- 大鱼炖火锅
-
圆周率是一个极其驰名的数。从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代一代的数学家为此献出了自己的智慧和劳动。回顾历史,人类对 π 的认识过程,反映了数学和计算技术发展情形的一个侧面。 π 的研究,在一定程度上反映这个地区或时代的数学水平。德国数学史家康托说:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。”直到19世纪初,求圆周率的值应该说是数学中的头号难题。为求得圆周率的值,人类走过了漫长而曲折的道路,它的历史是饶有趣味的。我们可以将这一计算历程分为几个阶段。
实验时期
通过实验对 π 值进行估算,这是计算 π 的的第一阶段。这种对 π 值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出的。在古代世界,实际上长期使用 π =3这个数值。最早见于文字记载的有基督教《圣经》中的章节,其上取圆周率为3。这一段描述的事大约发生在公元前950年前后。其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值。在我国刘徽之前“圆径一而周三”曾广泛流传。我国第一部《周髀算经》中,就记载有圆“周三径一”这一结论。在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七”,意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7。这正反映了早期人们对圆周率 π 和√2 这两个无理数的粗略估计。东汉时期官方还明文规定圆周率取3为计算面积的标准。后人称之为“古率”。
早期的人们还使用了其它的粗糙方法。如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值。或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率的稍好些的值。如古埃及人应用了约四千年的 4 (8/9)2 = 3.1605。在印度,公元前六世纪,曾取 π= √10 = 3.162。在我国东、西汉之交,新朝王莽令刘歆制造量的容器――律嘉量斛。刘歆在制造标准容器的过程中就需要用到圆周率的值。为此,他大约也是通过做实验,得到一些关于圆周率的并不划一的近似值。现在根据铭文推算,其计算值分别取为3.1547,3.1992,3.1498,3.2031比径一周三的古率已有所进步。人类的这种探索的结果,当主要估计圆田面积时,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。
几何法时期
凭直观推测或实物度量,来计算 π 值的实验方法所得到的结果是相当粗略的。
真正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他是科学地研究这一常数的第一个人,是他首先提出了一种能够借助数学过程而不是通过测量的、能够把 π 的值精确到任意精度的方法。由此,开创了圆周率计算的第二阶段。
圆周长大于内接正四边形而小于外切正四边形,因此 2√2 < π < 4 。
当然,这是一个差劲透顶的例子。据说阿基米德用到了正96边形才算出他的值域。
阿基米德求圆周率的更精确近似值的方法,体现在他的一篇论文《圆的测定》之中。在这一书中,阿基米德第一次创用上、下界来确定 π 的近似值,他用几何方法证明了“圆周长与圆直径之比小于 3+(1/7) 而大于 3 + (10/71) ”,他还提供了误差的估计。重要的是,这种方法从理论上而言,能够求得圆周率的更准确的值。到公元150年左右,希腊天文学家托勒密得出 π =3.1416,取得了自阿基米德以来的巨大进步。
在我国,首先是由数学家刘徽得出较精确的圆周率。公元263年前后,刘徽提出著名的割圆术,得出 π =3.14,通常称为“徽率”,他指出这是不足近似值。虽然他提出割圆术的时间比阿基米德晚一些,但其方法确有着较阿基米德方法更美妙之处。割圆术仅用内接正多边形就确定出了圆周率的上、下界,比阿基米德用内接同时又用外切正多边形简捷得多。另外,有人认为在割圆术中刘徽提供了一种绝妙的精加工办法,以致于他将割到192边形的几个粗糙的近似值通过简单的加权平均,竟然获得具有4位有效数字的圆周率 π =3927/1250 =3.1416。而这一结果,正如刘徽本人指出的,如果通过割圆计算得出这个结果,需要割到3072边形。这种精加工方法的效果是奇妙的。这一神奇的精加工技术是割圆术中最为精彩的部分,令人遗憾的是,由于人们对它缺乏理解而被长期埋没了。
恐怕大家更加熟悉的是祖冲之所做出的贡献吧。对此,《隋书·律历志》有如下记载:“宋末,南徐州从事祖冲之更开密法。以圆径一亿为丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。密率:圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。”
这一记录指出,祖冲之关于圆周率的两大贡献。其一是求得圆周率
3.1415926 < π < 3.1415927
其二是,得到 π 的两个近似分数即:约率为22/7;密率为355/113。
他算出的 π 的8位可靠数字,不但在当时是最精密的圆周率,而且保持世界记录九百多年。以致于有数学史家提议将这一结果命名为“祖率”。
这一结果是如何获得的呢?追根溯源,正是基于对刘徽割圆术的继承与发展,祖冲之才能得到这一非凡的成果。因而当我们称颂祖冲之的功绩时,不要忘记他的成就的取得是因为他站在数学伟人刘徽的肩膀上的缘故。后人曾推算若要单纯地通过计算圆内接多边形边长的话,得到这一结果,需要算到圆内接正12288边形,才能得到这样精确度的值。祖冲之是否还使用了其它的巧妙办法来简化计算呢?这已经不得而知,因为记载其研究成果的著作《缀术》早已失传了。这在中国数学发展史上是一件极令人痛惜的事。
祖冲之的这一研究成果享有世界声誉:巴黎“发现宫”科学博物馆的墙壁上著文介绍了祖冲之求得的圆周率,莫斯科大学礼堂的走廊上镶嵌有祖冲之的大理石塑像,月球上有以祖冲之命名的环形山……
对于祖冲之的关于圆周率的第二点贡献,即他选用两个简单的分数尤其是用密率来近似地表示 π 这一点,通常人们不会太注意。然而,实际上,后者在数学上有更重要的意义。
密率与 π 的近似程度很好,但形式上却很简单,并且很优美,只用到了数字1、3、5。数学史家梁宗巨教授验证出:分母小于16604的一切分数中,没有比密率更接近 π 的分数。在国外,祖冲之死后一千多年,西方人才获得这一结果。
可见,密率的提出是一件很不简单的事情。人们自然要追究他是采用什么办法得到这一结果的呢?他是用什么办法把圆周率从小数表示的近似值化为近似分数的呢?这一问题历来为数学史家所关注。由于文献的失传,祖冲之的求法已不为人知。后人对此进行了各种猜测。
让我们先看看国外历史上的工作,希望能够提供出一些信息。
1573年,德国人奥托得出这一结果。他是用阿基米德成果22/7与托勒密的结果377/120用类似于加成法“合成”的:(377-22) / (120-7) = 355/113。
1585年,荷兰人安托尼兹用阿基米德的方法先求得:333/106 < π < 377/120,用两者作为 π 的母近似值,分子、分母各取平均,通过加成法获得结果:3 ((15+17)/(106+120) = 355/113。
两个虽都得出了祖冲之密率,但使用方法都为偶合,无理由可言。
在日本,十七世纪关孝和重要著作《括要算法》卷四中求圆周率时创立零约术,其实质就是用加成法来求近似分数的方法。他以3、4作为母近似值,连续加成六次得到祖冲之约率,加成一百十二次得到密率。其学生对这种按部就班的笨办法作了改进,提出从相邻的不足、过剩近似值就近加成的办法,(实际上就是我们前面已经提到的加成法)这样从3、4出发,六次加成到约率,第七次出现25/8,就近与其紧邻的22/7加成,得47/15,依次类推,只要加成23次就得到密率。
钱宗琮先生在《中国算学史》(1931年)中提出祖冲之采用了我们前面提到的由何承天首创的“调日法”或称加权加成法。他设想了祖冲之求密率的过程:以徽率157/50,约率22/7为母近似值,并计算加成权数x=9,于是 (157 + 22×,9) / (50+7×9) = 355/113,一举得到密率。钱先生说:“冲之在承天后,用其术以造密率,亦意中事耳。”
另一种推测是:使用连分数法。
由于求二自然数的最大公约数的更相减损术远在《九章算术》成书时代已流行,所以借助这一工具求近似分数应该是比较自然的。于是有人提出祖冲之可能是在求得盈 二数之后,再使用这个工具,将3.14159265表示成连分数,得到其渐近分数:3,22/7,333/106,355/113,102573/32650…
最后,取精确度很高但分子分母都较小的355/113作为圆周率的近似值。至于上面圆周率渐近分数的具体求法,这里略掉了。你不妨利用我们前面介绍的方法自己求求看。英国李约瑟博士持这一观点。他在《中国科学技术史》卷三第19章几何编中论祖冲之的密率说:“密率的分数是一个连分数渐近数,因此是一个非凡的成就。”
我国再回过头来看一下国外所取得的成果。
1150年,印度数学家婆什迦罗第二计算出 π= 3927/1250 = 3.1416。1424年,中亚细亚地区的天文学家、数学家卡西著《圆周论》,计算了3×228=805,306,368边内接与外切正多边形的周长,求出 π 值,他的结果是:
π=3.14159265358979325
有十七位准确数字。这是国外第一次打破祖冲之的记录。
16世纪的法国数学家韦达利用阿基米德的方法计算 π 近似值,用 6×216正边形,推算出精确到9位小数的 π 值。他所采用的仍然是阿基米德的方法,但韦达却拥有比阿基米德更先进的工具:十进位置制。17世纪初,德国人鲁道夫用了几乎一生的时间钻研这个问题。他也将新的十进制与早的阿基米德方法结合起来,但他不是从正六边形开始并将其边数翻番的,他是从正方形开始的,一直推导出了有262条边的正多边形,约4,610,000,000,000,000,000边形!这样,算出小数35位。为了记念他的这一非凡成果,在德国圆周率 π 被称为“鲁道夫数”。但是,用几何方法求其值,计算量很大,这样算下去,穷数学家一生也改进不了多少。到鲁道夫可以说已经登峰造极,古典方法已引导数学家们走得很远,再向前推进,必须在方法上有所突破。
17世纪出现了数学分析,这锐利的工具使得许多初等数学束手无策的问题迎刃而解。 π 的计算历史也随之进入了一个新的阶段。
分析法时期
这一时期人们开始摆脱求多边形周长的繁难计算,利用无穷级数或无穷连乘积来算 π 。
1593年,韦达给出
这一不寻常的公式是 π 的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它表明仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出 π 值。
接着有多种表达式出现。如沃利斯1650年给出:
1706年,梅钦建立了一个重要的公式,现以他的名字命名:
再利用分析中的级数展开,他算到小数后100位。
这样的方法远比可怜的鲁道夫用大半生时间才抠出的35位小数的方法简便得多。显然,级数方法宣告了古典方法的过时。此后,对于圆周率的计算像马拉松式竞赛,纪录一个接着一个:
1844年,达塞利用公式:
算到200位。
19世纪以后,类似的公式不断涌现, π 的位数也迅速增长。1873年,谢克斯利用梅钦的一系列方法,级数公式将 π 算到小数后707位。为了得到这项空前的纪录,他花费了二十年的时间。他死后,人们将这凝聚着他毕生心血的数值,铭刻在他的墓碑上,以颂扬他顽强的意志和坚韧不拔的毅力。于是在他的墓碑上留下了他一生心血的结晶: π 的小数点后707位数值。这一惊人的结果成为此后74年的标准。此后半个世纪,人们对他的计算结果深信不疑,或者说即便怀疑也没有办法来检查它是否正确。以致于在1937年巴黎博览会发现馆的天井里,依然显赫地刻着他求出的 π 值。
又过了若干年,数学家弗格森对他的计算结果产生了怀疑,其疑问基于如下猜想:在 π 的数值中,尽管各数字排列没有规律可循,但是各数码出现的机会应该相同。当他对谢克斯的结果进行统计时,发现各数字出现次数过于参差不齐。于是怀疑有误。他使用了当时所能找到的最先进的计算工具,从1944年5月到1945年5月,算了整整一年。1946年,弗格森发现第528位是错的(应为4,误为5)。谢克斯的值中足足有一百多位全都报了销,这把可怜的谢克斯和他的十五年浪费了的光阴全部一笔勾销了。
对此,有人曾嘲笑他说:数学史在记录了诸如阿基米德、费马等人的著作之余,也将会挤出那么一、二行的篇幅来记述1873年前谢克斯曾把 π 计算到小数707位这件事。这样,他也许会觉得自己的生命没有虚度。如果确实是这样的话,他的目的达到了。
人们对这些在地球的各个角落里作出不懈努力的人感到不可理解,这可能是正常的。但是,对此做出的嘲笑却是过于残忍了。人的能力是不同的,我们无法要求每个人都成为费马、高斯那样的人物。但成为不了伟大的数学家,并不意味着我们就不能为这个社会做出自己有限的贡献。人各有其长,作为一个精力充沛的计算者,谢克斯愿意献出一生的大部分时光从事这项工作而别无报酬,并最终为世上的知识宝库添了一小块砖加了一个块瓦。对此我们不应为他的不懈努力而感染并从中得到一些启发与教育吗?
1948年1月弗格森和伦奇两人共同发表有808位正确小数的 π 。这是人工计算 π 的最高记录。
计算机时期
1946年,世界第一台计算机ENIAC制造成功,标志着人类历史迈入了电脑时代。电脑的出现导致了计算方面的根本革命。1949年,ENIAC根据梅钦公式计算到2035(一说是2037)位小数,包括准备和整理时间在内仅用了70小时。计算机的发展一日千里,其记录也就被频频打破。
1973年,有人就把圆周率算到了小数点后100万位,并将结果印成一本二百页厚的书,可谓世界上最枯燥无味的书了。1989年突破10亿大关,1995年10月超过64亿位。1999年9月30日,《文摘报》报道,日本东京大学教授金田康正已求到2061.5843亿位的小数值。如果将这些数字打印在A4大小的复印纸上,令每页印2万位数字,那么,这些纸摞起来将高达五六百米。来自最新的报道:金田康正利用一台超级计算机,计算出圆周率小数点后一兆二千四百一十一亿位数,改写了他本人两年前创造的纪录。据悉,金田教授与日立制作所的员工合作,利用目前计算能力居世界第二十六位的超级计算机,使用新的计算方法,耗时四百多个小时,才计算出新的数位,比他一九九九年九月计算出的小数点后二千六百一十一位提高了六倍。圆周率小数点后第一兆位数是二,第一兆二千四百一十一亿位数为五。如果一秒钟读一位数,大约四万年后才能读完。
不过,现在打破记录,不管推进到多少位,也不会令人感到特别的惊奇了。实际上,把 π 的数值算得过分精确,应用意义并不大。现代科技领域使用的 π 值,有十几位已经足够。如果用鲁道夫的35位小数的 π 值计算一个能把太阳系包围起来的圆的周长,误差还不到质子直径的百万分之一。我们还可以引美国天文学家西蒙·纽克姆的话来说明这种计算的实用价值:
“十位小数就足以使地球周界准确到一英寸以内,三十位小数便能使整个可见宇宙的四周准确到连最强大的显微镜都不能分辨的一个量。”
那么为什么数学家们还象登山运动员那样,奋力向上攀登,一直求下去而不是停止对 π 的探索呢?为什么其小数值有如此的魅力呢?
这其中大概免不了有人类的好奇心与领先于人的心态作怪,但除此之外,还有许多其它原因。
1、它现在可以被人们用来测试或检验超级计算机的各项性能,特别是运算速度与计算过程的稳定性。这对计算机本身的改进至关重要。就在几年前,当Intel公司推出奔腾(Pentium)时,发现它有一点小问题,这问题正是通过运行 π 的计算而找到的。这正是超高精度的 π 计算直到今天仍然有重要意义的原因之一。
2、 计算的方法和思路可以引发新的概念和思想。虽然计算机的计算速度超出任何人的想象,但毕竟还需要由数学家去编制程序,指导计算机正确运算。实际上,确切地说,当我们把 π 的计算历史划分出一个电子计算机时期时,这并非意味着计算方法上的改进,而只是计算工具有了一个大飞跃而已。因而如何改进计算技术,研究出更好的计算公式,使公式收敛得更快、能极快地达到较大的精确度仍是数学家们面对的一个重要课题。在这方面,本世纪印度天才数学家拉马努扬得出了一些很好的结果。他发现了许多能够迅速而精确地计算 π 近似值的公式。他的见解开通了更有效地计算 π 近似值的思路。现在计算机计算 π 值的公式就是由他得到的。至于这位极富传奇色彩的数学家的故事,在这本小书中我们不想多做介绍了。不过,我希望大家能够明白 π 的故事讲述的是人类的胜利,而不是机器的胜利。
3、还有一个关于 π 的计算的问题是:我们能否无限地继续算下去?答案是:不行!根据朱达偌夫斯基的估计,我们最多算1077位。虽然,现在我们离这一极限还相差很远很远,但这毕竟是一个界限。为了不受这一界限的约束,就需要从计算理论上有新的突破。前面我们所提到的计算,不管用什么公式都必须从头算起,一旦前面的某一位出错,后面的数值完全没有意义。还记得令人遗憾的谢克斯吗?他就是历史上最惨痛的教训。
4、于是,有人想能否计算时不从头开始,而是从半截开始呢?这一根本性的想法就是寻找并行算法公式。1996年,圆周率的并行算法公式终于找到,但这是一个16进位的公式,这样很容易得出的1000亿位的数值,只不过是16进位的。是否有10进位的并行计算公式,仍是未来数学的一大难题。
5、作为一个无穷数列,数学家感兴趣的把 π 展开到上亿位,能够提供充足的数据来验证人们所提出的某些理论问题,可以发现许多迷人的性质。如,在 π 的十进展开中,10个数字,哪些比较稀,哪些比较密? π 的数字展开中某些数字出现的频率会比另一些高吗?或许它们并非完全随意?这样的想法并非是无聊之举。只有那些思想敏锐的人才会问这种貌似简单,许多人司空见惯但却不屑发问的问题。
6、数学家弗格森最早有过这种猜想:在 π 的数值式中各数码出现的概率相同。正是他的这个猜想为发现和纠正向克斯计算 π 值的错误立下了汗马功劳。然而,猜想并不等于现实。弗格森想验证它,却无能为力。后人也想验证它,也是苦于已知的 π 值的位数太少。甚至当位数太少时,人们有理由对猜想的正确性做出怀疑。如,数字0的出现机会在开始时就非常少。前50位中只有1个0,第一次出现在32位上。可是,这种现象随着数据的增多,很快就改变了:100位以内有8个0;200位以内有19个0;……1000万位以内有999,440个0;……60亿位以内有599,963,005个0,几乎占1/10。
其他数字又如何呢?结果显示,每一个都差不多是1/10,有的多一点,有的少一点。虽然有些偏差,但都在1/10000之内。
7、人们还想知道: π 的数字展开真的没有一定的模式吗?我们希望能够在十进制展开式中通过研究数字的统计分布,寻找任何可能的模型――如果存在这种模型的话,迄今为止尚未发现有这种模型。同时我们还想了解: π 的展开式中含有无穷的样式变化吗?或者说,是否任何形式的数字排列都会出现呢?著名数学家希尔伯特在没有发表的笔记本中曾提出下面的问题: π 的十进展开中是否有10个9连在一起?以现在算到的60亿位数字来看,已经出现:连续6个9连在一起。希尔伯特的问题答案似乎应该是肯定的,看来任何数字的排列都应该出现,只是什么时候出现而已。但这还需要更多 π 的数位的计算才能提供切实的证据。
8、在这方面,还有如下的统计结果:在60亿数字中已出现连在一起的8个8;9个7;10个6;小数点后第710150位与3204765位开始,均连续出现了七个3;小数点52638位起连续出现了14142135这八个数字,这恰是的前八位;小数点后第2747956位起,出现了有趣的数列876543210,遗憾的是前面缺个9;还有更有趣的数列123456789也出现了。
如果继续算下去,看来各种类型的数字列组合可能都会出现。
拾零: π 的其它计算方法
在1777年出版的《或然性算术实验》一书中,蒲丰提出了用实验方法计算 π 。这个实验方法的操作很简单:找一根粗细均匀,长度为 d 的细针,并在一张白纸上画上一组间距为 l 的平行线(方便起见,常取 l = d/2),然后一次又一次地将小针任意投掷在白纸上。这样反复地投多次,数数针与任意平行线相交的次数,于是就可以得到 π 的近似值。因为蒲丰本人证明了针与任意平行线相交的概率为 p = 2l/πd 。利用这一公式,可以用概率方法得到圆周率的近似值。在一次实验中,他选取 l = d/2 ,然后投针2212次,其中针与平行线相交704次,这样求得圆周率的近似值为 2212/704 = 3.142。当实验中投的次数相当多时,就可以得到 π 的更精确的值。
1850年,一位叫沃尔夫的人在投掷5000多次后,得到 π 的近似值为3.1596。目前宣称用这种方法得到最好结果的是意大利人拉兹瑞尼。在1901年,他重复这项实验,作了3408次投针,求得 π 的近似值为3.1415929,这个结果是如此准确,以致于很多人怀疑其实验的真伪。如美国犹他州奥格登的国立韦伯大学的L·巴杰就对此提出过有力的质疑。
不过,蒲丰实验的重要性并非是为了求得比其它方法更精确的 π 值。蒲丰投针问题的重要性在于它是第一个用几何形式表达概率问题的例子。计算 π 的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。
在用概率方法计算 π 值中还要提到的是:R·查特在1904年发现,两个随意写出的数中,互素的概率为6/π2。1995年4月英国《自然》杂志刊登文章,介绍英国伯明翰市阿斯顿大学计算机科学与应用数学系的罗伯特·马修斯,如何利用夜空中亮星的分布来计算圆周率。马修斯从100颗最亮的星星中随意选取一对又一对进行分析,计算它们位置之间的角距。他检查了100万对因子,据此求得 π 的值约为3.12772。这个值与真值相对误差不超过5%。
通过几何、微积分、概率等广泛的范围和渠道发现 π ,这充分显示了数学方法的奇异美。 π 竟然与这么些表面看来风马牛不相及的试验,沟通在一起,这的确使人惊讶不已。
- 左迁
-
一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125。 同一时期的古埃及文物,莱因德数学纸草书(Rhind Mathematical Papyrus)也表明圆周率等于分数16/9的平方,约等于3.1605。埃及人似乎在更早的时候就知道圆周率了。 英国作家 John Taylor (1781–1864) 在其名著《金字塔》(《The Great Pyramid: Why was it built, and who built it?》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。公元前800至600年成文的古印度宗教巨著《百道梵书》(Satapatha Brahmana)显示了圆周率等于分数339/108,约等于3.139。
公元263年,中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。他说“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”,包含了求极限的思想。刘徽给出π=3.141024的圆周率近似值,刘徽在得圆周率=3.14之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现3.14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积。
- 铁血嘟嘟
-
π 的 历 史
圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π 已成为圆周率的专用符号, π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。
在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 π值改为 (约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π 值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。
公元460年,南朝的祖冲之利用刘徽的割圆术,把π 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π ,极大地简化了计算,这种思想比西方也早一千多年。
祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π 值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为卢道夫数。
之后,西方数学家计算 π的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出808位小数的π 值。电子计算机问世后, π的人工计算宣告结束。20世纪50年代,人们借助计算机算得了10万位小数的 π,70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的π 值已到4.8亿位。π 的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。
- ardim
-
古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的William Shanks,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。可惜,后人发现,他从第528位开始就算错了。把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用Ludolph Van Ceulen算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率, 多数是为了验证计算机的计算能力,还有,就是为了兴趣。
- 真颛
-
圆周率是指圆的周长和直径的比值,圆的周长和直径的比是6+2√3:3。
而3.1415926......本是正6x2u207f边率在代替圆周率。正6x2u207f边形的周长与过中心点的对角线的比叫做正6x2u207f边率。
圆周率有0吗?
3.141592653589793238462643383279502884197169399375105820974944这前60位就三个零所以说肯定是有零的哦U0001f60a2023-07-26 08:35:013
圆周率有0吗
因圆周率有无数个数字,可有0。我举一个例子,假如圆周率是6.3286549086543里面也有0,要是说真圆周率里面有个叫37510的。2023-07-26 08:35:202
π的小数点后有零出现吗
没有2023-07-26 08:35:295
圆周率里面有没有零,为什么?
首先你要自己圆周率是怎么得出来的。2023-07-26 08:35:483
为什么圆周率里有0还能算的下去
圆周率是一个圆周长与直径的比,现在已经把圆周率算到很多亿位,中间商个0但是还有一个数,补0继续算。勇于探索是好事,但是要提有价值的问题2023-07-26 08:35:571
圆周率里面有没有零,为什么?
当然有2023-07-26 08:36:124
圆周率为什么会出现连续的0? 在平常的除法中是很难见到连续的0出现的。
你那书是真的吗?2023-07-26 08:36:364
π的第几位是5.2,0?
π等于多少?圆周率500位3.14159 26535 89793 23846 2643383279 50288 41971 69399 3751058209 74944 59230 78164 0628620899 86280 34825 34211 7067982148 08651 32823 06647 0938446095 50582 23172 53594 0812848111 74502 84102 70193 8521105559 64462 29489 54930 3819644288 10975 66593 34461 2847564823 37867 83165 27120 1909145648 56692 34603 48610 4543266482 13393 60726 02491 4127372458 70066 06315 58817 4881520920 96282 92540 91715 3643678925 90360 01133 05305 4882046652 13841 46951 94151 1609433057 27036 57595 91953 0921861173 81932 61179 31051 1854807446 23799 62749 56735 1885752724 89122 79381 83011 94912圆周率501-1000位98336 73362 44065 66430 8602139494 63952 24737 19070 2179860943 70277 05392 17176 2931767523 84674 81846 76694 0513200056 81271 45263 56082 7785771342 75778 96091 73637 1787214684 40901 22495 34301 4654958537 10507 92279 68925 8923542019 95611 21290 21960 8640344181 59813 62977 47713 0996051870 72113 49999 99837 2978049951 05973 17328 16096 3185950244 594552023-07-26 08:36:543
圆周率里会不会出现连续的10个0?
分类: 教育/学业/考试 >> 学习帮助 解析: 有可能,在圆周率小数点以后,0~9每个数出现的可能是相等的,每个都是10%,所以说一个数是0的可能性是10%,那么连续十个数出现是0也是有可能的,只是可能性不是很大2023-07-26 08:37:131
圆周率里有连续4个0吗?
圆周率里应该没有吧2023-07-26 08:37:272
圆周率小数点后有可能出现连续5个0吗
不,在小数点后172330850位出现了连续8个0,你可以随便查一个网站2023-07-26 08:37:483
圆周率里有0213吗?
圆周率π是一个无限不循环小数,所以在小数位的各种排列组合里一定存在 0213 这几个数字。2023-07-26 08:38:011
圆周率是什么?
圆周率是"圆的周长与直径的比"。但是圆的内接正6x2ⁿ边形的周长与过中心点的对角线(也是它外接圆的直径)的比就不是圆周率了,而是正6x2ⁿ边率。因为圆的周长与直径的比是6+2√3比3,所以圆周率是6+2√3/3或(约等于3.1547005......)。而所谓的圆周率π=3.1415926......原本是正6x2ⁿ边形的周长与过中心点的对角线的比应叫正6x2ⁿ边率。因为任一个正6x2ⁿ边形的周长都小于它外接圆的周长,所以正6x2ⁿ边率3.1415926......必然小于圆周率(3.1547005......)。2023-07-26 08:38:118
π的问题,为什么π的小数点后有0了,还有0还无限不循环??数理上有0
楼上说得对2023-07-26 08:38:482
圆周率有多少数字
圆周率是无理数,故这个数是不循环小数,有无数多个数字。2023-07-26 08:38:595
π和0的关系
0和任何数之间都有关系,0也可以用来衡量两个数相除得到的值,还可以用来作为基准测量两个数之间的差距。2023-07-26 08:39:151
圆周率是无限不循环小数吗?
圆周率是无理数,无理数就是10进制下的无限不循环小数。圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。圆周率用希腊字母π(读作[pau026a])表示,是一个常数(约等于3.141592653),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592653便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。2023-07-26 08:39:271
圆周率是多少?有几位数?
3.14159265352023-07-26 08:39:5812
都说圆周率包含着无数种小数组合,它真的有这么神奇吗?
圆周率现在看来的确很神秘的2023-07-26 08:40:2710
圆周率π有没有可能根本不是无理数?
圆周率的确是无理数,因为通过电脑计算到数十亿位都发现是无理数,而且圆周率为概率事件,很大可能是无理数2023-07-26 08:42:125
圆周率是怎么算出来的?
每一个圆的圆周长大约是直径的三倍, 我们把这个「大约三倍」叫做「圆周率」,为了计算方便, 在计算时我们可以把圆周率当成3来算。 无论是大圆还是小圆, 只要是圆, 每个圆的圆周长都大概是直径长的三倍,换句话说,「圆周率=圆周长÷直径长」, 而且这个答案无论是大圆或者是小圆都一样。我们的祖先很早就发现了这件奇妙的事, 而且从古到今, 有许多的科学家一直不断地努力想找出「圆周率」到底确切的数字是多少。们找到了吗?可以说找到了, 也可以说还没找到, 因为「圆周长÷直径长」的答案,到目前为止, 仍然是一个永远除不尽的无穷小数。 圆周率最早的记录,是出自公元前一六五0年,一位名叫亚米斯(Ahmes)的埃及抄写员,他记录了当时一位名叫赖因德古本的人,他以「化圆为方」的方法算出圆周率的值为, 约3.16049...... 所谓的「化圆为方」是一个古老的数学问题,简单的说就是想办法画出一个和某个圆有著相同面积的正方形。古人会沉迷在这样的问题是有原因的:对古人来说,圆是自然界神秘力量的象徵。太阳、月亮是圆的,推动时最省力的物体形状是圆形;而正方形正好是我们人类用来计算、切割最基础的一种形状,代表著人类有限的能力,如果能够找一个方法画出和圆等面积的正方形,似乎也代表著以人力征服自然。这个看似简单的问题,一直到21世纪的今天,却仍然没有解答。 公元前3世纪,著名的希腊科学家阿基米德(就是那位从浴缸中跳出,并大喊:「我找到了!」,然后裸体跑去找国王的人),以圆内接96边形计算出圆周率大概是3.141……左右。这里要大概说明一下古人是怎麼算圆周率的。 如果大家认真算过课本和习作的题目,你会发现其实要准确的量出一个圆的直径并不容易,想要准确的量出一个圆的圆周长,更是难上加难,因此古人在计算「圆周长 ÷直径长」时,并不是真的去量某一个圆的直径和圆周长,而是以下图的方式算出圆周长。古人是在圆里面画一个圆内接正多边形,由下图你可以发现,红色的多边形的边数愈多,画出来的多边形便愈是接近圆形,古人便是利用这种方法,准确地以「数学方法」算出多边形的周长,然后再来和直径相除得到圆周率。这里要特别强调的是「多边形的周长」是用数学方法算出来的,不是用尺去量出来的,至於那是什麼样的数学方法,就等著各位自己去研究喽!依照这种方法,公元五世纪时中国人祖冲之以圆内接24576边形计算出圆周率约为=3.1415929……,和目前公认的圆周率相比,它的误差还不到八亿分之一。这个圆周率是当时全世界最准的圆周率,而这个记录,一直到一千年以后,才被法国的律师兼业余数学家韦达所打破。(你可以按这里参考关於圆周率的历史) 当然之后由於电脑的发明,人类得以在计算上求得速度和准确度的突破,但是即使电脑再强大,「圆周长 ÷直径长」仍然是一个连电脑也算不完的无穷小数。圆周率算得完吗?大概是不可能算得完了,因为早有科学家证明「圆周率」是一个「无理数」,至於之前谈到的「画圆为方」的问题,恐怕也是无解了,因为更有科学家证明「圆周率」还是个「超越数」。2023-07-26 08:43:032
圆周率被算尽了吗
如果圆周率被算尽了,那么所做的电器设备将会全部消失。如果圆周率(π)被算尽那么就证明圆周率(π)是有理数而不是一个无理数。而所谓的“圆”就完全等于“正多边形”,就不存在真正意义上的圆,圆的光滑表面就是无数的小线段。并且也侧面映证了曲线也是不存在的,之前所认为的曲线也都是错误的,几何学中的图形将会变得混乱不堪。导致微积分中对于曲线覆盖面积进行的计算方式也是错的,微积分将会被颠覆,对数学领域将会发生翻天覆地的影响。并且一旦证实微积分是错误的,那么现代人们利用微积分所做的集成电路将不存在,所做的电器设备将会全部消失。圆周率的简介圆周率是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正数x。圆周率用希腊字母π(读作paɪ)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用九位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。以上内容参考百度百科-圆周率2023-07-26 08:43:211
电脑怎么算圆周率
问题一:怎么样用电脑计算圆周率π 一、中国圆周率公式的分类 外国圆周率公式为高精度圆周率的计算立下了汗马功劳,并为许多数学人所熟习,但并不适合普通人使用,下面向数学爱好者和中学生们介绍一组中国人自己研究的普及型圆周率公式: 一基本公式: ⑴π=180°sinθMθ 、 ⑵π=180°M(θ cscθ)、 ⑶π=180°tgθMθ 、 ⑷π=180°M(θ ctgθ) 、 (θ→0°θ>0°) 此类公式以圆内接或外切直角三角形或正多边形的边所对应的圆心角为计算依据,外形简单,计算方便,对圆周率的概括比较全面系统;同时,既是1弧度公式,又是1角度公式。 二派生公式: ⑸π=(n/2)*sin(360°Mn) 、 ⑹π=1M((2/n)*csc(360°Mn)) 、 ⑺π=(n/2)*tg(360°Mn) 、 ⑻π=1M((2/n)*ctg(360°Mn)) 、 (n→∞, n≥5) 此类派生公式可以由基本公式导出或单独推导,并以圆内接或外切直角三角形数量为计算依据,是专用性、针对性较强的圆周率公式。 三派生公式: ⑼π=nsin(180°Mn) 、 ⑽π=n/csc(180°Mn) 、 ⑾π=ntg(180°Mn) 、 ⑿π=n/ctg(180°Mn) 、 (n→∞,n≥3) 此类派生公式可以由基本公式导出或单独推导,并以圆内接或外切正多边形的边数为计算依据,是中国割圆术公式的典型代表。 四专业公式: ⑴π=2^n√(2-√(2+…√2+)…) ⑵π=3×2^n√(2-√(2+…√(2+√3)…) ⑶π=2×2^n√(2-√(2+…√2+)…)/√(2+√(2+…√2+)…) ⑷π=6×2^n√(2-√(2+…√3)…)/√(2+√(2+…√3)…) (n→∞,根式中有n个2) 专业公式可由基本公式或倍边公式推导,它们是割圆术公式的最高形式,是以圆内接或外切正四边形或正六边形为基础,不断分割至无穷,从而得到适合专家们使用的表达式。 根据以上公式和三角函数间的关系,还可导出更为复杂一些的圆周率公式。 二、中国圆周率的计算 在圆周率的日常应用中,我们根本不需要对其进行计算,因为数学家已经计算好了,直接拿来运用即可;但对于数学爱好者和中学生来说,亲自动手计算圆周率,将会进一步加深对圆周率的理解。 在计算机发明以前,圆周率的计算主要是靠手工计算和其他简易工具的计算,今天我们可以直接运用计算机或计算器进行计算,计算器的精度一般在10位左右,计算机上的计算器精度一般在30或60位左右,如果需要数以万计、亿计的精度,则需要将三角函数原始公式代入,转换成专业公式并编制专用程序进行计算即可,这里只是简单介绍常规计算。 圆周率公式非常多,我们只取其中几个最简单的中国圆周率公式进行讲解: ⑴ π=180°sinθMθ 、 ⑵ π=180°tgθMθ 、 (θ→0°θ>0°) 一模拟计算正24576边形的圆周率(祖率) ∵ θ=180°M24576=0.007324219° ∴ ⑴ π=180°sinθMθ =180°×sin0.007324219°M0.007324219° =180°×0.0001278317363M0.007324219° =3.1415926 ∴ ⑵ π=180°tgθMθ =180°×tg0.007324219°M0.007324219° =180°×0.0001278317374M0.007......>> 问题二:怎么才能用家用电脑来计算圆周率 I AGREE WITH HER. 问题三:求一组能够让计算机计算圆周率的cmd命令 30分]@]@] echo off&setlocal enabledelayedexpansion echo %time% set /a a=10000,c=500 ::c是位数 (set /a a/=5,c=c/4*14-1 for /l %%a in (1 1 !c!) do set f[%%a]=!a! for /l %%i in (!c! -14 0) do ( for /l %%j in (%%i -1 1) do ( set /a d+=f[%%j]*%a%,f[%%j]=d%%(%%j*2+1^),d=d/(%%j*2+1^)*%%j ) set /a c=a+d/%a%,a=d%%%a%+%a%,d=0 set /p=!c:~-4! ) ) 问题四:测试电脑的性能都让它跑圆周率吗 怎么让电脑跑圆周率呢 跑圆周率只是测试CPU性能 我给你一个软件dl.pconline/...1 问题五:怎么利用圆周率测试电脑速度 计算圆周率基本上测试不出电脑的性能,但你可以试一下。 以下是一个计算圆周率的C程序 算法是用泰勒公式计算反正切值。在命令行不跟参数执行该程序则使用Gauss公式计算前1000位圆周率的值,如果带一个命令行参数,则该值为要计算的位数。如果还有第二个命令行参数,则使用Stomer公式计算,可作为验算。因为该程序只涉及到纯数学计算,可以在Linux、Unix、Windows等操作系统下编译并运行。当时写这个程序时,int是2个字节的,现在大多数的C编译器int都是4个字节,不过这不影响程序的正确性。 #include #include main(int argc, char * argv[]) { long * pi, * t, m, n, r, s; int t0[][3] = {48, 32, 20, 24, 8, 4}, k0[][3] = {1, 1, 0, 1, 1, 1}; int n0[][3] = {18, 57, 239, 8, 57, 239}, d, i, j, k, p, q; d = (argc > 1) ? (((i = atoi(argv[1])) 2) ? 1 : 0; printf(%s , Nature (R) Pi value pute Program (C) Tue 1999.11.30); printf(pi= %s%d * arctg(1/%d) s %d * arctg(1/%d) %s %d * arctg(1/%d) [%s] , k0[q][0] ? : -, t0[q][0], n0[q][0], k0[q][1] ? + : -, t0[q][1], n0[q][1], k0[q][2] ? + : -, t0[q][2], n0[q][2], q ? Stomer : Gauss); if ((t = (long *)calloc((d += 5) + 1, sizeof(long))) == NULL) return 1; if ((pi = (long *)calloc(d + 1, sizeof(long))) == NULL) return 2; for (i = d; i >= 0; i--) pi[i] = 0; for (p = 0; p = 0; i--) t[i] = 0; for (r = 0, i = j; i >= 0; i--) { r = (m = 10 * r + t[i]) % n; t[i] = m / n; k ? (pi[i] += t[i]) : (pi[i] -= t[i]); } while (j > 0 && t[j] == 0) j--; for (k = !k, s = 3......>> 问题六:现代计算机是如何计算圆周率的? 圆周率是一个极其驰名的数。从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代一代的数学家为此献出了自己的智慧和劳动。回顾历史,人类对 π 的认识过程,反映了数学和计算技术发展情形的一个侧面。 π 的研究,在一定程度上反映这个地区或时代的数学水平。德国数学史家康托说:历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。直到19世纪初,求圆周率的值应该说是数学中的头号难题。为求得圆周率的值,人类走过了漫长而曲折的道路,它的历史是饶有趣味的。我们可以将这一计算历程分为几个阶段。 实验时期 通过实验对 π 值进行估算,这是计算 π 的的第一阶段。这种对 π 值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出的。在古代世界,实际上长期使用 π =3这个数值。最早见于文字记载的有基督教《圣经》中的章节,其上取圆周率为3。这一段描述的事大约发生在公元前950年前后。其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值。在我国刘徽之前圆径一而周三曾广泛流传。我国第一部《周髀算经》中,就记载有圆周三径一这一结论。在我国,木工师傅有两句从古流传下来的口诀:叫做:周三径一,方五斜七,意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7。这正反映了早期人们对圆周率 π 和√2 这两个无理数的粗略估计。东汉时期官方还明文规定圆周率取3为计算面积的标准。后人称之为古率。 早期的人们还使用了其它的粗糙方法。如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值。或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率的稍好些的值。如古埃及人应用了约四千年的 4 (8/9)2 = 3.1605。在印度,公元前六世纪,曾取 π= √10 = 3.162。在我国东、西汉之交,新朝王莽令刘歆制造量的容器DD律嘉量斛。刘歆在制造标准容器的过程中就需要用到圆周率的值。为此,他大约也是通过做实验,得到一些关于圆周率的并不划一的近似值。现在根据铭文推算,其计算值分别取为3.1547,3.1992,3.1498,3.2031比径一周三的古率已有所进步。人类的这种探索的结果,当主要估计圆田面积时,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。 几何法时期 凭直观推测或实物度量,来计算 π 值的实验方法所得到的结果是相当粗略的。 真正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他是科学地研究这一常数的第一个人,是他首先提出了一种能够借助数学过程而不是通过测量的、能够把 π 的值精确到任意精度的方法。由此,开创了圆周率计算的第二阶段。 圆周长大于内接正四边形而小于外切正四边形,因此 2√2 < π < 4 。 当然,这是一个差劲透顶的例子。据说阿基米德用到了正96边形才算出他的值域。 阿基米德求圆周率的更精确近似值的方法,体现在他的一篇论文《圆的测定》之中。在这一书中,阿基米德第一次创用上、下界来确定 π 的近似值,他用几何方法证明了圆周长与圆直径之比小于 3+(1/7) 而大于 3 + (10......>> 问题七:如何用计算机(电脑)计算π const ARRSIZE=1010,DISPCNT=1000; 定义数组大小,显示位数 char x[ARRSIZE],z[ARRSIZE]; x[0] x[1] .x[2] x[3] x[4] .x[ARRSIZE-1] int a=1,b=3,c,d,Run=1,Cnt=0; memset(x,0,ARRSIZE); memset(z,0,ARRSIZE); x[1] = 2; z[1] = 2; while(Run && (++Cnt0; i--) { c = z[i]*a + d; z[i] = c % 10; d = c / 10; } z/=b; d = 0; for(int i=0; i0; i--) { c = x[i] + z[i]; x[i] = c%10; x[i-1] += c/10; Run |= z[i]; } a++; b+=2; } Memo1->Text = AnsiString().sprintf(计算了 %d 次 ,Cnt); Memo1->Text = Memo1->Text + AnsiString().sprintf(Pi=%d%d. ,x[0],x[1]); for(int i=0; iText = Memo1->Text + ; Memo1->Text = Memo1->Text + (int)x[i+2]; }2023-07-26 08:43:381
圆周率是怎么计算出来的啊?
圆周率是用割圆术得到的,在一个圆形中画出各种内接正多边形,边数越多越接近圆形,通过计算正多边形,来推算出圆周率。2023-07-26 08:43:504
π是有理数吗
π不是有理数。下面为详细解析。1、π的定义和基本性质π(圆周率),是一个代表着圆形周长与直径比值的数学常数。π的值约等于3.14159265358979323846...。π是一个无限不循环小数,因此它不可表示为任何分数形式,即不能写成一个整数与一个有理数的商的形式。2、什么是有理数有理数是指可以表示为两个整数的比值a/b(b≠0)的实数。其中,a称为分子,b称为分母,它们都是整数。例如,1、3/5、-2/3等都是有理数。3、π不是有理数的证明方法一假设π是有理数,可表示为a/b的形式,其中a、b均为整数。考虑π的几何含义是圆周率,二倍半径乘圆弧就等于圆的周长。根据π的定义,它等于圆周长C和直径D的比值,即π=C/D。根据这个公式,推导出D=2r,C=π*D=2πr。因为r是有理数,而C和π是无理数,所以2πr是无理数。然而,它也可以表示为C的形式,即2πr=C=a/b,因此π必定是无理数。4、π不是有理数的证明方法二假设π是有理数,因为π>0,所以可以取最简分数形式,即a/b,其中a、b互质(即分子和分母没有公共因子)。然后,把π的值代入到这个等式中,可以得到一个新的等式a/b=π,移项可得a=bπ。因此,如果π是有理数,那么它可以写成整数和带π的形式。但是,π是无限不循环小数,不可能像有理数一样写成精确的分数形式,因此π不可能是有理数。5、总结以上是关于π是否是有理数的详细解析。π是一个无限不循环小数,不能表示为任何分数形式,因此它不是有理数。这个结论是通过反证法推导出来的,也从圆周率的几何定义上推算证明了 π的无理性。2023-07-26 08:44:201
兀的圆周率到底有多少?
数值是唯一的并且是无限无规律的数字。2023-07-26 08:45:069
圆周率是怎么计算出来的啊
任意一个圆的周长都是它直径的三倍多一些。这是一个固定值,我们把它叫做圆周率用圆的周长除以直径就是圆周率2023-07-26 08:45:388
圆周率有结尾吗
没有2023-07-26 08:46:146
圆周率是有理数吗
圆周率不是有理数。整数和分数统称为有理数,圆周率不是整数,目前的计算水平也不能把它写成一个分数;从小数的角度讲,有理数是有限小数或者是无限循环小数,而无理数是无限不循环小数,圆周率是无限不循环小数,所以属无理数。 什么是有理数 有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。 整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。 有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。 什么是无理数 无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。2023-07-26 08:46:381
圆周率兀是有理数吗
兀是不有理数,不能表达成分数形式。π是无理数,属于无限不循环小数。 无理数概念 无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。 有理数概念 有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。 整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。2023-07-26 08:46:571
圆周率有什么意义?
如果在分析学里π可以严格地定义为满足sinx=0的最小正实数x,那么请问自然数n的无穷大有极限吗?(回答肯定无极限);如果n的无穷大无极限,那么sinx≠0。圆周率有“圆的(曲线)周长与直径的比计算推出的比值(6+2√3)/3”意义,并非“正6x2u207f边形的(折线)周长与过中心点的对角线的比计算推出的比值3.1415926......意义”。正6x2u207f边形的(折线)周长与过中心点的对角线的比计算推出的比值3.1415926......属于正6x2u207f边率。至今人们还在一直借用正6x2u207f边率3.1415926......来替代圆周率3.1547005383......。2023-07-26 08:47:132
圆周率是一个定值吗?圆周率是怎么得来的?
关于圆的公式:1、圆的周长公式:C=2πr (r半径)2、圆的面积公式:S=πr3、半圆的周长公式:C=πr+2r4、半圆的面积公式:S=πr/25、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^26、圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0(和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2)圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫作圆的切线,这个唯一的公共点叫作切点.以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r.2023-07-26 08:47:272
圆周率有0吗
圆周率有零详细介绍圆周率圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。圆周率用希腊字母π(读作[pau026a])表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用九位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。1665年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。2019年3月14日,谷歌宣布圆周率现已到小数点后31.4万亿位。2021年8月17日,美国趣味科学网站报道,瑞士研究人员使用一台超级计算机,历时108天,将著名数学常数圆周率π计算到小数点后62.8万亿位,创下该常数迄今最精确值记录。2023-07-26 08:47:471
为什么圆周率里有0还能算的下去?
因为圆周率是个无限小数。无限小数中可出现0。举个例子:5.8746305,它就和圆周率一样是个无限小数,但是它中间出现0,并不代表已经算完了,像上面我举的例子,中间出现0,下面还是有无限的数字。圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.141592653),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592653便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。π的由来介绍:π最早发源于希腊词汇περιφρεια(peripheria),即边缘,边界之意。尽管四大古文明中早有它的身影,π真正作为一个通用常数被定义仍然要回溯到17世纪。1748年,数学家欧拉通过在他的著作《无穷小分析引论》中定义并使用π,才真正将它带进了数学界的认识中。可能是因为定义简单以及在数学公式中随处可见,π在流行文化中的出现频率及地位远远高于其他数学常数。2023-07-26 08:47:551
为什么圆周率里有0还能算的下去?
因为圆周率是个无限小数。无限小数中可出现0。举个例子:5.8746305,它就和圆周率一样是个无限小数,但是它中间出现0,并不代表已经算完了,像上面我举的例子,中间出现0,下面还是有无限的数字。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592653便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。π的由来介绍:π最早发源于希腊词汇περιφρεια(peripheria),即边缘,边界之意。尽管四大古文明中早有它的身影,π真正作为一个通用常数被定义仍然要回溯到17世纪。1748年,数学家欧拉通过在他的著作《无穷小分析引论》中定义并使用π,才真正将它带进了数学界的认识中。可能是因为定义简单以及在数学公式中随处可见,π在流行文化中的出现频率及地位远远高于其他数学常数。2023-07-26 08:48:151
为什么圆周率里有0还能算的下去?
因为圆周率是个无限小数。无限小数中可出现0。举个例子:5.8746305,它就和圆周率一样是个无限小数,但是它中间出现0,并不代表已经算完了,像上面我举的例子,中间出现0,下面还是有无限的数字。π的由来π最早发源于希腊词汇περιφρεια(peripheria),即边缘,边界之意。尽管四大古文明中早有它的身影,π真正作为一个通用常数被定义仍然要回溯到17世纪。1748年,数学家欧拉通过在他的著作《无穷小分析引论》中定义并使用π,才真正将它带进了数学界的认识中。可能是因为定义简单以及在数学公式中随处可见,π在流行文化中的出现频率及地位远远高于其他数学常数。2023-07-26 08:48:371
圆周率小数点后面可能连续出现0吗?为什么?
3.14159265358979323846264338327950288419716939937510…圆周率是有0的2023-07-26 08:48:583
圆周率里会不会出现连续的10个0?
因为圆周率=周长/直径,它是经测量得出的结果,要证明会不会出现连续的10个0,我看非要先作一个绝对标准的圆。2023-07-26 08:49:172
圆周率的小数点后有多少个零?
1π=3.14,2π=6.28,3π=9.42,4π=12.56,5π=15.7,6π=18.84,7π=21.98,8π=25.12,9π=28.26,10π=31.411π=35.45,12π=37.68,13π=40.83,14π=43.96,15π=47.1,16π=50.24,17π=53.38,18π=56.52,19π=59.66,20π=62.821π=65.94,22π=69.08,23π=72.22,24π=75.36,25π=78.5,26π=81.64,27π=84.78,28π=87.92,29π=91.06,30π=94.231π=97.34,32π=100.48,33π=103.62,34π=106.76,35π=109.9,36π=113.04,37π=116.18,38π=119.32,39π=122.46,40π=125.641π=128.74,42π=131.88,43π=135.02,44π=138.16,45π=141.3,46π=144.44,47π=147.58,48π=150.72,49π=153.86,50π=15751π=160.14,52π=163.28,53π=166.42,54π=169.56,55π=172.7,56π=175.84,57π=172.98,58π=182.12,59π=185.26,60π=188.461π=191.54,62π=194.68,63π=197.82,64π=200.96,65π=204.1,66π=207.24,67π=210.38,68π=213.52,69π=216.66,70π=219.871π=222.94,72π=226.08,73π=229.22,74π=232.36,75π=235.5,76π=238.64,77π=241.78,78π=244.92,79π=248.06,80π=251.281π=254.34,82π=257.48,83π=260.62,84π=263.76,85π=266.9,86π=270.04,87π=273.18,88π=276.32,89π=279.46,90π=282.691π=285.74,92π=288.88,93π=292.02,94π=295.16,95π=298.3,96π=301.44,97π=304.58,98π=307.72,99π=310.86,100π=3142023-07-26 08:49:251
圆周率是正数吗?是有理数吗
圆周率一般用π表示,在一般情况下,圆周率都取近似值3.14。正数指的是大于0的数,π大于0,所以圆周率是正数。因为π是无限不循环小数,所以它不是有理数,但有绝对值。圆周率是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。2023-07-26 08:49:351
圆周率π是什么数
圆周率π是无理数。证明如下:假设π是有理数,则π=a/b,(a,b为自然数)令f(x)=(x^n)[(a-bx)^n]/(n!)若0<x<a/b,则0<f(x)<(π^n)(a^n)/(n!)0<sinx<1以上两式相乘得:0<f(x)sinx<(π^n)(a^n)/(n!)当n充分大时,,在[0,π]区间上的积分有0<∫f(x)sinxdx <[π^(n+1)](a^n)/(n!)<1 …………(1)又令:F(x)=f(x)-f"(x)+[f(x)]^(4)-…+[(-1)^n][f(x)]^(2n),(表示偶数阶导数)由于n!f(x)是x的整系数多项式,且各项的次数都不小于n,故f(x)及其各阶导数在x=0点处的值也都是整数,因此,F(x)和F(π)也都是整数。又因为d[F"(x)sinx-F(x)conx]/dx=F"(x)sinx+F"(x)cosx-F"(x)cosx+F(x)sinx=F"(x)sinx+F(x)sinx=f(x)sinx所以有:∫f(x)sinxdx=[F"(x)sinx-F(x)cosx],(此处上限为π,下限为0)=F(π)+F(0)上式表示∫f(x)sinxdx在[0,π]区间上的积分为整数,这与(1)式矛盾。所以π不是有理数,又它是实数,故π是无理数。2023-07-26 08:50:031
圆周率的计算方法是什么?有多少种计算方法?
圆周率圆周率是指平面上圆的周长与直径之比 (ratio of the circumference of a circle to the diameter) 。用符号π(读音:pài)表示。中国古代有圆率、圆率、周等名称。(在工程上π≈3.14)计算圆周率古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的William Shanks,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。可惜,后人发现,他从第528位开始就算错了。把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用Ludolph Van Ceulen算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率, 多数是为了验证计算机的计算能力,还有,就是为了兴趣。圆周率的计算方法古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其它公式和由这些经典公式衍生出来的公式,就不一一列举了。1、 Machin公式 [这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。Machin.c 源程序 还有很多类似于Machin公式的反正切公式。在所有这些公式中,Machin公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,Machin公式就力不从心了。下面介绍的算法,在PC机上计算大约一天时间,就可以得到圆周率的过亿位的精度。这些算法用程序实现起来比较复杂。因为计算过程中涉及两个大数的乘除运算,要用FFT(Fast Fourier Transform)算法。FFT可以将两个大数的乘除运算时间由O(n2)缩短为O(nlog(n))。2、 Ramanujan公式1914年,印度数学家Srinivasa Ramanujan在他的论文里发表了一系列共14条圆周率的计算公式,这是其中之一。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。1989年,David & Gregory Chudnovsky兄弟将Ramanujan公式改良成为:这个公式被称为Chudnovsky公式,每计算一项可以得到15位的十进制精度。1994年Chudnovsky兄弟利用这个公式计算到了4,044,000,000位。Chudnovsky公式的另一个更方便于计算机编程的形式是:3、AGM(Arithmetic-Geometric Mean)算法 Gauss-Legendre公式:这个公式每迭代一次将得到双倍的十进制精度,比如要计算100万位,迭代20次就够了。1999年9月Takahashi和Kanada用这个算法计算到了圆周率的206,158,430,000位,创出新的世界纪录。4、Borwein四次迭代式:这个公式由Jonathan Borwein和Peter Borwein于1985年发表,它四次收敛于圆周率。这个公式简称BBP公式,由David Bailey, Peter Borwein和Simon Plouffe于1995年共同发表。它打破了传统的圆周率的算法,可以计算圆周率的任意第n位,而不用计算前面的n-1位。这为圆周率的分布式计算提供了可行性。1997年,Fabrice Bellard找到了一个比BBP快40%的公式:圆周率的计算历史时间 纪录创造者 小数点后位数前2000 古埃及人 1前1200 中国 1前500 圣经 1前250 Archimedes 3263 刘徽 5480 祖冲之 71429 Al-Kashi 141593 Romanus 151596 Ludolph Van Ceulen 201609 Ludolph Van Ceulen 351699 Sharp 711706 John Machin 1001719 De Lagny 127(112位正确)1794 Vega 1401824 Rutherford 208(152位正确)1844 Strassnitzky & Dase 2001847 Clausen 2481853 Lehmann 2611853 Rutherford 4401874 William Shanks 707(527位正确)20世纪后年 月 纪录创造者 所用机器 小数点后位数1946 Ferguson 6201947 1 Ferguson 7101947 9 Ferguson & Wrench 8081949 Smith & Wrench 1,1201949 Reitwiesner et al ENIAC 2,0371954 Nicholson & Jeenel NORC 3,0921957 Felton Pegasus 7,4801958 1 Genuys IBM 704 10,0001958 5 Felton Pegasus 10,0211959 Guilloud IBM 704 16,1671961 Shanks & Wrench IBM 7090 100,2651966 Guilloud & Filliatre IBM 7030 250,0001967 Guilloud & Dichampt CDC 6600 500,0001973 Guilloud & Bouyer CDC 7600 1,001,2501981 Miyoshi & Kanada FACOM M-200 2,000,0361982 Guilloud 2,000,0501982 Tamura MELCOM 900II 2,097,1441982 Tamura & Kanada HITACHI M-280H 4,194,2881982 Tamura & Kanada HITACHI M-280H 8,388,5761983 Kanada, Yoshino & Tamura HITACHI M-280H 16,777,2061985 10 Gosper Symbolics 3670 17,526,2001986 1 Bailey CRAY-2 29,360,1111986 9 Kanada & Tamura HITACHI S-810/20 33,554,4141986 10 Kanada & Tamura HITACHI S-810/20 67,108,8391987 1 Kanada, Tamura & Kubo et al NEC SX-2 134,217,7001988 1 Kanada & Tamura HITACHI S-820/80 201,326,5511989 5 Chudnovskys CRAY-2 & IBM-3090/VF 480,000,0001989 6 Chudnovskys IBM 3090 525,229,2701989 7 Kanada & Tamura HITACHI S-820/80 536,870,8981989 8 Chudnovskys IBM 3090 1,011,196,6911989 11 Kanada & Tamura HITACHI S-820/80 1,073,741,7991991 8 Chudnovskys 2,260,000,0001994 5 Chudnovskys 4,044,000,0001995 8 Takahashi & Kanada HITACHI S-3800/480 4,294,967,2861995 10 Takahashi & Kanada 6,442,450,9381997 7 Takahashi & Kanada 51,539,600,0001999 4 Takahashi & Kanada 68,719,470,0001999 9 Takahashi & Kanada HITACHI SR8000 206,158,430,0002002 Takahashi Team 1,241,100,000,0002023-07-26 08:50:275
有人会算圆周率吗?
由于直径是3个单位长与其对应圆的曲线周长是6+2√3个单位长(这是根据“圆面积s等于它直径d的三分之一平方的七倍”发现的)。为此,圆周率是我国西汉刘歆根据圆的曲线周长6+2√3与直径3的唯一一个比计算而来的唯一一个比值π=3.1547005383......。其余的比值都是正n边率。正n边形的折线周长3.1415936...与对角线1的n个比计算出来的n个比值叫做正n边率。2023-07-26 08:50:452
圆周率是一个无限不循环的小数,后面的位数有什么意义?
计算圆周率当然不是无用功了,而是检测超级计算机CPU的一种方法 此外的话,它还有助于发现新的算法或者帮助其他科学理论 等2023-07-26 08:51:205
圆周率前300位出现了几次0,1,2,3,4,5,6,7,8,9?从中可以发现什么?
无限不循环小数,,,,研究数字规律,还真看不出有何价值了。。。2023-07-26 08:52:102
圆周率到底有什么用?
圆周率是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。 古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。2023-07-26 08:52:424
π是有理数么
π是无理数,是无限不循环小数2023-07-26 08:53:0415
负π是负数吗
圆周率=3.1415.....当然是正数,不是负数如果说复数的话,当然是复数复述包括实数和虚数,圆周率是无理数,是实数范围内的,所以是复数2023-07-26 08:53:423
请问圆周率有没有尽头
2023-07-26 08:54:074
圆周率口诀表是什么?
圆周率口诀表是:3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6山巅一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐尔乐。4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7死珊珊,霸占二妻。 救吾灵儿吧! 不只要救妻, 一路救三舅, 救三妻。5 1 0 5 8 2 0 9 7 4 9 4 4 5 9 2 3 0 7吾一拎我爸,二拎舅(其实就是撕吾舅耳)三拎妻。8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6不要溜!司令溜,儿不溜!儿拎爸,久久不溜!2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7 9 8饿不拎,闪死爸,而吾真是饿矣!要吃人肉?吃酒吧!圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正实数x。圆周率用希腊字母π(读作[pau026a])表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用九位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。2023-07-26 08:54:401