有理数

什么叫有理数,什么叫无理数啊?

有理数是整数和分数的统称,一切有理数都可以化成分数的形式。有理数域是整数环的分式域,同时也是能包含所有整数的最小的关于加减乘除(除法里除数不能为0)运算完全封闭的数集。有理数的定义有很多种等价的方式比较经典的定义方式是基于整数的,就是说事先已经通过一定严格的逻辑在完善的公理体系里定义了整数以后。然后把包含全部整数的关于加减乘除(除数不为0)运算完全封闭的数域中最小的那个交错有理数域,里面的元素(当然包括所有的整数,和他们任意的加减乘除(除数不为0)之后得到的数也被包含在内)就称为有理数。(根据代数学的理论可以推导出里面所有的元素骑士就是m/n的分式形式,注:整数m也能写成m/1的分式形式)还有一种定义方式是基于实数的(在分析、拓扑里常用)事先用交换线性连续统的方式定义实数集。然后定义有理数为满足一定条件的实数即可
FinCloud2023-07-24 10:15:301

有理数加无理数等于什么,无理数加无理数等于什么

无理数加无理数不一定等于无理数。例如√2是无理数,-√2也是无理数,√2十(-√2)=O。0是有理数。
mlhxueli 2023-07-24 10:15:284

有理数和无理数分别用哪两个字母表示?

自然数用n表示,有理数用q表示,无理数没有字母可以用n去掉q用venn图表示。
再也不做站长了2023-07-24 10:15:271

有理数与无理数的定义分别是什么?

无限不循环小数和开根开不尽的数叫无理数 整数和分数统称为有理数 实数除了有理数,剩下的叫做无理数
FinCloud2023-07-24 10:14:571

有理数和无理数有什么区别?

有理数是整数或有限小数或无限循环小数, 都可化为分数;无理数是无限不循环小数, 不能化为分数。
肖振2023-07-24 10:14:533

请问什么是有理数什么是无理数呢?

p, q 是整数 , q≠0有理数 =p/q无理数 = 非有理数
黑桃花2023-07-24 10:14:533

有理数和无理数有什么区别

一个是无线循环,一个不是
CarieVinne 2023-07-24 10:14:503

有理数和无理数分别指什么?

有理数和无理数分别指的是:1、有理数:有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。2、无理数:无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。有理数的加法运算:1、同号两数相加,取与加数相同的符号,并把绝对值相加。2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。3、互为相反数的两数相加得0。4、一个数同0相加仍得这个数。5、互为相反数的两个数,可以先相加。6、符号相同的数可以先相加。7、分母相同的数可以先相加。8、几个数相加能得整数的可以先相加。
铁血嘟嘟2023-07-24 10:14:181

无理数有理数怎么区分

无理数有理数区分方法如下:1、两者概念不同:有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零;无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。2、性质不同:有理数是整数和分数的集合,整数也可看做是分母为一的分数;无理数也称为无限不循环小数,不能写作两整数之比。3、两者范围不同:有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行:而无理数是指实数范围内,不能表示成两个整数之比的数。4、表达方式不同能够用分数表达的数就是有理数:不能用分数表达的数就是无理数。有理数和无理数的实质1、有理数的实质:有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。2、无理数的实质:无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
北营2023-07-24 10:14:131

无理数和有理数有什么区别

很多同学都学习了有理数,那么什么是有理数?什么是无理数?二者有什么区别?大家一起来看看吧。 无理数和有理数的不同点 1、两者概念不同。 有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。 无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。 2、两者性质不同。 有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。 无理数的性质是由整数的比率或分数构成的数字。 3、两者范围不同。 有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。而无理数是指实数范围内,不能表示成两个整数之比的数。 无理数和有理数练习题 1、在实数3.14,2/5 ,3.3333,3,0.10110111011110,π,-√(256) 中,有( )个无理数? A.2个 B.3个 C.4个 D.5个 2、下列说法中,正确的是( ) A.带根号的数是无理数 B.无理数都是开不尽方的数 C.无限小数都是无理数 D.无限不循环小数是无理数 3、已知(2x-1)5=ax5+bx4+cx+dx+ex+f(a,b,c,d,e,f为常数),则b+d=_______ 4、a为正的有理数,则√a一定是( ) A.有理数 B.正无理数 C.正实数 D.正有理数 5、下列四个命题中,正确的是( ) A.倒数等于本身的数只有1 B.绝对值等于本身的数只有0 C.相反数等于本身的数只有0 D.算术平方根等于本身的数只有1 以上就是一些无理数和有理数的相关信息,希望对大家有所帮助。
NerveM 2023-07-24 10:13:441

有理数无理数实数的区别

有理数无理数实数的区别:有理数:有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。无理数:也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。实数:实数是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。有理数与无理数是并列关系。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。实数包括有理数和无理数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
韦斯特兰2023-07-24 10:13:441

如何区分有理数无理数

整数和分数统称为有理数,无理数为无限不循环小数。如果给你一个小数,就看它是不是能换算成分数。
大鱼炖火锅2023-07-24 10:13:431

什么叫有理数和无理数

有理数是指两个整数的比,有理数是整数和分数的集合。无理数是指实数范围内不能表示成两个整数之比的数。简单来说,无理数是无限不循环小数。 一.有理数的定义 有理数是指两个整数的比。有理数是整数和分数的集合。整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。 二.无理数的定义 无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。 三.有理数的分类 有理数分为:整数和分数两大类。 整数又可分为:正整数,负整数和0。 分数又可分为:正分数和负分数。 四.无理数的分类 代数数:是整系数多项式方程的根的无理数,比如根号2,根号11,等等. 超越数:不是任何整系数多项式方程的根的无理数。
tt白2023-07-24 10:13:421

无理数和有理数有什么区别

无理数和有理数区别在于性质、范围、结构的不同。性质:有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。范围:范围不同。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。结构:结构不同。有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。有理数:有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合,即有理数的小数部分为有限或无限循环小数。有理数与之对应的是无理数(不是有理数的实数遂称为无理数),其小数部分是无限不循环的数。
mlhxueli 2023-07-24 10:13:421

无理数和有理数的区别?

有理数:正整数,负整数,正分数,负分数,零无理数:是无限不循环小数。圆周率是最好的例子。
北境漫步2023-07-24 10:13:006

什么是有理数和无理数

建议你用百度百科搜索,这样你对有理数和无理数理解的会更彻底一点
人类地板流精华2023-07-24 10:12:595

有理数和无理数有什么区别

有理数可以写为有限小数和无限循环小数,无理数只能写为无限不循环小数。有理数可以写为整数之比,而无理数不能。下面就和我一起了解一下吧,供大家参考。 有理数和无理数的区别 1.性质不同 有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 2.范围不同 有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。 3.结构不同 有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。 什么是有理数 有理数是指两个整数的比。有理数是整数和分数的集合。 整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。 有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。 什么是无理数 无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
mlhxueli 2023-07-24 10:12:551

有理数概念和无理数区别

有理数概念和无理数区别如下:一、两者概念不同。有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。二、两者性质不同。有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。无理数的性质是由整数的比率或分数构成的数字。三、两者范围不同。有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。而无理数是指实数范围内,不能表示成两个整数之比的数。有理数基本运算法则之加法运算:1、同号两数相加,取与加数相同的符号,并把绝对值相加。2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。3、互为相反数的两数相加得0。4、一个数同0相加仍得这个数。5、互为相反数的两个数,可以先相加。6、符号相同的数可以先相加。7、分母相同的数可以先相加。8、几个数相加能得整数的可以先相加。
陶小凡2023-07-24 10:12:511

什么叫做有理数和无理数

  有理数:通常我们把能够写成分数形式称为有理数。有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。有理数的小数部分是有限或为无限循环的数。0也是有理数,整数和分数统称有理数,整数也可看做是分母为一的分数。比如4=4.0,4/5=0.8。   无理数:不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。如圆周率、√2(根号2),1/3=0.33333……   扩展资料:实数(realmunber)分为有理数和无理数(irrationalnumber)。   有理数分为整数和分数   整数又分为正整数、负整数和0   分数又分为正分数、负分数   正整数和0又被称为自然数
gitcloud2023-07-24 10:12:491

无理数和有理数的概念

有理数:整数、分数(有限小数和无限循环小数)。无理数:无限不循环小数。供参考,请笑纳。
Ntou1232023-07-24 10:12:252

简单的说有理数和无理数的概念和区别

有理数:有理数分为正有理数,负有理数,0.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,只要是无限循环小数的都叫有理数.如:3.12121212121212……无理数:无限不循环小数.无理数应满足三个条件:①是小数;②是无限小数;③不循环.圆周率π=3.141592653……无理数与有理数的区别:1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,比如4=4.0, 4/5=0.8, 1/3=0.33333……而无理数只能写成无限不循环小数,比如√2=1.414213562…………根据这一点,人们把无理数定义为无限不循环小数.2、所有的有理数都可以写成两个整数之比;而无理数不能。根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫为“比数”,把无理数改叫为“非比数”。本来嘛,无理数并不是不讲道理,只是人们最初对它不太了解罢了。
再也不做站长了2023-07-24 10:12:243

有理数和无理数哪个比较多?为什么?

二者无法比较数量多少。有理数和无理数的合集为实数。,有理数和无理数在理论上讲是有无限个数的,二者数量上进行比较是没有任何意义的。扩展资料:所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。参考资料来源:百度百科-实数
陶小凡2023-07-24 10:12:241

有理数和无理数的关系是怎样的?

有理数包含整数和自然数,有理数与无理数是并列关系,整数包括正整数,负整数,零和自然数。实数包括有理数和无理数。无理数的和:可以为有理数,考虑互为相反数的无理数相加无理数的积:可以为有理数,两个相同的根数相乘无理数的除:可以为有理数,两个相同的根数相除无理数的平方:可以为有理数,两个相同的根数相乘有理数和无理数的和:一定为无理数,必然有理数和无理数的差:一定为无理数,必然有理数和无理数的积:两者都可;请考虑0有理数和无理数的商:两者都可;请考虑0
九万里风9 2023-07-24 10:12:232

有理数和无理数的区别

首先,两者概念不同。有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。其次,两者性质不同。有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。 无理数的性质是由整数的比率或分数构成的数字。最后,两者范围不同。有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。而无理数是指实数范围内,不能表示成两个整数之比的数。
此后故乡只2023-07-24 10:12:221

什么是有理数和无理数??

bikbok2023-07-24 10:12:213

有理数和无理数的区别

有理数和无理数在性质、结构和范围方面都是有区别的,接下来看一下具体的内容。有理数和无理数的区别(1)性质的区别:有理数是两个整数的比,总能写成整数、有限小数或无限循环小数。无理数不能写成两个整数之比,是无限不循环小数。(2)结构的区别:有理数是整数和分数的统称。无或慎掘理数是所有不是有理数的实数。(3)范围区别:有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行。无理数是指实数范围内不能表示成两个整数之比的数。有理数的加减法则有理数加法运算法则(1)同号两数相加,取与加数相同的符号,并把绝对值相加。(2)异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
tt白2023-07-24 10:11:491

有理数与无理数有什么区别?

有理数:通常我们把能够写成分数形式称为有理数。有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。有理数的小数部分是有限或为无限循环的数。0也是有理数,整数和分数统称有理数,整数也可看做是分母为一的分数。比如4=4.0, 4/5=0.8,。无理数:不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。如圆周率、√2(根号 2),1/3=0.33333……扩展资料:实数(real munber)分为有理数和无理数(irrational number)。有理数分为整数和分数整数又分为正整数、负整数和0分数又分为正分数、负分数正整数和0又被称为自然数参考资料:百度百科——有理数
此后故乡只2023-07-24 10:11:481

有理数和无理数的定义是什么?

无限的没有规律的数是无理数
墨然殇2023-07-24 10:11:465

有理数和无理数有哪些区别和联系

有理数和无理数的区别有以下几点:1、有理数可以写为有限小数和无限循环小数,无理数只能写为无限不循环小数。2、所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.3、范围不同。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。4、有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。拓展资料:有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
韦斯特兰2023-07-24 10:11:451

有理数和无理数的定义 有理数和无理数的定义和区别

  有理数的定义:有理数是整数和分数的统称,是整数和分数的集合。无理数的定义:无理数是无限不循环小数,是所有非有理数的实数。无理数是指实数范围内不能表示成两个整数之比的数,比如圆周率。   有理数和无理数的区别   有理数和无理数都写成小数形式时,有理数能写成有限小数。所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。   有理数集是整数集的扩张。在有理数集,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。
无尘剑 2023-07-24 10:11:421

实数的有理数和无理数举个例子

无理数:无限不循环小数 举例:圆周率pi有理数:能表示为俩个整数之比 举例1/3
tt白2023-07-24 10:11:243

有理数和无理数的定义及区别

有理数为整数和分数的统称,不是有理数的实数称为无理数。接下来给大家分享有理数和无理数的定义及区别。 有理数的定义 有理数是指整数(正整数、0、负整数)和分数的统称,有理数是整数和分数的集合。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。 有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。 无理数的定义 无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。 无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率等。 有理数和无理数的区别 (1)性质的区别: 有理数是两个整数的比,总能写成整数、有限小数或无限循环小数。 无理数不能写成两个整数之比,是无限不循环小数。 (2)结构的区别: 有理数是整数和分数的统称。 无理数是所有不是有理数的实数。 (3)范围区别: 有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行。 无理数是指实数范围内不能表示成两个整数之比的数。
CarieVinne 2023-07-24 10:11:231

有理数和无理数的概念

有理数是整数和分数的集合。无理数,即非有理数之实数,不能写作两整数之比,即不能用分数表示的数。
人类地板流精华2023-07-24 10:11:232

什么叫有理数和无理数

有理数为整数(正整数、0、负整数)和分数的统称,不是有理数的实数称为无理数。接下来看一下具体的内容。 有理数的定义及分类 有理数是指两个整数的比。有理数是整数和分数的集合。整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。 (一)按有理数的定义分类: (1)整数:整数就是像-3,-2,-1,0,1,2,3,10等这样的数。整数包括正整数、0、负整数。其中零和正整数统称自然数。 (2)分数:分数是一个整数a和一个正整数b的不等于整数的比。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。 (二)按有理数的性质分类: (1)正有理数:除了负数、0、无理数的数字都是正有理数。正有理数还被分为正整数和正分数。 (2)0:0是介于-1和1之间的整数,是最小的自然数,也是有理数。 (3)负有理数:负有理数指小于0的有理数,就是小于零并能用小数表示的数。 什么叫无理数 无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数 (1)无限不循环小数 0.101001000100001……、3.1415926……0.107856386510……等。 (2)含有π的数 π、4π、π/2、√7π、π+3等。 (3)开方开不尽的数 √2、√3、√5、2√2等 (4)某些三角函数值 sin25°、tan78°等等。
ardim2023-07-24 10:11:221

有理数和无理数的区别

有理数能写成有限小数.而无理数不是。
NerveM 2023-07-24 10:10:1913

有理数和无理数的区别是什么?

有理数和无理数的区别有以下几点:1、有理数可以写为有限小数和无限循环小数,无理数只能写为无限不循环小数。2、所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.3、范围不同。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。4、有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。拓展资料:有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
铁血嘟嘟2023-07-24 10:10:171

有理数和无理数的区别是什么?

有理数与无理数的区别1、两者概念不同。有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。2、两者性质不同。有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。无理数的性质是由整数的比率或分数构成的数字。3、两者范围不同。有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。而无理数是指实数范围内,不能表示成两个整数之比的数。
陶小凡2023-07-24 10:10:171

什么是有理数和无理数

有理数包括整数分数两个部分,其中中整数有正整数,零,负整数,分数正分`数和负分数。无理数数主要指指无限不循环小数。
gitcloud2023-07-24 10:10:162

有理数和无理数

,什么叫做有理数和无理数?在我们要知道这两种数之前,我们先要,先要来看一下数学中有哪几类数,有人可能会提到因数倍数,质数和合数,奇数和偶数,但是你想下这一数有什么特点?是不是他们每个数都是自然数,所以这些数我们都统称为自然数。 在我们的祖先那个时代,自然数就可以表示一个物体了,比如一头牛,他们就可以统称说唯一,但是自然数只能满足他们的生活了吗?你想一下小数,小数是怎么发明出来的?我来举个例子,他们那个时候也肯定有长度单位,但是呢,肯定有一些小的物体不足这个长度,就应该有更小的数了,这时候他们又采用十进制,把一平均分成十,就有了0.1,也就有了小数。 分数也是在不足一的情况下被发明出来的,比如,我把一个月饼平均分给两个人,每个人得到的那一份可以怎么表示?这时候就有了分数。 如果这些数之间有关系的话说明这一类的一些数可以转化为另一类的那些数,那这三种数之间怎么转化呢? 现在我举一些特例来证明 比如1/2,它的含义就是把整体一平均分成两份,取其中的一份占整体的1/2,那和它相对应的小数又是什么呢?我们可以在数轴上面证明。1/2在数轴上如何表示?我们先找出它的分数单位,就是把一平均分成两份,然后我们就看起点,就是从零开始,往什么方向跳呢?他是往右边跳的,所以是从零开始往右跳,但是你跳了几个几?我们跳了一个1/2,也跳到了第一个新位置,这个新位置就是1/2。 现在弄,我们来看下1/2对应的小数是什么?我们先看一下,把一平均分成十份,其中的一份我们都知道,是0.1,那么1就是有十个0.1而组成的,我们可以把十个0.1看成一个整体,平均分成两份,那么其中的一份就是五个0.1,五个0.1也就是0.5,而他正好是十个0.1的1/2,所以1/2对应的小数是0.5。如下图 那我就想知道,所有的分数都可以转化为小数吗,我想应该是的,因为每一个分数都是可以由一个除法算式组成,比如说是1/3,就是1÷3,也就是把一平均分成三份,其中的一份是多少,那每一份就是1/3啊!竟然每一个分数都可以转化为一个除法算式,那算是也肯定会有答案,那么答案就可能会是小数。 我们柜的只不过是一个特例,我们要用代数式来证明,因为代数式可以代表所有的数字,比如a分之b,转化为竖式就是,B÷a,这就代表我们的这个结论是对的。 那竟然一些分数和小数一样,问题又来了,既然一些分数和一些小数相同弄,可不可以减去一些数,比如1/2和0.5一样,我就不要这个分数了,只要小数,这样真的可以吗? 当然是不可以的,分数和小数两种数都有他们存在的必要性,比如我把一个蛋糕平均分给三个人,每人得到了多少?如果你不要分数来表示的话,那小数只能表示每个人可以得到0.3循环份,用小数来表示就不怎么合适吧,用分数来表示就是1/3,这样也就更合适了。 那我到底要减去一些什么分数?比如说是50/100,这样的分数我就可以去掉,因为他就没有意义,说白了,他就是1/2,而且他那样表示也特别的麻烦,也就是我们要最终要这两个数产生互质关系,就是除了一以后没有公因数了,这样的话,这个分数就是最简分数,我们就不用50/100了,数学就是这么简洁。 所以我们要的分数都是最简分数,那3/17呢?我们如何判断它是不是一个最简分数?首先,我们要找到他们之间的公因数,如果有的话,让分子和分母同时除以那个数,它的大小也不会变,也可以把这个分数来简化,这个数他已经就是最简分数了,因为他没有公因数了。 那么假分数可以去掉吗?当然可以,他其实和真分数是一样的,因为它也可以转化为一个除法算式啊,这样他的答案又不是个小数,要不就是一个自然数了。 我还发现只要是分数,可以转化为整数的都是假分数,而且分母是分子的因数,分子和分母也是几倍的关系,这样在我们的分数字典里面就没有像这样的分数了,我们就只有了互质的分数。 有理数和无理数,说白了,有理数就是两个数相除等不等于你这个数,无理数就是没有两个数相除等于这个数,那我们来分自然数小数还有分数,这几类的书,他们归哪一类? 我们来看下自然数,自然数肯定是要归到有理数的,我用代数式来证明。 X他乘以一个二,或者乘任何一个数,他肯定会得到另一个数,那那一个数就是它的倍数,再用这个倍数除以他乘的那个数,就可以得到x,所以自然数就是合理数。 分数也属于合理数,又一个分数,我们都知道它可以代表一个除法算式,这样也就符合我们的合理数这个条件,所以分数也是合理数。 但是我认为小树就是无理数,有人问为什么呀?而且任何两个自然数相除都可以得到一个小数,为什么说它是无理数呢?你想一下,你漏了无限不循环小数,任何两个数相除不可能是无限不循环小数,就算你看起来一个数特别像,但是你出到最后永远都会出现它的循环节,所以小数不能分为合理数,他就是无理数。
再也不做站长了2023-07-24 10:09:471

什么是有理数,什么是无理数

无限不循环小数和开根开不尽的数叫无理数 整数和分数统称为有理数
铁血嘟嘟2023-07-24 10:09:462

实数的有理数和无理数举个例子

无理数:无限不循环小数 举例:圆周率pi有理数:能表示为俩个整数之比 举例1/3
gitcloud2023-07-24 10:09:463

什么是有理数和无理数?怎么区分啊?

有理数和无理数区别如下:两者概念不同:有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数,因此有理数的数集可分为正有理数、负有理数和零;无理数,也称为无限不循环小数,简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。两者性质不同,有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b;无理数的性质是由整数的比率或分数构成的数字。两者范围不同,有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行,而无理数是指实数范围内,不能表示成两个整数之比的数。常见的有理数无理数:常见的有理数类型有如下几种:1、整数:所有的整数都是有理数。2、小数:小数分类里的有限小数、无限循环小数都是有理数。3、分数:因为所有的分数不是与一个有限小数等价,就是与一个无限循环小数等价。即,分数化成小数的结果不是一个有限小数,就是一个无限循环小数。而这两种类型的小数都是有理数,所以,所有的分数都是有理数。值得注意的是,在所有根式中,如果根式开方后的结果能化为上面几种常见有理数的形式中的一种的话,那么这个根式代表的实数也是有理数。如:因为8的立方根等于2,-64的立方根等于-4,所以8和-64的立方根都是有理数。常见的无理数类型有如下几种:1:无限不循环小数:如圆周率T、自然对数的底数e等。2:根式中开方开不尽的数:如2的平方根、5的立方根、7的四次方根等。
水元素sl2023-07-24 10:09:431

什么是有理数,什么是无理数

无限不循环小数和开根开不尽的数叫无理数 整数和分数统称为有理数 实数除了有理数,剩下的叫做无理数
黑桃花2023-07-24 10:09:421

实数,有理数,无理数,自然数,这些到底有什么区别

实数包括有理数和无理数,有理数包括自然数
ardim2023-07-24 10:09:123

再任意一个区间里,无理数多还是有理数多

都是无穷多
FinCloud2023-07-24 10:09:118

判断有理数和无理数?

这需要有丰富的实践经验和理论,基础知识。才能够更加判断的准确。
九万里风9 2023-07-24 10:09:085

有理数,无理数,实数的关系?

有理数包含整数和自然数,有理数与无理数是并列关系,整数包括正整数,负整数,零和自然数。实数包括有理数和无理数。
九万里风9 2023-07-24 10:09:071

有理数与无理数的积是不是无理数

不一定。有两种3情况:一、积是有理数。如:0*根号2=0二、是无理数:如:2*根号2=2倍根号2,是无理数。
mlhxueli 2023-07-24 10:08:371

怎么判断带根号的数是有理数还是无理数?

实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
西柚不是西游2023-07-24 10:08:373

无理数和有理数的区别?

1、性质不同:有理数是整数和分数的集合,整数也可看做是分母为一的分数。无理数也称为无限不循环小数,不能写作两整数之比。2、特点不同:有理数和无理数都能写成小数形式,但是有理数可以写为有限小数和无限循环小数,而无理数只能写为无限不循环小数。有理数可以写为整数之比,而无理数不能。3、表达方式不同:能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。扩展资料:注意事项:运用加法交换律,在交换各数的位置时要连同它们前面的符号一起交换,千万不要把符号漏掉。应用加法结合律时,应充分考虑同号加数结合、同分母或便于通分的加数结合、凑整的加数结合、互为相反数的加数结合等情形,从而选择适当的方法,使运算简便。若分数、小数混在一块运算时,可以统一成分数或小数再运算。如果有大括号和小括号应当先进行小括号里的运算,再进行大括号里的运算。参考资料来源:百度百科-无理数参考资料来源:百度百科-有理数
北境漫步2023-07-24 10:08:361

什么叫做有理数和无理数???

有理数:通常我们把能够写成分数形式称为有理数。有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。有理数的小数部分是有限或为无限循环的数。0也是有理数,整数和分数统称有理数,整数也可看做是分母为一的分数。比如4=4.0, 4/5=0.8,。无理数:不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。如圆周率、√2(根号 2),1/3=0.33333……扩展资料:实数(real munber)分为有理数和无理数(irrational number)。有理数分为整数和分数整数又分为正整数、负整数和0分数又分为正分数、负分数正整数和0又被称为自然数参考资料:百度百科——有理数
豆豆staR2023-07-24 10:08:111

有理数与无理数的区别

有理数与无理数的区别如下:1、性质不同:有理数是整数和分数的集合,整数也可看做是分母为一的分数。无理数也称为无限不循环小数,不能写作两整数之比。2、特点不同:有理数和无理数都能写成小数形式,但是有理数可以写为有限小数和无限循环小数,而无理数只能写为无限不循环小数。有理数可以写为整数之比,而无理数不能。3、表达方式不同:能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。有理数和无理数是数学中的两个重要概念,它们之间的区别在于它们的表示方式和性质。有理数是可以表示为两个整数之比的数,包括正整数、负整数、零和分数。而无理数是不能表示为两个整数之比的数,包括无限不循环小数和无限循环小数。有理数和无理数在数学和实际生活中都有广泛的应用。有理数在分数、比例、百分数等方面有着广泛的应用,例如在商业、金融、科学等领域中都有着重要的作用。而无理数则在几何、物理、工程等领域中有着广泛的应用。有理数和无理数是数学中的两个重要概念,它们之间的区别在于它们的表示方式和性质。有理数可以用分数形式表示,可以进行加、减、乘、除等基本运算,可以进行大小比较;而无理数不能用分数形式表示,不能进行基本运算,也不能进行大小比较。
拌三丝2023-07-24 10:08:111

什么是有理数和无理数

有理数:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数,也就是说有理数是整数和分数的统称,一切有理数都可以化成分数的形式 . 无理数:无理数,即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环. 真心希望我的回答能够帮到你.
ardim2023-07-24 10:08:091

有理数和无理数是什么?

有理数:有理数为整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。0既不是正数,也不是负数。例如:-7,-5,-6,-1,0,1,3,5,7等。无理数:无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。例如:圆周率,√2,√3,√5等。无理数与有理数的区别:1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,比如4=4.0, 4/5=0.8, 1/3=0.33333……而无理数只能写成无限不循环小数,比如√2=1.414213562…………根据这一点,人们把无理数定义为无限不循环小数。2、所有的有理数都可以写成两个整数之比;而无理数不能。根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫为“比数”,把无理数改叫为“非比数”。本来嘛,无理数并不是不讲道理,只是人们最初对它不太了解罢了。
FinCloud2023-07-24 10:08:061

有理数与无理数的区别?

无理数是无限不循环小数 剩下的就是有理数了
小菜G的建站之路2023-07-24 10:08:064

有理数与无理数

有理数都可以写成n/m(m,n都是整数,且m!=0),例如:1/2, 3/7,-3/1,0。无理数无法表示成分子和分母都是整数的分数。 1,符号:π = 3.1415926,e = 2.7182 2,开根号开不尽的数字:√2 = 1.414,√3 = 1.732,√5 = 2.236 3,取对取不尽:log(2)3, log(2)5 log2(2)4 = 2 有理数,log(3)9 = 2 有理数 4,三角函数:sin45度 = √2/2 1,有理数(+- /)有理数 => 有理数 2,有理数(+-)无理数 =>无理数 3,有理数( /)无理数 => 不一定,0乘任何数结果都为0,而0是有理数。 4,无理数(+-*/)无理数 => 不确定,例√2 * √2 = 2,有理数。√2 * √3 = √6 无理数 结论:要想判定结果,必须结合有理数
此后故乡只2023-07-24 10:08:051

有理数和无理数的定义

有理数的定义:有理数是整数和分数的统称,是整数和分数的集合。无理数的定义:无理数是无限不循环小数,是所有非有理数的实数。无理数是指实数范围内不能表示成两个整数之比的数,比如圆周率。有理数和无理数的区别有理数和无理数都写成小数形式时,有理数能写成有限小数。所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。有理数集是整数集的扩张。在有理数集,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。
余辉2023-07-24 10:08:051

有理数和无理数的区别是什么?

01 有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 简单来讲,能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。实数(R)可以分为有理数(Q)和无理数,其中无理数就是无限不循环小数,有理数就是有限小数和无限循环小数;其中有理数又可以分为整数(Z)和分数;整数按照能否被2整除又可以分为奇数(不能被2整除的整数)和偶数(能被2整除的整数)。 有理数(Q)有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。比如4=4.0, 4/5=0.8。 无理数(R-Q)无理数也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、u03c0和e(其中后两者均为超越数)等。 二者区别 有理数和无理数都能写成小数形式,但是,有理数可以写为有限小数和无限循环小数,而无理数只能写为无限不循环小数。有理数可以写为整数之比,而无理数不能。 简单来讲,能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。
黑桃花2023-07-24 10:08:052

什么是有理数和无理数?

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 有理数指整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数
小白2023-07-24 10:08:042

有理数和无理数的概念

有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。 有理数的概念 有理数是指两个整数的比。有理数是整数和分数的集合。整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。 有理数和无理数的区别 1.性质区别: 有理数是两个整数的比,总能写成整数、有限小数或无限循环小数 无理数不能写成两个整数之比,是无限不循环小数。 2.结构区别: 有理数是整数和分数的统称。 无理数是所有不是有理数的实数, 3.范围区别: 有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行。 无理数是指实数范围内不能表示成两个整数之比的数。 无理数的概念 无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。
墨然殇2023-07-24 10:07:361

什么是无理数和有理数?

有理数:有理数分为正有理数,负有理数,0.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,只要是无限循环小数的都叫有理数.如:3.12121212121212…… 无理数:无限不循环小数.无理数应满足三个条件:①是小数;②是无限小数;③不循环.圆周率π=3.141592653…… 复数:形如a+bi的数.式中a,b为实数,i是一个满足i2=-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数.在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位.当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数.由上可知,复数集包含了实数集,因而是实数集的扩张. 实数:有理数和无理数统称为实数 整数:整数包括正整数,负整数和0. 如正整数:1、2、3...... 负整数:-1、-2、-3...... 自然数:自然数,就是人们数数时产生的数(如“有3个苹果”),所以用来表示物体个数的数叫做自然数.一个物体也没有,当然可以用“0”来表示,所以“0”也是自然数.
北境漫步2023-07-24 10:07:361

有理数和无理数指的是什么?

有理数为整数(正整数、0、负整数)和分数的统称,不是有理数的实数称为无理数。有理数的定义及分类有理数是指两个整数的比。有理数是整数和分数的集合。整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。(一)按有理数的定义分类:(1)整数:整数就是像-3,-2,-1,0,1,2,3,10等这样的数。整数包括正整数、0、负整数。其中零和正整数统称自然数。(2)分数:分数是一个整数a和一个正整数b的不等于整数的比。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。(二)按有理数的性质分类:(1)正有理数:除了负数、0、无理数的数字都是正有理数。正有理数还被分为正整数和正分数。(2)0:0是介于-1和1之间的整数,是最小的自然数,也是有理数。(3)负有理数:负有理数指小于0的有理数,就是小于零并能用小数表示的数。
FinCloud2023-07-24 10:07:361

什么是有理数和无理数?怎么区分啊?

有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。无理数是指实数范围内不能表示成两个整数之比的数,简单的说,无理数就是10进制下的无限不循环小数。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。无理数是是由整数的比率(或分数)构成的数字。常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。具体区分有理数和无理数的方法如下:①该数是否为整数,是——有理数②该数是否为分数,是——有理数③该数是否为小数,是——见④④该数是否为循环小数,是——有理数,否——无理数
无尘剑 2023-07-24 10:07:341

什么是有理数和无理数?怎么区分啊?

无理数和有理数区别在于性质、范围、结构的不同。性质有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。范围范围不同。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。结构结构不同。有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。有理数有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合,即有理数的小数部分为有限或无限循环小数。有理数与之对应的是无理数(不是有理数的实数遂称为无理数),其小数部分是无限不循环的数。
北营2023-07-24 10:07:311

有理数和无理数是什么?

有理数指整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数的小数部分是有限或循环小数。不是有理数的实数遂称为无理数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。无理数和有理数的区别:1、两者概念不同。有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。2、两者性质不同。有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。无理数的性质是由整数的比率或分数构成的数字。3、两者范围不同。有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。而无理数是指实数范围内,不能表示成两个整数之比的数。
黑桃花2023-07-24 10:07:061

什么是有理数和无理数?

有理数是整数(正整数、负整数和零)和分数(正分数、负分数)的统称。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。0是绝对值最小的有理数。定义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。可以看出,无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列。例如,数字π的十进制表示从3.141592653589793开始,但没有有限数字的数字可以精确地表示π,也不重复。必须终止或重复的有理数字的十进制扩展的证据不同于终止或重复的十进制扩展必须是有理数的证据,尽管基本而不冗长,但两种证明都需要一些工作。数学家通常不会把“终止或重复”作为有理数概念的定义。无理数也可以通过非终止的连续分数来处理。无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、等。而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比,如21/7等。
韦斯特兰2023-07-24 10:07:061

什么是有理数和无理数

有理数和无理数的定义分别为:1、无限不循环小数和开根开不尽的数叫无理数,整数和分数统称为有理数。包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制(如二进制)下都适用。2、数学上,有理数是一个整数a和一个非零整数b的比(ratio),通常写作a/b,故又称作分数。希腊文称为 λογο? ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。
北有云溪2023-07-24 10:07:061

什么是有理数和无理数?

有理数是一个整数a和一个正整数b的比,无理数是无限不循环小数。有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。有理数和无理数的区别(1)有理数可分为整数(正整数、0、负整数)和分数(正分数、负分数)。把有理数和无理数都写成小数形式时,有理数能写成有限小数或无限循环小数。比如4=4.0;4/5=0.8等等;也可分为正有理数(正整数、正分数),0,负有理数(负整数、负分数)。而无理数只能写成无限不循环小数,比如√2=1.4142...,π=3.1415926...,根据这一点,人们把无理数定义为无限不循环小数。(2)所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比,因此无理数也叫做非比数。
北营2023-07-24 10:07:061

有理数和无理数是什么?

有理数和无理数分别指的是:1、有理数:有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。2、无理数:无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。有理数的加法运算:1、同号两数相加,取与加数相同的符号,并把绝对值相加。2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。3、互为相反数的两数相加得0。4、一个数同0相加仍得这个数。5、互为相反数的两个数,可以先相加。6、符号相同的数可以先相加。7、分母相同的数可以先相加。8、几个数相加能得整数的可以先相加。
gitcloud2023-07-24 10:07:051

有理数的加减混合运算 要计算过程

123
人类地板流精华2023-07-23 18:39:353

有理数加减乘除混合运算怎么做,尤其是有各种括号

先算括号里面的,括号里面先算乘除再算加减括号外面也是先算乘除再算加减
肖振2023-07-23 18:39:351

有理数(25分悬赏)不要再看了,进!

正数负数和零统称有理数
Chen2023-07-23 18:39:348

有理数加减混合运算题 及答案 50道

787888
陶小凡2023-07-23 18:39:344

5道有理数混合运算

有理数的加减混合运算1、计算: (1)-5-9+3; (2)10-17+8; (3)-3-4+19-11;  (4)-8+12-16-23. 2.计算:(1)-4.2+5.7-8.4+10; (2)6.1-3.7-4.9+1.8; 3.计算: (1)(—36)—(—25)—(+36)+(+72); (2)(—8)—(—3)+(+5)—(+9); (3) ; (4)—9+(—3 )+3 ; 4.计算:(1) 12-(-18)+(-7)-15; (2) -40-28-(-19)+(-24)-(-32); (3)4.7-(-8.9)-7.5+(-6); 有理数的混合运算 1.计算(五分钟练习): (5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25; (13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021; (17)(-2)4; (18)(-4)2; (19)-32; (20)-23; (24)3.4×104÷(-5). . 课堂练习 计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27); 例3 计算: (1)(-3)×(-5)2; (2)〔(-3)×(-5)〕2; (3)(-3)2-(-6); (4)(-4×32)-(-4×3)2.审题:运算顺序如何? 解:(1)(-3)×(-5)2=(-3)×25=-75. (2)〔(-3)×(-5)〕2=(15)2=225. (3)(-3)2-(-6)=9-(-6)=9+6=15. (4)(-4×32)-(-4×3)2 =(-4×9)-(-12)2 =-36-144 =-180. 注意:搞清(1),(2)的运算顺序,(1)中先乘方,再相乘,(2)中先计算括号内的,然后再乘方.(3)中先乘方,再相减,(4)中的运算顺序要分清,第一项(-4×32)里,先乘方再相乘,第二项(-4×3)2中,小括号里先相乘,再乘方,最后相减. 课堂练习 计算: (1)-72; (2)(-7)2; (3)-(-7)2; (7)(-8÷23)-(-8÷2)3. 例4 计算 (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4. 审题:(1)存在哪几级运算? (2)运算顺序如何确定? 解: (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4 =4-(-25)×(-1)+87÷(-3)×1(先乘方) =4-25-29(再乘除) =-50.(最后相加) 注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1. 课堂练习 计算: (1)-9+5×(-6)-(-4)2÷(-8); (2)2×(-3)3-4×(-3)+15. 3.在带有括号的运算中,先算小括号,再算中括号,最后算大括号. 课堂练习 计算: 三、小结 教师引导学生一起总结有理数混合运算的规律. 1.先乘方,再乘除,最后加减; 2.同级运算从左到右按顺序运算; 3.若有括号,先小再中最后大,依次计算. 四、作业 1.计算: 2.计算: (1)-8+4÷(-2); (2)6-(-12)÷(-3); (3)3u2022(-4)+(-28)÷7; (4)(-7)(-5)-90÷(-15); 3.计算: 4.计算: (7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5. 5*.计算(题中的字母均为自然数): (1)(-12)2÷(-4)3-2×(-1)2n-1; (4)〔(-2)4+(-4)2u2022(-1)7〕2mu2022(53+35). 第二份 初一数学测试(六) (第一章 有理数 2001、10、18) 命题人:孙朝仁 得分 一、 选择题:(每题3分,共30分) 1.|-5|等于………………………………………………………………( ) (A)-5 (B)5 (C)±5 (D)0.2 2.在数轴上原点及原点右边的点所表示的数是……………………( ) (A)正数 (B)负数 (C)非正数 (D)非负数 3.用代数式表示“ 、b两数积与m的差”是………………………( ) (A) (B) (C) (D) 4.倒数等于它本身的数有………………………………………………( ) (A)1个 (B)2个 (C)3个 (D)无数个 5.在 (n是正整数)这六数中,负数的个数是……………………………………………………………………( ) (A)1个 (B)2个 (C)3个 (D)4个 6.若数轴上的点A、B分别与有理数a、b对应,则下列关系正确的是( ) (A)a<b (B)-a<b (C)|a|<|b| (D)-a>-b 7.若|a-2|=2-a,则数a在数轴上的对应点在 (A) 表示数2的点的左侧 (B)表示数2的点的右侧 (C) 表示数2的点或表示数2的点的左侧 (D)表示数2的点或表示数2的点的左侧 8.计算 的结果是……………………………( ) (A) (B) (C) (D) 9.下列说法正确的是…………………………………………………………( ) (A) 有理数就是正有理数和负有理数(B)最小的有理数是0 (C)有理数都可以在数轴上找到表示它的一个点(D)整数不能写成分数形式 10.下列说法中错误的是………………………………………………………( ) (A) 任何正整数都是由若干个“1”组成 (B) 在自然数集中,总可以进行的运算是加法、减法、乘法 (C) 任意一个自然数m加上正整数n等于m进行n次加1运算 (D)分数 的特征性质是它与数m的乘积正好等于n 二、 填空题:(每题4分,共32分) 11.-0.2的相反数是 ,倒数是 。 12.冰箱冷藏室的温度是3℃,冷冻室的温度比冷藏室的温度低15℃,则冷冻室温度是 ℃。 13.紧接在奇数a后面的三个偶数是 。 14.绝对值不大于4的负整数是 。 15.计算: = 16.若a<0,b>0,|a|>|b|,则a+b 0。(填“>”或“=”或“<”号) 17.在括号内的横线上填写适当的项:2x-(3a-4b+c)=(2x-3a)-( )。 18.观察下列算式,你将发现其中的规律: ; ; ; ; ;……请用同一个字母表示数,将上述式子中的规律用等式表示出来: 。 三、 计算(写出计算过程):(每题7分,共28分) 19. 20. 21. (n为正整数) 22.(1)求a、b的值;(本题4分) (2)求 的值。(本题6分) 第三份 初一数学测试(六) (第一章 有理数 2001、10、18) 命题人:孙朝仁 班级 姓名 得分 一、 选择题:(每题3分,共30分) 1.|-5|等于………………………………………………………( ) (A)-5 (B)5 (C)±5 (D)0.2 2.在数轴上原点及原点右边的点所表示的数是………………( ) (A)正数 (B)负数 (C)非正数 (D)非负数 3.用代数式表示“ 、b两数积与m的差”是………………( ) (A) (B) (C) (D) 4.-12+11-8+39=(-12-8)+(11+39)是应用了 ( ) A、加法交换律B、加法结合律 C、加法交换律和结合律D、乘法分配律 5.将6-(+3)-(-7)+(-2)改写成省略加号的和应是 ( ) A、-6-3+7-2 B、6-3-7-2 C、6-3+7-2 D、6+3-7-2 6.若|x|=3,|y|=7,则x-y的值是 ( ) A、±4 B、±10 C、-4或-10 D、±4,±10 7.若a×b<0,必有 ( ) A、a>0,b<0 B、a<0,b>0 C、a、b同号 D、a、b异号 8.如果两个有理数的和是正数,积是负数,那么这两个有理数 ( ) A、都是正数 B、绝对值大的那个数正数,另一个是负数 C、都是负数 D、绝对值大的那个数负数,另一个是正数 9.文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在 ( ) A、文具店 B、玩具店 C、文具店西边40米 D、玩具店东边-60米 10.已知有理数 、 在数轴上的位置如图 u2022 u2022 u2022 所示,那么在①a>0,②-b<0,③a-b>0, ④a+b>0四个关系式中,正确的有 ( ) A、4个 B、3个 C、2个 D、1个 二、 判断题:(对的画“+”,错的画“○”,每题1分,共6分) 11.0.3既不是整数又不是分数,因而它也不是有理数。 ( ) 12.一个有理数的绝对值等于这个数的相反数,这个数是负数。 ( ) 13.收入增加5元记作+5元,那么支出减少5元记作-5元。 ( ) 14.若a是有理数,则-a一定是负数。 ( ) 15.零减去一个有理数,仍得这个数。 ( ) 16.几个有理数相乘,若负因数的个数为奇数个,则积为负。 ( ) 三、 填空题:(每题3分,共18分) 17.在括号内填上适当的项,使等式成立:a+b-c+d=a+b-( )。 18.比较大小: │- │ │- │.(填“>”或“<”号) 19.如图,数轴上标出的点中任意相邻两点间的距离都相等,则a的值= 20.一个加数是0.1,和是-27.9,另一个加数是 。 21.-9,+6,-3三数的和比它们的绝对值的和小 。 22.等式 ×〔(-5)+(-13)〕= 根据的运算律是 。 四、 在下列横线上,直接填写结果:(每题2分,共12分) 23.-2+3= ;24.-27+(-51)= ; 25.-18-34= ; 26.-24-(-17)= ;27.-14×5= ; 28.-18×(-2)= 。五、 计算(写出计算过程):(29、30每题6分,31、32每题7分,共26分) 29.(-6)-(-7)+(-5)-(+9) 30. (-5)×(-3 )-15×1 +〔 -( )×24〕 六、 下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)。 ⑴如果现在的北京时间是7:00,那么现在的纽约时间是多少? ⑵小华现在想给远在巴黎的外公打电话,你认为合适吗?(每小题4分)
左迁2023-07-23 18:39:311

30道有理数混合运算及过程答案

混合运算的过程和答案
wpBeta2023-07-23 18:39:197

有理数加减乘除混合运算是什么?

有理数加减乘除混合运算是先算乘除后算加减如果有括号的必须先算括号里面的,常见题型如下:(1)23+(-73)(2)(-84)+(-49)(3)7+(-2.04)(4)4.23+(-7.57)(5)(-7/3)+(-7/6)(6)9/4+(-3/2)(7)3.75+(2.25)+5/4(8)-3.75+(+5/4)+(-1.5)相关定义加法:把两个数合并成一个数的运算。减法:在已知两个加数的和与其中的一个加数,求另一个加数的运算。乘法:求两个数乘积的运算。(1)一个数乘整数,是求几个相同加数和的简便运算。(2)一个数乘小数,是求这个数的十分之几、百分之几、千分之几……是多少。(3)一个数乘分数,是求这个数的几分之几是多少。除法:已知两个因数的积与其中的一个因数,求另一个因数的运算。
FinCloud2023-07-23 18:39:182

有理数的混合运算习题及答案100道,谢谢,都是学生啊,本是同根生,相煎何太急啊加分加分!

1. 2100-21×53+22552. (103-336÷21)×153. 800-(2000-9600÷8)4. 40×48-(1472+328)÷55. (488+344)÷(202-194)6. 2940÷28+136×77. 605×(500-494)-18988. (2886+6618)÷(400-346)9. 9125-(182+35×22)10. (154-76)×(38+49)11. 3800-136×9-79812. (104+246)×(98÷7)13. 918÷9×(108-99)14. (8645+40×40)÷515. (2944+864)÷(113-79)16. 8080-1877+1881÷317. (5011-43×85)+339718. 2300-1122÷(21-15)19. 816÷(4526-251×18)20. (7353+927)÷(801-792)21. (28+172)÷(24+16)22. 6240÷48+63×4823. 950-28×6+66624. 86×(35+117÷9)25. 2500+(360-160÷4)26. 16×4+6×327.39÷3+48÷6
善士六合2023-07-23 18:39:142

出几道有理数加减混和运算的题(初一 有解答的)

(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( ) A.-2-3-5-4+3 B.-2+3+5-4+3 C.-2-3+5-4+3 D.-2-3-5+4+3 (2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( ) A.-10 B.-9 C.8 D.-23 (3)-7,-12,+2的代数和比它们的绝对值的和小( ) A.-38 B.-4 C.4 D.38 (4)若 +(b+3)2=0,则b-a- 的值是( ) A.-4 B.-2 C.-1 D.1 (5)下列说法正确的是( ) A.两个负数相减,等于绝对值相减 B.两个负数的差一定大于零 C.正数减去负数,实际是两个正数的代数和 D.负数减去正数,等于负数加上正数的绝对值 (6)算式-3-5不能读作( ) A.-3与5的差 B.-3与-5的和 C.-3与-5的差 D.-3减去5 2.填空题:(4′×4=16′) (1)-4+7-9=- - + ; (2)6-11+4+2=- + - + ; (3)(-5)+(+8)-(+2)-(-3)= + - + ; (4)5-(-3 )-(+7)-2 =5+ - - + - . 3.把下列各式写成省略括号的和的形式,并说出它们的两种读法:(8′×2=16′) (1)(-21)+(+16)-(-13)-(+7)+(-6); (2)-2 -(- )+(-0.5)+(+2)-(+ )-2. 4.计算题(6′×4=24′) (1)-1+2-3+4-5+6-7; (2)-50-28+(-24)-(-22); (3)-19.8-(-20.3)-(+20.2)-10.8; (4)0.25- +(-1 )-(+3 ). 5.当x=-3.7,y=-1.8,z=-1.5时,求下列代数式的值(5′×4=20′) (1)x+y-z; (2)-x-y+z; (3)-x+y+z; (4)x-y-z. 【素质优化训练】 (1) (-7)-(+5)+(+3)-(-9)=-7 5 3 9; (2)-(+2 )-(-1 )-(+3 )+(- ) =( 2 )+( 1 )+( 3 )+( ); (3)-14 5 (-3)=-12; (4)-12 (-7) (-5) (-6)=-16; (5)b-a-(+c)+(-d)= a b c d; 2.当x= ,y=- ,z=- 时,分别求出下列代数式的值; (1)x-(-y)+(-z); (2)x+(-y)-(+z); (3)-(-x)-y+z; (4)-x-(-y)+z. 3.就下列给的三组数,验证等式: a-(b-c+d)=a-b+c-d是否成立. (1)a=-2,b=-1,c=3,d=5; (2)a= ,b=- ,c=-1 ,d=1 . 4.计算题 (1)-1 ; (2)1- ; (3)(-6-24.3)-(-12+9.1)+(0-2.1); (4)-1 + - - - + 【生活实际运用】 某水利勘察队,第一天向上游走5 千米,第二天又向上游走5 ,第三天向下游走4 千米,第四天又向下游走4.5千米,这时勘察队在出发点的哪里?相距多少千米? 参考答案: 【同步达纲练习】 1.(1)C;(2)B;(3)D;(4)A;(5)C;(6)C 2.(1)4,(-7),(-9) (2)(-6),(-11),(-4),2; (3)-5,8,2,3; (4)3,7,2; 3.略4.(1)-4; (2)-80; (3)-30.5 (4)-5 5.(1)-4; (2)4; (3)0.4; (4)-0.4. 【素质优化训练】 1.(1)-,+,+; (2)-,+,-,-; (3)+,+; (4)-,+,+; (5)-,+,-,-. 2.(1) (2) (3) (4)- 3.(1) (2)都成立. 4.(1)- (2) (3)-29.5 (4)-1 第(4)题注意同号的数、互为相反数先分别结合。 【生活实际运用】 1.上游1 千米
小白2023-07-23 18:39:102

有理数加减混合运算试题20道..

【过关试题】 1、计算:(1)-5-9+3; (2)10-17+8; (3)-3-4+19-11; (4)-8+12-16-23. 2.计算: (1)-4.2+5.7-8.4+10; (2)6.1-3.7-4.9+1.8; 3.计算: (1)(-36)-(-25)-(+36)+(+72); (2)(-8)-(-3)+(+5)-(+9); (3) ; (4)-9+(-3 )+3 ; 4.计算: (1)12-(-18)+(-7)-15; (2)-40-28-(-19)+(-24)-(-32); (3)4.7-(-8.9)-7.5+(-6); 答案: 1、(1)-11;(2)1;(3)1;(4)-35 2、(1)3.1;(2)-0.7;(3) ;(4) 3、(1)25;(2)-9;(3) ;(4)-9 4、(1)8;(2)-41;(3)0.1
韦斯特兰2023-07-23 18:39:091

数学有理数混合运算的法则是什么?

(1)有理数的加法法则: 1. 同号两数相加,和取相同的符号,并把绝对值相加; 2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; 3. 一个数与零相加仍得这个数; 4. 两个互为相反数相加和为零。 ⑵有理数的减法法则: 减去一个数等于加上这个数的相反数。 补充:去括号与添括号: 去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。 添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。 ⑶有理数的乘法法则: ① 两数相乘,同号得正,异号得负,并把绝对值相乘; ② 任何数与零相乘都得零; ③ 几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正; ④ 几个有理数相乘,若其中有一个为零,积就为零。 ⑷有理数的除法法则: 法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除; 法则二:除以一个数等于乘以这个数的倒数。 ⑸有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。 ⑹有理数的运算顺序:有理数的混合运算法则即先算乘方或开方, 再算乘法或除法,后算加法或减法。有括号时、先算小括号里面的运算,再算中括号,然后算大括号。[5*(4-5+5)]÷5 =(5*4)÷5 =4⑺运算律: ①加法的交换律:a+b=b+a; ②加法的结合律:(a+b)+c=a+(b+c); ③乘法的交换律:ab=ba; ④乘法的结合律:(ab)c=a(bc); ⑤乘法对加法的分配律:a(b+c)=ab+ac; 注:除法没有分配律。
肖振2023-07-23 18:39:091
 首页 上一页  1 2 3 4 5 6 7 8 9 10  下一页  尾页