因式分解

a的平方加上4怎么进行因式分解啊

【路过。。。】
meira2023-07-12 08:48:372

在实数范围内因式分解结果是唯一的,但下面这题有两个结果,如何解释?

根据你的线索,作了两次短除法,将这个五次多项式写成两个二次三项式与一个一次因式的积。未完待续继续分解二次三项式供参考,请笑纳。
meira2023-07-12 08:48:361

在实数范围内因式分解,要具体过程,谢谢

1)x^2+3√2x-2=(x+3√2/2)^2-13/2=(x+3√2/2)^2-(√26/2)^2=[(x+3√2/2)+√26/2][(x+3√2/2)-√26/2]=[x+√2(3+√13)/2][x+√2(3-√13)/2]2)2x^2-4xy-3y^2=2x^2-4xy+2y^2]-5y^2=[√2(x-y)]^2-(√5y)^2=[√2(x-y)+√5y][√2(x-y)-√5y]=[√2x+(√5-√2)y][√2x-(√5+√2)y]
真颛2023-07-12 08:48:345

在实数范围内因式分解 x^2-6

X平方-6可用平方差公式分解,把6看成根号6的平方,因为题目说实数范围,不一定是整数也可能是带根号的无理数 x平方-根号6的平方=(X+根号6)×(X-根号6) 我是用手机发的,只能写成这样不好意思希望你能看得懂 附:平方差公式:a平方-b平方=(a+b)×(a-b)
Ntou1232023-07-12 08:48:221

在实数范围内因式分解:X的平方减5等于?

X的平方减5等于(X+根号5)乘以(X-根号5)
善士六合2023-07-12 08:48:181

将x^n+1在复数域和实数域上因式分解 具体解答

实数范围:当n为4的倍数时,可分解,当n是2的倍数不是4的倍数时,不能分解,n为奇数时可分解n为奇数时 x^n+1=(x+1)[x^(n-1)-x^(n-2)+x^(n-3)+……-x+1]n为4的倍数时设n=4mx^n+1=x^4m+1=(x^2m+1)^2-2x^2m=(x^2m+1-√2x^m)(x^2m+1+√2x^m)=(x^2m-√2x^m+1)(x^2m+√2x^m+1)在复数范围内,当n为奇数时x^n+1=(x+1)(x-x1)(x-x2)……[x-x(n-1)]其中x1=cos(π/n)+isin(π/n)x2=cos(3π/n)+isin(3π/n)……x(n-1)=cos{[2(n-1)-1]π/n}+isin{[2(n-1)-1]π/n}=cos[(2n-3)π/n]+isin[(2n-3)π/n]在复数范围内,当n为偶数时x^n+1=(x-x1)(x-x2)……(x-xn)其中x1=cos(π/n)+isin(π/n)x2=cos(3π/n)+isin(3π/n)……xn=cos[(2n-1)π/n]+isin[(2n-1)π/n]
余辉2023-07-12 08:48:181

x^n+1在实数域和复数域上如何因式分解

实数范围:当n为4的倍数时,可分解,当n是2的倍数不是4的倍数时,不能分解,n为奇数时可分解 n为奇数时 x^n+1 =(x+1)[x^(n-1)-x^(n-2)+x^(n-3)+……-x+1] n为4的倍数时设n=4m x^n+1=x^4m+1=(x^2m+1)^2-2x^2m=(x^2m+1-√2x^m)(x^2m+1+√2x^m) =(x^2m-√2x^m+1)(x^2m+√2x^m+1) 在复数范围内,当n为奇数时 x^n+1 =(x+1)(x-x1)(x-x2)……[x-x(n-1)] 其中 x1=cos(π/n)+isin(π/n) x2=cos(3π/n)+isin(3π/n) …… x(n-1)=cos{[2(n-1)-1]π/n}+isin{[2(n-1)-1]π/n} =cos[(2n-3)π/n]+isin[(2n-3)π/n] 在复数范围内,当n为偶数时 x^n+1 =(x-x1)(x-x2)……(x-xn) 其中 x1=cos(π/n)+isin(π/n) x2=cos(3π/n)+isin(3π/n) …… xn=cos[(2n-1)π/n]+isin[(2n-1)π/n]
大鱼炖火锅2023-07-12 08:48:171

什么叫在实数范围内因式分解

就是不涉及复数
拌三丝2023-07-12 08:48:144

实数范围内因式分解是什么意思

在实数范围内,把多项式化成乘积的形式
瑞瑞爱吃桃2023-07-12 08:48:145

x的n次方-1因式分解是什么?

当n为偶数的时候,在实数范围内不能分解,当n为奇数的时候,实数范围内分解为:x^n+1=(x+1)[x^(n-1)-x^(n-2)-........+1]把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。一个数的零次方任何非零数的0次方都等于1,原因如下:通常代表3次方。5的3次方是125,即5×5×5=125。5的2次方是25,即5×5=25。5的1次方是5,即5×1=5。由此可见,n≧0时,将5的(n+1)次方变为5的n次方需除以一个5,所以可定义5的0次方为:5 ÷ 5 = 1。
北有云溪2023-07-12 08:48:051

多项式在实数范围进行因式分解可得_________.

首先提公因式,然后利用平方差公式分解即可.解:.故答案是:.本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.
可桃可挑2023-07-12 08:48:051

如果二次三项ax平方+3x+4在实数范围内不能因式分解,求a的取值范围

假设ax^2+3x+4在实数范围内可以分解,则设因式分解后形式为:a(x-p)(x-q)设a(x-p)(x-q)=0,则根据韦达定理可知,次方程△≥0,即ax^2+3x+4=0的△≥0所以,不能因式分解的情况为△<0∴3^2-4*a*4<0a<9/16
LuckySXyd2023-07-12 08:48:051

求多项式x^4-1在复数范围内和实数范围内的因式分解

如图
瑞瑞爱吃桃2023-07-12 08:48:041

在实数范围内因式分解

令xy=t, 2t^2+4t-3=0 △=。。。 算出t 然后因式分解得到(t+2+根号10|2)(t+2-根号10|2)
北境漫步2023-07-12 08:48:041

在实数范围内因式分解。

好像是 4*M的平方+8M-4=(2M)的平方+8M+4-8=(2M+2)的平方-8=(2M+2+2√2)(2M+2-2√2)
苏萦2023-07-12 08:48:034

X的四次方减去9怎么因式分解,要求是在实数范围内

bikbok2023-07-12 08:48:033

在实数范围内因式分解

(x+根号6)(x-根号6)
小菜G的建站之路2023-07-12 08:48:022

什么叫在实数范围内因式分解?

可以因式分解到无理数...与有理数下因式分解相对应如x^2-3在有理数范围内不能分解,而在实数范围内分解为:x^2-3=(x-√3)(x+√3)
无尘剑 2023-07-12 08:47:592

实属范围内因式分解要到什么程度

可以,但最好是前面一个,也就是里面尽量不含有分母
此后故乡只2023-07-12 08:47:592

在实数范围内因式分解

1)=(x-5/2)^2+3-25/4=(x-5/2)^2-[(√13)/2]^2=(x-5/2+√13 /2)*(x-5/2-√13 /2)其它的都是类似的方法,先配成完全平方,发现剩下的凑成一个负数。就可以用a^2-b^2的方法分解成(a+b)*(a-b)
韦斯特兰2023-07-12 08:47:591

在实数范围内分解因式是什么意思?和一般的因式分解有什么区别?我这样做对吗?

前两个是对的,最后一个没有因式分解到最后一步。这个在实数范围内是指你现在所学的有理数和无理数,对做题无影响。以后会接触到虚数,它和实数一起统称复数。
凡尘2023-07-12 08:47:592

实数范围内因式分解是什么意思

实数范围内因式分解就是把个多项式化为几个整式的积的形式。实数的范围是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一对应。 实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。所有实数的集合则可称为实数系(realnumbersystem)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
铁血嘟嘟2023-07-12 08:47:581

什么叫在实数范围内因式分解?

可以出现无理数,如根号3之类的
豆豆staR2023-07-12 08:47:585

什么是在实数范围内因式分解

分解最简的形式后就不用去分解了,不用考虑在虚数范围内的分解如有疑问,请追问;如已解决,请采纳
凡尘2023-07-12 08:47:584

在实数范围内因式分解怎么做?

提取公因式,这是最简单、最常用的2、十字相乘,非常好的解题方法,很多地方都用的上3、利用平方差、立方和、立方差等公式4、这些方法都用完了,对于二次三项式,判别式大于0的,可以利用求根法或配方法,令二次三项式=0,求出两根,利用平方差公式分解总之,方法很多,要活学活用,不可以生搬硬套,要在实践中不断总结,希望会对你有所帮助。
再也不做站长了2023-07-12 08:47:562

复杂多项式怎样因式分解?

1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为  即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解  所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).  上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:  它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.  这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是an的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为an的约数.  我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),  所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法  待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,  比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,  所以有由bd=7,先考虑b=1,d=7有     所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.  本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9
北有云溪2023-07-09 08:11:463

已知关于x的一元二次方程x^2+ax+c=0的两根为1和-2,则二次三项式x62+ax+c因式分解的结果是

(x-1)(x+2)
拌三丝2023-07-08 10:14:283

高等代数因式分解定理

高等代数因式分解定理介绍如下:一、复习巩固:1、整式乘法三种形式:(1)单项式乘以单项式;(2)单项式乘以多项式:a(m+n)= am+an 。(3)多项式乘以多项式:(a+b)(m+n)= am+an+bm+bn 。2、乘法公式:乘法公式(1)二、因式分解:把一个多项式化成几个最简整式的积的形式,叫做把这个多项式因式分解,因式分解也可称为分解因式。(注:最简整式是不能再化成几个整式的积的整式)三、因式分解的方法:1、提公因式:ma + mb + mc = m(a+b+c),公因式的系数是多项式各项系数的最大公约数;字母取多项式各项中都含有的相同的字母;相同字母的指数取各项中最小的一个,即最低次幂。2、公式法:a^2-b^2=(a+b)(a-b);(平方差公式)完全平方公式:完全平方公式(2)3、十字相乘法:x^2+ (p+q)x + pq =(x+p)(x+q)例题:x^2+ 14x +45= (x+5)(x+9)。四、因式分解步骤:1、先用提公因式法进行因式分解,在用公式法分解,然后察看能否继续分解。2、最后用整式乘法将分解结果展开,与原式比较,检验对错。五、因式分解注意事项:因式分解要彻底,即分解结果应为几个最简整式的乘积的形式!
gitcloud2023-07-03 10:59:121

八年级数学如何学好“因式分解?

一、复习巩固:1、整式乘法三种形式:(1)单项式乘以单项式;(2)单项式乘以多项式:a(m+n)= am+an 。(3)多项式乘以多项式:(a+b)(m+n)= am+an+bm+bn 。2、乘法公式:乘法公式(1)二、因式分解:把一个多项式化成几个最简整式的积的形式,叫做把这个多项式因式分解,因式分解也可称为分解因式。(注:最简整式是不能再化成几个整式的积的整式)三、因式分解的方法:1、提公因式:ma + mb + mc = m(a+b+c),公因式的系数是多项式各项系数的最大公约数;字母取多项式各项中都含有的相同的字母;相同字母的指数取各项中最小的一个,即最低次幂。2、公式法:a^2-b^2=(a+b)(a-b);(平方差公式)完全平方公式:完全平方公式(2)3、十字相乘法:x^2+ (p+q)x + pq =(x+p)(x+q)例题:x^2+ 14x +45= (x+5)(x+9)。四、因式分解步骤:1、先用提公因式法进行因式分解,在用公式法分解,然后察看能否继续分解。2、最后用整式乘法将分解结果展开,与原式比较,检验对错。五、因式分解注意事项:因式分解要彻底,即分解结果应为几个最简整式的乘积的形式!
左迁2023-07-03 10:59:081

高数 因式分解怎么学

多项式长除法。
真颛2023-07-03 10:59:003

已知abc是三角形abc的三边长,利用因式分解求

b^2-c^2=2ac-2ab (b+c)(b-c)=2a(c-b) (b-c)(b+c+2a)=0 a,b,c是三角形△ABC的三边长 a+b+2c>0 b-c=0 即b=c △ABC是等腰三角形
meira2023-07-01 13:05:111

实系数多项式因式分解定理中,为什么共轭复数,也是实系数多项式的根。

1:提问本身不客观,具体内容不全面,信息不准确2:回答指出了该缺点。3:请不要在严肃的问题上和我说情绪化的问题,因为是你在用非专业的态度来对待我的回答,到底谁在情绪化?以下仍然是我的回答,不会做修改。你这么说成立的前提是:这个多项式的根的讨论范围是在复数域上的.如果没有告诉你或默认讨论范围的话,这种说法是错的。比如我要在实数域上讨论实系数多项式的因式分解的话。那么就不可能有共轭复数的概念。共轭复数只能在复数域上能讨论。
bikbok2023-06-16 08:14:292

用因式分解计算:99.9的平方+19.98+百分之一

99.9” + 19.98 + 0.01= 99.9” + 19.98 + 0.1”= 99.9” + 2X9.99 + 0.1”= ( 99.9 + 0.1 )”= 100”= 10^4= 10000
九万里风9 2023-05-27 09:54:172

求把特征多项式因式分解的方法?

第一列加到第三列 然后第一行*(-1)加到第三行 这样第一列就只剩下 一个数字了你把它提出来 就是提代数余子式的办法 就 OK啦
苏州马小云2023-05-23 19:24:101

求矩阵特征值如何因式分解

|A-λE|= 2-λ 2 -2 2 5-λ -4 -2 -4 5-λ r3+r2 (消0的同时,还能提出公因子,这是最好的结果) 2-λ 2 -2 2 5-λ -4 0 1-λ 1-λ c2-c3 2-λ 4 -2 2 9-λ -4 0 0 1-λ = (1-λ)[(2-λ)(9-λ)-8] (按第3行展开,再用十字相乘法) = (1-λ)(λ^2-11λ+10) = (10-λ)(1-λ)^2. A的特征值为:λ1=10,λ2=λ3=1.
苏州马小云2023-05-23 19:24:091

矩阵因式分解顺序

怎么不能是 (A-2I)(A-I) 完全可以! 在求 B^(-1) 时,可以写成 (A-I)^(-1)*(A-2I)^(-1) ,也可以写成 (A-2I)^(-1)*(A-I)^(-1) , 结果都等于 (0,1/2 ;-1,-1).
再也不做站长了2023-05-22 22:49:351

矩阵代数(五)- 矩阵因式分解

矩阵 的因式分解是把 表示为两个或更多个矩阵的乘积。 当 时,方程 可写成 。把 写成 ,可以由解下面一对方程来求解 : 可以证明 应用 的 分解来解 ,其中 。 解:解 。 ~ 对 进行行化简的向后步骤。 ~ 故 。 分解的计算依赖于如何求 和 。 设 可以化为阶梯形 ,化简过程中仅用行倍加变换,即把一行的倍数加于它下面的另一行。这样,存在单位下三角初等矩阵 使 。于是 ,其中 。可以证明 是单位下三角矩阵。 注意将 化为阶梯形 过程中的行变换,它把 化为 。这写行变换也把 化为 ,这是因为 分解的算法: 求下列矩阵的 分解: 解:因 有4行,故 应为 矩阵。 的第一列应该是 的第一列除以它的第一行主元素: 比较 和 的第一列。把 的第一列的后三个元素变成零的行变换同时也将 的第一列的后三个元素变成0。 ~ ~ ~ 上式中标出的元素确定来将 化为 的行化简。在每个主元列,把标出的元素除以主元后将结果放入 : 。 容易证明,所求出的 和 满足 。
大鱼炖火锅2023-05-22 22:49:321

矩阵能否因式分解

呵呵又是我……(题外话)首先我告诉你你给的这个例子是可以因式分解的因为AI=IA嘛言归正传:如果你把它当成单纯的数而不是矩阵他可以因式分解的话若这两个矩阵可交换(即AB=BA)那么当其为矩阵时也可以因式分解举个例子:A^2-2AB-3B^2看似可以分为(A-3B)(A+B)但是如果AB不等于BA也是不能分的因为(A-3B)(A+B)=A^2+AB-3BA-3B^2你看看如果AB不等于BA它可以=A^2-2AB-3B^2吗?当然对于你给的例子AI当然=IA自然可以因式分解了
豆豆staR2023-05-22 22:49:321

因式分解是什么意思啊?

把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)。它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的。而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高学生综合分析和解决问题的能力。分解因式与整式乘法互逆。同时也是解一元二次方程中因式分解法的重要步骤。扩展资料各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫 做提取公因式分解因式。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。口诀:找准公因式,一次要提尽;全家都搬走,留1把家守;提负要变号,变形看奇偶。参考资料:因式分解的百度百科
左迁2023-05-20 17:38:002

因式分解法解一元二次方程口诀是什么

  想要了解一元二次方程用因式分解法怎么解的小伙伴,赶紧来瞧瞧吧!下面由我为你精心准备了“因式分解法解一元二次方程口诀是什么”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!   因式分解法解一元二次方程口诀是什么   一移,二分,三转化,四再求根容易得。步骤:将方程右边化为0;将方程左边分解为两个一次式的积;令这两个一次式分别为0,得到两个一元一次方程;解这两个一元一次方程,它们的解就是原方程的解。   拓展阅读:因式分解法的四种方法是什么   因式分解法的四种方法有提公因式法、分组分解法、待定系数法、十字分解法。   1、如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。   2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。   3、待定系数法是初中数学的一个重要方法。用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。   4、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。   分解因式要注意哪几点   因式分解是中学代数课程的一种重要的恒等变形,不仅在后面的分式通分、约分时有着直接的应用,而且在解方程以及将三角函数式变形时,也经常用到它,一开始学习因式分解,往往遇到一些困难,一是拿到题目不知道用什么方法去分解;二是不知道分解到哪一步才算是结束.要想学好因式分解,必须掌握和注意以下几点:一、了解选择因式分解方法的思路。首先,对任何一个多项式,都应当考虑提取公因式;然后,以多项式的项数为线索、考虑分解方法.如果多项式是二项、三项的采用公式法,或化为x2+(a+b)x+ab的形式,四项以上的采用分组分解法。二、熟悉常用的基本变形方法。因式分解,题型多样,方法多种,技巧性强.对于一些不能直接运用四种基本方法进行分解的多项式,就需要经过适当变形,创造条件进行分解。
Ntou1232023-05-20 17:38:001

13m^4-13m+m^2-1 因式分解

13m(m-1)(m^2+2m+2)
Ntou1232023-05-20 17:38:004

1+x^n因式分解是什么?

1-x^n=1^n-x^n=(1-x)[1+x+x^2+x^3+..+x^(n-1)]因式分解的作用因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力工具。因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。
凡尘2023-05-20 17:37:591

数学:因式分解的要求

多项式长除法。
凡尘2023-05-20 17:37:587

恒等变形 因式分解

 
Chen2023-05-20 17:37:581

因式分解各种方法

提公因式法公式法十字相乘法分组分解法
LuckySXyd2023-05-20 17:37:584

什么叫各式恒等式变形 是因式分解

如果将两个代数式里的字母换成任意的数值,这两个代数式的值都相等,我们就说这两个代数式恒等。 表示两个代数式恒等的等式叫恒等式。 例如,a+b=b+a, 3x+8x=11x, (2ax)(3ax2)=6a2x3, a2-b2=(a+b)(a-b), …… 这些都是恒等式。 把一个代数式变成另一个和它恒等的代数式叫做恒等变形
凡尘2023-05-20 17:37:571

因式分解的方法有哪些

问题一:什么叫因式分解?分解因式的方法有哪些? 定义: 把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。 方法:1.提公因式法。 2.公式法。 3.分组分解法。 4.凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)] 5.组合分解法。 6.十字相乘法。 7.双十字相乘法。 8.配方法。 9.拆项补项法。 10.换元法。 11.长除法。 12.求根法。 13.图象法。 14.主元法。 15.待定系数法。 16.特殊值法。 17.因式定理法。 希望帮到你 望采纳 谢谢 加油 问题二:因式分解有哪几种方法? 1.提公因式 2.应用公式 3.分组分解 4.拆项和添项 5.十字相乘(二元二抚也使用) 6.换元法 7.看未知为已知(a+b看为整体) 8.余数定理 9.待定系数法 10.轮换式和对称式 问题三:分解因式有哪些方法技巧? .初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等. ⑴提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的~. ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法. am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)] a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数) ⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形. ⑸十字相乘法 ①x^2+(p q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax b)(cx d) a -----/b ac=k bd=n c /-----d ad+bc=m ※ 多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止. (6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。...>> 问题四:因式分解有哪几种??计算方法是怎样的 分组分解法 分组分解是分解因式的一种简洁的方法,下面是这个方法的详细讲解。 能分组分解的多项式有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。 同样,这道题也可以这样做。 ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1. 5ax+5bx+3ay+3by 解法:原式=5x(a+b)+3y(a+b)=(5x+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。 2. x2-x-y2-y 解法:原式=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1) 利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。 三一分法,例:a2-b2-2bc-c2 原式=a2-(b+c)2 =(a-b-c)(a+b+c) 十字相乘法 十字相乘法在解题时是一个很好用的方法,也很简单。 这种方法有两种情况。 ①x2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q) . 例1:x2-2x-8 =(x-4)(x+2) ②kx2+mx+n型的式子的因式分解 如果有k=ab,n=cd,且有ad+bc=m时,那么kx2+mx+n=(ax+c)(bx+d). 例2:分解7x2-19x-6 图示如下:a=7 b=1 c=2 d=-3 因为 -3×7=-21,1×2=2,且-21+2=-19, 所以,原式=(7x+2)(x-3). 十字相乘法口诀:分二次项,分常数项,交叉相乘求和得一次项。 例3:6X2+7X+2 第1项二次项(6X2)拆分为:2×3 第3项常数项(2)拆分为:1×2 2(X) 3(X) 1 2 对角相乘:1×3+2×2得第2项一次项(7X) 纵向相乘,横向相加。 十字相乘法判定定理:若有式子ax2+bx+c,若b2-4ac为完全平方数,则此式可以被十字相乘法分解。 与十字相乘法对应的还有双十字相乘法,但双十字相乘法相对要难一点,不过也可以学一学。 拆添项法 这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。 例如:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b). 配方法 对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。 例如:x2+3x-40 =x2+3x+2.25-42.25 =(x+1.5)2-......>>
左迁2023-05-17 16:58:291

因式分解法的四种方法

因式分解法的四种方法:提公因式法、分组分解法、待定系数法、十字分解法等等。1、如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。3、待定系数法是初中数学的一个重要方法。用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。4、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
康康map2023-05-17 16:58:291

什么是“因式分解”﹖

因式分解的十二种方法 :把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b (2003南通市中考题) 解:a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 解:令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 解:令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例11、分解因式x +9x +23x+15 解:令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4)
水元素sl2023-05-17 16:58:292

因式分解的概念是什么?

因式分解指的是把一个多项式分解为几个整式的积的形式,它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.⑴提公因式法①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。 ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.。am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.
ardim2023-05-17 16:58:291

如何因式分解

因式分解方法:1、如果多项式的首项为负,应先提取负号;这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。因式分解主要有十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法等方法。求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。
mlhxueli 2023-05-17 16:58:291

多项式因式分解全公式

1、提公因式法 系数取最大公因数,字母和项式取几项都有的,并且指数最小的 2、公式法 完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2 平方差公式:a^2-b^2=(a+b)(a-b) 立方和:a^3 + b^3 = (a+b) (a^2-ab+b^2) 立方差公式:a^3 - b^3 = (a-b) (a^2+ab+b^2)十字相乘法:x^2+(p+q)x+pq=(x+p)(x+q)
CarieVinne 2023-05-17 16:58:291

因式分解怎么算分解完

分解到每个因式都不能继续分解就算完了。下面是因式分解的原则:1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。2、分解因式的结果必须是以乘积的形式表示。3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;5、结果的多项式首项一般为正。在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;6、括号内的首项系数一般为正;7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b+c)a要写成a(b+c);8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。
北有云溪2023-05-17 16:58:291

因式分解与分解因式有什么区别?

多项式长除法。
Ntou1232023-05-17 16:58:297

因式分解的过程是怎样的?

1-X³ =(1-X)(X²+X+1)1-X³=0Y=1-X³把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个最简整式的积的形式,这种变形叫做因式分解,也叫作分解因式。在数学求根作图方面有很广泛的应用。原则:1、分解必须要彻底(即分解之后因式均不能再做分解)2、结果最后只留下小括号3、结果的多项式首项为正。 在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子。4.括号内的第一个数前面不能为负号;5.如有单项式和多项式相乘,应把单项式提到多项式前。即a(a+b)的形式。
NerveM 2023-05-17 16:58:291

怎么因式分解?

因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法和十字相乘法。而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等。⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b).⑵运用公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。平方差公式:a^2-b^2=(a+b)(a-b);完全平方公式:a^2±2ab+b^2=(a±b)^2;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2); 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.其余公式请参看上边的图片。例如:a^2 +4ab+4b^2 =(a+2b)^2(参看右图).二非常规方法[编辑本段]⑶分组分解法把一个多项式适当分组后,再进行分解因式的方法叫做分组分解法。用分组分解法时,一定要想想分组后能否继续完成因式分解,由此选择合理选择分组的方法,即分组后,可以直接提公因式或运用公式。 例如:m^2+5n-mn-5m=m^2-5m -mn+5n = (m^2 -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n).⑷拆项、补项法这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。例如:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).也可以参看右图。⑸配方法 对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。例如:x^2+3x-40=x^2+3x+2.25-42.25=(x+1.5)^2-(6.5)^2=(x+8)(x-5).也可以参看右图。⑹十字相乘法这种方法有两种情况。①x^2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .②kx^2+mx+n型的式子的因式分解 如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).图示如下:·a b · ×·c d 例如:因为·1 -3 · ×·7 2 且2-21=-19, 所以7x^2-19x-6=(7x+2)(x-3).多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;④分解因式,必须进行到每一个多项式因式都不能再分解为止。也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。”几道例题1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.解:原式=(1+y)^2+2(1+y)x^2(1+y)+^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)=[(1+y)+x^2(1-y)]^2-(2x)^2=[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).也可以参看右图。2.求证:对于任何实数x,y,下式的值都不会为33:x^5+3x^4y-5x^3y^2+4xy^4+12y^5.解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)=(x+3y)(x^4-5x^2y^2+4y^4)=(x+3y)(x^2-4y^2)(x^2-y^2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y).(分解因式的过程也可以参看右图。)当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形。分析:此题实质上是对关系式的等号左边的多项式进行因式分解。证明:∵-c^2+a^2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0.∴(a-c)(a+2b+c)=0.∵a、b、c是△abc的三条边,∴a+2b+c>0.∴a-c=0,即a=c,△abc为等腰三角形。4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)=-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).也可以参看右图。三特殊方法[编辑本段]⑺应用因式定理对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a.例如:f(x)=x^2+5x+6,f(-2)=0,则可确定x+2是x^2+5x+6的一个因式。(事实上,x^2+5x+6=(x+2)(x+3).)⑻换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。例如在分解(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则原式=(y+1)(y+2)-12=y^2+3y+2-12=y^2+3y-10=(y+5)(y-2)=(x^2+x+5)(x^2+x-2)=(x^2+x+5)(x+2)(x-1).也可以参看右图。⑼求根法令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) .例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0,则通过综合除法可知,该方程的根为0.5 ,-3,-2,1.所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).⑽图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn).与方法⑼相比,能避开解方程的繁琐,但是不够准确。例如在分解x^3 +2x^2 -5x-6时,可以令y=x^3 +2x^2 -5x-6.作出其图像,与x轴交点为-3,-1,2 则x^3 +2x^2-5x-6=(x+1)(x+3)(x-2).⑾主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。⑿特殊值法将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。例如在分解x^3+9x^2+23x+15时,令x=2,则x^3 +9x^2 +23x+15=8+36+46+15=105, 将105分解成3个质因数的积,即105=3×5×7 .注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值, 则x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。⒀待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。例如在分解x^4-x^3-5x^2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。于是设x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d) =x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd 由此可得a+c=-1,ac+b+d=-5,ad+bc=-6,bd=-4.解得a=1,b=1,c=-2,d=-4.则x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4).也可以参看右图。⒁双十字相乘法双十字相乘法属于因式分解的一类,类似于十字相乘法。用一道例题来说明如何使用。例:分解因式:x^2+5xy+6y^2+8x+18y+12.分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。解:x 2y 2① ② ③x 3y 6∴原式=(x+2y+2)(x+3y+6).双十字相乘法其步骤为:①先用十字相乘法分解2次项,如十字相乘图①中X^2+5xy+6y^2=(x+2y)(x+3y);②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y^2+18y+12=(2y+2)(3y+6);③再按另一个字母(如x)的一次系数进行检验
阿啵呲嘚2023-05-17 16:58:291

因式分解是什么

因式分解(分解因式)factorization,把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。在数学求根作图方面有很广泛的应用。.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2  解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)  =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)  =[(1+y)+x^2(1-y)]^2-(2x)^2  =[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]  =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)  =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]  =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)满意望采纳
可桃可挑2023-05-17 16:58:291

因式分解是什么意思,怎么学?

因式分解小学里:16 =4² 分解质因数中学里: x²+2x+1=(x+1)² 分解质因式就是说把一个多项式分解成多个多项式的乘积 课内的题一般就是提取公因式竞赛的就难了 因式分解就是多做题 开始觉得很难,我6年级时做题,做着做着就晕了,而且公式用的不熟 现在上初一 12道题(竞赛的,从能接受到想吐)半小时搞定 做多了题 有了感觉 我称之为 数感 ,对数字的敏感、分析的能力(语感:对文字的...) 于是 见到题 很快反应出思路 再拼拼凑凑、试一试,就做完了
北营2023-05-17 16:58:293

什么叫做因式?什么叫做因式分解?

因式分解就是:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。如:a^2-b^2=(a+b)(a-b);x^2+2x+1=(x+1)^2
豆豆staR2023-05-17 16:58:291

因式分解的4个公式是什么?

再也不做站长了2023-05-17 16:58:292

什么是因式分解,举例说明

求一个多项式的因式的过程,叫做分解因式。可以直接计算,或运用公式。常用的公式有:a*-b*=(a+b)(a-b)(a+b)*=a*+2ab+b*(a-b)*=a*-2ab+b*方法:⑴提公因式法①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.。am+bm+cm=m(a+b+c)③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.⑵运用公式法①平方差公式:.a^2-b^2=(a+b)(a-b)②完全平方公式:a^2±2ab+b^2=(a±b)^2※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.③立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2).立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2).④完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)⑶分组分解法分组分解法:把一个多项式分组后,再进行分解因式的方法.分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.⑷拆项、补项法拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.⑸十字相乘法①x^2+(pq)x+pq型的式子的因式分解这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(pq)x+pq=(x+p)(x+q)②kx^2+mx+n型的式子的因式分解如果能够分解成k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(axb)(cxd)a-----/bac=kbd=nc/-----dad+bc=m※多项式因式分解的一般步骤:①如果多项式的各项有公因式,那么先提公因式;②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;④分解因式,必须进行到每一个多项式因式都不能再分解为止。(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。
真颛2023-05-17 16:58:291

因式分解公式都有哪些啊?

因式分解八大公式如下:1、平方差公式a²-b²=(a+b)(a-b)2、完全平方公式a²+2ab+b²=(a+b)²3、立方和公式a³+b³=(a+b)(a²-ab+b²)4、立方差公式a³-b³=(a-b)(a²+ab+b²)5、完全立方和公式a³+3a²b+3ab²+b³=(a+b)³6、完全立方差公式a³-3a²b+3ab²-b³=(a-b)³7、三项完全平方公式a²+b²+c²+2ab+2bc+2ac=(a+b+c)²8、三项立方和公式a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)平方差公式:a²-b²=(a+b)(a-b)推导过程:a²-b²=a²+ab-(b²+ab)=a(a+b)-b(a+b)=(a+b)(a-b)说明:这里推导过程使用了后面的课程添项折项法(添项),这个因式分解添加了ab一项,构造了a+b的公因式,同学们也可以自己试试,添加-ab,也是一样的。
u投在线2023-05-17 16:58:281

因式分解(要有步骤)

4x^2-49y^2+a(2x-7y)=(2x+7y)(2x-7y)+a(2x-7y)=(2x-7y)(2x+7y+a)81(X+Y)^2-121(m+n)^2= (9(x+y)+11(m+n)) (9(x+y)-11(m+m))= (9x+9y+11m+11n)(9x+9y-11m-11n)x^4-1分之16y^4=(x^2+1/4y^2)(x+1/2y)(x-1/2y)(x^2+y^2)^2-x^2y^2=(x^+y^2+xy)(x^2-y^2-xy)(2m-n)^2-(3m+2n)^2=((2m-n)+(3m+2n))((2m-n)-(3m+2n))=(5m+n)(-m-3n)=-(5m+n)9m+3n)
此后故乡只2023-05-17 16:58:282

因式分解多种方法

提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例1、 分解因式x -2x -x(2003淮安市中考题)x -2x -x=x(x -2x-1)应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a +4ab+4b (2003南通市中考题)a +4ab+4b =(a+2b)3分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5mm +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-197x -19x-6=(7x+2)(x-3)5配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)
ardim2023-05-17 16:58:282

因式分解公式有哪些因式分解的公式

X+Y≠-1,那是X+Y的系数,把公因式X+Y提取出来就得到了下面的过程
CarieVinne 2023-05-17 16:58:284

因式分解的概念

将一个多项式以和的形式转化为多项式乘积的形式叫做因式分解
NerveM 2023-05-17 16:58:283

什么叫因式分解?

因式分解 定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式). 中学中常用的方法有提公因式法、公式法,拆项和添减项法,分组分解法和十字相乘法.
西柚不是西游2023-05-17 16:58:281

因式分解

问题看不清啊?
铁血嘟嘟2023-05-17 16:58:287

数学因式分解法解方程详细过程

拿起一支笔,写上答案,完啦
大鱼炖火锅2023-05-17 16:58:287

因式分解的步骤是什么

1、如果多项式的首项为负,应先提取负号;2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。 因式分解原则 1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。 2、分解因式的结果必须是以乘积的形式表示。 3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。 4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止; 5、结果的多项式首项一般为正。在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子; 6、括号内的首项系数一般为正; 7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b+c)a要写成a(b+c); 8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。 口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。
九万里风9 2023-05-17 16:58:281

什么叫因式分解什么叫分解因式

因式分解和分解因式是一回事:把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
瑞瑞爱吃桃2023-05-17 16:58:281

因式分解的方法是什么

  在初高中,同学们都会接触到很多因式分解的例子与试题,那有什么因式分解的方法呢。以下是由我为大家整理的“因式分解的方法是什么”,仅供参考,欢迎大家阅读。    因式分解的方法   一、运用公式法   我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:   a^2-b^2=(a+b)(a-b)   a^2+2ab+b^2=(a+b)^2   a^2-2ab+b^2=(a-b)^2   如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。   二、平方差公式   1、式子: a^2-b^2=(a+b)(a-b)   2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。   三、因式分解   1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。   2.因式分解,必须进行到每一个多项式因式不能再分解为止。   四、完全平方公式   1、把乘法公式(a+b)^2=a^2+2ab+b^2 和 (a-b)^2=a^2-2ab+b^2反过来,   就可以得到:a^2+2ab+b^2=(a+b)^2 和 a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。   这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。   把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。   2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。   3、当多项式中有公因式时,应该先提出公因式,再用公式分解。   4、完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。   5、分解因式,必须分解到每一个多项式因式都不能再分解为止。   五、分组分解法   我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。   如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。   原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)   做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。但不难看出这两项还有公因式(m+n),因此还能继续分解,所以:原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)×(a+b).   这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。   六、提公因式法   1、在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.   2、运用公式x^2 +(p+q)x+pq=(x+q)×(x+p)进行因式分解要注意:   (1)必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。   (2)将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:   ① 列出常数项分解成两个因数的积各种可能情况;   ②尝试其中的哪两个因数的和恰好等于一次项系数。   3、将原多项式分解成(x+q)(x+p)的形式。   七、分式的乘除法   1、把一个分式的分子与分母的公因式约去,叫做分式的约分。   2、分式进行约分的目的是要把这个分式化为最简分式。   3、如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分。   4、分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)^2=(y-x)^2, (x-y)^3=-(y-x)^3。   5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.   6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.   八、分数的加减法   1、通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。   2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。   3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。   4、通分的依据:分式的基本性质。   5、通分的关键:确定几个分式的公分母。通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。   6、类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。   7、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。   同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。   8、异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。   9、同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。   10、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。   11、异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化。   12、作为最后结果,如果是分式则应该是最简分式。   九、含有字母系数的一元一次方程   引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)   在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
北营2023-05-17 16:58:281

因式分解。

FinCloud2023-05-17 16:58:282

因式分解是什么意思

因式的解释[multiplier;factor] 亦称因子。多项式被另一多项式整除,后者即是前者的因式,如 a+b 和 (a 2 -ab+b 2 )都是 a 3 +b 3 的因式 词语分解 因的解释 因 ī 原故,原由,事物发生前已 具备 的条件: 原因 。因素。因果。病因。 理由:因为(唅 )。因而。 依,顺着,沿袭:因此。因之。 因循 (a.沿袭;b.迟延拖拉)。 因噎废食 。陈陈相因。 果 笔画数:; 部 式的解释 式 ì 物体外形的样子:式样。样式。 特定的规格:格式。程式。 典礼,有特定内容的仪式:开幕式。阅兵式。 自然 科学中表明某些关系或 规律 的一组符号:分子式。算式。公式。 一种语法范畴,表示说话者对所说事
tt白2023-05-17 16:58:281

因式分解的方法和口诀

初中数学因式分解的方法有待定系数法、提公因式法、十字相乘法等等,接下来分享具体的初中数学因式分解的方法和口诀。 因式分解的方法 (一)十字相乘法 (1)把二次项系数和常数项分别分解因数; (2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数; (3)确定合适的十字图并写出因式分解的结果; (4)检验。 (二)提公因式法 (1)找出公因式; (2)提公因式并确定另一个因式; ①找公因式可按照确定公因式的方法先确定系数再确定字母; ②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因 式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; ③提完公因式后,另一因式的项数与原多项式的项数相同。 (三)待定系数法 (1)确定所求问题含待定系数的一般解析式; (2)根据恒等条件,列出一组含待定系数的方程; (3)解方程或消去待定系数,从而使问题得到解决。 口诀 口诀一 首先提取公因式,其次考虑用公式。 十字相乘排第三,分组分解排第四。 几法若都行不通,拆项添项试一试。 口诀二 先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。
再也不做站长了2023-05-17 16:58:281

什么是因式分解?

把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)。它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的。而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高学生综合分析和解决问题的能力。分解因式与整式乘法互逆。同时也是解一元二次方程中因式分解法的重要步骤。扩展资料各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫 做提取公因式分解因式。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。口诀:找准公因式,一次要提尽;全家都搬走,留1把家守;提负要变号,变形看奇偶。参考资料:因式分解的百度百科
阿啵呲嘚2023-05-17 16:58:272

因式分解是什么意思

把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用。是解决许多数学问题的有力工具。因式分解主要有十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法等方法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。因式分解很多时候就是用来提公因式的。标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以但比较笨,不过能有效地解决找公因式的问题。
kikcik2023-05-17 16:58:271

因式分解是什么?

把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)。它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的。而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高学生综合分析和解决问题的能力。分解因式与整式乘法互逆。同时也是解一元二次方程中因式分解法的重要步骤。扩展资料各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫          做提取公因式分解因式。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。口诀:找准公因式,一次要提尽;全家都搬走,留1把家守;提负要变号,变形看奇偶。参考资料:因式分解的百度百科
真颛2023-05-17 16:58:271

因式分解八大公式是什么?

因式分解八大公式是如下:1、平方差公式:a²-b²=(a+b)(a-b)。2、完全平方公式:a²+2ab+b²=(a+b)²。3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。
Jm-R2023-05-17 16:58:271

什么是因式分解

把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式,如:ax+3x=(a+3)x。数学中用以求解高次一元方程的一种方法,把方程的一侧的数(包括未知数),通过移动使其值化成0,把方程的另一侧各项化成若干因式的乘积,然后分别令各因式等于0而求出其解的方法。因式分解的技巧口诀分解一般步骤如果多项式的首项为负,应先提取负号;这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解。如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。
kikcik2023-05-17 16:58:271
 首页 上一页  1 2 3  下一页  尾页