矩阵

怎么判断矩阵等价

矩阵等价充要条件:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。向量组等价充要条件:两个向量组可以互相线性表示。向量组A:a1,a2,am与向量组B:b1,b2,bn的等价秩相等条件是R(A)=R(B)=R(A,B)。相关如下矩阵A和A等价(反身性);矩阵A和B等价,那么B和A也等价(等价性);矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);矩阵A和B等价,那么IAI=KIBI。(K为非零常数)具有行等价关系的矩阵所对应的线性方程组有相同的解。等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。任一向量组和它的极大无关组等价。向量组的任意两个极大无关组等价。两个等价的线性无关的向量组所含向量的个数相同。等价的向量组具有相同的秩,但秩相同的向量组不一定等价。如果向量组A可由向量组B线性表示,且R(A)=R(B),则A与B等价。
水元素sl2023-05-16 14:50:471

矩阵等价的定义

等价矩阵的定义是对同型矩阵A、B,存在可逆阵P和Q,使得B=PAQ。在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B等于Q减1AP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。等价矩阵的定义是对同型矩阵A、B,存在可逆阵P和Q,使得B=PAQ。矩阵等价是存在可逆矩阵,即A经过有限次的初等变换得到B。矩阵A和B等价,那么B和A也等价。矩阵等价的要求是:同一维度就可以了。比如三维你只要映射都映射到二维,我们就说矩阵等价。向量组等价的要求是:必须是同一维度的同一空间。比如三维映射到二维就必须映射到同一个平面上。等价矩阵的性质1、矩阵A和A等价(反身性)。2、矩阵A和B等价,那么B和A也等价(等价性)。3、矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性)。4、矩阵A和B等价,那么IAI=KIBI,(K为非零常数)。5、具有行等价关系的矩阵所对应的线性方程组有相同的解。6、对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征。(1)矩阵可以通过基本行和列操作的而彼此变换。(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
ardim2023-05-16 14:50:461

矩阵等价是什么意思?

矩阵等价意思是:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵(P、Q),使得A经过有限次的初等变换得到B。 扩展资料   一、矩阵等价性质   1.矩阵A和A等价(反身性);   2.矩阵A和B等价,那么B和A也等价(等价性);   3.矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);   4.矩阵A和B等价,那么IAI=KIBI。(K为非零常数)   5.具有行等价关系的矩阵所对应的线性方程组有相同的"解对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:   (1)矩阵可以通过基本行和列操作的而彼此变换。   (2)当且仅当它们具有相同的秩时,两个矩阵是等价的。   二、矩阵等价证明   a1,a2,....an,线性无关,而a1,a2,....an,b,r线性相关,所以有x1a1+x2a2+....xnan+xb+yr=0,若y=0,则x1a1+x2a2+....xnan+xb=0,说明a1,a2,...an,b线性相关,同理x=0,可得a1,a2,....an,r线性相关。   若x,y都不为零,两边除以x可得-b=x1/x)a1+(x2/x)a2+...+(xn/x)an+(y/x)r,这表示b可以用a1,a2,....an,r.表示。若除以y可证明r可以用a1,a2,....an,b表示。这就说明a1,a2,....an,b与a1,a2,....an,r等价.综合可得命题得证。   当A和B为同型矩阵,且r(A)=r(B)时,A,B一定等价。
九万里风9 2023-05-16 14:50:461

两个矩阵等价是什么意思,怎么定义的.两矩阵等价和相

a经过一系列初等变换等到b,称a与b等价,也就是存在可逆阵pq使b=paq,那么ab秩相等。而ab相似是存在可逆阵p使b=p-1ap,由此可见相似的结论强于等价,具有的性质更多了。比如特征值相同,行列式相同
铁血嘟嘟2023-05-16 14:50:451

n阶矩阵A、B、C,若AB=C,且B可逆,则A,C等价吗?

等价的
真颛2023-05-16 14:50:453

矩阵等价是什么意思

矩阵等价呼吸下课那些年聊咋咧蒙大拿显卡学哦吃啦摩擦成绩下降
九万里风9 2023-05-16 14:50:458

矩阵等价条件是什么?

矩阵等价充要条件:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。向量组等价充要条件:两个向量组可以互相线性表示。向量组A:a1,a2,am与向量组B:b1,b2,bn的等价秩相等条件是R(A)=R(B)=R(A,B)。相关如下矩阵A和A等价(反身性);矩阵A和B等价,那么B和A也等价(等价性);矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);矩阵A和B等价,那么IAI=KIBI。(K为非零常数)具有行等价关系的矩阵所对应的线性方程组有相同的解。等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。任一向量组和它的极大无关组等价。向量组的任意两个极大无关组等价。两个等价的线性无关的向量组所含向量的个数相同。等价的向量组具有相同的秩,但秩相同的向量组不一定等价。如果向量组A可由向量组B线性表示,且R(A)=R(B),则A与B等价。
陶小凡2023-05-16 14:50:451

矩阵等价是啥意思

矩阵等价意思是:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵(P、Q),使得A经过有限次的初等变换得到B。证明a1,a2,....an,线性无关,而a1,a2,....an,b,r线性相关,所以有x1a1+x2a2+....xnan+xb+yr=0,若y=0,则x1a1+x2a2+....xnan+xb=0,说明a1,a2,...an,b线性相关,同理x=0,可得a1,a2,....an,r线性相关。若x,y都不为零,两边除以x可得-b=x1/x)a1+(x2/x)a2+...+(xn/x)an+(y/x)r,这表示b可以用a1,a2,....an,r.表示。若除以y可证明r可以用a1,a2,....an,b表示。这就说明a1,a2,....an,b与a1,a2,....an,r等价.综合可得命题得证。当A和B为同型矩阵,且r(A)=r(B)时,A,B一定等价。性质1、矩阵A和A等价(反身性);2、矩阵A和B等价,那么B和A也等价(等价性);3、矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);4、矩阵A和B等价,那么IAI=KIBI。(K为非零常数)5、具有行等价关系的矩阵所对应的线性方程组有相同的解对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:(1)矩阵可以通过基本行和列操作的而彼此变换;(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
九万里风9 2023-05-16 14:50:451

什么是矩阵等价

你好!广泛意义的等价,是集合在某种变换下保持不变性。如:矩阵A与称为等价的,如果B可以是A经过一系列初等变换得到。矩阵在初等变换下是行列式不变的。在线性代数中,合同、相似都是等价关系
西柚不是西游2023-05-16 14:50:433

两矩阵等价有哪些性质

A经过一系列初等变换等到B,称A与B等价,也就是存在可逆阵PQ使B=PAQ,那么AB秩相等.而AB相似是存在可逆阵P使B=P-1AP,由此可见相似的结论强于等价,具有的性质更多了.比如特征值相同,行列式相同
凡尘2023-05-16 14:50:432

矩阵等价的概念是什么等价的概念?

矩阵等价意思是:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵(P、Q),使得A经过有限次的初等变换得到B。相关内容解释:矩阵,Matrix。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
陶小凡2023-05-16 14:50:421

矩阵等价是啥意思

矩阵等价意思是:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵(P、Q),使得A经过有限次的初等变换得到B。性质1、矩阵A和A等价(反身性)。2、矩阵A和B等价,那么B和A也等价(等价性)。3、矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性)。4、矩阵A和B等价,那么IAI=KIBI。(K为非零常数)。5、具有行等价关系的矩阵所对应的线性方程组有相同的解对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:(1)矩阵可以通过基本行和列操作的而彼此变换。(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
wpBeta2023-05-16 14:50:421
 首页 上一页  23 24 25 26 27 28