汉邦问答 / 问答 / 问答详情

数学有理数混合运算的法则是什么?

2023-07-23 18:39:09
肖振

(1)有理数的加法法则:

1. 同号两数相加,和取相同的符号,并把绝对值相加;

2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

3. 一个数与零相加仍得这个数;

4. 两个互为相反数相加和为零。

⑵有理数的减法法则:

减去一个数等于加上这个数的相反数。

补充:去括号与添括号:

去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。

添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。

⑶有理数的乘法法则:

① 两数相乘,同号得正,异号得负,并把绝对值相乘;

② 任何数与零相乘都得零;

③ 几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;

④ 几个有理数相乘,若其中有一个为零,积就为零。

⑷有理数的除法法则:

法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;

法则二:除以一个数等于乘以这个数的倒数。

⑸有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。

正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。

⑹有理数的运算顺序:

有理数的混合运算法则即先算乘方或开方, 再算乘法或除法,后算加法或减法。有括号时、先算小括号里面的运算,再算中括号,然后算大括号。

[5*(4-5+5)]÷5

=(5*4)÷5

=4

⑺运算律:

①加法的交换律:a+b=b+a;

②加法的结合律:(a+b)+c=a+(b+c);

③乘法的交换律:ab=ba;

④乘法的结合律:(ab)c=a(bc);

⑤乘法对加法的分配律:a(b+c)=ab+ac;

注:除法没有分配律。

有理数的加减混合运算

有理数混合运算时,先算乘方再算乘除,最后算加减,如果有括号,先算括号里面的。加减是同级运算,乘除是同级运算,同级运算是依照从左至右的运算顺序。有理数和无理数的三点不同:一、两者的含义不同:1、有理数的含义:数学中,有理数是一个整数a和一个正整数b的比,例如3/8,通常为a/b,0也是有理数;2、无理数的含义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。二、两者的特征不同:1、有理数的特征:有理数的小数部分是有限或为无限循环的数;2、无理数的特征:无理数的小数部分是无限不循环的数。三、两者的实质不同:1、有理数的实质:有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零;由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数;2、无理数的实质:无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
2023-07-22 21:50:061

有理数的加减混合运算的一般步骤

X=1 Y=-5使方程2X-Y=7左.右两边的值相等,二元一次方程组 二元一次方程组的意义 含有两个未知数的方程并且未知项的次数是1,这样的方程叫做二元一次方程。 两个二元一次方程合在一起,就组成了一个二元一次方程组。 解法 二元一次方程组有两种解法,一种是代入消元法,加减消元法. 例: 1)x-y=3 2)3x-8y=14 3)x=y+3 代入得3×(y+3)-8y=14 y=-1 所以x=2 这个二元一次方程组的解x=2 y=-1 以上就是代入消元法,简称代入法。 二元一次方程组的解 一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。 求方程组的解的过程,叫做解方程组。
2023-07-22 21:50:174

有理数加减混合运算的方法是什么

有理数加减混合运算的一般步骤是:(1)把减法转化为加法,写成省略加号和括号的形式;(2)应用加法交换律与结合律,简化运算;(3)求出结果.
2023-07-22 21:50:274

有理数的加减混合运算怎么算?

有理数的加减混合运算算法规则如下:1、同号两数相加,取与加数相同的符号,并把绝对值相加。2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。3、互为相反数的两数相加得0。4、一个数同0相加仍得这个数。5、互为相反数的两个数,可以先相加。6、符号相同的数可以先相加。7、分母相同的数可以先相加。8、几个数相加能得整数的可以先相加9、减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。一、加法运算律:1、加法交换律:两个数相加,交换加数的位置,和不变,即 。2、加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即 。二、乘法运算律:1、乘法交换律:两个数相乘,交换因数的位置,积不变,即 。2、乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即 。
2023-07-22 21:50:431

有理数的加减混合运算

等下
2023-07-22 21:51:007

有理数加减法怎么做?

这都不会,傻了吧
2023-07-22 21:51:5915

有理数的加减乘除混合运算有哪些?

小学学过:就是有括号先算括号,有中括号先算小括号再算中括号,有乘除先算乘除再算加减。可以多实践计算下就会熟悉哦。
2023-07-22 21:53:073

有理数加减法混合运算规则是什么?

有理数的加法法则:1、同号两数相加,和取相同的符号,并把绝对值相加;2、绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3、一个数与零相加仍得这个数;4、两个互为相反数相加和为零。有理数的减法法则:减去一个数等于加上这个数的相反数。补充:去括号与添括号:去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。有理数的乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘;2、任何数与零相乘都得零;3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;4、几个有理数相乘,若其中有一个为零,积就为零。有理数的除法法则:法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;法则二:除以一个数等于乘以这个数的倒数。
2023-07-22 21:53:231

有理数的加减混合运算

有理数加减混合运算步骤1.将减法统一成( 加法 )。2.写成省略加号的( 和 )的形式。3.结合( 运算律 )进行计算。注意的问题4.进行减法运算时,首先弄清减法的( 意义 )。5.将有理数减法转化为加法时,要同时改变两个符号:一是运算符号减号变为加号,二是性质符号即减数变为它的( 相反数   )。6.加减混合运算应结合运算律和(  运算顺序  )进行运算。
2023-07-22 21:53:401

有理数的加减法怎么做?

你给个具体的类型...这个题目太宽泛了
2023-07-22 21:54:149

有理数的加减混合运算怎么算简单的方法

有理数加减混合运算的方法和步骤:(1)运用减法法则将有理数混合运算中的减法转化为加法。(2)运用加法法则,加法交换律,加法结合律简便运算。   有理数乘法法则(1)两数相乘,同号为正,异号为负,并把绝对值相乘。例;(-5)×(-3)=15 (-6)×4=-24 (2)任何数字同0相乘,都得0. 例;0×1=0 (3)几个不等于0的数字相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负;当负因数有偶数个数时,积为正。并把其绝对值相乘。例;(-10)×〔-5〕×(-0.1)×(-6)=积为正数,而(-4)×(-7)×(-25)=积为负数(4)几个数相乘,有一个因数为0时,积为0. 例;3×(-2)*0=0除法也差不多,总之就一点 先乘除后加减附:一般情况下,有理数是这样分类的:   整数、分数;正数、负数和零;负有理数,正有理数。整数和分数统称有理数,有理数可以用a/b的形式表达,其中a、b都是整数,且互质。我们日常经常使用有理数的。比如多少钱,多少斤等。   凡是不能用a/b形式表达的实数就是无理数,又叫无限不循环小数。   在有理数中,不是无限不循环小数的小数就是分数。
2023-07-22 21:54:391

有理数的加减混合运算?

uff1d3/4*uff08-8+4/9-uff081+1/3uff09uff09uff1d3/4*uff08-8+4/9-1-3/9uff09uff1d3/4*uff08-9+1/9uff09uff1d-3*9/4+3/uff084*9uff09uff1d-27/4+1/12uff1d-81/12+1/12uff1d-80/12uff1d-40/6uff1d-20/3
2023-07-22 21:54:463

初中数学有理数的加减混合运算法则

很多同学都学过有理数计算,我整理了一些有理数加减运算相关信息,大家一起来看看吧。 有理数运算法则 加法运算 1、同号两数相加,取与加数相同的符号,并把绝对值相加。 2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 3、互为相反数的两数相加得0。 4、一个数同0相加仍得这个数。 5、互为相反数的两个数,可以先相加。 6、符号相同的数可以先相加。 7、分母相同的数可以先相加。 8、几个数相加能得整数的可以先相加。 减法运算 减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。 有理数运算习题 1、(+5)+(+3)=u2002 2、(+5)+(-3)=u2002 3、(+8)+(-5)=u2002 4、-14-(2-0.5)× ×[2-3]; 5、-1 ×[1-3×(-2 )]-2×(-2)3÷(-3 ) 以上就是一些有理数的加减混合运算的相关信息,供大家参考。
2023-07-22 21:55:531

有理数的加减混合运算怎么做?

-1:=10-8+12+7=21-2:=19-(3+4+11)=19-18=1-3 : =(12.3+2.3)-(7.2+15.2)=14.6-22.4=-7.8-4 : =-11-0.7+4.3=-7.4-5 : =1/3-(5/6-1/6)=1/3-2/3=-1/3
2023-07-22 21:56:031

初一有理数加减法混合运算是什么?

有理数加减乘除混合运算是先算乘除后算加减如果有括号的必须先算括号里面的,常见题型如下:(1)23+(-73)(2)(-84)+(-49)(3)7+(-2.04)(4)4.23+(-7.57)(5)(-7/3)+(-7/6)(6)9/4+(-3/2)(7)3.75+(2.25)+5/4(8)-3.75+(+5/4)+(-1.5)相关定义加法:把两个数合并成一个数的运算。减法:在已知两个加数的和与其中的一个加数,求另一个加数的运算。乘法:求两个数乘积的运算。(1)一个数乘整数,是求几个相同加数和的简便运算。(2)一个数乘小数,是求这个数的十分之几、百分之几、千分之几……是多少。(3)一个数乘分数,是求这个数的几分之几是多少。除法:已知两个因数的积与其中的一个因数,求另一个因数的运算。
2023-07-22 21:56:221

有理数的加法减法法则,和有理数的加减混合运算法则

有理数的加法法则同号两数相加,取相同的符号,并把绝对值相加。异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。一个数与0相加,仍得这个数。有理数的减法有理数的减法法则:减去一个数等于加上这个数的相反数,即a-b=a+(-b)。说明:(1)有理数的减法实质上是把减法运算转化为加法运算,在转化时要同时改变两个符号:一是运算符号由“-”变成“+”,另一个是减数的性质符号;(2)进行减法运算时,首先要弄清减数的符号(是“+”号还是“-”号)。、有理数的加减混合运算引入相反数后,有理数的减法运算可以转化为加法运算,因此有理数的加法混合运算可以统一为加法运算。即a+b-c=a+b+(-c)。例如(-8)-(-6)+(-7)-(+3)是有理数的加减混合运算,可以用有理数减法法则,把它写成(-8)+(+6)+(-7)+(-3),统一成只有加法的运算。
2023-07-22 21:56:431

求40道有理数加减混合运算题.看好了,是加减法!

(32)+56-68 1.125+[-17/5]-[-1/8]+[-0.6]= (-32)+68+(-29)+(-68)= 39+[-23]+0-[-16]= [-4/9]+[-3/5]-[+11/8]+[+5/9]+[-1/8]+[-0.4]= (-21)-251+21+(-151)= [-18]-58+[-52]+60= [-3]+[-2]+[-1]-89+1+2= (-8)-(-1)+85 45+(-30)-45-30=15 -1.5-(-11.5)+(-1.5)+11.5 -1/4-(-1/2) -1/4+1/2+5/2 15-[1-(20-4)]15-(1-16)-15-(-15)-15+15-40-28-(-19)+(-24)+(-40)-28+19-24 22.54+(-4.4)+(-12.54)+4.4=22.54-4.4-12.54+4.4 [-|98|+76+(-87)]+23[56+(-75)-(7)]-(8+4+3) -2/9-7/9-56 4.6-(-3/4+1.6-4-3/4) 1/2+3+5/6-7/12 [2/3-4-1/4-(-0.4)]/1/3+2 22+(-4)+(-2)+4+3 -2-8-8+1/2+8/1/8 (2/3+1/2)/(-1/12)+(-12) (-28)/(-6+4)+(-1) 2/(-2)+0/7-(-8)+(-2) (1/4-5/6+1/3+2/3)/1/2 18-6/(-3)-(-2) (5+3)-8+8/30/(-2)-3 (-84)/2-(-3)/(-6) 1/2-(-4/15)/2/3 -1-23.33-(+76.76); 1-2+2+2-2; (-6-24.3)-(-12+9.1)+(0-2.1); -1+8-7 -20+(-14)+(-2)+19 66+(-21)-(-21)+15 41-6+(-51) -9+2-3 1/7+5/6+(-1/7) 13+(-5)+(-6)+(+34) -5+6+9-7 1/8+(-1/4)+(-6) -17+8+9+(-14) 25+(-18)+(-17)+(-22) [-|98|+76+(-87)]-23[56+(-75)-(7)]-(8+4+3) 5+21+8/2-6-59 68/21-8-11-8+61 -2/9-7/9-56 4.6-(-3/4+1.6-4-3/4) 1/2+3+5/6-7/12 [2/3-4-1/4-(-0.4)]/1/3+2 22+(-4)+(-2)+4+3 -28-8-1/2+8/1/2 (2/3+1/2)/(-1/12)+(-12) (-28)/(-6+4)+(-1) 2/(-2)+0/7-(-8)-(-2) (1/4-5/6+1/3+2/3)/1/2 18-6/(-3)-(-2) (5+3/8+8/30/(-2)-3 (-84)/2-(-3)/(-6) 1/2+(-4/15)/2/3 -1-23.33-(+76.76); 1-2+2-2-2; (-6-24.3)-(-12+9.1)+(0-2.1); -1+8-7 -20+(-14)+(-2)+19 66+(-21)-(-21)+15 41-6+(-51) -9+2-3 1/7+5/6+(-1/7) 13+(-5)+(-6)+(+34) -5+6+9-7 1/8+(-1/4)+(-6) -17+8+9+(-14) 25+(-18)+(-17)+(-22) 注:/都是分数线 只要你满意,找多少资料都行 二〇〇九年九月二十七日星期日
2023-07-22 21:56:511

帮忙出70道有理数加减混合运算题,有急用,不带乘除

1.选择题: (1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( ) A.-2-3-5-4+3 B.-2+3+5-4+3 C.-2-3+5-4+3 D.-2-3-5+4+3 (2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( ) A.-10 B.-9 C.8 D.-23 (3)-7,-12,+2的代数和比它们的绝对值的和小( ) A.-38 B.-4 C.4 D.38 (4)若 +(b+3)2=0,则b-a- 的值是( ) A.-4 B.-2 C.-1 D.1 (5)下列说法正确的是( ) A.两个负数相减,等于绝对值相减 B.两个负数的差一定大于零 C.正数减去负数,实际是两个正数的代数和 D.负数减去正数,等于负数加上正数的绝对值 (6)算式-3-5不能读作( ) A.-3与5的差 B.-3与-5的和 C.-3与-5的差 D.-3减去5 2.填空题:(4′×4=16′) (1)-4+7-9=- - + ; (2)6-11+4+2=- + - + ; (3)(-5)+(+8)-(+2)-(-3)= + - + ; (4)5-(-3 )-(+7)-2 =5+ - - + - . 3.把下列各式写成省略括号的和的形式,并说出它们的两种读法:(8′×2=16′) (1)(-21)+(+16)-(-13)-(+7)+(-6); (2)-2 -(- )+(-0.5)+(+2)-(+ )-2. 4.计算题(6′×4=24′) (1)-1+2-3+4-5+6-7; (2)-50-28+(-24)-(-22); (3)-19.8-(-20.3)-(+20.2)-10.8; (4)0.25- +(-1 )-(+3 ). 5.当x=-3.7,y=-1.8,z=-1.5时,求下列代数式的值(5′×4=20′) (1)x+y-z; (2)-x-y+z; (3)-x+y+z; (4)x-y-z. 【素质优化训练】 (1) (-7)-(+5)+(+3)-(-9)=-7 5 3 9; (2)-(+2 )-(-1 )-(+3 )+(- ) =( 2 )+( 1 )+( 3 )+( ); (3)-14 5 (-3)=-12; (4)-12 (-7) (-5) (-6)=-16; (5)b-a-(+c)+(-d)= a b c d; 2.当x= ,y=- ,z=- 时,分别求出下列代数式的值; (1)x-(-y)+(-z); (2)x+(-y)-(+z); (3)-(-x)-y+z; (4)-x-(-y)+z. 3.就下列给的三组数,验证等式: a-(b-c+d)=a-b+c-d是否成立. (1)a=-2,b=-1,c=3,d=5; (2)a= ,b=- ,c=-1 ,d=1 . 4.计算题 (1)-1 ; (2)1- ; (3)(-6-24.3)-(-12+9.1)+(0-2.1); (4)-1 + - - - + 【生活实际运用】 某水利勘察队,第一天向上游走5 千米,第二天又向上游走5 ,第三天向下游走4 千米,第四天又向下游走4.5千米,这时勘察队在出发点的哪里?相距多少千米? 参考答案: 【同步达纲练习】 1.(1)C;(2)B;(3)D;(4)A;(5)C;(6)C 2.(1)4,(-7),(-9) (2)(-6),(-11),(-4),2; (3)-5,8,2,3; (4)3,7,2; 3.略4.(1)-4; (2)-80; (3)-30.5 (4)-5 5.(1)-4; (2)4; (3)0.4; (4)-0.4. 【素质优化训练】 1.(1)-,+,+; (2)-,+,-,-; (3)+,+; (4)-,+,+; (5)-,+,-,-. 2.(1) (2) (3) (4)- 3.(1) (2)都成立. 4.(1)- (2) (3)-29.5 (4)-1 第(4)题注意同号的数、互为相反数先分别结合. 【过关试题】 1、计算:(1)-5-9+3; (2)10-17+8; (3)-3-4+19-11; (4)-8+12-16-23. 2.计算: (1)-4.2+5.7-8.4+10; (2)6.1-3.7-4.9+1.8; 3.计算: (1)(-36)-(-25)-(+36)+(+72); (2)(-8)-(-3)+(+5)-(+9); (3) ; (4)-9+(-3 )+3 ; 4.计算: (1)12-(-18)+(-7)-15; (2)-40-28-(-19)+(-24)-(-32); (3)4.7-(-8.9)-7.5+(-6); 答案: 1、(1)-11;(2)1;(3)1;(4)-35 2、(1)3.1;(2)-0.7;(3) ;(4) 3、(1)25;(2)-9;(3) ;(4)-9 4、(1)8;(2)-41;(3)0.1
2023-07-22 21:56:571

有理数的加减乘除混合运算的顺序先算什么,再算什么

有理数混合运算的运算顺序是:1.先算乘方,再算乘除,最后算加减。2.同级运算,按照从左到右的顺序进行。3.如果有括号,要先算括号里面的。
2023-07-22 21:57:071

有理数的加减混合运算步骤

应该是先乘除后加减。有括号先去刮号。
2023-07-22 21:57:177

有理数加减乘除乘方混合运算题5道

七年级的么
2023-07-22 21:57:393

有理数的加减法混合运算题目及答案

有理数的加减法练习一、判断题(每小题1分,共4分) 1.一个数的相反数一定比原数小。 ( 2.如果两个有理数不相等,那么这两个有理数的绝对值也不相等。( ) 3.|-2.7|>|-2.6| ( ) 4.若a+b=0,则a,b互为相反数。 ( )二.选择题(每小题1分,共6分) 1.相反数是它本身的数是( ) A. 1 B. -1 C. 0 D.不存在 2.下列语句中,正确的是( ) A.不存在最小的自然数 B.不存在最小的正有理数 C.存在最大的正有理数 D.存在最小的负有理数 3.两个数的和是正数,那么这两个数( ) A.都是正数 B.一正一负 C.都是负数 D.至少有一个是正数 4、在数轴上表示的数8与-2这两个点之间的距离是 ( )A、6 B、10 C、-10 D-65、一个有理数的绝对值等于其本身,这个数是 ( )A、正数 B、非负数 C、零 D、负数三、填空题(每空1分,共32分)1. 相反数是2的数是____________,绝对值等于2的数是_____________2. |-4|-|-2.5|+|-10|=__________;|-24|÷|-3|×|-2|=_________3. 最大的负整数是_____________;最小的正整数是____________4.绝对值小于5的整数有______个;绝对值小于6的负整数有_______个5.数轴三要素是__________,___________,___________6.若上升6米记作+6米,那么-8米表示 。7.在数轴上表示的两个数, 总比 的数大。8. 的相反数是4,0得相反数是 ,-(-4)的相反数是 。9.绝对值最小的数是 ,-3 的绝对值是 。10 数轴上与表示-2的点距离1个单位长度的点所表示的数 。在有理数中最大的负整数是 ,最小的正整数是 ,最小的非负整数是 ,最小的非负数是 。11.把下列各数填在相应的大括号里:+ ,-6,0.54,7,0,3.14,200%,3万,- ,3.4365,- ,-2.543。正整数集合{ …},负整数集合{ …},分数集合{ …},自然数集合{ …},负数集合{ … }, 正数集合{ … }。四、计算题⑴(+3.41)-(-0.59) (-0.6)+1.7+(+0.6 )+(-1.7 )+(-9 )
2023-07-22 21:57:461

如何把有理数加减混合运算写成省略加号的和的形式

因为减法可转化为加法:减去一个数等于加上该数的相反数;所以加减混合运算可统一成加法运算,当然可以省略括号和加号而写成和的形式,形式上也显得更为简洁。如:1-(-2)+3=1+(+2)+3=1+2+3.
2023-07-22 21:57:572

有理数的混合运算方法

有理数的加减乘除混合运算,如无括号指出先做什么运算,按照“先乘除,后加减”的顺序进行,如果是同级运算,则按照从左到右的顺序依次计算。整数,是序列{...,-3,-2,-1,0,1,2,3,...}中所有的数的统称,包括负整数、零(0)与正整数。和自然数一样,整数也是一个可数的无限集合。这个集合在数学上通常表示为粗体Z或,源于德语单词Zahlen(意为“数”)的首字母。在代数数论中,这些属于有理数的一般整数会被称为有理整数,用以和高斯整数等的概念加以区分。全体整数关于加法和乘法形成一个环。环论中的整环、无零因子环和唯一分解域可以看作是整数的抽象化模型。Z是一个加法循环群,因为任何整数都是若干个1或 -1的和。1和 -1是Z仅有的两个生成元。每个元素个数为无穷个的循环群都与(Z,+)同构。扩展资料:有理数简介:有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。参考资料百度百科-有理数
2023-07-22 21:58:321

有理数加减混合运算习题50道 难一点的也别太难3个数或4个数

-38)+52+118+(-62)= (-32)+68+(-29)+(-68)= (-21)+251+21+(-151)= 12+35+(-23)+0= (-6)+8+(-4)+12 = 27+(-26)+33+(-27) 12+35+(-23)+0= 39+[-23]+0+[-16]= [-18]+29+[-52]+60= [-3]+[-2]+[-1]+0+1+2= [-301]+125+301+[-75]= [-1]+[-1/2]+[+3/4]+[-1/4]= [-7/2]+[+5/6]+[-0.5]+4/5+19/6= [-26.54]+[-6.14]+18.54+6.14= 1.125+[-17/5]+[-1/8]+[-0.6]= 1-4/9 = 1-7/10=8/15-5= 7-15=2/8-5/8=8/27-5 =4-27 = 11/12-10/12= 16/21-1/7 =4/ 2-(3+3 )= 1/3- 7/12-7/18=1 -1/3-1 1/5 =10-7/10= 5/24+3/8 = 4.5-3/5 1-3/5=2/5 4.39*1/13*2/3 1+(-2)+(-3)+4+5+(-6)+(-7)+8+9+(-10)+(-11)+12 -15.8+13又6分之5+15又5分之4 (-7分之1)+(-7分之2)+1又7分之3 -0.5-(-3 )+2.75-(+7 )39+[-23]+0+[-16]= [-18]+29+[-52]+60= [-3]+[-2]+[-1]+0+1+2= [-301]+125+301+[-75]= [-1]+[-1/2]+[+3/4]+[-1/4]= [-7/2]+[+5/6]+[-0.5]+4/5+19/6= [-26.54]+[-6.14]+18.54+6.14= 1.125+[-17/5]+[-1/8]+[-0.6]= 0.75+[-11/4]+0.125+12又5/7+[-3/8]= [-4/9]+[-3/5]+[+11/8]+[+5/9]+[-1/8]+[-0.4]=
2023-07-22 21:58:481

有理数加减法的100道混合运算!!!

七年级数学有理数加减法同步练习题 1.某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是℃。 2.直接写出答案(1)(-2.8)+(+1.9)=  ,(2) =    , (3)       ,(4)           3. 已知两个数 和 ,这两个数的相反数的和是。 4. 将 中的减法改成加法并写成省略加号的代数和的形式应是。 5. 已知 是6的相反数, 比 的相反数小2,则 等于。 6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是  。 7. 小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 .–6 –4 –3 –2 1 0 124 5 6 二.选择: 8.下列交换加数的位置的变形中,正确的是(       ) A、    B、C、  D、9. 下列计算结果中等于3的是( ) A. B. C. D. 10. 下列说法正确的是( ) A. 两个数之差一定小于被减数 B. 减去一个负数,差一定大于被减数 C. 减去一个正数,差一定大于被减数D. 0减去任何数,差都是负数 11.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在 A. 在家 B. 在学校 C. 在书店 D. 不在上述地方 12、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( ) (A) 20(B) 119(C) 120(D) 319 13. 计算: ①- +(+ )       ②90-(-3)③-0.5-(-3 )+2.75-(+7 )④⑤⑥14. 某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O地出发到收工时所走路线(单位:千米)为:+10、-3、+4、+2、-8、+13、-2、+12、+8、+5(1)问收工时距O地多远?(2)若每千米耗油0.2升,从O地出发到收工时共耗油多少升?15、某商场老板对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是13万元、12万元、12.5万元、10万元,3、4月亏损分别是0.7万元和0.8万元。试用正、负数表示各月的利润,并算出该商场上半年的总利润额。答案: 1:-1 2:-0.9, 4,12.19, 5 3:17/6 4:6-3+7-2 5:-10 6:15 7:-10 8:D 9:B 10:B 11:B 12:C 13:-1.3; 93;-2; -10; -34;-1 14:解:10-3+4+2-8+13-2+12+8+5=41 把各数的绝对值相加=10+3+4+2+8+13+2+12+8+5=67 67×0.2=13.4(升) 15: +13,+12,-0.7,-0.8,+12.5,+10 +13+12-0.7-0.8+12.5+10=46(万元)
2023-07-22 21:59:061

有理数加减混合运算的法则

有理数加法法则有理数加法运算总是涉及两个方面:一方面是确定结果的符号,另一方面是求结果的绝对值。法则:(一)同号两数相加,取相同的符号,并把绝对值相加。(二)异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值。(三)一个数同0相加,仍得这个数。有理数减法法则法则:减去一个数,等于加上这个数的相反数。注:在运用减法法则时,注意两个符号的变化,一是运算符号,减号变成加号,二是性质符号,减数变成它的相反数。有理数的加减混合运算加减混合运算可以通过减法法则,将减法化加法,统一为加法运算。步骤:①减法化加法②省略加号和括号③运用加法法则,加法运算律进行简便运算。
2023-07-22 21:59:151

有理数的加减法如何推导?

dfdghf
2023-07-22 21:59:263

有理数的加减混合运算技巧

技巧一:相反数结合法互为相反数的两个数和为0,我们在计算时,可以将互为相反数的两个数先结合进行计算。技巧二:同号结合法在有理数的加减混合运算中,比小学多引入了负数的加减运算,有些同学在计算时会将减号与负号混淆,不知道如何计算,因此我们在计算时可以将同号相结合,最后再按照有理数的加减法则进行计算。技巧三:同分母结合法在计算时,我们可以将同分母的先进行计算,异分母需要通分,有时计算上会比较繁琐。技巧四:凑整法在进行计算时,我们经常会遇到小数、分数、百分数等相加减,我们除了要熟练掌握三者之间的关系外,在计算时,也可以利用凑整法将题目简便化。
2023-07-22 21:59:381

有理数的加减混合运算方法有哪些

有理数的加减混合运算方法:例:式子-5+8-7+6-12+23解题方法一:按顺序从左加到右。=3-7+6-12+23=-4+6-12+23=2-12+23=-10+23=13解题方法二:先把整数全部相加,留下负数全部相加。然后相减。=(8+6+23)-(5+7+12)=37-24=13
2023-07-22 21:59:591

有理数的加减混合运算概念

技巧一:相反数结合法互为相反数的两个数和为0,我们在计算时,可以将互为相反数的两个数先结合进行计算。例题1:(-3)+4-(-3)+1+(-4)分析:先将该计算式化简,可得:(-3)+4+3+1+(-4),可以发现,题目中的-3与3、-4与4互为相反数,可以将这两组互为相反数的两数相加,和为0.解:原式=-3+4+3+1-4=(-3+3)+(4-4)+1=1技巧二:同号结合法在有理数的加减混合运算中,比小学多引入了负数的加减运算,有些同学在计算时会将减号与负号混淆,不知道如何计算,因此我们在计算时可以将同号相结合,最后再按照有理数的加减法则进行计算。例题2:(+8)-(-10)+(-3)+(-9)+2分析:先将该计算式进行化简,可得:8+10+(-3)+(-9)+2,那么在计算时,我们可以将所有的正数先相加,所有的负数放在一起先相加,然后再按照法则计算。解:原式=8+10-3-9+2=(8+10+2)-(3+9)=20-12=8技巧三:同分母结合法在计算时,我们可以将同分母的先进行计算,异分母需要通分,有时计算上会比较繁琐。分析:分母有4和7,我们可以将分母为4的两个分数相加得到-7,再将分母为7的两个分母相加得到3,然后再按照法则进行计算即可。
2023-07-22 22:00:092

有理数的加减混合运算

有理数的加减混合运算算法规则如下:1、同号两数相加,取与加数相同的符号,并把绝对值相加。2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。3、互为相反数的两数相加得0。4、一个数同0相加仍得这个数。5、互为相反数的两个数,可以先相加。6、符号相同的数可以先相加。7、分母相同的数可以先相加。8、几个数相加能得整数的可以先相加9、减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。运算律:一、加法运算律:1、加法交换律:两个数相加,交换加数的位置,和不变,即 。2、加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即 。二、乘法运算律:1、乘法交换律:两个数相乘,交换因数的位置,积不变,即 。2、乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即 。
2023-07-22 22:00:442

有理数的加减混合运算步骤

1.加法
2023-07-22 22:01:126

怎样进行有理数的加减混合运算

可以交换可以结合,怎样简便怎样来
2023-07-22 22:01:291

有理数加减混合运算的方法和步骤

有理数加减混合运算步骤1.将减法统一成(加法)。2.写成省略加号的(和)的形式。3.结合(运算律)进行计算。注意的问题4.进行减法运算时,首先弄清减法的(意义)。5.将有理数减法转化为加法时,要同时改变两个符号:一是运算符号减号变为加号,二是性质符号即减数变为它的( 相反数   )。6.加减混合运算应结合运算律和(  运算顺序  )进行运算。
2023-07-22 22:01:391

有理数加减混合运算技巧及方法

有理数加减混合运算的方法和步骤:(1)运用减法法则将有理数混合运算中的减法转化为加法。(2)运用加法法则,加法交换律,加法结合律简便运算。 有理数乘法法则(1)两数相乘,同号为正,异号为负,并把绝对值相乘。例;(-5)×(-3)=15 (-6)×4=-24 (2)任何数字同0相乘,都得0. 例;0×1=0 (3)几个不等于0的数字相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负;当负因数有偶数个数时,积为正。并把其绝对值相乘。例;(-10)×〔-5〕×(-0.1)×(-6)=积为正数,而(-4)×(-7)×(-25)=积为负数(4)几个数相乘,有一个因数为0时,积为0. 例;3×(-2)*0=0除法也差不多,总之就一点 先乘除后加减附:一般情况下,有理数是这样分类的: 整数、分数;正数、负数和零;负有理数,正有理数。整数和分数统称有理数,有理数可以用a/b的形式表达,其中a、b都是整数,且互质。我们日常经常使用有理数的。比如多少钱,多少斤等。 凡是不能用a/b形式表达的实数就是无理数,又叫无限不循环小数。 在有理数中,不是无限不循环小数的小数就是分数。
2023-07-22 22:01:501

有理数的加减乘除混合运算?

在没有括号的算式里,如果只有加减法或者只有乘除法,要从左往右依次计算。在没有括号的算式里,如果既有乘除法又有加减法,要先算乘除法,再算加减法。
2023-07-22 22:01:594

有理数的加减混合运算技巧

有理数混合运算时,先算乘方再算乘除,最后算加减,如果有括号,先算括号里面的。加减是同级运算,乘除是同级运算,同级运算是依照从左至右的运算顺序。有理数和无理数的三点不同:一、两者的含义不同:1、有理数的含义:数学中,有理数是一个整数a和一个正整数b的比,例如3/8,通常为a/b,0也是有理数;2、无理数的含义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。二、两者的特征不同:1、有理数的特征:有理数的小数部分是有限或为无限循环的数;2、无理数的特征:无理数的小数部分是无限不循环的数。三、两者的实质不同:1、有理数的实质:有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零;由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数;2、无理数的实质:无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
2023-07-22 22:02:091

有理数的加减法怎么做?

#表示比另一个数的绝对值大正+正=正正#+负=正正+负#=负负+负=负正#-正=正正-正#=负正-负=正负-正=负负#-负=负负-负#=正有理数加减混合运算的方法有理数的加减混合运算中,可根据题目特点,简化过程,提高解题速度.1.正负数分别结合相加2.相加得零的数结合相加3.非整数相加,相加得整数的数结合相加=-7+10=3.4.分数相加,同分母或分母有倍分关系的分数结合相加5.带分数相加,将带分数拆开相加6.分数与小数相加,灵活考虑将小数化成分数或将分数化成小数后再相加
2023-07-22 22:02:183

有理数的加减混合运算

=1/2+1/4-1/6=6/12+3/12-2/12=(6+3-2)/12=7/12=1/3-5/6+1/2-2/3=2/6-5/6+3/6-4/6=(2-5+3-4)/6=-4/6=-2/3
2023-07-22 22:02:271

60道有理数的加减混合运算过程、答案

题呢?
2023-07-22 22:02:512

数学 有理数的加减混合运算!100分求速度!!

1
2023-07-22 22:02:594

有理数的加减乘除混合运算

有理数加减乘除混合运算是先算乘除后算加减如果有括号的必须先算括号里面的,常见题型如下:(1)23+(-73)(2)(-84)+(-49)(3)7+(-2.04)(4)4.23+(-7.57)(5)(-7/3)+(-7/6)(6)9/4+(-3/2)(7)3.75+(2.25)+5/4(8)-3.75+(+5/4)+(-1.5)相关定义加法:把两个数合并成一个数的运算。减法:在已知两个加数的和与其中的一个加数,求另一个加数的运算。乘法:求两个数乘积的运算。1、一个数乘整数,是求几个相同加数和的简便运算。2、一个数乘小数,是求这个数的十分之几、百分之几、千分之几是多少。3、一个数乘分数,是求这个数的几分之几是多少。除法:已知两个因数的积与其中的一个因数,求另一个因数的运算。
2023-07-22 22:03:171

20道有理数的加减法混合运算题带答案

得到题目: (1) (-9)-(-13)+(-20)+(-2) (2) 3+13-(-7)/6 (3) (-2)-8-14-13 (4) (-7)*(-1)/7+8 (5) (-11)*4-(-18)/18 (6) 4+(-11)-1/(-3) (7) (-17)-6-16/(-18) (8) 5/7+(-1)-(-8) (9) (-1)*(-1)+15+1 (10) 3-(-5)*3/(-15) (11) 6*(-14)-(-14)+(-13) (12) (-15)*(-13)-(-17)-(-4) (13) (-20)/13/(-7)+11 (14) 8+(-1)/7+(-4) (15) (-13)-(-9)*16*(-12) (16) (-1)+4*19+(-2) (17) (-17)*(-9)-20+(-6) (18) (-5)/12-(-16)*(-15) (19) (-3)-13*(-5)*13 (20) 5+(-7)+17-10 (21) (-10)-(-16)-13*(-16) (22) (-14)+4-19-12 (23) 5*13/14/(-10) (24) 3*1*17/(-10) (25) 6+(-12)+15-(-15) (26) 15/9/13+(-7) (27) 2/(-10)*1-(-8) (28) 11/(-19)+(-14)-5 (29) 19-16+18/(-11) (30) (-1)/19+(-5)+1 (31) (-5)+19/10*(-5) (32) 11/(-17)*(-13)*12 (33) (-8)+(-10)/8*17 (34) 7-(-12)/(-1)+(-12) (35) 12+12-19+20 (36) (-13)*(-11)*20+(-4) (37) 17/(-2)-2*(-19) (38) 1-12*(-16)+(-9) (39) 13*(-14)-15/20 (40) (-15)*(-13)-6/(-9) (41) 15*(-1)/12+7 (42) (-13)+(-16)+(-14)-(-6) (43) 14*12*(-20)*(-13) (44) 17-9-20+(-10) (45) 12/(-14)+(-14)+(-2) (46) (-15)-12/(-17)-(-3) (47) 6-3/9/(-8) (48) (-20)*(-15)*10*(-4) (49) 7/(-2)*(-3)/(-14) (50) 13/2*18*(-7) (51) 13*5+6+3 (52) (-15)/5/3+(-20) (53) 19*4+17-4 (54) (-11)-(-6)*(-4)*(-9) (55) (-16)+16-(-8)*(-13) (56) 16/(-1)/(-10)/(-20) (57) (-1)-(-9)-9/(-19) (58) 13*20*(-13)*4 (59) 11*(-6)-3+18 (60) (-20)+(-12)+(-1)+(-12) (61) (-19)-3*(-13)*4 (62) (-13)/3-5*8 (63) (-15)/1+17*(-18) (64) (-13)/3/19/8 (65) (-3)/(-13)/20*5 (66) 3/12/(-18)-18 (67) 5*(-19)/13+(-6) (68) 4+4*(-19)-11 (69) (-2)+17-5+(-1) (70) 9+(-3)*19*(-19) (71) (-12)-(-6)+17/2 (72) 15*(-5)-(-3)/5 (73) (-10)*2/(-1)/4 (74) (-8)*16/(-6)+4 (75) 2-11+12+10 (76) (-3)+(-20)*(-7)*(-9) (77) (-15)+8-17/7 (78) (-14)*10+18*2 (79) (-7)+2-(-17)*19 (80) (-7)/18/1+1 (81) 11/(-9)-(-16)/17 (82) 15+5*6-(-8) (83) (-13)*(-18)+18/(-6) (84) 11-(-1)/11*(-6) (85) (-4)+(-12)+19/6 (86) (-18)/(-1)/(-19)+2 (87) 9*(-8)*(-6)/11 (88) 20*(-3)*(-5)+1 (89) (-18)-2+(-11)/20 (90) 15*1+4*17 (91) 1-10+(-14)/(-1) (92) 10+(-4)*(-19)+(-12) (93) 15/14/5*7 (94) 8+(-13)/3+1 (95) (-14)+6+(-2)*(-14) (96) (-5)/(-13)/4+7 (97) (-15)/(-2)/(-12)+(-2) (98) (-17)-(-20)-20*(-10) (99) (-7)-10-13/3 (100) (-20)+(-18)+11+9 答案: 1 -18 2 103/6 3 -37 4 9 5 -43 6 -(20/3) 7 -(199/9) 8 54/7 9 17 10 2 11 -83 12 216 13 1021/91 14 27/7 15 -1741 16 73 17 127 18 -(2885/12) 19 842 20 5 21 214 22 -41 23 -(13/28) 24 -(51/10) 25 24 26 -(268/39) 27 39/5 28 -(372/19) 29 15/11 30 -(77/19) 31 -(29/2) 32 1716/17 33 -(117/4) 34 -17 35 25 36 2856 37 59/2 38 184 39 -(731/4) 40 587/3 41 23/4 42 -37 43 43680 44 -22 45 -(118/7) 46 -(192/17) 47 145/24 48 -12000 49 -(3/4) 50 -819 51 74 52 -21 53 89 54 205 55 -104 56 -(2/25) 57 161/19 58 -13520 59 -51 60 -45 61 137 62 -(133/3) 63 -321 64 -(13/456) 65 3/52 66 -(1297/72) 67 -(173/13) 68 -83 69 9 70 1092 71 5/2 72 -(372/5) 73 5 74 76/3 75 13 76 -1263 77 -(66/7) 78 -104 79 318 80 11/18 81 -(43/153) 82 53 83 231 84 115/11 85 -(77/6) 86 20/19 87 432/11 88 301 89 -(411/20) 90 83 91 5 92 74 93 3/2 94 14/3 95 20 96 369/52 97 -(21/8) 98 203 99 -(64/3) 100 -18
2023-07-22 22:03:271

求200道有理数的加减乘除计算题不要乘方,快快要答案过程!!重赏!!

20-20*20/20+20 100*856-87*2
2023-07-22 22:03:352

数学的有理数的加减混合运算

1.(—0.9)+1.3—(+0.6)—(—3.5)+(+1.5) =-0.9+1.3-0.6+3.5+1.5 =6.3+(-1.5) =4.82.—4又7/8—(+4又1/2)—(—5又1/2)+(—3又1/8) =-39/8-9/2+11/2-25/8 =-8+1 =-7
2023-07-22 22:03:423

有理数加减计算题!

有理数的混合运算 一些中考题http://wenku.baidu.com/view/6f632bebe45c3b3567ec8bab
2023-07-22 22:03:575

有没有有理数加减混合运算的口诀

有理数加减混合运算步骤1.将减法统一成(加法).2.写成省略加号的(和)的形式.3.结合(运算律)进行计算.注意的问题4.进行减法运算时,首先弄清减法的(意义).5.将有理数减法转化为加法时,要同时改变两个符号:一是运算符号减号变为加号,二是性质符号即减数变为它的(相反数).6.加减混合运算应结合运算律和(运算顺序)进行运算.
2023-07-22 22:04:161

数学有理数混合运算的法则是什么?

(1)有理数的加法法则: 1. 同号两数相加,和取相同的符号,并把绝对值相加; 2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; 3. 一个数与零相加仍得这个数; 4. 两个互为相反数相加和为零。 ⑵有理数的减法法则: 减去一个数等于加上这个数的相反数。 补充:去括号与添括号: 去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。 添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。 ⑶有理数的乘法法则: ① 两数相乘,同号得正,异号得负,并把绝对值相乘; ② 任何数与零相乘都得零; ③ 几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正; ④ 几个有理数相乘,若其中有一个为零,积就为零。 ⑷有理数的除法法则: 法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除; 法则二:除以一个数等于乘以这个数的倒数。 ⑸有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。 ⑹有理数的运算顺序:有理数的混合运算法则即先算乘方或开方, 再算乘法或除法,后算加法或减法。有括号时、先算小括号里面的运算,再算中括号,然后算大括号。[5*(4-5+5)]÷5 =(5*4)÷5 =4⑺运算律: ①加法的交换律:a+b=b+a; ②加法的结合律:(a+b)+c=a+(b+c); ③乘法的交换律:ab=ba; ④乘法的结合律:(ab)c=a(bc); ⑤乘法对加法的分配律:a(b+c)=ab+ac; 注:除法没有分配律。
2023-07-22 22:04:261

帮忙出70道有理数加减混合运算题

1.选择题: (1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( ) A.-2-3-5-4+3 B.-2+3+5-4+3 C.-2-3+5-4+3 D.-2-3-5+4+3 (2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( ) A.-10 B.-9 C.8 D.-23 (3)-7,-12,+2的代数和比它们的绝对值的和小( ) A.-38 B.-4 C.4 D.38 (4)若 +(b+3)2=0,则b-a- 的值是( ) A.-4 B.-2 C.-1 D.1 (5)下列说法正确的是( ) A.两个负数相减,等于绝对值相减 B.两个负数的差一定大于零 C.正数减去负数,实际是两个正数的代数和 D.负数减去正数,等于负数加上正数的绝对值 (6)算式-3-5不能读作( ) A.-3与5的差 B.-3与-5的和 C.-3与-5的差 D.-3减去5 2.填空题:(4′×4=16′) (1)-4+7-9=- - + ; (2)6-11+4+2=- + - + ; (3)(-5)+(+8)-(+2)-(-3)= + - + ; (4)5-(-3 )-(+7)-2 =5+ - - + - . 3.把下列各式写成省略括号的和的形式,并说出它们的两种读法:(8′×2=16′) (1)(-21)+(+16)-(-13)-(+7)+(-6); (2)-2 -(- )+(-0.5)+(+2)-(+ )-2. 4.计算题(6′×4=24′) (1)-1+2-3+4-5+6-7; (2)-50-28+(-24)-(-22); (3)-19.8-(-20.3)-(+20.2)-10.8; (4)0.25- +(-1 )-(+3 ). 5.当x=-3.7,y=-1.8,z=-1.5时,求下列代数式的值(5′×4=20′) (1)x+y-z; (2)-x-y+z; (3)-x+y+z; (4)x-y-z. 【素质优化训练】 (1) (-7)-(+5)+(+3)-(-9)=-7 5 3 9; (2)-(+2 )-(-1 )-(+3 )+(- ) =( 2 )+( 1 )+( 3 )+( ); (3)-14 5 (-3)=-12; (4)-12 (-7) (-5) (-6)=-16; (5)b-a-(+c)+(-d)= a b c d; 2.当x= ,y=- ,z=- 时,分别求出下列代数式的值; (1)x-(-y)+(-z); (2)x+(-y)-(+z); (3)-(-x)-y+z; (4)-x-(-y)+z. 3.就下列给的三组数,验证等式: a-(b-c+d)=a-b+c-d是否成立. (1)a=-2,b=-1,c=3,d=5; (2)a= ,b=- ,c=-1 ,d=1 . 4.计算题 (1)-1 ; (2)1- ; (3)(-6-24.3)-(-12+9.1)+(0-2.1); (4)-1 + - - - + 【生活实际运用】 某水利勘察队,第一天向上游走5 千米,第二天又向上游走5 ,第三天向下游走4 千米,第四天又向下游走4.5千米,这时勘察队在出发点的哪里?相距多少千米? 参考答案: 【同步达纲练习】 1.(1)C;(2)B;(3)D;(4)A;(5)C;(6)C 2.(1)4,(-7),(-9) (2)(-6),(-11),(-4),2; (3)-5,8,2,3; (4)3,7,2; 3.略4.(1)-4; (2)-80; (3)-30.5 (4)-5 5.(1)-4; (2)4; (3)0.4; (4)-0.4. 【素质优化训练】 1.(1)-,+,+; (2)-,+,-,-; (3)+,+; (4)-,+,+; (5)-,+,-,-. 2.(1) (2) (3) (4)- 3.(1) (2)都成立. 4.(1)- (2) (3)-29.5 (4)-1 第(4)题注意同号的数、互为相反数先分别结合。 【过关试题】 1、计算:(1)-5-9+3; (2)10-17+8; (3)-3-4+19-11; (4)-8+12-16-23. 2.计算: (1)-4.2+5.7-8.4+10; (2)6.1-3.7-4.9+1.8; 3.计算: (1)(-36)-(-25)-(+36)+(+72); (2)(-8)-(-3)+(+5)-(+9); (3) ; (4)-9+(-3 )+3 ; 4.计算: (1)12-(-18)+(-7)-15; (2)-40-28-(-19)+(-24)-(-32); (3)4.7-(-8.9)-7.5+(-6); 答案: 1、(1)-11;(2)1;(3)1;(4)-35 2、(1)3.1;(2)-0.7;(3) ;(4) 3、(1)25;(2)-9;(3) ;(4)-9 4、(1)8;(2)-41;(3)0.1
2023-07-22 22:04:571