小学数学题,写出下面各数:15{ }40{ }18{ }。请问填写什么
3 5 6凡尘2023-07-28 10:42:392
小学数学150道小数除法
8除以2等于4真颛2023-07-28 10:42:381
小升初数学练习题及答案解析
小升初数学练习题有哪些呢?对于在小学的数学中,同学们有哪些必须要掌握的重要知识点呢?下面小编给大家整理了关于小升初数学练习题及答案解析的内容,欢迎阅读,内容仅供参考!static/uploads/yc/20221118/3daacb91449fe272c457abcaad756839.png"width="484"height="300"/>小升初数学练习题及答案解析1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数的个位上的数字之和可以被9整除10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450它有能被9整除同样的道理,100~900百位上的数字之和为4500同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005从1000~1999千位上一共999个“1”的和是999,也能整除;200020012002200320042005的各位数字之和是27,也刚好整除。最后答案为余数为0。2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的值...解:(A-B)/(A+B)=(A+B-2B)/(A+B)=1-2__B/(A+B)前面的1不会变了,只需求后面的最小值,此时(A-B)/(A+B)。对于B/(A+B)取最小时,(A+B)/B取,问题转化为求(A+B)/B的值。(A+B)/B=1+A/B,的可能性是A/B=99/1(A+B)/B=100(A-B)/(A+B)的值是:98/1003.已知A.B.C都是非0自然数,A/2+B/4+C/16的近似值市6.4,那么它的准确值是多少?答案为6.375或6.4375因为A/2+B/4+C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。当是102时,102/16=6.375当是103时,103/16=6.43754.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476解:设原数个位为a,则十位为a+1,百位为16-2a根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198解得a=6,则a+1=716-2a=4答:原数为476。5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.答案为24解:设该两位数为a,则该三位数为300+a7a+24=300+aa=24答:该两位数为24。6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?答案为121解:设原两位数为10a+b,则新两位数为10b+a它们的和就是10a+b+10b+a=11(a+b)因为这个和是一个平方数,可以确定a+b=11因此这个和就是11×11=121答:它们的和为121。7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x根据题意得,(200000+x)×3=10x+2解得x=85714所以原数就是857142答:原数为8571428.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察abcd2376cdab根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。先取d=3,b=9代入竖式的百位,可以确定十位上有进位。根据a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。再观察竖式中的十位,便可知只有当c=6,a=3时成立。再代入竖式的千位,成立。得到:abcd=3963再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.解:设这个两位数为ab10a+b=9b+610a+b=5(a+b)+3化简得到一样:5a+4b=3由于a、b均为一位整数得到a=3或7,b=3或8原数为33或78均可以10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?答案是10:20解:(28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20小升初数学的必考题型1、求近似值改写用“万”、“亿”做单位或省略“万”、“亿”后面的尾数或“四舍五入”以及数的组成2、中位数、众数或平均数3、因数倍数(重点考质数、合数、偶数、奇数、互质数、最大公因数、最小公倍数)4、量与计量5、分数、小数、百分数及比的互化6、比例尺7、鸡兔同笼8、抽屉原理9、现价与原价问题关系的计算(重点考打折问题)10、求每份数和分数答小升初数学题方法1、运算技巧的考察2、几何直观的观察3、推理演绎能力的考察小学数学重点知识点归纳(一)笔算两位数加法,要记三条1、相同数位对齐;2、从个位加起;3、个位满10向十位进1。(二)笔算两位数减法,要记三条1、相同数位对齐;2、从个位减起;3、个位不够减从十位退1,在个位加10再减。(三)混合运算计算法则1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;3、算式里有括号的要先算括号里面的。(四)四位数的读法1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;2、中间有一个0或两个0只读一个“零”;3、末位不管有几个0都不读。(五)四位数写法1、从高位起,按照顺序写;2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。(六)四位数减法也要注意三条1、相同数位对齐;2、从个位减起;3、哪一位数不够减,从前位退1,在本位加10再减。(七)一位数乘多位数乘法法则1、从个位起,用一位数依次乘多位数中的每一位数;2、哪一位上乘得的积满几十就向前进几。(八)除数是一位数的除法法则1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;2、除数除到哪一位,就把商写在那一位上面;3、每求出一位商,余下的数必须比除数小。(九)一个因数是两位数的乘法法则1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;3、然后把两次乘得的数加起来。(十)除数是两位数的除法法则1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,2、除到被除数的哪一位就在哪一位上面写商;3、每求出一位商,余下的数必须比除数小。(十一)万级数的读法法则1、先读万级,再读个级;2、万级的数要按个级的读法来读,再在后面加上一个“万”字;3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。(十二)多位数的读法法则1、从高位起,一级一级往下读;2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。(十三)小数大小的比较比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。(十四)小数加减法计算法则计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。(十五)小数乘法的计算法则计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。(十六)除数是整数除法的法则除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。(十七)除数是小数的除法运算法则除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。(十八)解答应用题步骤1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;2、确定每一步该怎样算,列出算式,算出得数;3、进行检验,写出答案。(十九)列方程解应用题的一般步骤1、弄清题意,找出未知数,并用X表示;2、找出应用题中数量之间的相等关系,列方程;3、解方程;4、检验、写出答案。(二十)同分母分数加减的法则同分母分数相加减,分母不变,只把分子相加减。提高小学数学成绩的方法有哪些第一,认真听老师讲课。这是取得好成绩的主要原因。听讲时要做到全神贯注,聚精会神,跟着老师的思路走,不能开小差,更切忌一边讲话一边听讲。其次要专心凝听老师讲的每一个字,因为数学是以严谨著称的,一字之差就非同小可,一字之间就隐藏玄机无限。听讲时还要注意记笔记。上课还要积极举手发言,举手发言的好处可真不少:①可以巩固当堂学到的知识。②锻炼了自己的口才。③那些模糊不清的观念和错误能得到老师的指教。真是一举三得。总之,听讲要做到手到、口到、眼到、耳到、心到。第二,课外练习。孔子曰:“学而时习之”。课后作业也是学习和巩固数学的重要环节。我很注意解题的精度和速度。精度就是准确度,专心致志地独立完成作业,力求一次性准确,而一旦有了错,要及时改正。而速度是为了锻炼自己注意力集中,有紧迫感。可以在开始做作业时定好闹钟,放在自己看不见的地方再做作业,这样有助于提高作业速度。考试时,就不会紧张,也不会顾此失彼了。第三,复习、预习。对数学的复习,预习可以定在每天晚上,在完成当天作业后,再将第二天要学的新知识简要地看一看,再回忆一下老师已讲过的内容。睡觉时躺在床上,脑海里再像看电影一样将老师上课的过程“看”一遍,如果有什么疑难,可以翻翻书,直到搞懂为止。每个星期天还要作一星期功课的小结复习、预习。这样对学数学有好处,并掌握得牢固,就不会忘记了。铁血嘟嘟2023-07-28 10:42:211
小学五年级数学上册练习题
擦辣驮焚会挠芬抢旱什否吓叔刃缴闽轨轩秩表托骚汽顽凹柒竣虽ardim2023-07-28 10:42:201
五年级数学教案:小数除法
《小数除法》是一节计算课。根据除数的不同,小数除法可以分两种情况:一种是除数是整数的除法,另一种是除数是小数的除法。由于后者可以转化为前者来计算,所以除数是整数的小数除法,就是小数除法计算的基础和重点。在教学过程中,学生在被除数整数部分不够除就商“0”和被除数添“0”再除这两种情况下会出现比较多的错误。 一、 教学理念 教师的教学方案必须建立在学生的基础之上。新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。” 笔者认为教学中成功的关健在于:教师的“教”立足于学生的“学”。 1、从学生的思维实际出发,激发探索知识的愿望,不同发展阶段的学生在认知水平、认知风格和发展趋势上存在差异,处于同一阶段的不同学生在认知水平、认知风格和发展趋势上也存在着差异。人的智力结构是多元的,有的人善于形象思维,有的人长于计算,有的人擅长逻辑思维,这就是学生 的实际。教学要越贴近学生的实际,就越需要学生自己来探索知识,包括发现问题,分析、解决问题。在引导学生感受算理与算法的过程中,放手让学生尝试,让学生主动、积极地参与新知识的形成过程中,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否。这样学生对算理与算法用自己的思维方式,既明于心又说于口。 2、遇到课堂中学生分析问题或解决问题出现错误,特别是一些受思维定势影响的“规律性错误”比如学生在处理商的小数点时受到小数加减法的影响。教师针对这种情况,是批评、简单否定还是鼓励大胆发言、各抒己见,然后让学生发现错误,验证错误?当然应该是鼓励学生大胆地发表自己的意见、看法、想法。学生对自己的方法等于进行了一次自我否定。这样对教学知识的理解就比较深刻,既知其然,又知其所以然。而且学生通过对自己提出的问题,分析或解决的问题提出质疑,自我否定,有利于学生促进反思能力与自我监控能力。 数学教学活动应该是一个从具体问题中抽象出数学问题,并用多种数学语言分析它,用数学方法解决它,从中获得相关的知识与方法,形成良好的思维习惯和应用数学的意识,感受教学创造的乐趣,增进学生学习数学的信心,获得对数学较为全面的体验与理解。因此,学生是数学学习的主人,教师应激发学生的学习积极性,要向学生提供充分从事数学活动的机会,帮助他们掌握基本的数学知识、技能、思想、方法,获得丰富的数学活动经验。 二、教学思路 一个数除以小数“即”除数是小数的除法“是九年义务教育六年制小学数学第九册的重点知识之一。本节教材的重点是:除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据”除数、被除数同时扩大相同的倍数,商不变“的性质,把除数是小数的除法转化成除数是整数的除法。 1、 调查分析 在教学小数除法前一个星期,笔者对曾对班内十五位同学进行了一次简单的调查,(调查结果见附表)笔者认为学生存在很大的教学潜能,这些潜在的”能源“就是教学的依据,教学的资源。从上表可以得出以下结论: (1) 学生对小数除法的基础掌握的比较巩固。 (2) 学生运用新知识解决实际问题的能力存在比较明显的差异,但不同的学生具有不同的潜力。 (3) 优秀学生与学习困难生对算理的理解在思维水平上有较大差异。但对竖式书写都不规范。 笔者认为小数除法如果按照教材按部就班教学是很不合理的,不仅浪费教学时间,而且不利于学生从整体上把握小数除法,不利于知识的系统性的形成,更不利于学生对知识的建构。因此,笔者选择了重组教材。(把例6例7与例8有机的结合在一起) 2、利用迁移,明确转化原理 理解除数是小数的除法的计算法则的算理是”商不变的性质“和”小数点位置移动引起小数大小变化的规律“,把除数是小数的除法转化成除数是整数的除法后就用”除数是整数的小数除法“计算法则进行计算。为了促进迁移,明确转化移位的原理,可设计如下环节: (1)、小数点移动规律的复习 (2)、商不变规律的复习 (3)、移位练习 3、试做例题,掌握转化方法 明确转化原理后,让学生试算例题。在试做的基础上引导学生进行观察比较,抽象出转化时小数点的移位方法,最后概括总结出移位的法则。具体做法如下: ①。学生试做例题6例题7,并讲出每个例题小数点移位的方法。 ②。学生试做例8 ③。引导学生概括总结出转化时移位的方法,同时在此基础上归纳出除数是小数的除法计算法则。在得出计算法则后,还要注意强调: (1)小数点向右移动的位数取决于除数的小数位数,而不由被除数的小数位数确定。 (2)整数除法中,两个数相除的商不会大于被除数,而在小数除法中,当除数小于1时,商反而比被除数大。 (3)要注意小数除法里余数的数值问题。对这一问题可举例说明。如:57.4÷24,要使学生懂得余数是2.2,而不是22。 4、专项训练,提高“转化”技能 除数是小数的除法,把除数转化成整数后,被除数可能出现以下情况:被除数仍是小数;被除数恰好也成整数;被除数末尾还要补“0”。针对上述情况可作专项训练: ①。竖式移位练习。练习在竖式中移动小数点位置时,要求学生把划去的小数点和移动后的小数点写清楚,新点上的小数点要点清楚,做到先划、再移、后点。这种练习小数点移位形象具体,学生所得到的印象深刻。 ②。横式移位练习。练习在横式中移动小数点位置时,由于“划、移、点”只反映在头脑里,这就需要学生把转化前后的算式建立起等式,使人一目了然。(1)判断下面的等式是否成立,为什么? 教学过程 (一)复习导入 1.要使下列各小数变成整数,必须分别把它们扩大多少倍?小数点怎样移动? 1.2 0.67 0.725 0.003 2.把下面的数分别扩大10倍、100倍、1000倍是多少? 1.342, 15, 0.5, 2.07。 3.填写下表。 根据上表,说说被除数、除数和商之间有什么变化规律。(被除数和除数同时扩大或缩小相同的倍数,商不变。) 根据商不变的性质填空,并说明理由。 (1)5628÷28=201; (2)56280÷280=; (3)562800÷=201; (4)562.8÷2.8=。 (重点强调(4)的理由。(4)式与(1)式比较,被除数、除数都缩小了10倍,所以商不变,还是201,即562.8÷2.8=5628÷28=201) (该环节的设计意图是通过学生的讲与练,理解其转化原理是:当除数由小数变成整数时,除数扩大10倍、100倍、1000倍……被除数也应扩大同样的倍数。) (二)探究算理 归纳法则 1.学习例6: 一根钢筋长3.6米,如果把它截成0.4米长的小段。可以截几段? (1)学生审题列式:3.6÷0.4。 (2)揭示课题: 这个算式与我们以前学习的除法有什么不同?(除数由整数变成了小数。) 今天我们一起来研究“一个数除以小数”。(板书课题:一个数除以小数。) (3)探究算理。 ①思考:我们学习了除数是整数的小数除法,现在除数是小数该怎样计算呢? (把除数转化成整数。) 怎样把除数转化成整数呢? ②学生试做: 板演学生做的结果,并由学生讲解: 解法1:把单位名称“米”转换成厘米来计算。 3.6米÷0.4米=36厘米÷4厘米=9(段)。 解法2: 答:可以截成9段。 讲算理:(为什么把被除数、除数分别扩大10倍?) 把除数0.4转化成整数4,扩大了10倍。根据商不变的性质,要使商不变,被除数3.6也应扩大10倍是36。 小结:这道题我们可以通过哪些方法把除数转化成整数? (①改写单位名称;②利用商不变的性质。) (3)练习:完成例7 思考:你用哪种方法转化?为什么? 同桌互相说说转化的方法及道理。独立计算后,订正。例7里的余数15表示多少? 强调:利用商不变的性质,把被除数和除数同时扩大多少倍,由哪个数的小数位数决定? (由除数的小数位数决定。因为我们只要把除数转化成整数就成了除数是整数的小数除法。如0.756÷0.18=75.6÷18。) (设计意图:在试做的基础上引导学生初步感受转化时小数点的移位方法,为自主概括法则作铺垫) 2.学习例8:买0.75千克油用3.3元。每千克油的价格是多少元? 学生列式:3.3÷0.75。 (1)要把除数0.75变成整数,怎样转化?(把除数0.75扩大100倍转化成75。要使商不变,被除数也应扩大100倍。) (2)被除数3.3扩大100.倍是多少?(3.3扩大100.倍是330,小数部分位数不够在末尾补“0”。) (3)学生试做: (3)比较例6、7与例8有什么不同?(被除数在移动小数点时,位数不够在末尾用“0”补足。) (4) 练习:课本P49练一练第三题学生独立完成后,归纳小结。 (设计意图:对被除数小数点移位后补“0”的方法,教师可作适当点拨。学生试做后先不急于讲评,让他们对照教材中的两个例题,启发学生观察、比较两道例题的不同点与计算时的注意点。引导学生分析、比较,逐步抽象出移位的方法。让学生在充分积累经验的基础上归纳出除数是小数的除法的计算法则,会收到水道渠成的效果) (三)展开练习 深化认识 1. (1)不计算,把下面各式改写成除数是整数的算式。 (2)下面各式错在哪里,应怎样改正? 2.根据10.44÷0.725=14.4,填空: (1)104.4÷7.25=;(2)1044÷=14.4; (3)÷0.0725=14.4;(4)10.44÷7.25=; (5)1.044÷0.725=;(6)1.044÷7.25=。 3. (3)选出与各组中商相等的算式。 A.4.83÷0.7 B.0.225÷0.15 483÷7 0.483÷7 48.3÷7 225÷15 2.25÷15 22.5÷15 4.口算: 1.2÷0.3= 0.24÷0.08= 0.15÷0.01= 2.8÷4= 2.6÷0.2= 4.6÷4.6= 3.8÷0.19= 2.5÷0.05= (设计意图:旨在通过各种形式的练习提高学生学习兴趣,巩固法则,强化重点,突破难点) (四)回顾总结 思考:除数是小数的除法应怎样计算?讨论得出(填空):除数是小数的除法的计算法则是:除数是小数的除法,先移动的小数点,使它变成;除数的小数点向右移动几位,被除数的小数点也移动(位数不够的,在被除数的用“0”补足);然后按照除数是的小数除法进行计算。看书P46--49,划出重点词语。铁血嘟嘟2023-07-28 10:42:201
小学数学小数除整数法练习题,除数最好是单数。
0.2×0.5 0.27-0.2 0.8×0.7 4.5×3 1.5×0.4 0.05×1.6 2.5÷5 16÷4 4.8÷80.15×4 4.9÷7 8.1÷9一、复习旧知 1.根据算式写两个除法算式。1.75×18=31.5( ) ( ) 2.列竖式计算。 25.2÷6 34.5÷15 13.08÷24根据以上三题,你发现商的小数点要与( )的小数点对齐。二、分组合作探究1、列竖式计算43.5÷29 18.9÷27 1.35÷152、计算下面各题,并且用乘法验算。15.6÷12 32.8÷16 1.35÷27三、课堂练习1、列竖式计算28.6÷11 20.4÷24 3.64÷522、列式计算。 (1)把38.7平均分成3份,每份是多少(2)已知两个因数的积是36.18,其中一个因数是18,求另一个因数是多少?3、下面各题的商那些是小于1的?在( )里画“√”。5.12÷6 ( ) 80.4÷35 ( ) 0.12÷12( )4.2÷3 ( ) 91÷14 ( ) 28.6÷11 ( )四、测评反馈一1、列竖式计算36.9÷18 172.8÷24 1.25÷25 2、应用题(1)、.《新编童话集》共4本,售价26.8元,平均每本售价多少钱?(2)、一台碾米机8小时碾米1.26吨,这台碾米机平均每小时碾米多少吨?五、测评反馈二1、列竖式计算8.1÷54 46.2÷15 15.6÷162、实际应用(1)、在两栖动物中,非洲蛙是跳远冠军。一只非洲蛙曾创造了连续三次共跳跃7.74米的记录。这只非洲蛙平均一次跳多远?(2)双休日爸爸带小勇去登山。从山底到山顶全程有7.2千米,他们上山用了3小时,下山用可了2小时。上山,下山的速度各是多少?你还能提出其他数学问题吗?(3)一只蝴蝶0.8小时飞行6.08千米,一只蜜蜂每小时飞行18.2千米。蜜蜂每小时飞行的距离是蝴蝶每小时飞行的距离的多少倍?(得数保留两位小数)ardim2023-07-28 10:42:131
小学五年级数学上册小数点乘除法计算题
你没背啊?数学书上有啊!kikcik2023-07-28 10:42:1212
五年级数学小数除法练习题(B)[人教版]答案
(0.21 )的21倍是4.41,35的1.3倍是( 45.5);91.2是3.8的(24 )倍。 73缩小( 1000)倍是0.073。 两个因数的积是7,其中一个因数是2.8,另一个因数是(2.5 )。 8.59 45保留一位小数约是( 8.6),保留两位小数约是( 8.59),保留三位小数约是(8.595 ),保留整数约是( 9)。 ⑤ 9除以11的商用循环小数表示可写为(0.818 ),得数保留三位小数苏州马小云2023-07-28 10:42:111
数学小数除法练习题十道答案
小数除法10道(没有余数)如下:26.4÷2.4=1114.4÷1.2=1214.3÷1.1=138.8÷2.2=420÷2.5=830÷2.5=1216.8÷1.4=1218÷1.5=1224.2÷2.2=1128.8÷9=3.2北有云溪2023-07-28 10:42:091
求高一数学数列(等差等比)的全部有用公式
等差中项a1+a3=2*a2等比中项a1*a3=a2^2以此类推左迁2023-07-28 10:39:264
高中数学、关于等差数列和等比数列的一些公式、谁知道呀?
(1)等比数列的通项公式是:An=A1×q^(n-1) 若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。 (2) 任意两项am,an的关系为an=am·q^(n-m) (3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。 记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。 性质: ①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq; ②在等比数列中,依次每 k项之和仍成等比数列. “G是a、b的等比中项”“G^2=ab(G≠0)”. (5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)或Sn=(a1-an*q)/(1-q)(q≠1) Sn=n*a1 (q=1) 在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。 等比数列在生活中也是常常运用的。 如:银行有一种支付利息的方式---复利。 即把前一期的利息和本金加在一起算作本金, 再计算下一期的利息,也就是人们通常说的利滚利。 按照复利计算本利和的公式:本利和=本金*(1+利率)^存期 等差数列公式 等差数列的通项公式为:an=a1+(n-1)d 或an=am+(n-m)d 前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2 若m+n=p+q则:存在am+an=ap+aq 若m+n=2p则:am+an=2ap 以上n均为正整数 文字翻译 第n项的值=首项+(项数-1)×公差 前n项的和=(首项+末项)×项数÷2 公差=后项-前项LuckySXyd2023-07-28 10:39:261
三年级数学时间单位换算
时间单位换算1世纪=100年 1年=12月大月(31天)有:135781012月小月(30天)有:46911月平年2月有28天,闰年2月有29天平年全年有365天,闰年全年有366天1日=24小时 1时=60分1分=60秒 1时=3600秒NerveM 2023-07-28 10:38:221
二年级数学时间单位换算
1年=12个月1年=4个季度1个季度=3个月1天=24小时1小时=60分钟1分钟=60秒九万里风9 2023-07-28 10:38:201
高中数学等差等比数列公式总结对比
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示. 等差数列的通项公式为: an=a1+(n-1)d (1) 前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0. 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项. 且任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式. 从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N*,且m+n=p+q,则有 am+an=ap+aq Sm-1=(2n-1)an,S2n+1=(2n+1)an+1 Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等. 和=(首项+末项)*项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项 末项=2和÷项数-首项 项数=(末项-首项)/公差+1 如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(geometric progression).这个常数叫做等比数列的公比(common ratio),公比通常用字母q表示(q≠0).注:q=1时,an为常数列. (1)等比数列的通项公式是:An=A1*q^(n-1) 等比数列通式 若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点. (2)求和公式:Sn=nA1(q=1) Sn=A1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =(a1-an*q)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n) 等比数列求和公式 (前提:q≠ 1) 任意两项am,an的关系为an=am·q^(n-m);在运用等比数列的前n相和时,一定要注意讨论公比q是否为1. (3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项. 记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的. 等比中项定义:从第二项起,每一项(有穷数列和末项除外)都是它的前一项与后一项的等比中 项. 等比中项公式:An/An-1=An+1/An或者(An-1)(An+1)=An^2 (5)无穷递缩等比数列各项和公式: 无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和. (6)由等比数列组成的新的等比数列的公比: {an}是公比为q的等比数列 1.若A=a1+a2+……+an B=an+1+……+a2n C=a2n+1+……a3n 则,A、B、C构成新的等比数列,公比Q=q^n 2.若A=a1+a4+a7+……+a3n-2 B=a2+a5+a8+……+a3n-1 C=a3+a6+a9+……+a3n 则,A、B、C构成新的等比数列,公比Q=q编辑本段性质 (1)若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq; (2)在等比数列中,依次每 k项之和仍成等比数列. (3)“G是a、b的等比中项”“G^2=ab(G≠0)”. (4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则 {a2n},{a3n}…是等比数列,公比为q1^2,q1^3… {can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2. (5)等比数列中,连续的,等长的,间隔相等的片段和为等比. (6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数. (7) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1) (8) 数列{An}是等比数列,An=pn+q,则An+K=pn+K也是等比数列, 在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方. (9)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列.编辑本段求通项公式的方法 (1)待定系数法:已知a(n+1)=2an+3,a1=1,求an 构造等比数列a(n+1)+x=2(an+x) a(n+1)=2an+x,∵a(n+1)=2an+3 ∴x=3 所以(a(n+1)+3)/(an+3)=2 ∴{an+3}为首项为4,公比为2的等比数列,所以an+3=a1*q^(n-1)=4*2^(n-1),an=2^(n+1)-3北有云溪2023-07-28 10:38:181
数学中各种长度 时间单位的换算
时间的单位1秒=1000毫秒(ms)1毫秒=1/1,000秒(s)1秒=1,000,000微秒(μs)1微秒=1/1,000,000秒(s)1秒=1,000,000,000纳秒(ns)1纳秒=1/1,000,000,000秒(s)1秒=1,000,000,000,000皮秒(ps)1皮秒=1/1,000,000,000,000秒(s)一般长度单位换算:1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1米=100厘米1米=1000毫米1毫米=1000微米1厘米=10毫米1分米=10厘米1米=10分米1千米(公里)=1000米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1微米=0.000001米1纳米=0.000000001米1millimetre毫米=0.03937inch英寸1centimetre厘米=10mm.毫米=0.3937inch英寸1decimetre分米=10cm.厘米=3.937inches英寸1metre米=10dm.分米=1.0936yards码=3.2808feet英尺1decametre十米=10m.米=10.936yards码1hectometre百米=100m.米=109.4yards码1kilometre千米=1000m.米=0.6214mile英里1milemarin海里=1852m.米=1.1500mile英里水元素sl2023-07-28 10:38:111
数学所有的距离换算单位
1km=1000m1m=10dm=100cm=1000mm1dm=10cm=100mm1cm=10mm也就是m,dm,cm,mm进率都是10望采纳记得给问豆啊!kikcik2023-07-28 10:38:083
数学公式,请问等比数列和等差数列有哪些公式呢?
Sn=[n(A1+An)]/2;Sn=nA1+[n(n-1)d]/2 。等差数列的公式:公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数)。项数=(末项-首项来)÷公差+1。末项=首项+(项数-1)×公差。前n项的和Sn=首项×n+项数(项数-1)公差/2。第n项的值an=首项+(项数-1)×公差。等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列。相关信息:在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍,项数为奇数,和等于中间项的2倍,另见,等差中项。拌三丝2023-07-28 10:38:081
数学等差等比的公式
等差:求和:(首项+末项)×项数÷2首项:末项—公差×(项数—1)项数:首末两项的差÷公差+1末项:首项+公差×(项数—1)等比等比数列通项:an=a1q^(n-1)等比数列前项和:sn=a1(q^n-1)/(q-1)黑桃花2023-07-28 10:38:083
谁可以帮我给我一套完整的数学单位换算啊?
长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、 加数+加数=和和-一个加数=另一个加数 7、 被减数-减数=差 被减数-差=减数 差+减数=被减数 8、 因数×因数=积积÷一个因数=另一个因数 9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20)瑞瑞爱吃桃2023-07-28 10:38:051
数学中各种长度 时间单位的换算
长度单位:1km=1m=10dm=100cm=1000mm=1000000微米=100000000nm时间:1天=24小时=1440分=86400秒=86400000毫秒=86400000000微秒bikbok2023-07-28 10:37:582
数学上的罗马数字是指什么?
罗马数字1-Ⅰ、2-Ⅱ、3-Ⅲ、4-Ⅳ、5-Ⅴ、6-Ⅵ、7-Ⅶ、8-Ⅷ、9-Ⅸ、10-Ⅹ。罗马数字采用十进制,除了1(I)和10(X)之外,中间使用5(V)进行分割,在计数时只需要注意4和9两个数字就好了,4表示为IV(4=5-1),而不是IIII;9表示为IX(9=10-1),而不是VIIII(5+4)。表示方式用希腊字母表数目,字母的顺序是无关紧要的,代价是要用较多的字母。用罗马字母表数目,所用的字母较少,但顺序就得注意点。用阿拉伯数字,顺序变成绝对重要,因此用十个数字符号,就可表任何数目。古希腊或罗马都没有代表0的数字符号,60就用LX 表示,601就用DCI表 示。古代的中国也没有0,60就用“六十”表示,601就用“六百一”表示;“六百一”不是610,“六百(一)十”才是610。左迁2023-07-28 10:30:321
数学:若关于x的一元二次方程ax^2+bx+c=0的两个根x1=-1,x2=2,则抛物线y=ax^
大哥哥,我是—年级小学生,不会做呀左迁2023-07-28 10:26:163
数学题解法。关于一元二次方程
一元二次方程的解法有如下几种: 第一种:运用因式分解的方法,而因式分解的方法有:(1)十字相乘法(又包括二次项系数为1的和二次项系数不为1,但又不是0的),(2)公式法:(包括完全平方公式,平方差公式,).(3)提取公因式 例1:X^2-4X+3=0 本题运用因式分解法中的十字相乘法,原方程分解为(X-3)(X-1)=0 ,可得出X=3或1。 例2:X^2-8X+16=0 本题运用因式分解法中的完全平方公式,原方程分解为(X-4)^2=0 可以得出X1=4 X2=4(注意:碰到此类问题,一定要写X1=X2=某个数,不能只写X=某个数,因为一元二次方程一定有两个根,两个根可以相同,也可以不同) 例3:X^2-9=0 本题运用因式分解法中的平方差公式,原方程分解为(X-3)(X+3)=0 ,可以得出X1=3,X2=-3。 例4:X^2-5X=0 本题运用因式分解法中的提取公因式法来解,原方程分解为X(X-5)=0 ,可以得出X1=0 ,X2=5 第二种方法是配方法,比较复杂,下面举一个例来说明怎样用配方法来解一元二次方程: X^2+2X-3=0 第一步:先在X^2+2X后加一项常数项,使之能成为一项完全平方式,那么根据题目,我们可以得知应该加一个1这样就变成了(X+1)^2。 第二步:原式是X^2+2X-3,而(X+1)^2=X^2+2X+1,两个葵花子对比之后发现要在常数项后面减去4,才会等于原式,所以最后用配方法后得到的式子为(X+1)^2-4=0,最后可解方程。 还有一种方法就是开平方法,例如:X^2=121,那么X1=11,X2=-11。 最后如果用了上面所有的方法都无法解方程,那就只能像楼上所说的用求根公式了。 定理就是韦达定理,还有根的判别式,韦达定理就是一元二方程ax^2+bx+c=0(a不等于0)二根之和就是-b/a,两根之积就是c/a 举例:X^2-4X+3=0 两根之和就是-(-4/1)=4,两根之积就是3/1=3,(你可以自己解一下,看看是否正确)。 因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让 两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个 根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x2+3x=0 (3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解。 (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 612 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。 小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般 形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。 公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式 法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程 是否有解。 配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方 法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。 例5.用适当的方法解下列方程。(选学) (1)4(x+2)2-9(x-3)2=0 (2)x2+(2-)x+ -3=0 (3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0 分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算。观察后发现,方程左边可用平方差 公式分解因式,化成两个一次因式的乘积。 (2)可用十字相乘法将方程左边因式分解。 (3)化成一般形式后利用公式法解。 (4)把方程变形为 4x2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解。 (1)解:4(x+2)2-9(x-3)2=0 [2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0 (5x-5)(-x+13)=0 5x-5=0或-x+13=0 ∴x1=1,x2=13 (2)解: x2+(2- )x+ -3=0 [x-(-3)](x-1)=0 x-(-3)=0或x-1=0 ∴x1=-3,x2=1 (3)解:x2-2 x=- x2-2 x+ =0 (先化成一般形式) △=(-2 )2-4 ×=12-8=4>0 ∴x= ∴x1=,x2= (4)解:4x2-4mx-10x+m2+5m+6=0 4x2-2(2m+5)x+(m+2)(m+3)=0 [2x-(m+2)][2x-(m+3)]=0 2x-(m+2)=0或2x-(m+3)=0 ∴x1= ,x2= 例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。 (选学) 分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我 们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方 法) 解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0 即 (5x-5)(2x-3)=0 ∴5(x-1)(2x-3)=0 (x-1)(2x-3)=0 ∴x-1=0或2x-3=0 ∴x1=1,x2=是原方程的解。 例7.用配方法解关于x的一元二次方程x2+px+q=0 解:x2+px+q=0可变形为 x2+px=-q (常数项移到方程右边) x2+px+( )2=-q+()2 (方程两边都加上一次项系数一半的平方) (x+)2= (配方) 当p2-4q≥0时,≥0(必须对p2-4q进行分类讨论) ∴x=- ±= ∴x1= ,x2= 当p2-4q<0时,<0此时原方程无实根。 说明:本题是含有字母系数的方程,题目中对p, q没有附加条件,因此在解题过程中应随时注意对字母 取值的要求,必要时进行分类讨论。 练习: (一)用适当的方法解下列方程: 1. 6x2-x-2=0 2. (x+5)(x-5)=3 3. x2-x=0 4. x2-4x+4=0 5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0 (二)解下列关于x的方程 1.x2-ax+-b2=0 2. x2-( + )ax+ a2=0 练习参考答案: (一)1.x1=- ,x2= 2.x1=2,x2=-2 3.x1=0,x2= 4.x1=x2=2 5.x1=x2= 6.解:(把2x+3看作一个整体,将方程左边分解因式) [(2x+3)+6][(2x+3)-1]=0 即 (2x+9)(2x+2)=0 ∴2x+9=0或2x+2=0 ∴x1=-,x2=-1是原方程的解。 (二)1.解:x2-ax+( +b)( -b)=0 2、解:x2-(+ )ax+ a61 a=0 [x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0 ∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0 ∴x1= +b,x2= -b是 ∴x1= a,x2=a是 原方程的解。 原方程的解。 测试 选择题 1.方程x(x-5)=5(x-5)的根是( ) A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5 2.多项式a2+4a-10的值等于11,则a的值为( )。 A、3或7 B、-3或7 C、3或-7 D、-3或-7 3.若一元二次方程ax2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个 根是( )。 A、0 B、1 C、-1 D、±1 4. 一元二次方程ax2+bx+c=0有一个根是零的条件为( )。 A、b≠0且c=0 B、b=0且c≠0 C、b=0且c=0 D、c=0 5. 方程x2-3x=10的两个根是( )。 A、-2,5 B、2,-5 C、2,5 D、-2,-5 6. 方程x2-3x+3=0的解是( )。 A、 B、 C、 D、无实根 7. 方程2x2-0.15=0的解是( )。 A、x= B、x=- C、x1=0.27, x2=-0.27 D、x1=, x2=- 8. 方程x2-x-4=0左边配成一个完全平方式后,所得的方程是( )。 A、(x-)2= B、(x- )2=- C、(x- )2= D、以上答案都不对 9. 已知一元二次方程x2-2x-m=0,用配方法解该方程配方后的方程是( )。 A、(x-1)2=m2+1 B、(x-1)2=m-1 C、(x-1)2=1-m D、(x-1)2=m+1 答案与解析 答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D 解析: 1.分析:移项得:(x-5)2=0,则x1=x2=5, 注意:方程两边不要轻易除以一个整式,另外一元二次方程有实数根,一定是两个。 2.分析:依题意得:a2+4a-10=11, 解得 a=3或a=-7. 3.分析:依题意:有a+b+c=0, 方程左侧为a+b+c, 且具仅有x=1时, ax2+bx+c=a+b+c,意味着当x=1 时,方程成立,则必有根为x=1。 4.分析:一元二次方程 ax2+bx+c=0若有一个根为零, 则ax2+bx+c必存在因式x,则有且仅有c=0时,存在公因式x,所以 c=0. 另外,还可以将x=0代入,得c=0,更简单! 5.分析:原方程变为 x2-3x-10=0, 则(x-5)(x+2)=0 x-5=0 或x+2=0 x1=5, x2=-2. 6.分析:Δ=9-4×3=-3<0,则原方程无实根。 7.分析:2x2=0.15 x2= x=± 注意根式的化简,并注意直接开平方时,不要丢根。 8.分析:两边乘以3得:x2-3x-12=0,然后按照一次项系数配方,x2-3x+(-)2=12+(- )2, 整理为:(x-)2= 方程可以利用等式性质变形,并且 x2-bx配方时,配方项为一次项系数-b的一半的平方。 9.分析:x2-2x=m, 则 x2-2x+1=m+1 则(x-1)2=m+1. 中考解析 考题评析 1.(甘肃省)方程的根是( ) (A) (B) (C) 或 (D) 或 评析:因一元二次方程有两个根,所以用排除法,排除A、B选项,再用验证法在C、D选项中选出正确 选项。也可以用因式分解的方法解此方程求出结果对照选项也可以。选项A、B是只考虑了一方面忘记了一元 二次方程是两个根,所以是错误的,而选项D中x=-1,不能使方程左右相等,所以也是错误的。正确选项为 C。 另外常有同学在方程的两边同时除以一个整式,使得方程丢根,这种错误要避免。 2.(吉林省)一元二次方程的根是__________。 评析:思路,根据方程的特点运用因式分解法,或公式法求解即可。 3.(辽宁省)方程的根为( ) (A)0 (B)–1 (C)0,–1 (D)0,1 评析:思路:因方程为一元二次方程,所以有两个实根,用排除法和验证法可选出正确选项为C,而A、 B两选项只有一个根。D选项一个数不是方程的根。另外可以用直接求方程根的方法。 4.(河南省)已知x的二次方程的一个根是–2,那么k=__________。 评析:k=4.将x=-2代入到原方程中去,构造成关于k的一元二次方程,然后求解。 5.(西安市)用直接开平方法解方程(x-3)2=8得方程的根为( ) (A)x=3+2 (B)x=3-2 (C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2 评析:用解方程的方法直接求解即可,也可不计算,利用一元二次方程有解,则必有两解及8的平方 根,即可选出答案。ardim2023-07-28 10:26:081
初三数学一元二次方程
设中间的为a,则前面一个是a-2,后面一个是a+2,列方程得;(a-2)^2+(a+2)^2=10a化简:a^2-4a+4+a^2+4a+4=10a2a^2+8=10aa^2-5a+4=0(a-1)(a-4)=0a=1 或a=4a为奇数,所以a=1但1-2=-1此题有问题,应该无解康康map2023-07-28 10:25:523
9对3说,除了你,还是你。——数学的爱情
是啊!NerveM 2023-07-28 10:25:393
数学能手帮忙出200道24点题 含答案
1) 1118 (1+1+1)*8 2) 1126 (1+1+2)*6 3) 1127 (1+2)*(1+7) 4) 1128 (1+1*2)*8 5) 1129 (1+2)*(9-1) 6) 1134 4*(1+1)*3 7) 1135 (1+3)*(1+5) 8) 1136 (1+1*3)*6 9) 1137 3*(1+1*7) 10) 1138 (1-1+3)*8 11) 1139 (1+1)*(3+9) 12) 1144 4*(1+1+4) 13) 1145 4*(1+1*5) 14) 1146 (1-1+4)*6 15) 1147 1*4*(7-1) 16) 1148 (1+1)*(4+8) 17) 1149 (4-1)*(9-1) 18) 1155 (5-1)*(1+5) 19) 1156 (1*5-1)*6 20) 1157 (1+1)*(5+7) 21) 1158 (5-(1+1))*8 22) 1166 (1+1)*(6+6) 23) 1168 6/(1+1)*8 24) 1169 6+(1+1)*9 25) 1188 8+(1+1)*8 26) 1224 4*2*(1+2) 27) 1225 (2+2)*(1+5) 28) 1226 (1+2)*(2+6) 29) 1227 (2+2)*(7-1) 30) 1228 (2-1+2)*8 31) 1229 2*(1+2+9) 32) 1233 3*2*(1+3) 33) 1234 4*(1+2+3) 34) 1235 (1+2)*(3+5) 35) 1236 3*(1*2+6) 36) 1237 1+2+3*7 37) 1238 2*(1+3+8) 38) 1239 1*2*(3+9) 39) 1244 (1+2)*(4+4) 40) 1245 4*(2-1+5) 41) 1246 (2-1)*4*6 42) 1247 2*(1+4+7) 43) 1248 1*2*(4+8) 44) 1249 4+2*(1+9) 45) 1255 1+5*5-2 46) 1256 (1+5-2)*6 47) 1257 1*2*(5+7) 48) 1258 (1+5)/2*8 49) 1259 9+(1+2)*5 50) 1266 6+(1+2)*6 51) 1267 (1+7)/2*6 52) 1268 1*6/2*8 53) 1269 6+1*2*9 54) 1277 (7*7-1)/2 55) 1278 1+7+2*8 56) 1279 1+9+2*7 57) 1288 8+1*2*8 58) 1289 9+2*8-1 59) 1333 (1+3)*(3+3) 60) 1334 4*(1*3+3) 61) 1335 1*3*(3+5) 62) 1336 3+3*(1+6) 63) 1337 1*3+3*7 64) 1338 3*(1+8)-3 65) 1339 (1+3)*(9-3) 66) 1344 1*3*(4+4) 67) 1345 1+3+4*5 * 68) 1346 6/(1-3/4) 69) 1347 (1+3)*7-4 70) 1348 8+(1+3)*4 71) 1349 1+3*9-4 72) 1356 1+5+3*6 73) 1357 (7-3)*(1+5) 74) 1358 1+8+3*5 75) 1359 9+1*3*5 76) 1366 6+1*3*6 77) 1367 (7-3)*1*6 78) 1368 (1+6/3)*8 79) 1369 3*(1+9)-6 80) 1377 (7-3)*(7-1) 81) 1378 (7-(1+3))*8 82) 1379 (1+7)*9/3 83) 1388 (1+3)*8-8 84) 1389 1*8*9/3 85) 1399 (9-1)*9/3 86) 1444 4+4*(1+4) 87) 1445 1*4+4*5 88) 1446 4*(1+6)-4 89) 1447 1+7+4*4 90) 1448 8+1*4*4 91) 1449 4*(1+9-4) 92) 1455 4+(5-1)*5 93) 1456 4/(1-5/6) 94) 1457 1+4*7-5 95) 1458 (8-4)*(1+5) 96) 1459 9+(4-1)*5 97) 1466 (1+4)*6-6 98) 1467 (1+7-4)*6 99) 1468 (1+6-4)*8 100) 1469 (9-(1+4))*6 101) 1477 (7-4)*(1+7) 102) 1478 4*(1+7)-8 103) 1479 (7-4)*(9-1) 104) 1488 1*4*8-8 105) 1489 1+4*8-9 106) 1555 (5-1/5)*5 107) 1556 5*(1+5)-6 108) 1559 (9-5)*(1+5) 109) 1566 1*5*6-6 110) 1567 1+5*6-7 111) 1568 (1+8-5)*6 112) 1569 (9-5)*1*6 113) 1578 (1+7-5)*8 114) 1579 (9-5)*(7-1) 115) 1588 (1*8-5)*8 116) 1589 (8-5)*(9-1) 117) 1599 9+1+5+9 118) 1666 (6-1)*6-6 119) 1668 6/(1-6/8) 120) 1669 (1+9-6)*6 121) 1679 (9-6)*(1+7) 122) 1688 (1+8-6)*8 123) 1689 9+1+6+8 124) 1699 9+1*6+9 125) 1779 9+7+1+7 126) 1788 8+1+7+8 127) 1789 9+1*7+8 128) 1799 9+7-1+9 129) 1888 8+1*8+8 130) 1889 9+8-1+8 131) 2223 3*2*(2+2) 132) 2224 4*(2+2+2) 133) 2225 2*(2+2*5) 134) 2227 2*(2*7-2) 135) 2228 (2/2+2)*8 136) 2229 2+2*(2+9) 137) 2233 (2+2)*(3+3) 138) 2234 3*(2+2+4) 139) 2235 3*(2*5-2) 140) 2236 2*(2*3+6) 141) 2237 2*(2+3+7) 142) 2238 2+2*(3+8) 143) 2239 (2+2)*(9-3) 144) 2244 2*(4+2*4) 145) 2245 2+2+4*5 146) 2246 (2-2+4)*6 147) 2247 2+2*(4+7) 148) 2248 8+(2+2)*4 149) 2249 2+4+2*9 150) 2255 2*(5+2+5) 151) 2256 2+2*(5+6) 152) 2257 2*5+2*7 153) 2258 2*(5+8)-2 154) 2259 2*(5-2+9) 155) 2266 (2+6)/2*6 156) 2267 6+2*(2+7) 157) 2268 8+2*(2+6) 158) 2269 2*(2*9-6) 159) 2277 2*(7-2+7) 160) 2278 2+8+2*7 161) 2288 (2+2)*8-8 162) 2289 8+2*9-2 163) 2333 3*(3+2+3) 164) 2335 2*(3*5-3) 165) 2336 2*(3+3+6) 166) 2337 (7-3)*2*3 167) 2338 (3/3+2)*8 168) 2339 9+3*(2+3) 169) 2344 4+4*(2+3) 170) 2345 2*(5+3+4) 171) 2346 2+4+3*6 172) 2347 4+2*(3+7) 173) 2348 (8-4)*2*3 174) 2349 2*4*9/3 175) 2355 2+5*5-3 176) 2356 5*2*3-6 177) 2357 2+7+3*5 178) 2358 8+2*(3+5) 179) 2359 2+3*9-5 180) 2366 (2+3)*6-6 181) 2367 3*(2*7-6) 182) 2368 3*(2+8)-6 183) 2369 9+3+2*6 184) 2377 7+3+2*7 185) 2378 (2+7)/3*8 186) 2379 3*(7-2)+9 187) 2388 3*(2*8-8) 188) 2389 8/2*(9-3) 189) 2399 9+2*3+9 190) 2444 2*(4+4+4) 191) 2445 4*(2+5)-4 192) 2446 2+6+4*4 193) 2447 (7-4)*2*4 194) 2448 (4/4+2)*8 195) 2449 4*(9-2)-4 196) 2455 4+2*(5+5) 197) 2456 5*(2+4)-6 198) 2457 (4-2)*(5+7) 199) 2458 (2*4-5)*8 200) 2459 (9-5)*(2+4)LuckySXyd2023-07-28 10:11:271
24点数学游戏 1456 怎么做
4/(1-5/6) =24大鱼炖火锅2023-07-28 10:11:112
【数学问题】某人沿电车路线行走。。。
(12+4)/2=8每12分钟有一辆电车从后面追上来,是追及过程,速度差,每4分钟有一辆电车迎面开过来,是相遇过程,是速度和,假定此人和电车都是匀速前进的,相加后,抵消掉人的速度,除以2就是答案黑桃花2023-07-28 10:10:012
求解几道七年级下的数学题,急
拌三丝2023-07-28 10:09:543
一道初一数学拓展题
这道题有处漏洞:如果这个人是运动的话,肯定会相对于某一车站越来越远,由于电车的运动规律是一定的,即速度一定。因此电车“从他身后驶向前面”和“从对面驶向后面”的时间是有变化的。因此此题应提供更多的条件,方可有准确的答案。肖振2023-07-28 10:09:532
一个关于人和电车的初一数学题
设两车距离为SS=(V车-V人)*6=(V车+V人)*2S=V人*6V车=V人*2t=S/V车=3分钟北营2023-07-28 10:09:531
一道数学题,要基本步骤,在线等答案
看不见图啊可桃可挑2023-07-28 10:09:532
一道数学题
(tv1+6v2)/v1=6(tv1-2v2)/v1=2得v1=2v2t=3韦斯特兰2023-07-28 10:09:273
数学问题 题目如下:‘
苏州马小云2023-07-28 10:09:262
问一道数学题目,我初三的了
让此人沿某一方向走6分钟,迎面碰上3辆车,再沿其反方向走6分钟,从后面追来1辆车,所以在这12分钟内,从1个方向共来了4辆车,所以发车间隔时间为12/4=3分钟苏萦2023-07-28 10:09:263
初二数学,用方程组解决,某人沿电车路线行走......
正确答案:6分钟理由:设行人速度X,电车苏杜y,发车间隔N12(y—X)=4(X+y)4(X+y)=NyX=0.5y解得N=6黑桃花2023-07-28 10:09:201
一道数学题
1/【(1/6+1/2)/2】=3(分钟)小白2023-07-28 10:09:193
数学问题
24.由题得:6(u1-u2)=2(u1+u2)3u1-3u2=u1+u2u1=2u26u2=tu16u2=tx2u2解得:t=3 25.(1)20分=1200秒,1200/20x10n=3000,解得n=5,10n=50,故有50条(2)九时到十一时为2个小时,2小时=7200秒,原来总的人数为7200/20x50x1.2=21600人,增加50%后人数为21600x(1+50%)=32400人是不是你写错了,是要求十一时开始游客一到D区入口处就可安检入园还是十二时?若是十一时,设需要增加通道数为m,则7200/20x(50x1.2+m)=32400,解得m=30,故需增加30个若是十二时,九时到十二时为3小时,即10800秒,你把7200换成10800再算就可以了人类地板流精华2023-07-28 10:09:191
初二数学题
水元素sl2023-07-28 10:09:183
石河子二小五年级下册数学期末试卷及答案
神啊、还真有人给你!佩服!!!!小孩子,好好学习,走正规大道才是出路!墨然殇2023-07-26 15:04:154
急!急!急!数学问题,快来回答!!!
(265-5)/2=130(225-5)/2=110(285-5)/2=140(130+110+140)/2=190190-130=60190-110=80190-140=50v=0.6*0.8*0.5=0.2411.48-8.92=2.567-3=42.56/4=0.648.92-0.64*(3-1)=7.64凡尘2023-07-26 14:46:583
数学问题,快回答我,追50分,要有过程
铁血嘟嘟2023-07-26 14:46:183
数学问题 今天快点回答 100分
解:根据题意可得,去年第一季度的生产量为:(18+0.7)÷(111%-1)=170(万吨)今年第二季度的生产量为:(170+1.2)÷80%=211(万吨)所以今年第二季度比去年第一季度多生产的数量为:211-170=41(万吨)答:今年第二季度比去年第一季度多生产41万吨。(若列一个综合算式则为:[(18+0.7)÷(111%-1)+1.2]÷80%-(18+0.7)÷(111%-1)=41(万吨))赠人玫瑰,手留余香!~楼主以后有不会的题的话,可以直接百度信息给我~~此后故乡只2023-07-26 14:46:151
回答问题!数学的,快,就可得20分,但要准确哦!
为什么不做悬赏分?凡尘2023-07-26 14:45:274
数学是通向数学大门的钥匙谁说的
培根说的。弗 培根(F.Bacon)曾提出“知识就是力量”的响亮口号,同时还说“数学是打开科学大门的钥匙”。参考资料:http://www.math168.com/sxxs/636.htm水元素sl2023-07-26 14:39:581
初一数学《教与学》一元一次方程的解法(三)
含字母系数的一元一次方程 问:什么叫方程?什么叫一元一次方程? 答:含有未知数的等式叫做方程,含有一个未知数,并且未知数的次数是1的方程叫做一元一次方程. 例 解方程2x-1 3-10x+1 6=2x+1 4-1 解 去分母,方程两边都乘以12,得 4(2x-1)-2(10x+1)=3(2x+1)-12, 去括号,得 8x-4-20x-2=6x+3-12 移项,得 8x-20x-6x=3-12+4+2, 合并同类项,得 -18x=-3, 方程两边都除以-18,得 x=3 18 ,即 x=1 6. 二、新课 1.含字母系数的一元一次方程的解法. 我们把一元一次方程用一般的形式表示为 ax=b (a≠0), 其中x表示未知数,a和b是用字母表示的已知数,对未知数x来说,字母a是x的系数,叫做字母系数,字母b是常数项. 如果一元一次方程中的系数用字母来表示,那么这个方程就叫做含有字母系数的一元一次方程. 以后如果没有特别说明,在含有字母系数的方程中,一般用a,b,c等表示已知数,用x,y,z等表示未知数. 含字母系数的一元一次方程的解法与只含有数字系数的一元一次方程的解法相同.按照解一元一次方程的步骤,最后转化为ax=b(a≠0)的形式.这里应注意的是,用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零.如(m-2)x=3,必须当m-2≠0时,即m≠2时,才有x=3 m-2 .这是含有字母系数的方程和只含有数字系数的方程的重要区别. 例1 解方程ax+b2=bx+a2(a≠b). 分析:这个方程中的字母a,b都是已知数,x是未知数,是一个含有字母系数的一元一次方程.这里给出的条件a≠b,是使方程有解的关键,在解方程的过程中要运用这个条件. 解 移项,得 ax-bx=a2-b2, 合并同类项,得 (a-b)x=a2-b2. 因为a≠b,所以a-b≠0.方程两边都除以a-b,得 x=a2-b2 a-b=(a+b)(a-b) a-b, 所以 x=a+b. 指出: (1)题中给出a≠b,在解方程过程中,保证了用不等于零的式子a-b去除方程的两边后所得的方程的解是原方程的解; (2)如果方程的解是分式形式时,一般要化成最简分式或整式. 例2 x-b a=2-x-a b(a+b≠0). 观察方程结构的特点,请说出解方程的思路. 答:这个方程中含有分式,可先去分母,把方程转化成含有字母系数的一元一次方程的一般形式.在方程变形中,要应用已知条件a+b≠0. 解 去分母,方程两边都乘以ab得 b(x-b)=2ab-a(x-a), 去括号,得 bx-b2=2ab-ax+a2,移项,得 ax+bx=a2+2ab+b2 合并同类项,得 (a+b)x=(a+b)2. 因为a+b≠0,所以x=a+b. 指出:ab≠0是一个隐含条件,这是因为字母a,b分别是方程中的两个分式的分母,因此a≠0,b≠0,所以ab≠0. 例3 解关于x的方程 a2+(x-1)ax+3a=6x+2(a≠2,a≠-3). 解 把方程变形为,得 a2x-a2+ax+3a=6x+2, 移项,合并同类项,得 a2x+ax-6x=a2-3a+2, (a2+a-6)x=a2-3a+2, (a+3)(a-2)x=(a-1)(a-2). 因为a≠2,a=-3,所以a+3≠0,a-2≠0.方程两边都除以(a+3)(a-2),得 x=a-1 a+3. 2.公式变形. 在物理课中我们学习了很多物理公式,如果q表示燃烧值,m表示燃料的质量,那么完全燃烧这些燃料产生的热量W,三者之间的关系为W=qm,又如,用Q表示通过异体横截面的电量,用t表示时间,用I表示通过导体电流的大小,三者之间的关系为I=Qt.在这个公式中,如果用I和t来表示Q,也就是已知I和t,求Q,就得到Q=It;如果用I和Q来表示t,也就是已知I和Q,,求t,就得到t=QI. 像上面这样,把一个公式从一种形式变换成另一种形式,叫做公式变形. 把公式中的某一个字母作为未知量,其它的字母作为已知量,求未知量,就是解含字母系数数的方程.也就是说,公式变形实际就是解含有字母系数的方程.公式变形不但在数学,而且在物理和化学等学科中非常重要,我们要熟练掌握公式变形的技能. 例4 在公式υ=υo+at中,已知υ,υo,a,且a≠0,求t. 分析:已知υ,υo和a,求t,也就是把υ,υo和a作为已知量,解关于未知量t的字母系数的方程. 解 移项,得 υ-υ0=at. 因为a≠0,方程两边都除以a,得 t=υ-υo a. 例5 在梯形面积公式s=12(a+b)h中,已知a,b,h为正数. (1)用s,a,b表示h;(2)用S,b,h表示a.问:(1)和(2)中哪些是已知量?哪些是未知量;答:(1)中S,a,b是已知量,h是未知量;(2)中s,b,h都是知已量,a是未知量. 解 (1)方程两边都乘以2,得 2s=(a+b)h. 因为a与b都是正数,所以a≠0,b≠0,即a+b≠0,方程两边都除以a+b,得 h=2sa+b. (2)方程两边都乘以2,得 2s=(a+b)h, 整理,得 ah=2s-bh. 因为h为正数,所以h≠0,方程两边都除以h,得 a=2s-bh h. 指出:题是解关于h的方程,(a+b)可看作是未知量h的系数,在运算中(a+b)h不要展开. 三、课堂练习 1.解下列关于x的方程: (1)3a+4x=7x-5b; (2)xa-b=xb-a(a≠b); (3)m2(x-n)=n2(x-m)(m2≠n2); (4)ab+xa=xb-ba(a≠b); (5)a2x+2=a(x+2)(a≠0,a≠1).1.含字母系数的一元一次方程与只含有数字系数的一元一次方程的解法相同,但应特别注意,用含有字母的式子去乘或除方程的两边时,这个式子的值不能为零.我们所举的例题及课堂练习的题目中所给出的条件,都保证了这一点. 2.对于公式变形,首先要弄清公式中哪些是已知量,哪个是未知量.把已知量作为字母系数,求未知量的过程就是解关于字母系数的方程的过程.此后故乡只2023-07-26 14:23:382
人教版初一数学上册一元一次方程怎么解?谢谢
买991的计算机,直接按就行LuckySXyd2023-07-26 14:20:344
一元一次方程的解法 初中数学解题技巧
很多 初中生 对一元一次方程的解法不太了解,下面我为大家总结了一元一次方程的解法,仅供大家参考。 解一元一次方程的基本步骤 1.去分母:在方程两边都乘以各分母的最小公倍数; 2.去括号:先去小括号,再去中括号,最后去大括号; 3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边; 4.合并同类项:把方程化成ax=b(a≠0)的形式; 5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解。 一元一次方程介绍 一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。 一元一次方程解题技巧 无括号、无分母类型解题步骤 1.移项(未知数移到等号的左边,数字移到等号的右边,移项之前先变符号) 2.合并同类项(俗称"找朋友") 3.化未知数系数为1(注意两边同时乘除同一个数以及符号是否需要变化) 有括号类型解题步骤 1.去括号 2.移项 3.合并同类项 4.化未知数系数为1 有分母类型解题步骤 1.去括号 2.移项 3.合并同类项 4.化未知数系数为1 数学一元一次方程拓展资料 一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。 一元一次方程最早见于约公元前1600年的古埃及时期。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。 16世纪, 数学 家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。 以上就是我为大家总结的一元一次方程的解法,仅供参考,希望对大家有所帮助。凡尘2023-07-26 14:18:591
数学换算公式米千米厘米分米毫米 你知道怎么换算吗
1、1千米(km)=1000米(m)。1米(m)=10分米(dm)。1分米(dm)=10厘米(cm)。1厘米(cm)=10毫米(mm)。1千米(km)=1000米(m)=10000分米(dm)=100000厘米(cm)=1000000毫米(mm)。 2、国际单位制中,长度的标准单位是“米”,用符号“m”表示。1960年第十一届国际计量大会规定:“米的长度等于氪-86原子的2P10和5d1能级之间跃迁的辐射在真空中波长的1650763.73倍”。 3、常用的长度单位有:公里、千米(km)、分米(dm)、厘米(cm)、毫米(mm)、微米(μm)、纳米(nm)、皮米(pm)、飞米(fm) 。meira2023-07-26 14:12:071
北回归线的纬度与北极圈的纬度相加是多少也就是数学上的什么关系?
北回归线的纬度与北极圈的纬度是互余的。北回归线的纬度是23度26分,北极圈的纬度是66度34分,两者的和是90度。再也不做站长了2023-07-26 14:08:021
古代的数学有小数点吗
小数点的由来 中国自古以来就使用十进位制计数法,一些实用的计量单位也采用十进制,所以很容易产生十进分数,即小数的概念.第一个将这一概念用文字表达出来的是魏晋时代的刘徽.他在计算圆周率的过程中,用到尺、寸、分、厘、毫、秒 、忽等7个单位;对于忽以下的更小单位则不再命名,而统称为“微数”.到了宋、元时代,小数概念得到了进一步的普及和更明确的表示.杨辉《日用算法》(1262年)载有两斤换算 的口诀:“一求,隔位六二五;二求,退位一二五”,即1/16=0?0625;2/16=0?125.这里的“隔位”、“退位”已含有指示小数点位置的意义.秦九韶则将单位注在表示整数部分个位的筹码之下,例如:—Ⅲ—Ⅱ表示13.12寸 寸是世界上最早的小数表示法.在欧洲和伊斯兰国家,古巴比伦的六十进制长期以来居于统治地位,一些经典科学著作都是采用六十进制,因此十进制小数的概念迟迟没有发展起来.15世纪中亚地区的阿尔卡西(?1429)是中国以外第一个应用小数的人.欧洲数学家直到16世纪才开始考虑小数,其中较突出的是荷兰人斯蒂文(1548~1620),他在《论十进制》(1583年)一书中明确表示法.例如把5.714记为:5◎7①1②4③或5,7"1""4""".而第一个把小数表示成今日世界通用的形式的人是德国数学家克拉维斯(1537~1612),他在《星盘》(1593年)一书中开始使用小数点作为整数部分与小数部分之间的分界符.而中国比欧洲早采用了三百多年.北营2023-07-26 13:58:011
数学中最重要的五个数(0、1、π、e、i)分别是谁在什么时候发现的?
0这个数据说是由印度人在约公元5世纪时发明,i---欧拉左迁2023-07-26 13:55:431
圆周率是我们必备的数学工具,关于圆周率的历史资料都有哪些呢?
圆周率是指圆的周长和直径的比值,圆的周长和直径的比是6+2√3:3。而3.1415926......本是正6x2u207f边率在代替圆周率。正6x2u207f边形的周长与过中心点的对角线的比叫做正6x2u207f边率。真颛2023-07-26 13:53:125
男生数学很差,英语很好,适合报国际经济与贸易 专业吗?
数学不好是个问题,考虑外语和兴趣,可以的韦斯特兰2023-07-26 13:41:564
国家开放大学机械设计制造及其自动化有英语和数学吗
有。国家开放大学机械设计制造及其自动化是一个本科专业,该专业需要学习英语和数学,因此有。数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。韦斯特兰2023-07-26 13:26:241
一道数学题 用罗尔中值定理证明:方程3ax^2+2bx-(a+b)=0在(0,1)内有实根. 设F
F(X)是原函数f(x)=3ax^2+2bx-(a+b)的积分...LZ是不是看错了... 罗尔定理如果函数f(x)满足:(1)在闭区间[a,b]上连续(其中a不等于b);(2)在开区间(a,b)内可导;(3)在区间端点处的函数值相等,即f(a)=f(b), 那么在区间(a,b)内至少存在一点ξ(a<ξ<b),使得f"(ξ)=0.要证的是f(x)=0不是F(X)=0完全符合定理....善士六合2023-07-26 13:24:133
【大一数学分析】求证广义罗尔微分中值定理
这最基本的定理,课本上应该有证明的撒,打这种符号最讨厌的说bikbok2023-07-26 13:23:425
高等数学,涉及罗尔中值定理的证明题
NM是假定的一个辅助变量,它的值可以任意变动,当NM取特殊值0时,罗尔中值定理刚好和拉格朗日中值定理形式是一致的;当NM非0时用函数式来说明拉格朗日中值定理是罗尔中值定理的广泛一般形式。这是用函数的思想,把满足特殊形式的规律推广到一般形式的过程。豆豆staR2023-07-26 13:20:472
六年级三个班举行数学竞赛,一班参赛占中的4代表什么
总人数是不变量,设为单位"1"一班人数是 1/3二班人数是 (1-1/3)×11÷(11+13)=11/36三班人数是 1-1/3-11/36=13/36总人数是 8÷(13/36-11/36)=144人一班参加人数是144×1/3=48人小白2023-07-26 13:19:121
小学三年级数学题目:运动前,1分钟心跳约几下,呼吸约几次。跑50米运动后,1分钟心跳约几下,呼吸约
实际跑一次不就知道了无尘剑 2023-07-26 12:03:344
三年级数学男孩跑50米,运动后1分钟心跳约多少下,呼吸多少次?女孩跳绳80下,运动后1分钟心跳约多
自己做实验啊人类地板流精华2023-07-26 12:02:022
高中数学区间?
[1,3]是从1到3,[3,1]是不存在的。小菜G的建站之路2023-07-26 11:52:493
数学中的区间
在数学里,区间通常是指这样的一类实数集合:如果x和y是两个在集合里的数,那么,任何x和y之间的数也属于该集合。例如,由符合0 ≤ x ≤ 1的实数所构成的集合,便是一个区间,它包含了0、1,还有0和1之间的全体实数。其他例子包括:实数集,负实数组成的集合等。 区间在积分理论中起着重要作用,因为它们作为最"简单"的实数集合,可以轻易地给它们定义"长度"、或者说"测度"。然后,"测度"的概念可以拓,引申出博雷尔测度,以及勒贝格测度。 区间也是区间算术的核心概念。区间算术是一种数值CarieVinne 2023-07-26 11:51:531
高中数学中的区间是什么意思
高中数学中的区间是这个意思:它表示某一个数在某一个范围内例如:a∈(-5,+3)表示a在-5与+3这个开区间内(a≠-5且a≠+3)凡尘2023-07-26 11:51:371
请问,什么叫数学的区间,开区间,闭区间,半区间呢?
所谓区间就是从什么到什么。给你举个例子吧!如(2,3)就表示2到3之间的数。开区间就是如上面表示,而闭区间就是[2,3]这样表示。开区间是没有等号的,而闭区间才有。希望可以帮到你!wpBeta2023-07-26 11:50:411
数学中的区间表示
uff08-2uff0c3uff09此后故乡只2023-07-26 11:48:423
数学中的区间
数学术语 在高中数学中集合一章出现了区间的内容. 区间是数集的一种表示形式,因此,区间的表示形式与集合的表示形式相同。具体如下: 一、有限区间 (1) 开区间 例如:{x|a<x<b}=(a,b) (2) 闭区间 例如:{x|a≤x≤b}=[a,b] (3) 半开半闭区间 例如:{x|a<x≤b}=(a,b] {x|a≤x<b}=[a,b) b-a成为区间长度。 有限区间在数学几何上的意义表现为:一条有限长度的线段。 注:这里假设a<b 二、无限区间 例如: { x | a≤x } = [a, +∞ ) { x | a<x } = ( a,+ ∞ ) { x | x≤a } = ( -∞, a ] { x | x<a } = ( -∞, a ) { x | x∈ R } = ( -∞, +∞ ) 无限区间在数学几何上的意义表现为:一条直线。 注:这里假设a<b 三、高等数学中有:区间分析,区间数学凡尘2023-07-26 11:48:051
数学上什么是区间
可以视为取值范围比如x∈[3,4]表示3≤x≤4 因为两端有等号,所以叫闭区间 x∈(3,4)表示3<x<4 因为两端没等号,所以叫开区间 x∈(3,4]表示3<x≤4 因为一端有等号,一端没等号,所以叫半开半闭区间写法是左小右大,不等"()",等"[]"水元素sl2023-07-26 11:47:231
数学中集合区间是什么意思
数学中集合区间就是指:集合中的元素的取值范围。凡尘2023-07-26 11:47:233
高中数学中的区间是什么意思
高中数学中的区间是这个意思:它表示某一个数在某一个范围内例如:a∈(-5,+3)表示a在-5与+3这个开区间内(a≠-5且a≠+3)铁血嘟嘟2023-07-26 11:46:562
初三数学题
主干1 x的平方加x等于90 计算下来负值舍 就剩下9了 肯定对凡尘2023-07-26 11:20:103
急急急!简单数学题
x+x^2+x^3+...+x^y=90用等比数列求和公式,求得y=2x=9凡尘2023-07-26 11:19:525
初三一元二次方程数学应用题
设每个长X个 X+X^2+1=91,解得 x1=-10 舍去 x2=9 所以每个枝干长出9个小分支拌三丝2023-07-26 11:19:523
初三简单数学题..
9.1 x x2=91二元一次方程无尘剑 2023-07-26 11:19:522
初三数学题,急
9个wpBeta2023-07-26 11:19:512
数学数学
由题意设每个支干长出的小分支的数目是x个,每个小分支又长出x个分支,则又长出x2个分支,则共有x2+x+1个分支,即可列方程求得x的值.解:设每个支干长出的小分支的数目是x个,根据题意列方程得:x2+x+1=91,解得:x=9或x=-10(不合题意,应舍去);∴x=9;答:每支支干长出9个小分支. 就像6×6一样,理解不了吗?Jm-R2023-07-26 11:19:381
数学问题
1人类地板流精华2023-07-26 11:19:373
数学薄利多销问题。
1.某种植物的主干长出若干树木的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支共73,每个枝干长出多少小分支? 2.两个数的和为8,积为9.75,求这两个数。 3.一个两位数,个位数字与十位数字之和为5,把个位数字与十位数字对调,所得的两位数与原来的两位数的乘积为736,求原来的两位数.北有云溪2023-07-26 11:19:361
九年级上册数学22.3. 第4题、要解法!!!!
题目呢?FinCloud2023-07-26 11:19:092
人教版 九年级数学上册 一元二次方程课后题求答案 第48页第4题 急急急
9西柚不是西游2023-07-26 11:19:085