ab/c0,则b___________0; (12)若a/b>0,b/c(-0.3)4>-106 (B)(-0.3)4>-106>(-0.2)3 (C)-106>(-0.2)3>(-0.3)4 (D)(-0.3)4>(-0.2)3>-106 (4)若a为有理数,且a2>a,则a的取值范围是( ) (A)a<0 (B)0<1 (C)a1 (D)a>1或a<0 (5)下面用科学记数法表示106000,其中正确的是( ) (A)1.06*105 (B)10.6*105 (C)1.06*106 (D)0.106*107 (6)已知1.2363=1.888,则123.63等于( ) (A)1888 (B)18880 (C)188800 (D)1888000 (7)若a是有理数,下列各式总能成立的是( ) (A)(-a)4=a4 (B)(-a)3=A4 (C)-a4=(-a)4 (D)-a3=a3 (8)计算:(-1)1-(-2)2-(-3)3-(-4)4所得结果是( ) (A)288 (B)-288 (C)-234 (D)280 (二)填空题: (1)在23中,3是________,2是_______,幂是________;若把3看作幂,则它的底数是________, 指数是________; (2)根据幂的意义:(-2)3表示________相乘; (-3)2v表示________相乘;-23表示________. (3)平方等于36/49的有理数是________;立方等于-27/64的数是________ (4)把一个大于10的正数记成a*10n(n为正整数)的形成,a的范围是________,这里n比原来的整 数位数少_________,这种记数法称为科学记数法; (5)用科学记数法记出下面各数:4000=___________;950000=________________;地球 的质量约为49800...0克(28位),可记为________; (6)下面用科学记数法记出的数,原来各为多少 105=_____________;2*105=______________; 9.7*107=______________9.756*103=_____________ (7)下列各数分别是几位自然数 7*106是______位数 1.1*109是________位数; 3.78*107是______位数 1010是________位数; (8)若有理数m 0,b0 (B)a-|b|>0 (C)a2+b3>0 (D)a<0 (6)代数式(a+2)2+5取得最小值时的a值为( ) (A)a=0 (B)a=2 (C)a=-2 (D)a0 (B)b-a>0 (C)a,b互为相反数; (D)-ab (C)a (5)用四舍五入法得到的近似数1.20所表示的准确数a的范围是( ) (A)1.195≤a<1.205 (B)1.15≤a<1.18 (C)1.10≤a<1.30 (D)1.200≤a<1.205 (6)下列说法正确的是( ) (A)近似数3.80的精确度与近似数38的精确度相同; (B)近似数38.0与近似数38的有效数字个数一样 (C)3.1416精确到百分位后,有三个有效数字3,1,4; (D)把123*102记成1.23*104,其有效数字有四个. (二)填空题: (1)写出下列由四舍五入得到的近似值数的精确度与有效数字: (1)近似数85精确到________位,有效数字是________; (2)近似数3万精确到______位,有效数字是________; (3)近似数5200千精确到________,有效数字是_________; (4)近似数0.20精确到_________位,有效数字是_____________. (2)设e=2.71828......,取近似数2.7是精确到__________位,有_______个有效数字; 取近似数2.7183是精确到_________位,有_______个有效数字. (3)由四舍五入得到π=3.1416,精确到0.001的近似值是π=__________; (4)3.1416保留三个有效数字的近似值是_____________; (三)判断题: (1)近似数25.0精确以个痊,有效数字是2,5; (2)近似数4千和近似数4000的精确程度一样; (3)近似数4千和近似数4*10^3的精确程度一样; (4)9.949精确到0.01的近似数是9.95.练习八(B级) (一)用四舍五入法对下列各数取近似值(要求保留三个有效数字): (1)37.27 (2)810.9 (3)0.0045078 (4)3.079 (二)用四舍五入法对下列各数取近似值(要求精确到千位): (1)37890.6 (2)213612.4 (3)1906.57 (三)计算(结果保留两个有效数字): (1)3.14*3.42 (2)972*3.14*1/4练习九 (一)查表求值: (1)7.042 (2)2.482 (3)9.52 (4)2.0012 (5)123.42 (6)0.12342 (7)1.283 (8)3.4683 (9)(-0.5398)3 (10)53.733 (二)已知2.4682=6.901,不查表求24.682与0.024682的值 (三)已知5.2633=145.7,不查表求 (1)0.52633 (2)0.05263 (3)52.632 (4)52633 (四)已知21.762^2=473.5,那么0.0021762是多少 保留三个有效数字的近似值是多少 (五)查表计算:半径为77cm的球的表面积.(球的面积=4π*r2)Ntou1232023-07-30 09:36:121
有理数的加减练习题
(1) (-9)-(-13)+(-20)+(-2)(2) 3+13-(-7)/6(3) (-2)-8-14-13(4) (-7)*(-1)/7+8(5) (-11)*4-(-18)/18(6) 4+(-11)-1/(-3)(7) (-17)-6-16/(-18)(8) 5/7+(-1)-(-8)(9) (-1)*(-1)+15+1(10) 3-(-5)*3/(-15)(11) 6*(-14)-(-14)+(-13)(12) (-15)*(-13)-(-17)-(-4)(13) (-20)/13/(-7)+11(14) 8+(-1)/7+(-4)(15) (-13)-(-9)*16*(-12)(16) (-1)+4*19+(-2)(17) (-17)*(-9)-20+(-6)(18) (-5)/12-(-16)*(-15)(19) (-3)-13*(-5)*13(20) 5+(-7)+17-10hi投2023-07-30 09:36:123
谁能简单地说一下有理数的加减法的运算方法和解析?还有有理数的加减混合运算?
自己学,或问老师。一定能懂的。我也是这样学懂的gitcloud2023-07-30 09:36:113
我需要有理数加减乘除成方混合运算计算题70道,帮帮忙。
(1) (-9)-(-13)+(-20)+(-2)(2) 3+13-(-7)/6(3) (-2)-8-14-13(4) (-7)*(-1)/7+8(5) (-11)*4-(-18)/18(6) 4+(-11)-1/(-3)(7) (-17)-6-16/(-18)(8) 5/7+(-1)-(-8)(9) (-1)*(-1)+15+1(10) 3-(-5)*3/(-15)(11) 6*(-14)-(-14)+(-13)(12) (-15)*(-13)-(-17)-(-4)(13) (-20)/13/(-7)+11(14) 8+(-1)/7+(-4)(15) (-13)-(-9)*16*(-12)(16) (-1)+4*19+(-2)(17) (-17)*(-9)-20+(-6)(18) (-5)/12-(-16)*(-15)(19) (-3)-13*(-5)*13(20) 5+(-7)+17-10(21) (-10)-(-16)-13*(-16)(22) (-14)+4-19-12(23) 5*13/14/(-10)(24) 3*1*17/(-10)(25) 6+(-12)+15-(-15)(26) 15/9/13+(-7)(27) 2/(-10)*1-(-8)(28) 11/(-19)+(-14)-5(29) 19-16+18/(-11)(30) (-1)/19+(-5)+1(31) (-5)+19/10*(-5)(32) 11/(-17)*(-13)*12(33) (-8)+(-10)/8*17(34) 7-(-12)/(-1)+(-12)(35) 12+12-19+20(36) (-13)*(-11)*20+(-4)(37) 17/(-2)-2*(-19)(38) 1-12*(-16)+(-9)(39) 13*(-14)-15/20(40) (-15)*(-13)-6/(-9)(41) 15*(-1)/12+7(42) (-13)+(-16)+(-14)-(-6)(43) 14*12*(-20)*(-13)(44) 17-9-20+(-10)(45) 12/(-14)+(-14)+(-2)(46) (-15)-12/(-17)-(-3)(47) 6-3/9/(-8)(48) (-20)*(-15)*10*(-4)(49) 7/(-2)*(-3)/(-14)(50) 13/2*18*(-7)(51) 13*5+6+3(52) (-15)/5/3+(-20)(53) 19*4+17-4(54) (-11)-(-6)*(-4)*(-9)(55) (-16)+16-(-8)*(-13)(56) 16/(-1)/(-10)/(-20)(57) (-1)-(-9)-9/(-19)(58) 13*20*(-13)*4(59) 11*(-6)-3+18(60) (-20)+(-12)+(-1)+(-12)(61) (-19)-3*(-13)*4(62) (-13)/3-5*8(63) (-15)/1+17*(-18)(64) (-13)/3/19/8(65) (-3)/(-13)/20*5(66) 3/12/(-18)-18(67) 5*(-19)/13+(-6)(68) 4+4*(-19)-11(69) (-2)+17-5+(-1)(70) 9+(-3)*19*(-19)(71) (-12)-(-6)+17/2(72) 15*(-5)-(-3)/5(73) (-10)*2/(-1)/4(74) (-8)*16/(-6)+4(75) 2-11+12+10(76) (-3)+(-20)*(-7)*(-9)(77) (-15)+8-17/7(78) (-14)*10+18*2(79) (-7)+2-(-17)*19(80) (-7)/18/1+1(81) 11/(-9)-(-16)/17(82) 15+5*6-(-8)(83) (-13)*(-18)+18/(-6)(84) 11-(-1)/11*(-6)(85) (-4)+(-12)+19/6(86) (-18)/(-1)/(-19)+2(87) 9*(-8)*(-6)/11(88) 20*(-3)*(-5)+1(89) (-18)-2+(-11)/20(90) 15*1+4*17(91) 1-10+(-14)/(-1)(92) 10+(-4)*(-19)+(-12)(93) 15/14/5*7(94) 8+(-13)/3+1(95) (-14)+6+(-2)*(-14)(96) (-5)/(-13)/4+7(97) (-15)/(-2)/(-12)+(-2)(98) (-17)-(-20)-20*(-10)(99) (-7)-10-13/3(100) (-20)+(-18)+11+9u投在线2023-07-30 09:36:111
有理数加减混合运算练习题 1、(-6)-(+6)-(-7) 2、0-(+8)+(-27)-(+5)
hi投2023-07-30 09:35:594
有理数的加减混合运算试题100道(有多少都行,最多的为最佳答案),速度啊~~~!!
⑴ 399+436=(400-1)+436=400+436-1; ⑵ 457+2997= 457+(3000-3)= 457+3000-3; ⑶ 397-274=(400-3)-274= 400-(274+3); ⑷ 432-395= 432-(400-5)= 432-400+5。 5 5006+287=(5000+6)+287=5000+287+6; 6 378+4008=378+(4000+8)=378+4000+8; 7 4006-327=(4000+6)-327=4000-(327-6); 8 4559-208= 4559-(200+8)=4559-200-8 9 25+39+35+40=(25+35+40)+39; 10 548+137+452=(548+452)+137; 11 285+15+157+243=(285+15)+(157+243) 12 3674-436-564=3674-(436+564); 13 276-(76+35)=276-76-35; 14 8×136×25=136×(8×25); 15 8×21×125×4=(8×125)×(21×4); 16 165×4×25=165×(4×25); 17 25×4×23×112=(25×4)×(23×112)。 18 226×8+74×8=(226+74)×8; 19 6×123+6×77=6×(123+77); 20 260×9-60×9=(260-60)×9; 21 7×129-7×29=7×(129-29); 22 (4+17)×25=4×5+17×25; 23 25×(8+43)=25×8+25×43; 24 (27-4)×25=27×25-4×25; 25 250×(35-8)=250×35-250×8 26 398×24=(400-2)×24=400×24-2×24; 27 265×1996=265×(2000-4)=265×2000-265×4 28 398×24=(400-2)×24=400×24-2×24; 29 265×1996=265×(2000-4)=265×2000-265×4 30 105×79=(100+5)×79=100×79+5×79; 31 431×3003=431×(3000+3)=431×3000+431×3。 32 28×25=(4×7)×25=7×(4×25); 33 125×32=125×(8×4)=(125×8)×4。 34 400÷25=(400×4)÷(25×4)=1600÷100; 35 60÷20=(60÷2)÷(20÷2)=30÷10; 36 284+(591+716) 37 153+178+122+547 38 (141+229)+(371+659+1048) 39 926-348-152 40 1584-627-373+416 41 1276-(276+339) 42 4628-(1628-794) 43 526+498 44 803+488 45 938-299 46 836-402 47 635+327+125+(363+240) 48 9999+999+99+9+6 49 32+34+36+38+40+42+44+46+48 50 (1347-258)-(347+742)真颛2023-07-30 09:35:592
帮我出150道有理数加减法混合运算计算题和答案
-38)+52+118+(-62)= (-32)+68+(-29)+(-68)= (-21)+251+21+(-151)= 12+35+(-23)+0= (-6)+8+(-4)+12 = 27+(-26)+33+(-27) 12+35+(-23)+0= 39+[-23]+0+[-16]= [-18]+29+[-52]+60= [-3]+[-2]+[-1]+0+1+2= [-301]+125+301+[-75]= [-1]+[-1/2]+[+3/4]+[-1/4]= [-7/2]+[+5/6]+[-0.5]+4/5+19/6= [-26.54]+[-6.14]+18.54+6.14= 1.125+[-17/5]+[-1/8]+[-0.6]= 1-4/9 = 1-7/10= 8/15-5= 7-15= 2/8-5/8= 8/27-5 = 4-27 = 11/12-10/12= 16/21-1/7 = 4/ 2-(3+3 )= 1/3- 7/12-7/18= 1 -1/3-1 1/5 = 10-7/10= 5/24+3/8 = 4.5-3/5 1-3/5=2/5 4.39*1/13*2/3 1+(-2)+(-3)+4+5+(-6)+(-7)+8+9+(-10)+(-11)+12 -15.8+13又6分之5+15又5分之4 (-7分之1)+(-7分之2)+1又7分之3 -0.5-(-3 )+2.75-(+7 ) 39+[-23]+0+[-16]= [-18]+29+[-52]+60= [-3]+[-2]+[-1]+0+1+2= [-301]+125+301+[-75]= [-1]+[-1/2]+[+3/4]+[-1/4]= [-7/2]+[+5/6]+[-0.5]+4/5+19/6= [-26.54]+[-6.14]+18.54+6.14= 1.125+[-17/5]+[-1/8]+[-0.6]= 0.75+[-11/4]+0.125+12又5/7+[-3/8]= [-4/9]+[-3/5]+[+11/8]+[+5/9]+[-1/8]+[-0.4]=此后故乡只2023-07-30 09:35:591
求20道有理数的加减乘除混合运算
(一)计算题: (1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5) (二)用简便方法计算: (1)(-17/4)+(-10/3)+(+13/3)+(11/3) (2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4) (1)(+5)-(-3)+(-8)-(+3)+(-4)-(+5); (2)(-6.55)+4 -(-6.55)+(-8.1)-(-8.1); (3)|0-5|-|(-4)-(+6)|-|(-7.5)+2-(+5.5)|; (3)(+33 )×(-0.25)×(-7)×(+4)×(-0.3); (4)-13×125-13×216+(-13)×(-301); [|-98|+76+(-87)]-23[56+(-75)-(7)]-(8+4+3) -(-89)+|-87|-23+[-75-(7)+76]-(10+39-24) |-9.8|+(-4.6)-[8.7-(-1.3)]+(-5.4)-(-0.2) [-(-84)+46]-|-9.1|+(+1.9) [-(-90)+(-34)]-(+43)+(-57)+10 5+21+8/2-6-59FinCloud2023-07-30 09:35:591
有理数带分数的加减混合运算题
同号为加,异号为减,应该知道吧(1) 原式=(+23)-(+27)-(-9)-(+5) =23-27+9-5=0 (2)原式=-(2又3分之2+4又4分之1+2又3分之2 )=-2又3分之2-4又4分之1-2又3分之2=1又12分之1 (3)原式=4分之3-8-2又3分之1-3又4分之1+1又3分之2=-6分之67 (4)原式=-3又7分之1+6又5分之2-2又5分之1-5又7分之6+5分之4=-4 这里运算有些技巧,你把同分母的单项式互相运算,会算的很快北有云溪2023-07-30 09:35:461
有理数加减混合运算练习题 20-12-(-18)-12 (-17)+9+(-6)-5 0+15-(
草这么难 怎么不去屎 ,,,凡尘2023-07-30 09:35:453
100道有理数的减法运算题
有理数运算练习(一)【加减混合运算】一、有理数加法. 1、【基础题】计算:(1)2+(-3);(2)(-5)+(-8);(3)6+(-4);(4)5+(-5);(5)0+(-2);(6)(-10)+(-1);(7)180+(-10);(8)(-23)+9;(9)(-25)+(-7);(10)(-13)+5;(11)(-23)+0;(12)45+(-45). 2、【基础题】计算:(1)(-8)+(-9);(2)(-17)+21;(3)(-12)+25;(4)45+(-23);(5)(-45)+23;(6)(-29)+(-31);(7)(-39)+(-45);(8)(-28)+37. 3、【基础题】计算,能简便的要用简便算法:(1)(-25)+34+156+(-65);(2)(-64)+17+(-23)+68;(3)(-42)+57+(-84)+(-23);(4)63+72+(-96)+(-37);(5)(-301)+125+301+(-75);(6)(-52)+24+(-74)+12;(7)41+(-23)+(-31)+0;(8)(-26)+52+16+(-72). 4、【综合Ⅰ】计算:(1))43(31;(2)3121;(3)5112.1;(4))432()413(;(5))752()723(;(6)(—152)+8.0;(7)(—561)+0;(8)314+(—561). 5、【综合Ⅰ】计算:(1);(2);(3);(4)来源学科网二、有理数减法. 6、【基础题】计算:(1)9-(-5);(2)(-3)-1;(3)0-8;(4)(-5)-0;(5)3-5;(6)3-(-5);(7)(-3)-5 (8)(-3)-(-5);(9)(-6)-(-6);(10)(-6)-6. 6.1、【综合Ⅰ】计算:(1)(-52)-(-53);(2)(-1)-211;(3)(-32)-52;(4)521-(-7.2);(5)0-(-74);(6)(-21)-(-21);(7)525413-;(8)-64-丨-64丨7、【基础题】填空:(1)(-7)+()=21;(2)31+()=-85;(3)()-(-21)=37;(4)()-56=-40大鱼炖火锅2023-07-30 09:35:451
七年级数学上册有理数加减法的计算题
辛勤做 七年级数学 练习题的蜜蜂永没有时间的悲哀。下面是我为大家精心推荐的七年级数学上册有理数加减法的计算题,希望能够对您有所帮助。 七年级数学上册有理数的加减法计算题目 一、选择题(共13小题) 1.计算﹣10﹣8所得的结果是( ) A.﹣2 B.2 C.18 D.﹣18 2.(2014u2022哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为( ) A.5℃ B.6℃ C.7℃ D.8℃ 3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是( ) A.﹣10℃ B.﹣6℃ C.6℃ D.10℃ 4.比1小2的数是( ) A.3 B.1 C.﹣1 D.﹣2 5.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是( ) A.40℃ B.38℃ C.36℃ D.34℃ 6.计算 ,正确的结果为( ) A. B. C. D. 7.计算:1﹣(﹣ )=( ) A. B.﹣ C. D.﹣ 8.﹣2﹣1的结果是( ) A.﹣1 B.﹣3 C.1 D.3 9.计算2﹣3的结果是( ) A.﹣5 B.﹣1 C.1 D.5 10.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是( ) A.﹣8℃ B.6℃ C.7℃ D.8℃ 11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到( ) A.147.40元 B.143.17元 C.144.23元 D.136.83元 12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中 毕业 学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是 A.纽约时间2015年6月16日晚上22时 B.多伦多时间2015年6月15日晚上21时 C.伦敦时间2015年6月16日凌晨1时 D.汉城时间2015年6月16日上午8时 13.与﹣3的差为0的数是( ) A.3 B.﹣3 C. D. 二、填空题(共5小题) 14.计算:0﹣7= . 15.)计算:3﹣(﹣1)= . 16.计算:3﹣4= . 17.计算:2000﹣2015= . 18.|﹣7﹣3|= . 七年级数学上册有理数的加减法计算题参考答案 一、选择题(共13小题) 1.计算﹣10﹣8所得的结果是( ) A.﹣2 B.2 C.18 D.﹣18 【考点】有理数的减法. 【分析】根据有理数的减法运算法则进行计算即可得解. 【解答】解:﹣10﹣8=﹣18. 故选D. 【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键. 2.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为( ) A.5℃ B.6℃ C.7℃ D.8℃ 【考点】有理数的减法. 【专题】常规题型. 【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案. 【解答】解:28﹣21=28+(﹣21)=7, 故选:C. 【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数. 3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是( ) A.﹣10℃ B.﹣6℃ C.6℃ D.10℃ 【考点】有理数的减法. 【专题】计算题. 【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解. 【解答】解:8﹣(﹣2)=8+2=10(℃). 故选D. 【点评】本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键. 4.比1小2的数是( ) A.3 B.1 C.﹣1 D.﹣2 【考点】有理数的减法. 【分析】根据有理数的减法运算法则进行计算即可得解. 【解答】解:1﹣2=﹣1. 故选C. 【点评】本题考查了有理数的减法,是基础题. 5.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是( ) A.40℃ B.38℃ C.36℃ D.34℃ 【考点】有理数的减法. 【专题】应用题. 【分析】用中午的温度减去下降的温度,然后根据有理数的减法运算法则进行计算即可得解. 【解答】解:37℃﹣3℃=34℃. 故选:D. 【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键. 6.计算 ,正确的结果为( ) A. B. C. D. 【考点】有理数的减法. 【分析】根据有理数的减法运算法则进行计算即可得解. 【解答】解: ﹣ =﹣ . 故选D. 【点评】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键. 7.计算:1﹣(﹣ )=( ) A. B.﹣ C. D.﹣ 【考点】有理数的减法. 【分析】根据有理数的减法法则,即可解答. 【解答】解:1﹣(﹣ )=1+ = . 故选:C. 【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则. 8.﹣2﹣1的结果是( ) A.﹣1 B.﹣3 C.1 D.3 【考点】有理数的减法. 【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数把原式化为加法,根据有理数的加法法则计算即可. 【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3, 故选:B. 【点评】有本题考查的是有理数的减法法则:减去一个数等于加上这个数的相反数,掌握法则是解题的关键. 9.计算2﹣3的结果是( ) A.﹣5 B.﹣1 C.1 D.5 【考点】有理数的减法. 【分析】减去一个数等于加上这个数的相反数,再运用加法法则求和. 【解答】解:2﹣3=2+(﹣3)=﹣1. 故选B. 【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法. 10.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是( ) A.﹣8℃ B.6℃ C.7℃ D.8℃ 【考点】有理数的减法. 【专题】应用题. 【分析】根据“温差”=最高气温﹣最低气温计算即可. 【解答】解:7﹣(﹣1)=7+1=8℃. 故选D. 【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最高气温﹣最低气温. 11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到( ) A.147.40元 B.143.17元 C.144.23元 D.136.83元 【考点】有理数的加减混合运算;有理数大小比较. 【专题】应用题. 【分析】根据存折中的数据进行解答. 【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元. 故选:A. 【点评】本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力. 12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是( A.纽约时间2015年6月16日晚上22时 B.多伦多时间2015年6月15日晚上21时 C.伦敦时间2015年6月16日凌晨1时 D.汉城时间2015年6月16日上午8时 【考点】有理数的加减混合运算. 【专题】应用题. 【分析】求出两地的时差,根据北京时间求出每个地方的时间,再判断即可. 【解答】解:A、∵纽约时间与北京差:8+5=13个小时,9﹣13=﹣4, u2234当北京时间2015年6月16日9时,纽约时间是2015年6月15日21时,故本选项错误; B、∵多伦多时间与北京差:8+4=12个小时,9﹣12=﹣3, u2234当北京时间2015年6月16日9时,纽约时间是2015年6月15日22时,故本选项错误; C、∵伦敦时间与北京差:8﹣0=8个小时,9﹣8=1, u2234当北京时间2015年6月16日9时,伦敦时间是2015年6月16日1时,故本选项正确; D、∵汉城时间与北京差:9﹣8=1个小时,9+1=10, u2234当北京时间2015年6月16日9时,首尔时间是2015年6月16日10时,故本选项错误; 故选C. 【点评】主要考查了数轴,要注意数轴上两点间的距离公式是|a﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 13.与﹣3的差为0的数是( ) A.3 B.﹣3 C. D. 【考点】有理数的减法. 【分析】与﹣3的差为0的数就是﹣3+0,据此即可求解. 【解答】解:﹣3+0=﹣3. 故选B. 【点评】本题考查了有理数的减法运算,正确列出式子是关键. 二、填空题(共5小题) 14.计算:0﹣7= ﹣7 . 【考点】有理数的减法. 【分析】根据有理数的减法法则进行计算即可,减去一个数等于加上这个数的相反数. 【解答】解:0﹣7=﹣7; 故答案为:﹣7. 【点评】此题考查了有理数的减法运算,熟练掌握减法法则是本题的关键,是一道基础题,较简单. 15.计算:3﹣(﹣1)= 4 . 【考点】有理数的减法. 【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果. 【解答】解:3﹣(﹣1)=3+1=4, 故答案为4. 【点评】本题主要考查了有理数加减法则,能理解熟记法则是解题的关键. 16.计算:3﹣4= ﹣1 . 【考点】有理数的减法. 【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数. 【解答】解:3﹣4=3+(﹣4)=﹣1. 故答案为:﹣1. 【点评】有理数的减法法则:减去一个数等于加上这个数的相反数. 17.计算:2000﹣2015= ﹣15 . 【考点】有理数的减法. 【专题】计算题. 【分析】根据有理数的减法运算进行计算即可得解. 【解答】解:2000﹣2015=﹣15. 故答案为:﹣15. 【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键. 18. |﹣7﹣3|= 10 . 【考点】有理数的减法;绝对值. 【专题】计算题. 【分析】根据有理数的减法运算法则和绝对值的性质进行计算即可得解. 【解答】解:|﹣7﹣3|=|﹣10|=10. 故答案为:10. 【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键.陶小凡2023-07-30 09:35:431
初中有理数加减混合运算试题
...........米话说了黑桃花2023-07-30 09:35:385
求十道关于初一有理数加减法的题,最好是计算题
[-1]+[-1/2]+3/4+[-1/4]= -1 [-7/2]+5/6+[-0.5]+4/5+19/6= 1.25 [-26.54]+[-6.14]+18.54+6.14= -8真颛2023-07-30 09:35:383
有理数的加减混合运算,30道要难的跪求
一、课内训练 1.下列式子成立的是( ) A.-8-4+9=(-8)-(-4)+(+9) B.(+3)-(-4)-(+2)=3-4-2 C.(+7)-(-3)+(-5)=7+3-5 D.-3+4+5=(-3)+(-4)+(-5) 2.计算:(-10)-(+13)+(-4)-(-8)+5. 3.计算:-│4 -6 │-[(-2 )-(-0.8)-│-2 │]. 4.计算:-9 +(-13 )-2003.3-8-(-7 )-(+ )-(-2003.3). 5.计算:-32 +5 -3 -5 +12 . 6.若│a│=1,│b│=1,求a-b的值. 7.已知│a│=2,│b│=3,│c│=5,且│a+b│=a+b,│a+c│=-(a+c), 求a-b-c的值. 二、课外演练 1.下列化简正确的是( ) A.(-7)-(-3)+(-1)=-7-3-1 B.(-7)-(-3)+(-1)=-7+3-1 C.(-7)-(-3)+(-1)=-7-3+1 D.(-7)-(-3)+(-1)=-7+3+1 2.下列代数和等于4的是( ) A.(-2 )+(-1 ) B.(- )-(- )+2 C.0.125+(- )-(-4 ) D.-│-7 │+(+3 )-5 3.把-a-b-(-c)改写成只含加号的式子,正确的是( ) A.-a+b+c B.a+b+c C.a+(-b)+c D.-a+(-b)+c 4.计算下列各题: (1)(-121.4)+(-78.5)-(-8 )-(-121.4); (2)(-36)-(-28)+(+125)+(-4)-(+53)-(-40); 3)-(-1 )+(- )+2 -(- )-(+4 ); (4)│-3 +(-1 )│-│-2 + │. 5.-5 -(-2 )+(-3 )-(+8 )等于( ) A.5 +2 +3 +8 B.-5 -2 +3 +8 C.-5 +2 +3 -8 D.-5 +2 -3 -8 6.已知│a+2│+│b-3│=0,求 的值. 7.利用有理数的加、减法,将下列各式写成便于计算的形式,和同伴比较一下,看谁的方法较简便. (1)9+19+29+39+…+99;(2)36+37+38+…+44. 8.小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,-1,-1.5,0.8,1,-1.5,-2.1,9,0.9. (1)这10枝钢笔的最高的售价和最低的售价各是几元? (2)当小亮卖完钢笔后是盈还是亏? 9.当x0时,则x,x+y,x-y,y中最大的是( ) A.x B.x+y C.x-y D.y 10.若│a-1│+│b+3│=0,则b-a- 的值是( ) A.-4 B.-2 C.-1 D.1 11.阅读第(1)小题的计算方法,再计算第(2)小题. (1)计算:-5 -(+9 )-(-17 )+(-3 ) =-5 +(-9 )+(+17 )+(-3 ) =[(-5)+(-9)+17+(-3)]+[(- )+(- )+ +(- )] =0+(-1 )=-1 . 上面这种方法叫做拆项法. (2)计算:(-2000 )+(-1999 )+4000 +(-1 ). 12.在数1,2,3,4,…,2004前分别加“+”和“-”,并依次计算,所得的代数和中可能最小非负数是多少?怎样添“+”和“-”呢?ardim2023-07-30 09:35:371
有理数加减法混合运算题
[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3) 5+21*8/2-6-59 68/21-8-11*8+61 -2/9-7/9-56 4.6-(-3/4+1.6-4-3/4) 1/2+3+5/6-7/12 [2/3-4-1/4*(-0.4)]/1/3+2 22+(-4)+(-2)+4*3 -2*8-8*1/2+8/1/8 (2/3+1/2)/(-1/12)*(-12) (-28)/(-6+4)+(-1) 2/(-2)+0/7-(-8)*(-2) (1/4-5/6+1/3+2/3)/1/2 18-6/(-3)*(-2) (5+3/8*8/30/(-2)-3 (-84)/2*(-3)/(-6) 1/2*(-4/15)/2/3 -3x+2y-5x-7y 有理数的加减混合运算 【【同步达纲练习】 1.选择题: (1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( ) A.-2-3-5-4+3 B.-2+3+5-4+3 C.-2-3+5-4+3 D.-2-3-5+4+3 (2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( ) A.-10 B.-9 C.8 D.-23 (3)-7,-12,+2的代数和比它们的绝对值的和小( ) A.-38 B.-4 C.4 D.38 (4)若 +(b+3)2=0,则b-a- 的值是( ) A.-4 B.-2 C.-1 D.1 (5)下列说法正确的是( ) A.两个负数相减,等于绝对值相减 B.两个负数的差一定大于零 C.正数减去负数,实际是两个正数的代数和 D.负数减去正数,等于负数加上正数的绝对值 (6)算式-3-5不能读作( ) A.-3与5的差 B.-3与-5的和 C.-3与-5的差 D.-3减去5 2.填空题:(4′×4=16′) (1)-4+7-9=- - + ; (2)6-11+4+2=- + - + ; (3)(-5)+(+8)-(+2)-(-3)= + - + ; (4)5-(-3 )-(+7)-2 =5+ - - + - . 3.把下列各式写成省略括号的和的形式,并说出它们的两种读法:(8′×2=16′) (1)(-21)+(+16)-(-13)-(+7)+(-6); (2)-2 -(- )+(-0.5)+(+2)-(+ )-2. 4.计算题(6′×4=24′) (1)-1+2-3+4-5+6-7; (2)-50-28+(-24)-(-22); (3)-19.8-(-20.3)-(+20.2)-10.8; (4)0.25- +(-1 )-(+3 ). 5.当x=-3.7,y=-1.8,z=-1.5时,求下列代数式的值(5′×4=20′) (1)x+y-z; (2)-x-y+z; (3)-x+y+z; (4)x-y-z. 【素质优化训练】 (1) (-7)-(+5)+(+3)-(-9)=-7 5 3 9; (2)-(+2 )-(-1 )-(+3 )+(- ) =( 2 )+( 1 )+( 3 )+( ); (3)-14 5 (-3)=-12; (4)-12 (-7) (-5) (-6)=-16; (5)b-a-(+c)+(-d)= a b c d; 2.当x= ,y=- ,z=- 时,分别求出下列代数式的值; (1)x-(-y)+(-z); (2)x+(-y)-(+z); (3)-(-x)-y+z; (4)-x-(-y)+z. 3.就下列给的三组数,验证等式: a-(b-c+d)=a-b+c-d是否成立. (1)a=-2,b=-1,c=3,d=5; (2)a=23 ,b=-8,c=-1 ,d=1 . 4.计算题 (1)-1-23.33-(+76.76); (2)1-2*2*2*2; (3)(-6-24.3)-(-12+9.1)+(0-2.1); (4)-1+8-7 【生活实际运用】 某水利勘察队,第一天向上游走5 千米,第二天又向上游走5 ,第三天向下游走4 千米,第四天又向下游走4.5千米,这时勘察队在出发点的哪里?相距多少千米? 参考答案: 【同步达纲练习】 1.(1)C;(2)B;(3)D;(4)A;(5)C;(6)C 2.(1)4,(-7),(-9) (2)(-6),(-11),(-4),2; (3)-5,8,2,3; (4)3,7,2; 3.略4.(1)-4; (2)-80; (3)-30.5 (4)-5 5.(1)-4; (2)4; (3)0.4; (4)-0.4. 【素质优化训练】 1.(1)-,+,+; (2)-,+,-,-; (3)+,+; (4)-,+,+; (5)-,+,-,-. 2.(1) (2) (3) (4)- 3.(1) (2)都成立. 4.(1)- (2) (3)-29.5 (4)-1 第(4)题注意同号的数、互为相反数先分别结合。LuckySXyd2023-07-30 09:35:371
10道有理数的加减乘除混合运算。
一)计算题: (1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5) (二)用简便方法计算: (1)(-17/4)+(-10/3)+(+13/3)+(11/3) (2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4) (1)(+5)-(-3)+(-8)-(+3)+(-4)-(+5); (2)(-6.55)+4 -(-6.55)+(-8.1)-(-8.1); (3)|0-5|-|(-4)-(+6)|-|(-7.5)+2-(+5.5)|; (3)(+33 )×(-0.25)×(-7)×(+4)×(-0.3); (4)-13×125-13×216+(-13)×(-301); [|-98|+76+(-87)]-23[56+(-75)-(7)]-(8+4+3) -(-89)+|-87|-23+[-75-(7)+76]-(10+39-24) |-9.8|+(-4.6)-[8.7-(-1.3)]+(-5.4)-(-0.2) [-(-84)+46]-|-9.1|+(+1.9) [-(-90)+(-34)]-(+43)+(-57)+10 5+21+8/2-6-59豆豆staR2023-07-30 09:35:371
有理数加减法的100道混合运算!!!
-38)+52+118+(-62)= (-32)+68+(-29)+(-68)= (-21)+251+21+(-151)= 12+35+(-23)+0= (-6)+8+(-4)+12 = 27+(-26)+33+(-27) 12+35+(-23)+0= 39+[-23]+0+[-16]= [-18]+29+[-52]+60= [-3]+[-2]+[-1]+0+1+2= [-301]+125+301+[-75]= [-1]+[-1/2]+[+3/4]+[-1/4]= [-7/2]+[+5/6]+[-0.5]+4/5+19/6= [-26.54]+[-6.14]+18.54+6.14= 1.125+[-17/5]+[-1/8]+[-0.6]= 1-4/9 = 1-7/10=8/15-5= 7-15=2/8-5/8=8/27-5 =4-27 = 11/12-10/12= 16/21-1/7 =4/ 2-(3+3 )= 1/3- 7/12-7/18=1 -1/3-1 1/5 =10-7/10= 5/24+3/8 = 4.5-3/5 1-3/5=2/5 4.39*1/13*2/3 1+(-2)+(-3)+4+5+(-6)+(-7)+8+9+(-10)+(-11)+12 -15.8+13又6分之5+15又5分之4 (-7分之1)+(-7分之2)+1又7分之3 -0.5-(-3 )+2.75-(+7 )39+[-23]+0+[-16]= [-18]+29+[-52]+60= [-3]+[-2]+[-1]+0+1+2= [-301]+125+301+[-75]= [-1]+[-1/2]+[+3/4]+[-1/4]= [-7/2]+[+5/6]+[-0.5]+4/5+19/6= [-26.54]+[-6.14]+18.54+6.14= 1.125+[-17/5]+[-1/8]+[-0.6]= 0.75+[-11/4]+0.125+12又5/7+[-3/8]= [-4/9]+[-3/5]+[+11/8]+[+5/9]+[-1/8]+[-0.4]=真颛2023-07-30 09:35:355
有理数的加减混合运算100道题含过程答案
下面那Jm-R2023-07-30 09:35:354
求40道有理数加减混合运算题。。看好了,是加减法!
-38)+52+118+(-62)= (-32)+68+(-29)+(-68)= (-21)+251+21+(-151)= 12+35+(-23)+0= (-6)+8+(-4)+12 = 27+(-26)+33+(-27) 12+35+(-23)+0= 39+[-23]+0+[-16]= [-18]+29+[-52]+60= [-3]+[-2]+[-1]+0+1+2= [-301]+125+301+[-75]= [-1]+[-1/2]+[+3/4]+[-1/4]= [-7/2]+[+5/6]+[-0.5]+4/5+19/6= [-26.54]+[-6.14]+18.54+6.14= 1.125+[-17/5]+[-1/8]+[-0.6]= 1-4/9 = 1-7/10=8/15-5= 7-15=2/8-5/8=8/27-5 =4-27 = 11/12-10/12= 16/21-1/7 =4/ 2-(3+3 )= 1/3- 7/12-7/18=1 -1/3-1 1/5 =10-7/10= 5/24+3/8 = 4.5-3/5 1-3/5=2/5 4.39*1/13*2/3 1+(-2)+(-3)+4+5+(-6)+(-7)+8+9+(-10)+(-11)+12 -15.8+13又6分之5+15又5分之4 (-7分之1)+(-7分之2)+1又7分之3 -0.5-(-3 )+2.75-(+7 )39+[-23]+0+[-16]= [-18]+29+[-52]+60= [-3]+[-2]+[-1]+0+1+2= [-301]+125+301+[-75]= [-1]+[-1/2]+[+3/4]+[-1/4]= [-7/2]+[+5/6]+[-0.5]+4/5+19/6= [-26.54]+[-6.14]+18.54+6.14= 1.125+[-17/5]+[-1/8]+[-0.6]= 0.75+[-11/4]+0.125+12又5/7+[-3/8]= [-4/9]+[-3/5]+[+11/8]+[+5/9]+[-1/8]+[-0.4]=阿啵呲嘚2023-07-30 09:35:334
有理数的加减混合运算42道
要题目吗?41364+546=16541-4154=515654+654=464+965=546555-654654=534654-41=54521+584324=54132+416541432=41313-56321=41875+5625=123265-54612=456613+45313=3213548+545341=............以此类推真颛2023-07-30 09:35:333
100道有理数混合运算加减乘除题含答案和过程
1. 2100-21×53+2255 2. (103-336÷21)×15 3. 800-(2000-9600÷8) 4. 40×48-(1472+328)÷5 5. (488+344)÷(202-194) 6. 2940÷28+136×7 7. 605×(500-494)-1898 8. (2886+6618)÷(400-346) 9. 9125-(182+35×22) 10. (154-76)×(38+49) 11. 3800-136×9-798 12. (104+246)×(98÷7) 13. 918÷9×(108-99) 14. (8645+40×40)÷5 15. (2944+864)÷(113-79) 16. 8080-1877+1881÷3 17. (5011-43×85)+3397 18. 2300-1122÷(21-15) 19. 816÷(4526-251×18) 20. (7353+927)÷(801-792) 21. (28+172)÷(24+16) 22. 6240÷48+63×48 23. 950-28×6+666 24. 86×(35+117÷9) 25. 2500+(360-160÷4) 26. 16×4+6×3 27.39÷3+48÷6 28.24×4-42÷3 29.7×6-12×3 30.56÷4+72÷8 1)-23÷1 ×(-1 )2÷(1 )2; (2)-14-(2-0.5)× ×[( )2-( )3]; (3)-1 ×[1-3×(- )2]-( )2×(-2)3÷(- )3 (4)(0.12+0.32) ÷ [-22+(-3)2-3 × ]; (5)-6.24×32+31.2×(-2)3+(-0.51) ×624. [-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3) 5+21*8/2-6-59 68/21-8-11*8+61 -2/9-7/9-56 4.6-(-3/4+1.6-4-3/4) 1/2+3+5/6-7/12 [2/3-4-1/4*(-0.4)]/1/3+2 22+(-4)+(-2)+4*3 -2*8-8*1/2+8/1/8 (2/3+1/2)/(-1/12)*(-12) (-28)/(-6+4)+(-1) 2/(-2)+0/7-(-8)*(-2) (1/4-5/6+1/3+2/3)/1/2 18-6/(-3)*(-2) (5+3/8*8/30/(-2)-3 (-84)/2*(-3)/(-6) 1/2*(-4/15)/2/3 -3x+2y-5x-7y 75÷〔138÷(100-54)〕 85×(95-1440÷24) 80400-(4300+870÷15) 240×78÷(154-115) 1437×27+27×563 〔75-(12+18)〕÷15 2160÷〔(83-79)×18〕 280+840÷24×5 325÷13×(266-250) 85×(95-1440÷24) 58870÷(105+20×2) 1437×27+27×563 81432÷(13×52+78) [37.85-(7.85+6.4)] ×30 156×[(17.7-7.2)÷3] (947-599)+76×64 36×(913-276÷23) [192-(54+38)]×67 [(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78) 5.4÷[2.6×(3.7-2.9)+0.62] (947-599)+76×64 60-(9.5+28.9)]÷0.18 2.881÷0.43-0.24×3.5 20×[(2.44-1.8)÷0.4+0.15] 28-(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕 (31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35) 0.8×[(10-6.76)÷1.2] (136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5 0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5) 812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6 85+14×(14+208÷26) 120-36×4÷18+35 (284+16)×(512-8208÷18) 9.72×1.6-18.305÷7 4/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/10 12.78-0÷( 13.4+156.6 ) 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 3.2×(1.5+2.5)÷1.6 85+14×(14+208÷26) (58+37)÷(64-9×5) (6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18) 0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6 120-36×4÷18+35 10.15-10.75×0.4-5.7 5.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷52 32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5) [(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.6 5.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-6 3.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.6 5.8×(3.87-0.13)+4.2×3.74 33.02-(148.4-90.85)÷2.5 (一)计算题: (1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5) (9)(-17/4)+(-10/3)+(+13/3)+(11/3) (10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4) (11)(+1.3)-(+17/7) (12)(-2)-(+2/3) (13)|(-7.2)-(-6.3)+(1.1)| (14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|) (15)(-2/199)*(-7/6-3/2+8/3) (16)4a)*(-3b)*(5c)*1/6 1. 3/7 × 49/9 - 4/3 2. 8/9 × 15/36 + 1/27 3. 12× 5/6 – 2/9 ×3 4. 8× 5/4 + 1/4 5. 6÷ 3/8 – 3/8 ÷6 6. 4/7 × 5/9 + 3/7 × 5/9 7. 5/2 -( 3/2 + 4/5 ) 8. 7/8 + ( 1/8 + 1/9 ) 9. 9 × 5/6 + 5/6 10. 3/4 × 8/9 - 1/3 0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4 11. 7 × 5/49 + 3/14 12. 6 ×( 1/2 + 2/3 ) 13. 8 × 4/5 + 8 × 11/5 14. 31 × 5/6 – 5/6 15. 9/7 - ( 2/7 – 10/21 ) 16. 5/9 × 18 – 14 × 2/7 17. 4/5 × 25/16 + 2/3 × 3/4 18. 14 × 8/7 – 5/6 × 12/15 19. 17/32 – 3/4 × 9/24 20. 3 × 2/9 + 1/3 21. 5/7 × 3/25 + 3/7 22. 3/14 ×× 2/3 + 1/6 23. 1/5 × 2/3 + 5/6 24. 9/22 + 1/11 ÷ 1/2 25. 5/3 × 11/5 + 4/3 26. 45 × 2/3 + 1/3 × 15 27. 7/19 + 12/19 × 5/6 28. 1/4 + 3/4 ÷ 2/3 29. 8/7 × 21/16 + 1/2 30. 101 × 1/5 – 1/5 × 21 31.50+160÷40 (58+370)÷(64-45) 32.120-144÷18+35 33.347+45×2-4160÷52 34(58+37)÷(64-9×5) 35.95÷(64-45) 36.178-145÷5×6+42 420+580-64×21÷28 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 38.85+14×(14+208÷26) 39.(284+16)×(512-8208÷18) 40.120-36×4÷18+35 41.(58+37)÷(64-9×5) 42.(6.8-6.8×0.55)÷8.5 43.0.12× 4.8÷0.12×4.8 44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6 45.6-1.6÷4= 5.38+7.85-5.37= 46.7.2÷0.8-1.2×5= 6-1.19×3-0.43= 47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9 48.10.15-10.75×0.4-5.7 49.5.8×(3.87-0.13)+4.2×3.74 50.32.52-(6+9.728÷3.2)×2.5 51.-5+58+13+90+78-(-56)+50 52.-7*2-57/(3 53.(-7)*2/(1/3)+79/(3+6/4) 54.123+456+789+98/(-4) 55.369/33-(-54-31/15.5) 56.39+{3x[42/2x(3x8)]} 57.9x8x7/5x(4+6)mlhxueli 2023-07-30 09:35:331
有理数混合运算题目精选
很多同学都认为数学计算很难,我整理了一些有理数的混合运算题,大家一起来看看吧。 有理数混合运算 [-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3) 5+21*8/2-6-59 68/21-8-11*8+61 -2/9-7/9-56 4.6-(-3/4+1.6-4-3/4) 有理数计算题 (5+3/8*8/30/(-2)-3 (-84)/2*(-3)/(-6) 1/2*(-4/15)/2/3 -1+2-3+4-5+6-7 -50-28+(-24)-(-22) 有理数加减混合运算测试题 1、(—7)—(+5)+(—4)—(—10) 2、—4.2+5.7—8.4+10 3、12—(—18)—(—7)—15 4、4.7—(—8.9)—7.5+(—6) 5、—41+65—43+61 以上就是一些有理数计算的相关信息,希望对大家有所帮助。豆豆staR2023-07-30 09:35:321
最小的正有理数是几?
1水元素sl2023-07-28 12:49:337
有最小的正整数,但没有最小的正有理数.对吗
对最小的正 整数是1.没有最小的正有理数 用反正法可证明这个结论.证明:假设X是最小的正有理数.则:X/2也为正有理数.(两数相除,同号得正).故:X-(X/2)=X/2>0,得:X>X/2.这与假设"X是最小的正有理数"相矛盾,故假设不成立.所以没有最小的正有理数.余辉2023-07-28 12:49:094
最小的正有理数是几?
这问题没法答...这就和你问最大的有理数是多少一样...最小的正有理数大概就是1/n(n属于N)了吧小白2023-07-28 12:48:563
有没有绝对值最小的有理数?若有,请把它写下来。
有,决对值最小的有理数就只有 0阿啵呲嘚2023-07-28 12:28:542
绝对值最小的有理数是哪个数是绝对值最小的有理数
1、绝对值最小的有理数是零。2、整数包括正整数、负整数零,分数包括正分数、负分数,而有理数是整数和分数的统称,其中,0是绝对值最小的有理数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。铁血嘟嘟2023-07-28 12:28:461
绝对值最小的有理数是 哪个数是绝对值最小的有理数
1、绝对值最小的有理数是零。 2、整数包括正整数、负整数零,分数包括正分数、负分数,而有理数是整数和分数的统称,其中,0是绝对值最小的有理数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。康康map2023-07-28 12:28:441
绝对值最小的有理数 绝对值简介
1、绝对值最小的有理数是0。 2、绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示。|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。 3、在数学中,绝对值或模数| x | 的非负值,而不考虑其符号,即|x | = x表示正x,| x | = -x表示负x(在这种情况下-x为正),| 0 | = 0。例如,3的绝对值为3,-3的绝对值也为3。数字的绝对值可以被认为是与零的距离。 4、实数的绝对值的泛化发生在各种各样的数学设置中,例如复数、四元数、有序环、字段和向量空间定义绝对值。绝对值与各种数学和物理环境中的大小,距离和范数的概念密切相关。康康map2023-07-28 12:28:431
绝对值最小的有理数是 哪个数是绝对值最小的有理数
1、绝对值最小的有理数是零。 2、整数包括正整数、负整数零,分数包括正分数、负分数,而有理数是整数和分数的统称,其中,0是绝对值最小的有理数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。再也不做站长了2023-07-28 12:28:401
绝对值最小的有理数是1还是0
绝对值最小的有理数是0。正数的绝对值是它本身,负数的绝对值是它的相反数。0的绝对值还是0,特殊的零的绝对值既是它的本身又是它的相反数。任何有理数的绝对值都是非负数,也就是说任何有理数的绝对值都大于等于0。所以0是绝对值最小的有理数。绝对值的有关性质:任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性。绝对值等于0的数只有一个,就是0。绝对值等于同一个正数的数有两种,这两个数互为相反数或相等。互为相反数的两个数的绝对值相等。正数的绝对值是它本身。负数的绝对值是它的相反数。0的绝对值是0。u投在线2023-07-28 12:28:391
绝对值最小的有理数是什么?,为什么?
绝对值最小的有理数是0;不存在绝对值小于0的有理数.因为对于任何实数x,都存在|x|≥0,更何况有理数了(因为实数包括有理数和无理数).所以,绝对值最小的有理数是0;不存在绝对值小于0的有理数.西柚不是西游2023-07-28 12:28:391
C++编程题 定义一个有理数类。
定义一个有理数类,利用该类中的数据成员nume来代表分子,数据成员denom来#include康康map2023-07-28 11:56:202
有理数加减法混合运算题
题是挺多,可是看不着啊```北营2023-07-28 10:56:193
最大的负整数和绝对值最小的有理数是多少
-1+0=-1水元素sl2023-07-28 10:24:373
在有理数中,最小的正整数是多少最大的负整数是多少?
最小的正整数1,最大负整数-1bikbok2023-07-28 10:24:312
有理数中最大的负整数是多少,最小的正整数是多少,最大的非正数是多少,小的非负数是多少?
有理数中最大的负整数是-1,最小的正整数是1,最大的非正数是0,小的非负数是0此后故乡只2023-07-28 10:24:312
在有理数中,最小的正整数是什么?最大的负整数
在有理数中,最大的负整数是-1,最小的正整数是1,最小的自然数0.再也不做站长了2023-07-28 10:24:311
在有理数中最大的负整数是多少?最小的非负数是多少?
在有理数中最大的负整数是-1,最小的非负数是0。u投在线2023-07-28 10:24:303
在有理数中最大的负整数是多少?最小的非负数是多少?
最大负整数是-1,最小非负数是0希望能帮你忙,不懂请追问,懂了请采纳,谢谢Ntou1232023-07-28 10:24:031
有理数中,最大的负整数是______.
有理数中,最大的负整数是-1, 故答案为:-1.u投在线2023-07-28 10:23:471
在有理数中,最大的负整数是
在有理数中,最大的负整数是-1善士六合2023-07-28 10:23:401
有理数中最大的负整数是
-1CarieVinne 2023-07-28 10:23:402
有理数中最小的非负整数是多少
有理数中最大的负整数是-1, 最小的正整数是1, 最大的非正数是0, 最小的非负数是0. 希望可以帮到你哦北营2023-07-28 10:23:381
有理数中最小的正整数是多少
有理数中,最小的正整数是1,最大的负整数是-1,最大的非正数是0,最小的非负数是0. 故答案为:1;-1;0;0.hi投2023-07-28 10:23:381
在有理数中,最小的自然数是多少,最大的负整数是多少
最小的自然数是0,最大的负整数是-1.阿啵呲嘚2023-07-28 10:23:341
正有理数包括小数和零吗?
这个是不包括的肖振2023-07-26 13:57:404
“π”是不是有理数?
!一∵V、…/北境漫步2023-07-26 13:57:157
π是有理数还是无理数?
圆周率π是无理数。证明如下:假设π是有理数,则π=a/b,(a,b为自然数)令f(x)=(x^n)[(a-bx)^n]/(n!)若0<x<a/b,则0<f(x)<(π^n)(a^n)/(n!)0<sinx<1以上两式相乘得:0<f(x)sinx<(π^n)(a^n)/(n!)当n充分大时,,在[0,π]区间上的积分有0<∫f(x)sinxdx <[π^(n+1)](a^n)/(n!)<1 …………(1)又令:F(x)=f(x)-f"(x)+[f(x)]^(4)-…+[(-1)^n][f(x)]^(2n),(表示偶数阶导数)由于n!f(x)是x的整系数多项式,且各项的次数都不小于n,故f(x)及其各阶导数在x=0点处的值也都是整数,因此,F(x)和F(π)也都是整数。又因为d[F"(x)sinx-F(x)conx]/dx=F"(x)sinx+F"(x)cosx-F"(x)cosx+F(x)sinx=F"(x)sinx+F(x)sinx=f(x)sinx所以有:∫f(x)sinxdx=[F"(x)sinx-F(x)cosx],(此处上限为π,下限为0)=F(π)+F(0)上式表示∫f(x)sinxdx在[0,π]区间上的积分为整数,这与(1)式矛盾。所以π不是有理数,又它是实数,故π是无理数。善士六合2023-07-26 13:57:111
0/π是有理数吗?
0,兀都是有理数Jm-R2023-07-26 13:56:416
圆周率是有理数吗
现在经过计算机计算到很多位之后仍然是无限不循环小数,大部分时候认为是无理数大鱼炖火锅2023-07-26 13:56:0614
π是有理数么
π是无理数,是无限不循环小数u投在线2023-07-26 13:54:1715
圆周率是正数吗?是有理数吗
圆周率一般用π表示,在一般情况下,圆周率都取近似值3.14。正数指的是大于0的数,π大于0,所以圆周率是正数。因为π是无限不循环小数,所以它不是有理数,但有绝对值。圆周率是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。Jm-R2023-07-26 13:53:101
圆周率兀是有理数吗
兀是不有理数,不能表达成分数形式。π是无理数,属于无限不循环小数。 无理数概念 无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。 有理数概念 有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。 整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。FinCloud2023-07-26 13:51:211
圆周率是有理数吗
圆周率不是有理数。整数和分数统称为有理数,圆周率不是整数,目前的计算水平也不能把它写成一个分数;从小数的角度讲,有理数是有限小数或者是无限循环小数,而无理数是无限不循环小数,圆周率是无限不循环小数,所以属无理数。 什么是有理数 有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。 整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。 有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。 什么是无理数 无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。肖振2023-07-26 13:51:201
π是有理数吗
π不是有理数。下面为详细解析。1、π的定义和基本性质π(圆周率),是一个代表着圆形周长与直径比值的数学常数。π的值约等于3.14159265358979323846...。π是一个无限不循环小数,因此它不可表示为任何分数形式,即不能写成一个整数与一个有理数的商的形式。2、什么是有理数有理数是指可以表示为两个整数的比值a/b(b≠0)的实数。其中,a称为分子,b称为分母,它们都是整数。例如,1、3/5、-2/3等都是有理数。3、π不是有理数的证明方法一假设π是有理数,可表示为a/b的形式,其中a、b均为整数。考虑π的几何含义是圆周率,二倍半径乘圆弧就等于圆的周长。根据π的定义,它等于圆周长C和直径D的比值,即π=C/D。根据这个公式,推导出D=2r,C=π*D=2πr。因为r是有理数,而C和π是无理数,所以2πr是无理数。然而,它也可以表示为C的形式,即2πr=C=a/b,因此π必定是无理数。4、π不是有理数的证明方法二假设π是有理数,因为π>0,所以可以取最简分数形式,即a/b,其中a、b互质(即分子和分母没有公共因子)。然后,把π的值代入到这个等式中,可以得到一个新的等式a/b=π,移项可得a=bπ。因此,如果π是有理数,那么它可以写成整数和带π的形式。但是,π是无限不循环小数,不可能像有理数一样写成精确的分数形式,因此π不可能是有理数。5、总结以上是关于π是否是有理数的详细解析。π是一个无限不循环小数,不能表示为任何分数形式,因此它不是有理数。这个结论是通过反证法推导出来的,也从圆周率的几何定义上推算证明了 π的无理性。豆豆staR2023-07-26 13:50:261
有理数的分类有哪些呢?
按有理数的定义和性质主要可以分为三类:正有理数、0、负有理数。其中正有理数包含:正整数和正分数;负有理数包含负整数和负分数。有理数是指两个整数的比,也是整数和分数的集合。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。FinCloud2023-07-25 16:14:551
有理数的分类到底是什么
1、按有理数的定义分类。有理数分为:整数和分数。整数分为正整数、零、负整数;分数分为:正分数、负分数。2、按有理数的性质分类。有理数分为:正有理数、零、负有理数。正有理数分为正整数、正分数;负有理数分为负整数、负分数。有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。水元素sl2023-07-25 16:14:541
求数字的分类···比如正整数 质数 有理数··这些··然后还有他们的定义
根据你的问题看你应该是个初中生吧,关于数的分类首先分为广义数和侠义数,广义数我们就不说了。侠义数分为实数和复数、中学生需了解的数字范围应在实数范围内,实数又分有理数和无理数,无理数包括正无理数和负无理数;有理数包括正数负数和零,正数包括正整数负整数、负数包括负整数负分数……【自然数】:即正整数,从0、1、2、3、4、5、6.【负数】:负数是数学术语,指小于0的实数,如-6、-13。【整数】:包含正整数、0、负整数,..........-5、-4、-3、-2、-1、0、1、2、3、4、5........【分数】:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。二分之一【有理数】,包含整数及小数(不包含无限不循环小数),通俗理解就是可以写成分数形式的数,所有有理数都可以用分数表示。【无理数】:即无限不循环小数,不可以用分数形式表示。如圆周率,根号2等。【实数】:实数就是有理数和无理数的统称【虚数】:虚数是指平方是负数的数。【复数】:复数是指能写成如下形式的数a+bi,这里a和b是实数,i是虚数单位(即-1开方)【奇数】:不能被2整除 【偶数】:能被2整除 【质数】:(又称为素数)就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数【合数】:除了1和它本身以外,还能被别的整数整除,这种数就叫合数大鱼炖火锅2023-07-25 16:12:251
数的分类(有理数,实数,自然数,奇数。。。),详细定义
复数:复数就是实数和虚数的统称,基本形式是a+bi (多用于坐标系的表示) a=0为纯虚数,b=0为实数,b不等于0为虚数 有理数:无限不循环小数和开根开不尽的数叫无理数 无理数:实数中不能精确地表示为两个整数之比的数,即无限不循环小数。 如圆周率、2的平方根等。 整数:序列…,-2,-1,0,1,2,…中的数称为整数 分数:把单位"1"平均分成若干份,表示这样的一份或几份的数叫做分数 正数:大于0的数.若一个数x〉0 负数:小于0的数.若一个数x〈0 自然数:用以计量事物的件数或表示事物次序的数 。 即用数码0,1,2,3,4,……所表示的数 小数:根据十进制的位值原则,把十进分数仿照整数的写法写成不带分母的形式,这样的数叫做小数 分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数 循环小数:从小数点后某一位开始不断地出重复现前一个或一节数码的十进制无限小数 无限不循环小数:就是小数点后有无数位,但和无限循环小数不同,它没有周期性的重复,换句话说就是没有规律,所以数学上又称无限不循环小数叫做无理数 另外还有奇数,偶数,质数 奇数:不能被2整除 偶数:能被2整除 质数:(又称为素数)就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数北有云溪2023-07-25 16:11:221
有理数的两种分类图
有理数的两种分类图如下:有理数有两种分类,分别是正有理数,包括正整数和正分数;负有理数,包括负整数和负分数合。1、正有理数指的是数学术语,除了负数、0、无理数的数字,正有理数能精确地表示为两个整数之比。2、负有理数就是小于零并能用小数表示的数。如 -3.123, -1...。3、有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。拓展:无理数(1)无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。(2)无理数是指实数范围内不能表示成两个整数之比的数。 简单的说,无理数就是10进制下的无限不循环小数,如圆周率、√2等。也是开方开不尽的数。(3)无理数和有理数共同组建了实数,实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。北有云溪2023-07-25 16:11:191
小学数学的数字可以分为哪几类?全一点 例如 实数可分为 有理数和无理数
1.整数可以分:偶数和奇数 2.整数可以分:合数和质数(除1外) 3.分数可以分:真分数和假分数 4.小数可以分:有限小数和无限小数(无限小数可以分:无限循环小数和无限不循环小数) 5.整数可以分:整数,0,负数无尘剑 2023-07-25 16:11:181
有理数的概念和分类
有理数的概念和分类是什么?下面就和我一起了解一下吧,供大家参考。 有理数的概念是什么 整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数的小数部分有限或为循环。不是有理数的实数遂称为无理数。 有理数为整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。 有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。 有理数的大小顺序的规定:如果a-b是正有理数,当a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。 有理数有几种分类 有理数有两种分类,分别是正有理数,包括正整数和正分数;负有理数,包括负整数和负分数合。 1、正有理数指的是数学术语,除了负数、0、无理数的数字,正有理数能精确地表示为两个整数之比。 2、负有理数就是小于零并能用小数表示的数。如-3.123,-1...。 3、有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。 注意:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为非正整数。如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a0表明a是非负数;a0表明a是非正数。ardim2023-07-25 16:10:322
初中数学有理数无理数的分类
很多同学都了解无理数和有理数,那么无理数和有理数都是怎么分类的,大家一起来看看吧。 有理数无理数的分类 无理数可以分为正无理数和负无理数两类。 有理数有两种分类,分别是正有理数,包括正整数和正分数;负有理数,包括负整数和负分数合。 1、正有理数指的是数学术语,除了负数、0、无理数的数字,正有理数能精确地表示为两个整数之比。 2、负有理数就是小于零并能用小数表示的数。如-3.123,-1...。 3、有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。 有理数简介 有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。 整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。 无理数简介 无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。 以上就是一些有理数和无理数的相关信息,希望对大家有所帮助。小菜G的建站之路2023-07-25 16:06:541
有理数和无理数的区别
有理数和无理数的区别:1、性质不同:有理数是整数和分数的集合,整数也可看做是分母为一的分数。无理数也称为无限不循环小数,不能写作两整数之比。2、特点不同:有理数和无理数都能写成小数形式,但是有理数可以写为有限小数和无限循环小数,而无理数只能写为无限不循环小数。有理数可以写为整数之比,而无理数不能。3、表达方式不同:能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。有理数分类:1、按有理数的定义分类:有理数分为整数和分数。整数分为正整数、零、负整数;分数分为:正分数、负分数。2、按有理数的性质分类:有理数分为正有理数、零、负有理数。正有理数分为正整数、正分数;负有理数分为负整数、负分数。wpBeta2023-07-24 10:15:521
有理数和无理数的区别是什么
有理数和无理数在性质、结构和范围方面都是有区别的,接下来看一下具体的内容。 有理数和无理数的区别 (1)性质的区别: 有理数是两个整数的比,总能写成整数、有限小数或无限循环小数。 无理数不能写成两个整数之比,是无限不循环小数。 (2)结构的区别: 有理数是整数和分数的统称。 无理数是所有不是有理数的实数。 (3)范围区别: 有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行。 无理数是指实数范围内不能表示成两个整数之比的数。 有理数的加减法则 有理数加法运算法则 (1)同号两数相加,取与加数相同的符号,并把绝对值相加。 (2)异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 (3)互为相反数的两数相加得0。 (4)一个数同0相加仍得这个数。 (5)互为相反数的两个数,可以先相加。 (6)符号相同的数可以先相加。 (7)分母相同的数可以先相加。 (8)几个数相加能得整数的可以先相加。 有理数减法法则 减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。 有理数加减法顺口溜 同号相加值(绝对值)相加,符号同原不变它。 异号相加值(绝对值)相减,符号就把大的抓。 互为相反数,相加便得0。 0加一个数仍得这个数。 减正等于加负,减负等于加正。NerveM 2023-07-24 10:15:511
数学中有理数和无理数的区别是什么
把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数。我为大家整理了有理数和无理数的不同及定义。 二者区别 1.两者概念不同 有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。 无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。 2.两者性质不同 有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。 无理数的性质是由整数的比率或分数构成的数字。 3.两者范围不同 有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。而无理数是指实数范围内,不能表示成两个整数之比的数。 有理数定义 有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。 有理数是指两个整数的比。有理数是整数和分数的集合。整数也可看做是分母为一的分数。 无理数定义 无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。阿啵呲嘚2023-07-24 10:15:501