代数

什么是罗素悖论?它在现代数学史上有何意义和影响?

把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有: P={A∣A∈A} Q={A∣A∉A} 问,Q∈P 还是 Q∈Q? 若Q∈P,那么根据第一类集合的定义,必有Q∈Q,但是Q中任何集合都有A∉A的性质,因为Q∈Q,所以Q¢Q,引出矛盾。若Q∈Q,根据第一类集合的定义,必有Q∈P,而显然P∩Q=∅,所以Q∉Q,还是矛盾。 这就是著名的“罗素悖论”。罗素悖论还有一些较为通俗的版本,如理发师悖论等。 1900年前后,在数学的集合论中出现了三个著名悖论,理发师悖论就是罗素悖论的一种通俗表达方式。此外还有康托尔悖论、布拉利—福尔蒂悖论。这些悖论特别是罗素悖论,在当时的数学界与逻辑界内引起了极大震动。触发了第三次数学危机。希望帮助到你,若有疑问,可以追问~~~祝你学习进步,更上一层楼!(*^__^*)
凡尘2023-05-21 22:10:431

抽象代数简介

在中学阶段就学习过集合,部分内容不再赘述。以下是交集、并集、差集的概念: 设 是一个集合,那么 的所有子集为成员构成的几何成为 是 幂集 ,记作 。 设 是两个集合,定义集合 称为 与 的 笛卡尔积 ,又称卡氏积,集合积。 集合 中元素个数称为集合 的 基数 ,记作 。如果 是无限的,则 ,称 是 无限集 ,否则是 有限集 。 集合中的元素相互之间可能有关系(也可能没有关系)。例如全校的学生构成一个集合,某些学生可能是同班同学,那么他们就有关系。 等价关系 ,类似于数集中的“等于”的关系,要求满足: 偏序关系 ,类似于数集中的“大于等于/小于等于”的关系,要求满足: 等价不一定是等于 例如一个学校的学生构成的集合,同班就是一种等价关系。甲乙同班,乙丙同班,那么甲丙同班…… 我们把和 都等价的元素构成的集合,称为 等价类 : 以 的所有等价类构成的集合,称为 关于等价关系 的 商集 。 定义:设 是一个非空集合,满足 那么称 为一个 半群 。 例如,正整数的集合 关于加法运算 是半群,客观上还满足交换律,是“加法半群”。 再如矩阵的乘法满足结合律,但是不满足交换律,所以固定阶数的矩阵也可以看作半群。 定义:设 是一个非空集合,满足 那么称 为一个 幺半群 。这样特殊的元素 被称为“单位元”,记作 。 前文提到的 不是幺半群,因为它没有单位元。 而矩阵有单位矩阵,所以是幺半群。 定义:设 是一个非空集合,满足 那么称 为一个 群 。这里提及的 关于 是唯一的,称其为 逆元 ,记作 。即 。 例如,整数集 关于加法运算 是群,客观上还满足交换律,是“加法群”。 群如果满足交换律,就称为 交换群 ,又称 Abel 群 (阿贝尔群),又称 加群 。 例如,所有的 阶可逆复矩阵构成的集合是一个群,可以称为“n级一般线性群”。 映射在中学阶段已经接触过,此处不表。 若矩阵 自己到自己的映射,称为 的 变换 。用 来记集合 所有变换的集合。 来记集合 所有 可逆 变换的集合。 设 是群, 是从群 到群 的映射,如果这一映射满足 则把这一映射称为 同态 。 如果 是单射,就是单同态;若是满射,就是满同态;如果是双射,就是 同构 。 定义:设 是一个非空集合,满足 那么称 为一个 环 。 在环的基础上,有乘法单位元 ,称为“幺环”。 定义:设 是一个非空集合,满足 那么称 为一个 幺环 。 在环的基础上,有乘法的交换律,称为“交换环”。 定义:设 是一个非空集合,满足 那么称 为一个 交换环 。 例子 设 是环, 是从环 到环 的映射,如果这一映射满足 则把这一映射称为 同态 。 如果 是单射,就是单同态;若是满射,就是满同态;如果是双射,就是 同构 。 如果 均为幺环,在同态的基础上,满足 ,则称为 幺同态 。 设 是环, 是它的一个非空子环,满足 则把 称为 的 理想 。 一个非零环 至少有两个理想 和 自身,分别称为 零理想 和 单位理想 ,二者合称 平凡理想 。 对于环 的非零元 ,如果存在另一个非零元 ,使得 ,则称 为左零因子。类似地可以定义右零因子。 在交换环中,零因子没有左右之分。 没有零因子的环,称为 整环 。 整环是交换的,满足消去律的环。 如果 可逆,有唯一的逆元 与之对应。 记 为环 的所有可逆元的集合,这个集合是一个群。 如果一个环 的非零元都可逆,即 ,那么称 为 除环 。 交换的除环称为 域 。 在中学数学中,接触过的有理数集合 、实数集合 和复数集合 都是域。 再例如集合 也是域,它是 的非空子域。 前文提及用 基数 描述集合中元素的个数。但是当集合中元素有无穷多的时候,就有些无能为力。 定义:若集合 和 之间能够建立一个双射,则称这两个集合 对等 ,记为 。 集合之间的对等关系是一种等价关系,满足自反律、传递律、对称律。 和自然数集合 对等的集合称为 可数无穷集 ,简称 可数集 。它需要存在一个和 一一对应的双射。 不和自然数集合 对等的无穷极和,称为 不可数无穷集 ,简称 不可数集 。 整数集合 是一个可数集,把整数如下排列: 可以写出这个序列的通项公式,从而构建了双射 。 偶数集合、完全平方数集合等,都是可数集。 有理数集合 是一个可数集,把有理数如下排列: 可以写出这个序列的通项公式,从而构建了双射 。 平面直角坐标系中,自然数点集 是一个可数集,类似于有理数集合的证法。 代数数集合也是一个可数集。实数集合是 不 可数集合。 和自然数集合 对等的集合是可数集。 类似地,和实数集 对等的集合是连续统。
韦斯特兰2023-05-21 22:10:401

近世代数基础中如何证明满射?

任给c∈C,g满故存在b∈B有g(b)=c,又f满存在a∈A使得f(a)=b,所以c=g(b)=g(f(a))=gf(a)即gf是满射
左迁2023-05-21 22:10:211

初中一二年级的代数几何定理有哪些?

看到你这个问题,我刚好正在卖我的初中几何笔记,归纳了初中几何所有的定理,虽然不能和每个学校的都一样但是还是很全面的。如果你真的是很需要的话,我免费给你也行,重在分享~里面有我的联系方式,有啥不懂的再来问我哈,只要我有时间~ 进我百度空间找我吧http://hi.baidu.com/smileincanon/home
gitcloud2023-05-21 16:47:332

黄际遇的开创高校现代数学教育

黄际遇是我国最早留学日本主攻数学的极少几位学者,后又获得美国芝加哥大学数学专业的科学硕士,本人勤学苦钻,具有较深厚的现代数学知识,和较高的现代教育素养。国内数所高校争相聘用,委以创建数学系等领导重任,他不负众望,尽心尽力,在每所高校都作出了开创性的贡献。1919年他写成的《武昌高等师范学校数理部进行实况及成绩说明书》,一万余字,是他早期数学教育思想的总结和教学成果的展示,以后几十年是在此基础上的发展。1.关于教学。他反复强调 :高校教育的目的是使学生养成研究及创造精神,“即有整顿思考力与创造真理之精神。”他要求教师“必于上课之前充分预备,细思教者为何、教之如何、何为教之三事,即目的、方法、理由三事。讲解之时能提要钩玄、引人入胜,以论理为方法,以真理为归宿。”反对教者“于教授之时徒诵读课本讲义之章句,或仅略为扩张,至考试时则缩狭课程之范围,多出暗诵的机械的题目。”对于本科学生,他提出三点希望:“(一)于规定时间之内获充实正确之学识;(二)养成读书能力备他日研究之资格;(三)以自动为原则,不徒以默听暗记为能事。”由于年龄和学识的差异,“对于预科生宜持极端干涉主义,凡一言一动皆注视学生听讲精神之集中力如何,多采用启发式。”此外,对于教法、作业、实验、实习等,在《武昌高等师范学校数理部进行实况及成绩说明书》中都阐述了他的见解和主张,这些观点在当时是先进的、开创性的。黄际遇教学任务一直比较繁重。除后期的文科课程外,仅数学课程,以1927年在中山大学为例,一个学期中,分别给数学天文系的一、二、三年级上必修课代数、数论、微积分,还给物理系、化学系、矿物系三个系的二年级分别讲微积分、数论等课,每周仅课堂教学至少15个学时。2.关于师资。是20世纪前30年最困扰高校之事。直到1930年,数学系仍为1人系,据《山东大学校史》记载:“(数学系)1930年度建系时,由于当时只有一名教授,仅能开出微积分、代数解析、立体解析几何、数学演习4门课程。”这一名教授就是黄际遇,并且还是该系这个学年唯一的数学教师,他包揽了全系的全部数学课程。从第二年度(1931年)开始,三年间每年只引进一位讲师,他们是:宋智斋(字鸿哲)、李先正(字保衡)、杨善基。教授亟缺,他心急如焚,1932年就积极争取他早年的学生、时在德国哥廷根大学攻读博士学位的曾炯(1898—1940),学成后到山东大学任教,因学业未完难解近渴,曾炯推荐获得博士学位已经回国的留德学友李达(字仲珩,1905—1998)。1934年8月,李达辞去清华大学教授来到山东大学,这是该校数学系成立第五个年头才迎来的第二位教授,黄际遇通过校方将自己兼任的数学系主任让给李达。1935年,陈传璋(字琰如,1903—1989)刚获得法国理学博士,黄际遇就聘请陈到该系任教授,同月李锐夫(原名李蕃,1903—1987)也来系任讲师。至此,山东大学数学系已有3位教授4位讲师,属当时国内师资力量较强的数学系,是该系解放前的鼎盛时期,能开出50门课程。其中:必修课15门,分组必修课22门,选修课13门。黄际遇建设数学系,一方面争取外来人才,另方面自己培养。早年,他刚到武昌高师数理部,得知第一届学生曾瑊益(字昭安,1892—1978)等组织有课外学术团体,他倍加爱护、精心扶植、指导改组(详情后述),有意培养这些学生成长。1917年,曾瑊益毕业后,他支持曾到日本留学,不久因故回国,又力主曾再到美国深造,又将曾在美国的研究成果推荐到国内发表,激励后学,保持联系。1925年曾昭安(即曾瑊益)获得美国哥伦比亚大学博士学位后,回到母校,创建领导武汉大学数学系数十年,他们师生之间在各自办数学系的岗位上,常有书信往来。他善于捕捉并培养新生苗子。1932年,刚大学毕业在青岛胶济铁路中学任教的刘书琴(1909—1994),好学上进,黄际遇特地安排刘到山东大学数理学会作一次讲演,讲题是:“数学的定义”。1933年11月,山东大学纪念徐光启逝世300周年举行学术报告会,他让新到任的讲师杨善基(1904—1966)讲“几何学的分类”。对于这类启用新人的特别讲演,他自己事先准备内容提纲,向讲演人提出具体要求,进行细致指导,目的是给青年人一个锻炼成长的机会。以后刘书琴留学日本,杨善基到美国哈佛大学,学成回国后,刘、杨一直在高校数学系任教授。1922年,黄际遇从美国返国,途经日本到东北帝国大学,见到快大学毕业的陈建功(1893—1971),便约请陈毕业后到武昌高师任教。1924年,陈如约到校(此时称武昌大学),教了曾炯之、王福春两位高材生。他支持并向校方推荐陈建功再次出国深造,“与武昌高师校长意见相左,故辞职往河南。”陈在武昌大学教学两年后,1926年再次到日本攻读博士学位。1929年,他得知王福春(字梦强,1901—1947),在日本学习仅是一名旁听生,经费有困难。1930年他便聘请王中途回国兼任高校教师,既解决王暂时经济之急需,又达到深造之目的。不少青年,在他的多种扶植帮助下,后来都成为高校骨干教师。3.关于教材。民国初年,刚新建的高等学校,教材是空白,教师们多采用从外国进口的外文原版教材。黄际遇说:“采用外国课本,则有文字之困难、购买之困难、各书程度不合之困难。”在武昌高师时,他编写了《(衔接小学)中等算术教科书》、《微积分学》,译注了日本藤泽利喜著的《续初等代数学教科书》和《续初等代数学问题解义》,在1917年出版发行,属我国早期的教学用书。据他的长子黄家器(1912—1988)介绍,上世纪一、二十年代,他编写不少数学教学用讲义,如:《近世代数》、《高等微积分》、《群底下之微分方程式》等。遗憾未见正式印刷留存下来。他在数理学会等学术团体,多次倡议大家参与编写数理化教科书或数理化丛书,但一直收效甚微。1933年3月9日,他收到一封教育部邀请他出席全国天文、数学、物理讨论会的聘函。函中附有讨论会的议题目录,希望与会者事先准备好提案。他阅后喜出望外,根据待讨论议题,立即拟出了两个提案:一是汇集每年各大学数学毕业论文或报告,由教育部审定刊行案;另一是编纂高等数学丛书案。3月21日,他在日记中留存了寄出提案的底稿。其中关于编纂丛书案的内容是:“案由:高等数学书籍需要甚急,良以世界学识,浩如烟海,不惟外籍奇贵,非寒士所能负担,即以语言文字不同之故,亦已使穷经者皓首,故非联合群力纂为丛书,不足以惠润多士,养使国人习好科学之基,浸成学术独立之效。然以一人为之,力固有限,商之书局,尤以纯粹科学性质,卖场不旺,不愿合办。所以三二十年以来,此项书籍,可供学生参考者,不满十种。区区日本,一年以来,刊行高等数学讲座至四部之多,其内容达百余种。故非联合群力,编纂高等数学丛书,由教育部审定刊行,不足以应此需要。”“办法:(一)成立高等数学丛书委员会。(二)委员会拟定丛书门类、丛书格式、丛书程度标准及各种进行事项。(三)由各大学各研究所教员研究员,认定门类,依照格式标准程度编纂之。(四)各书编纂后,送至教育部审定出版。” 会议于1933年4月1日至6日在南京召开,这是一次讨论学科发展的重要会议,数学界不少知名数学家:冯祖荀、姜立夫、胡敦复、郑桐荪、朱公谨、苏步青、赵进义,还有黄的学生、此时已是武汉大学数学系主任的曾昭安等都出席了这次大会。黄际遇的提案引起了大家共鸣,与会者积极支持响应,得到会议通过。会后汇集群力,或编著、或翻译,由商务印书馆出版了我国的第一套大学数学丛书共20余种,对我国大学数学教育的发展,起了推动作用。4.关于组织课外学术团体的活动。指导以学生为主体、师生参加的数理学会,创办数理报刊,在黄际遇看来是培养研究创造型人才的重要途径之一。他每到一校,只要条件稍许,便支持或倡议师生成立数理学会,其中以武昌高师的数理学会和由该会主办的《数理学会杂志》成绩最显著。武昌高师数理学会,最早是该校第一届预科班学员曾瑊益(字昭安)、陈庆兆等,于1914年4月8日成立的数学研究会,初以研究数学演题为主体。“逮黄际遇先生主讲本部,会务益加扩充,凡先生毅力所能及者,无不筹备周至。”因当时数学专业、物理专业的师生都很少,各高校一般都是数理或数理化在一起活动。原数学研究会几经改组,于1916年9月26日正式成立“武昌高师数理学会”。制订的“学会简章”规定:“本会以研究数理补助教科为宗旨。”以本校学生为会员,教员、毕业生为特别会员。简章还规定该会会长“总理会务由本校数学物理部主任充之。”黄际遇便成了数理学会的当然会长。数理学会最初的活动主要是讲演,每两周一次,每次2人,由会员轮流担任,讲题随意。另外,还请专家或校外著名人士作不定期特别讲演。“五四运动”前夕,科学学术思想日加活跃,北京高师、北京大学数理学会分别都在酝酿出版刊物。武昌高师数理学会也准备出版《数理学会杂志》,该杂志简章规定:“本杂志以研究数理之学科,推广数理之知识为宗旨。”内容“专记数学物理化学等科,以资专门之研究,且便于中等学界教授上及学业上之参考。”创刊号于1918年5月15日出版发行。黄际遇为创刊号花了很多精力:他写了“发刊辞二”,写了论文《数学上种种误谬之理由》,包揽了“文艺”栏目的4篇稿件,和“质疑”栏目的两篇,他还承担了这一期的编辑发行,带动鼓励会员大家一起来办好这个刊物。前六期每期都有他的文章,第7、8、9期因在国外进修,未写。1922年10他刚回国,不仅继续撰稿,还推荐“日本东北大学与美国芝加哥大学数学部之课程”在第10期发表,还推荐正在美国攻读学位的靳荣禄(芝加哥大学)、曾瑊益(哥伦比亚大学)的研究论文,在杂志上用外文发表,逐步提高杂志的水平。<br>1922年12月,数理学会(此时已改称“武昌高师数理化学会”)修订简章,宗旨改为:“联络同志研究数理化并促其发展”,方向上比前又提高了一步。会长和职员都选举产生,黄际遇在校时,一直担任会长。此时,曾炯当选为学会研究部主任,肖文灿、王福春当选为学会出版部发行。学会主办的《数理学会杂志》,从1922年4月出版的总第9期起改称《数理化杂志》,1923年6月出版了总第11期,是目前见到的最后一期,但内容上没有停刊的迹象?后来,黄际遇到了河南大学、山东大学都组织了数理学会。在河南大学,他曾指导学生宋鸿哲(即宋智斋)等负责办《数学报》。山东大学数理学会的讲演活动相对较多,除会员轮流的普通讲演外,他亲自组织一些特别讲演。如:前面提到胶济铁路中学教师刘书琴、本校讲师杨善基都向学会作过这类讲演。通过学会活动,培养了不少人才。黄际遇的研究成果,一般都是先向学会讲演,他的一项有创见性的“Gudermann函数之研究”的前半部分,1926年冬向河南中州大学的数理学会讲演,后半部分延至1932年4月在山东大学数理学会讲演。此外,他非常重视学会之间的交流,早在1918年12月,他就派夏隆基到北京,代表武昌高师数理学会参加北京大学、北京高师数理学会联席会议,共商发展大事。1925年11月,他在北京,应北师大数理学会之邀,讲“数学今后在教育上的地位。”1933年初又到北京,此时是北师大数学会,又邀请他讲“怎样研究数学”。每讲前,都表述他对该校学会的感情。第一次讲时,他说:“兄弟对于贵会,以前虽然没有见面,但想到北师大时,就联想到这里的数理学会;并且由杂志也交换了不少的学术意见,所以可以说精神上我与贵会是联络的、一贯的。”第二次讲题前,他说:“几年到北平来一次,就好像乡下人到城里来一样,为是带点城里的东西到乡间。……”他热心于办好师生的课外学术性学会,亲自领导学会,创办杂志、撰稿,以此引导培养学生的研究能力和创造精神,是他开创高等数学教育的特色之一,为此付出的大量心血,是他同时代的数学教授中最突出者。我国高等数学教育发展初期,黄际遇是京津沪之外少数几位著名的数学教育家之一。1935年7月中国数学会成立,设董事会董事9人,理事会理事11人,评论会评论21人,黄际遇当选为“计划发展本会事宜”的董事会董事。是当时我国数学界公认的元老。
墨然殇2023-05-21 16:47:151

谁能总结一下中国近现代数学家

华罗庚,陈景润
善士六合2023-05-21 16:47:152

中国近现代数学家(10个以上)

陈景润、丘成桐、冯康、周伟良、萧荫堂、钟开莱、项武忠、项武义、龚升、王湘浩、伍鸿熙、严志达、陆家羲、苏家驹、王菊珍、谷超豪、王元、潘承洞、魏宝社、高扬芝、徐瑞云、王见定、吕晗、范盛金 、杨武之、钱宝琮、卢庆骏、曾炯、华罗庚
FinCloud2023-05-21 16:47:151

曾炯的抽象代数

抽象代数是20世纪20年代中期发展起来的新的数学学科。它使代数学的研究逐步转向对代数结构的深入探索,对现代数学发展有重要而广泛的影响。诺特是抽象代数学最重要的奠基人,当时的格丁根大学和汉堡大学是该学科研究的两个中心。曾炯在这门新学科的创始阶段,到最活跃的研究中心随奠基者们学习与研究,这为他提供了良好的机会。曾炯本人的刻苦钻研与创新精神,终使他成为国际上早期进入抽象代数领域并做出重大贡献的数学家。在中国,他则是最早从事抽象代数研究的学者。曾炯因英年早逝,留世之作仅3篇。众所周知,数学家的贡献从不是以论文数量而论的。曾炯的3篇论文皆为函数域上的代数方面的基础性工作。 在第一篇论文中,曾炯证明了如下重要定理:“设Ω为代数闭域,Ω(x)表示Ω上关于未定元x的有理函数域,K为Ω(x)上n次代数扩张,则K上所有以K为中心的可除代数只有K自己。”这个定理现被称为曾定理。在另一篇论文中,他进一步证明了:“设P为实封闭域,设K为P(x)上n次代数扩张,则K上以K为中心的可除代数,除去P(x)自己外,最多还有一个,其指数必为2。”他在此文中还证明了:“设F为代数封闭域,K为F(x)的一个代数扩张,则K为拟代数封闭域。”拟代数封闭域是阿廷引进的概念:如系数在K中的任意n元d次齐次多项式f(x1,x2,…,xn),且1≤d<n,必在F中有非全零解,则称F上的域K为拟代数封闭域。阿廷首先注意到,代数的理论可看成域中丢番图方程的解的理论,即看到了在域K上可除代数的不存在性与一类方程具有K中多个未定元时的可解性之间的重要关系。曾炯的这个定理给出了超越域上的可除代数中最重要的结果,成为关于超越扩张的布劳尔群的大部分研究工作的基础。在第三篇论文中,曾炯推广了拟代数封闭域的概念,引进了Ci域的概念:域F称为Ci域,若对任意正整数d及任一系数在F中的n元d次的齐次多项式f(x1,x2…,xn),当ni>di(i≥0),f(x1,x2,…,xn)=0必在F中有一个非全零解。当i=1时,Ci域即为拟代数封闭域。他在文中证明了如下重要定理:“若Ω为代数封闭域,则Ω(x1,x2,…,xn)为一Ci域。”此定理现亦称为曾定理。1951年,兰重新发现了这个定理,并在他的老师阿廷的指导下作了改进,故又称曾-兰定理。Ci则称为曾层次。此定理也是大多数关于超越扩张的布劳尔群研究的基础,而且对阿廷-施赖埃尔形式实域上二次型理论有重要的应用。曾炯的这些工作由于其基础性,已被写入相关的教科书。曾炯为人诚恳、豁达,对学生的学业尤其关心。在浙江大学教书时,因他讲课带较重的家乡口音,而学生又不习看德文教本,他便将学生中的同乡熊全治先生的课堂笔记加以修改补充,印成讲义发给同学。他自学生时代起就嫉恶如仇,五四运动时期,他曾多次与学友走上南昌街头宣传爱国救国之理。在西昌教书时,他不顾个人安危,反对当局开除爱国学生,表现了非凡的爱国气概。
Ntou1232023-05-21 16:47:141

中国古代数学中的算法有哪些?

“四元术”(多元高次方程列式与消元解法),“垛积术”(高阶等差数列求和),“招差术”(高次内插法)我只知道这些了
豆豆staR2023-05-21 08:46:191

中国古代数学成就

中国古代没有数学
墨然殇2023-05-21 08:46:193

古代数学家有哪些人?他们有何成就

数学可以说是在生活中比较无用的东西,虽然在你平常的生活中你用不到函数高数圆周率。不过当你掌握了这些东西之后,你自然可以选择更好的生活去度过,创造这些的人也是历史上的名人。 那么,本期古代六艺解析古代数学家有哪些人。 张丘建: 张邱建,北魏清河(今邢台市清河县)人,约公元5世纪,着名的大数学家。他从小聪明好学,酷爱算术。一生从事数学研究,造诣很深。“百鸡问题”是中古时期,关于不定方程整数的典型问题,邱建对此有精湛和独到的见解。 着有《张邱建算经》3卷。后世学者北周甄鸾、唐李淳风相继为该书作了注释。刘孝孙为算经撰了细草。算经的体例为问答式,条理精密,文词古雅,是中国古代数学史上的杰作,也是世界数学资料库中的一份遗产。 朱世杰: 朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。 此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。主要着作是《算学启蒙》与《四元玉鉴》。 贾宪: 贾宪,北宋人,约于1050年左右完成《黄帝九章算经细草》,原书佚失,但其主要内容被杨辉(约13世纪中)着作所抄录,因能传世。杨辉《详解九章算法》(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是着名的“贾宪三角”,或称“杨辉三角”。《详解九章算法》同时录有贾宪进行高次幂开方的“增乘开方法”。 秦九韶: 秦九韶(1208年-1261年),字道古,汉族,生于普州安岳(今四川省安岳县)。南宋官员、数学家,与李冶、杨辉、朱世杰并称宋元数学四大家。精研星象、音律、算术、诗词、弓剑、营造之学,历任琼州知府、司农丞,后遭贬,卒于梅州任所,1247年完成着作《数书九章》。 其中的大衍求一术(一次同余方程组问题的解法,也就是现在所称的中国剩余定理)、三斜求积术和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献,表述了一种求解一元高次多项式方程的数值解的算法——正负开方术。
阿啵呲嘚2023-05-21 08:45:371

我国古代数学家有哪些?

中国古代著名数学家及其主要贡献   刘徽(生于公元250年左右)   刘徽刘徽(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东邹平人。终生未做官。他在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.   《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.   《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.   刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.   刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.    祖冲之(公元429年─公元500年)  祖冲之(公元429年─公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于未文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。其主要贡献在数学、天文历法和机械三方面。在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式。在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等。此外,对音乐也研究。他是历史上少有的博学多才的人物。   祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/113为密率,其中355/113取六位小数是3.141592,它是分子分母在16604以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接12288边形,这需要花费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".   祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.   祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".   中国古代其他著名数学家及其主要贡献  ▲张丘建--<张丘建算经>   《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。   ▲朱世杰:《四元玉鉴》   朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)   ▲贾宪:〈〈黄帝九章算经细草〉〉   中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。   贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。   ▲秦九韶:〈〈数书九章〉〉   秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。   ▲李冶:《测圆海镜》——开元术   随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。   李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。
kikcik2023-05-21 08:45:371

中国古代数学家求数列和的方法

“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用a_表示。著名的数列有斐波那契数列,三角函数,卡特兰数,杨辉三角等。
陶小凡2023-05-21 08:45:351

中国古代数学有哪些成就?

最牛的当然是《九章算术》了刘 徽 刘徽(生于公元250年左右),南北朝时期数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 贾 宪 贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。 秦九韶 秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶 李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。 朱世杰 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法). 祖冲之 祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。 祖 暅 祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。 杨辉 杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 赵 爽 赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。 赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
Ntou1232023-05-21 08:45:341

元代数学家朱世杰于1303年编著的《四元玉鉴》中有这样一道题目:

鸡兔同笼问题
gitcloud2023-05-21 08:45:343

元代数学家朱世杰于1303年编著的《四元玉鉴》中有这样一道题目:九百九十九文钱,及时梨果买一4,一

111111111111111111111111222222222222222222
陶小凡2023-05-21 08:45:343

朱世杰和他的著作对我国古代数学有怎样的贡献?

《四元玉鉴》是一部成就辉煌的数学名著,受到近代数学史研究者的高度评价。美国科学史家萨顿称赞说道:《四元玉鉴》是中国数学著作中最重要的一部,同时也是中世纪的杰出数学著作之一。朱世杰是他所生存时代的,同时也是贯穿古今的一位最杰出的数学家。如此之高的评价,朱世杰和他的著作都是当之无愧的。朱世杰不仅是一位杰出的数学家,他还是一位数学教育家,曾周游四方各地,教授生徒20余年。并亲自编著数学入门书《算学启蒙》。在《算学启蒙》卷下中,朱世杰提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。朱世杰身处于我国传统数学发展的鼎盛时期,当时社会上“尊崇算学,科目渐兴”,数学著作广为传播。总之,朱世杰在数学科学上,全面地继承了秦九韶、李冶、杨辉的数学成就,并给予创造性的发展,写出了《算学启蒙》、《四元玉鉴》等著名作品,把我国古代数学推向了更高的境界,形成宋元时期我国数学的最高峰。
韦斯特兰2023-05-21 08:45:341

元代数学家朱世杰于1303年编著的《四元玉鉴》中有这样一道题目:九百九十九文钱,及时梨果买一千,一十一

设买梨x个,那么买果(1000-x)个,119x+47×(1000-x)=999,     77x+36000-36x=62937,               41x=26937,           41x÷41=26937÷41,                 x=657,买梨付款总价:119×657=803(文),买果付款总价:999-803=196(文),答:买梨付款总价803文,买果付款总价196文.故答案为:803,196.
Jm-R2023-05-21 08:45:311

我国元代数学著作四元玉鉴的作者是

我国元代数学著作四元玉鉴的作者是朱世杰,朱世杰是元朝一位杰出的数学科学家。朱世杰(1249年-1314年),字汉卿,号松庭,祖籍燕山(今北京),元代数学家、教育家。朱世杰毕生从事数学教育,被誉为“中世纪世界最伟大的数学家”。拓展:朱世杰的主要作品《算学启蒙》《四元玉鉴》《算学启蒙三卷》。朱世杰“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》。
韦斯特兰2023-05-21 08:45:311

中国古代数学的发展历史的论文

浅谈中国古代数学作为一个炎黄子孙,龙的传人,我们可以很骄傲的说我们的祖先有很多优秀的,好的东西留给了我们同时也留给了世界,四大发明,影响着整个世界,改变了整个世界。另外就是今天我们要说的数学,中国古人对数学的研究以及对世界作出的贡献。 在中国明代中叶以前我国的数学一直处于世界的领先地位,这是我们的骄傲,我国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。比如,现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。最早由于没有印刷术的出现,我们的古人都是用手抄写的方式,把这些数学知识传给下一代的,古代的数学家给已有的算数作出自己的注解,同时提出自己的心得 观点和看法。 大家最熟悉的数学著作就是《九章算术》了,《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足” (也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。然而,直到今天我们都不知道这本著作的具体作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书?艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。然而,《九章算术》亦有其不容忽视的缺点:没有任何数学概念的定义,也没有给出任何推导和证明。直到我国古代的数学家刘徽给《九章算术》作注,才大大弥补了这个缺陷。刘徽可是咱们山东邹平人哟,刘徽定义了若干数学概念,全面论证了《九章算术》的公式解法,提出了许多重要的思想、方法和命题,他在数学理论方面成绩斐然。《海岛算经》,就是刘徽所著,这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法,他还首次把极限概念应用于解决数学问题。中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年); 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。另外,大家都知道《算经十书》,它是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。另外,还有就是在出现计算器前,我们使用的算盘,对,就是珠算。说道珠算,我们还有必要提一下筹算。筹算在我国古代用了大约两千年,在生产和科学技术以至人民生活中,发挥了重大的作用。但是它的缺点也是十分明显的:首先,在室外拿着一大把算筹进行计算就很不方便;其次,计算数字的位数越多,所需要的面积越大,受环境和条件的限制;此外,当计算速度加快的时候,很容易由于算筹摆弄不正而造成错误。随着社会的发展,计算技术要求越来越高,筹算需要改革,这是势在必行的。这个改革从中唐以后的商业实用算术开始,经宋元出现大量的计算歌诀,到元末明初珠算的普遍应用,历时七百多年。《新唐书》和《宋史•艺文志》记载了这个时期出现的大量著作。由于封建统治阶级对民间数学十分轻视,以致这些著作的绝大部分已经失传。从遗留下来的著作中可以看出,筹算的改革是从筹算的简化开始而不是从工具改革开始的,这个改革最后导致珠算的出现。珠算是由筹算演变而来的,这是十分清楚的。筹算数字中,上面一根筹当五,下面一根筹当一,珠算盘中的上一珠也是当五,下一珠也是当一;由于筹算在乘、除法中出现某位数字等于十或多于十的情形(例如26532÷8,第一步就是“八二下加四”,就变成),所以珠算盘采用上二珠下五珠的形式。其次,我们可以证明,从杨辉、朱世杰开始到元末丁巨、何平子、贾亨止起除“起一”法外的全部现今通用的珠算歌诀,是为筹算而设的。 杨辉的《乘除通变本末》(公元1274年)和朱世杰的《算学启蒙》(公元1299年)已经有相当完备的歌诀,但是杨辉在《乘除通变本末》中说:“下算不出‘横"‘直"”,其中“横”“直”显然是指算筹的纵横排列,朱世杰在《算学启蒙》中提到“知算纵横数目真”,也是这个意思。《丁巨算法》(公元1355年)、何平子的《详明算法》(公元1373年)、贾亨的《算法全能》(约公元1373年)也有相当完备的归除歌诀,但是都没有提到珠算,而《详明算法》还有许多筹算算草。歌诀出现后,筹算原来存在的缺点就更突出了,歌诀的快捷和摆弄算筹的迟缓存在矛盾。为了得心应手,劳动人民便创造出更加先进的计算工具——珠算盘。 现存文献中最早提到珠算盘的是明初的《对相四言》。明代中期公元十五世纪中叶《鲁班木经》中有制造珠算盘的规格:“算盘式:一尺二寸长,四寸二分大。框六分厚,九分大,……线上二子,一一寸一分;线下五子,三寸一分。长短大小,看子而做。”把上二子和下五子隔开的不是木制的横梁,而是一条线。比较详细地说明珠算用法的现存著作有徐心鲁的《盘珠算法》(公元1573年)、柯尚_迁的《数学通轨》(公元1578年)、朱载堉(1536—1611)的《算学新说》(公元1584年)、程大位的《直指算法统宗》(公元1592年)等,以程大位的著作流传最广。 值得指出的是,在元代中叶和元末的文学、戏剧作品中有提到珠算的。例如元世祖至元十六年(公元1279年)刘因在他的《静修先生文集》中有一首关于算盘的五言绝诗;陶宗仪在他的《辍耕录》中把婢仆贬作算盘珠,要拨才动;《元曲选》“庞居上误放来生债”提到“去那算盘里拨了我的岁数”,等等。文学、戏剧中用算盘珠作比喻,说明珠算盘已经比较流行,也说明它是比较时新的东西。因此可以认为,珠算出现在元代中叶,元末明初已经普遍应用了。 有的外国学者认为我国的珠算出现在汉代,他们的根据是汉徐岳著、北周甄蛮注的《数术记遗》已经明确提到珠算。我国数学家、数学史家钱宝琮(1892—1974)曾经考证过,《数术记遗》是甄鸾依托伪造而自己注释的书。在北周时,乘、除运算都在上、中、下三层进行,又没有简化乘、除法的歌诀,因此甄鸾注释的珠算,充其量不过是一种记数工具或者只能作加减法的简单算盘,和后来出现的珠算是完全不同的。 珠算还传到朝鲜、日本等国,对这些国家的计算技术的发展曾经起过一定的作用。日本人在十七世纪中叶,在中国算盘的基础上,改成梁上一珠、珠作棱形的日本算盘有次可以看出,我们的祖先不仅在数学领域对世界作出了贡献,同时也把算盘这种便于计算的工具推向了世界。希望我们现在的一代还可以继承祖先的优良传统,在世界的数学之林再次贡献自己的知识,力量,让世界重新认识我们中国。
wpBeta2023-05-21 08:45:282

古代数学7怎么写

可桃可挑2023-05-21 08:45:284

古代数学著作《详解九章算法》作者是谁

《周髀算经》是中国现存最早的一部数学典籍,成书时间大约在两汉之间 (纪元之后).也有史家认为它的出现更早,是孕于周而成于西汉,甚至更有人说它出现在纪元前1000年. 《九章算术》约成书于公元纪元前后,它系统地总结了我国从先秦到西汉中期的数学成就.该书作者已无从查考,只知道西汉著名数学家张苍、耿寿昌等人曾经对它进行过增订删补.全书分做九章,一共搜集了246个数学问题,按解题的方法和应用的范围分为九大类,每一大类作为一章. 南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世. 》、《海岛算经》等10部数学著作.所以当时的数学教育制度对继承古代数学经典是有积极意义的. 公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式. 贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的.遗憾的是贾宪的《黄帝九章算法细草》书稿已佚. 秦九韶是南宋时期杰出的数学家.1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程).16世纪意大利人菲尔洛才提出三次方程的解法.另外,秦九韶还对一次同余式理论进行过研究. 李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义.尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论. 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和.公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法.公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式.郭守敬还运用几何方法求出相当于现在球面三角的两个公式. 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法.朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式. 14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势. 明代珠算开始普及于中国.1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作.但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一. 由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国.数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成).徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作.邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作
LuckySXyd2023-05-21 08:45:272

简述中国数学发展史上三个高峰时期,并谈谈中国古代数学的特色与局限。数学史

中国数学发展的高峰唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪﹝宋、元两代﹞,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》﹝11世纪中叶﹞,刘益的《议古根源》﹝12世纪中叶﹞,秦九韶的《数书九章》﹝1247﹞,李冶的《测圆海镜》﹝1248﹞和《益古演段》﹝1259﹞,杨辉的《详解九章算法》﹝1261﹞、《日用算法》﹝1262﹞和《杨辉算法》﹝1274-1275﹞,朱世杰的《算学启蒙》﹝1299﹞和《四元玉鉴》﹝1303﹞等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有:公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚)公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。中国数学的特点与局限(1)以算法为中心,属于应用数学。中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。(2)具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。(3)寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等。中国数学对世界的影响数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展。中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展。
u投在线2023-05-21 08:45:272

古代数学著作《详解九章算法》作者是谁

凡尘2023-05-21 08:45:254

简述中国数学发展史上三个高峰时期,并谈谈中国古代数学的特色与局限.

中国数学发展的高峰 唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进.从公元十一世纪到十四世纪﹝宋、元两代﹞,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期.这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》﹝11世纪中叶﹞,刘益的《议古根源》﹝12世纪中叶﹞,秦九韶的《数书九章》﹝1247﹞,李冶的《测圆海镜》﹝1248﹞和《益古演段》﹝1259﹞,杨辉的《详解九章算法》﹝1261﹞、《日用算法》﹝1262﹞和《杨辉算法》﹝1274-1275﹞,朱世杰的《算学启蒙》﹝1299﹞和《四元玉鉴》﹝1303﹞等等.宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰.其中主要的工作有: 公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法.贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”.(《黄帝九章算法细草》已佚) 公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式.沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式.他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题. 公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程.欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法.秦九韶还系统地研究了一次同余式理论. 公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果.在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论. 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和.公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法.公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式.郭守敬还运用几何方法求出相当于现在球面三角的两个公式. 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法.朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式. 公元十四世纪我国人民已使用珠算盘.在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具. 中国数学的特点与局限 (1)以算法为中心,属于应用数学.中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的. (2)具有较强的社会性.中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起.同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质. (3)寓理于算,理论高度概括.由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树.其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等. 中国数学对世界的影响 数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统.在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展. 中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方.而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展.
LuckySXyd2023-05-21 08:45:251

"杨辉三角"出现在下列哪部古代数学著作中

杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。具体的用杨辉三角的简史:北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,南宋数学家杨辉在《详解九章算法》(1961年)记载并保存了“贾宪三角”,故称杨辉三角。元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。满意请采纳
NerveM 2023-05-21 08:45:241

古代数学著作《详解九章算法》作者是谁

《详解九章算法》作者杨辉,他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决
大鱼炖火锅2023-05-21 08:45:231

我国古代数学著作详解九章算法是谁所著

解答:1261年,中国宋朝的杨辉著《详解九章算法》作者简介:杨辉,字谦光,汉族,钱塘(今杭州)人,南宋杰出的数学家和数学教育家,生平履历不详。由现存文献可推知,杨辉担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带,他署名的数学书共五种二十一卷。他在总结民间乘除捷算法、"垛积术"、纵横图以及数学教育方面,均做出了重大的贡献。他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。著有《详解九章算法》、《日用算法》、《乘除通变本末》、《田亩比类乘除捷法》、《续古摘奇算法》。与秦九韶、李冶、朱世杰并称"宋元数学四大家"。杨辉一生留下了大量的著述,他著名的数学书共五种二十一卷,它们是:《详解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通变本末》3卷(1274年,第3卷与他人合编),《田亩比类乘除捷法》2卷(1275年),《续古摘奇算法》2卷(1275年,与他人合编),其中后三种为杨辉后期所著,一般称之为《杨辉算法》。他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。
无尘剑 2023-05-21 08:45:231

数学教育家杨辉对中国古代数学做了什么贡献?

杨辉是南宋时期杰出的数学家。他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。除此成就之外,还有一项重大贡献,就是“杨辉三角”。与秦九韶、李冶、朱世杰并称为“宋元数学四大家”。杨辉也是数学教育家。他非常重视数学教育的普及和发展,在《算法通变本末》中,他为初学者制订的“习算纲目”,是我国古代数学教育史上的重要文献。详解九章算法
可桃可挑2023-05-21 08:45:201

杨辉对我国古代数学做出了哪些贡献?

1261年,南宋杨辉在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。此外,杨辉还著有《日用算法》、《杨辉算法》等。杨辉的著作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法。这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件。
此后故乡只2023-05-21 08:45:181

古代数学著作还有哪些,除了《九章算数》

《算经十书》(包括《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》)现《缀术》已经失传,《夏侯阳算经》也为找到...
NerveM 2023-05-21 08:45:091

古代数学著作《详解九章算法》作者是谁

杨辉,宋代的
Jm-R2023-05-21 08:45:083

关于古代数学的资料

《缀术》《四元玉鉴》《测圆海镜》《数书九章》《几何原本》《周髀算经》《九章算术》《海岛算经》《孙子算经》《缉古算经》《五曹算经》《五经算术》《九章重差图》《张丘建算经》《夏侯阳算经》《黄帝九章算经细草》
CarieVinne 2023-05-21 08:45:081

中国 古代数学

看对你有没有启发http://zhidao.baidu.com/question/28778992.html?si=1
瑞瑞爱吃桃2023-05-21 08:45:082

中国古代数学

国古代数学,和天文学以及其他许多科学技术一样,也取得了极其辉煌的成就。可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位。中国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。 例如现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。 开始,人们是用抄写的方法进行学习并且把数学知识传给下一代的。直到北宋,随着印刷术的发展,开始出现印刷本的数学书籍,这恐怕是世界上印刷本数学著作的最早出现。现在收藏于北京图书馆、上海图书馆、北京大学图书馆的传世南宋本《周髀算经》、《九章算术》等五种数学书籍,更是值得珍重的宝贵文物。 从汉唐时期到宋元时期,历代都有著名算书出现:或是用中国传统的方法给已有的算书作注解,在注解过程中提出自己新的算法;或是另写新书,创新说,立新意。在这些流传下来的古算书中凝聚着历代数学家的劳动成果,它们是历代数学家共同留下来的宝贵遗产。 《算经十书》 《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。 对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部。它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330—前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的。在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。 《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书?艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。 从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法。书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题。《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方程(首项系数不是负)的数值解法。还有整整一章是讲述联立一次方程解法的,这种解法实质上和现在中学里所讲的方法是一致的。这要比欧洲同类算法早出一千五百多年。在同一章中,还在世界数学史上第一次记载了负数概念和正负数的加减法运算法则。 《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足” (也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。 《算经十书》中的第三部是《海岛算经》,它是三国时期刘徽(约225—约295)所作。这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法(参见本书第98页),他还首次把极限概念应用于解决数学问题。 《算经十书》的其余几部书也记载有一些具有世界意义的成就。例如《孙子算经》中的“物不知数”问题(一次同余式解法,参见本书第106页),《张丘建算经》中的“百鸡问题”(不定方程问题)等等都比较著名。而《缉古算经》中的三次方程解法,特别是其中所讲述的用几何方法列三次方程的方法,也是很具特色的。 《缀术》是南北朝时期著名数学家祖冲之的著作。很可惜,这部书在唐宋之际公元十世纪前后失传了。宋人刊刻《算经十书》的时候就用当时找到的另一部算书《数术记遗》来充数。祖冲之的著名工作——关于圆周率的计算(精确到第六位小数),记载在《隋书?律历志》中(参见本书第101页)。 《算经十书》中用过的数学名词,如分子、分母、开平方、开立方、正、负、方程等等,都一直沿用到今天,有的已有近两千年的历史了。 宋元算书 中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年); 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。 《数书九章》主要讲述了两项重要成就:高次方程数值解法和一次同余式解法(分别参见本书第119页和第110页)。书中有的问题要求解十次方程,有的问题答案竟有一百八十条之多。《测圆海镜》和《益古演段》讲述了宋元数学的另一项成就:天元术(用代数方法列方程,参见本书第121页);也还讲述了直角三角形和内接圆所造成的各线段间的关系,这是中国古代数学中别具一格的几何学。杨辉的著作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法。这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件。朱世杰的《算学启蒙》不愧是当时的一部启蒙教科书,由浅入深,循序渐进,直到当时数学比较高深的内容。《四元玉鉴》记载了宋元数学的另两项成就:四元术(求解高次方程组问题,参见本书第123页)和高阶等差级数、高次招差法(参见本书第131页)。 宋元算书中的这些成就,和西方同类成果相比:高次方程数值解法比霍纳(1786—1837)方法早出五百多年,四元术要比贝佐(1730—1783)①早出四百多年,高次招差法比牛顿(1642—1727)等人早出近四百年。 宋元算书中所记载的辉煌成就再次证明:直到明代中叶之前,中国科学技术的许多方面,是处在遥遥领先地位的。 宋元以后,明清时期也有很多算书。例如明代就有著名的算书《算法统宗》。这是一部风行一时的讲珠算盘的书。入清之后,虽然也有不少算书
Jm-R2023-05-21 08:45:081

我国古代数学有哪些成就?

圆周率
bikbok2023-05-21 08:45:0714

大约1500年以前,我国古代数学家张丘建在他编写的《张丘建算经》里,曾经提出并解决了“百钱买百鸡”这个

设公鸡有x只,母鸡有y只,小鸡有z只,根据题意,得 5x+3y+ 1 3 z=100 x+y+z=100 ,整理得:7x+4y=100.x= 100-4y 7 ∵x≥0,y≥0,且都是自然数,∴ 100-4y 7 ≥0,∴y≤25,100-4y是7的倍数,∴100-4y=0,7,14,21,28,35,42,49,56,63,70,77,84,91,98经讨论可以得出,共有4种情况:①公鸡0只,母鸡25只,小鸡75只;②公鸡4只,母鸡18只,小鸡78只;③公鸡8只,母鸡11只,小鸡81只;④公鸡12只,母鸡4只,小鸡84只.
韦斯特兰2023-05-21 08:45:061

我国古代数学著名孙子算经中记载这样一个问题今有物不知其数三三数之剩255数

这个方法比较巧,但还是有一定道理的 由题"三三数之剩二,七七数之剩二" 可见都剩二 因此用3×7=21, 因为剩二 21+2=23 初步认为这个数字是23 检验,23÷5 商4余3 符合题意 因此此数为23 望采纳!
Chen2023-05-21 08:45:051

孙子算经 在中国古代数学著作《孙子算经》中有这样一个问题:今有物不知其数,三三数剩二,五五数剩三,七

问题没说完吧?!
FinCloud2023-05-21 08:45:043

我国古代数学名著《孙子算经》的作者跟孙膑的关系

应该没有关系,因为他们不是同一时代的著作,只是姓氏相同吧
再也不做站长了2023-05-20 22:10:085

我国古代数学名著《孙子算经》上有这样一道题;今有鸡兔同笼,上有35头,下有94足,问鸡兔个几头?【用方程】

鸡有23,兔有12
瑞瑞爱吃桃2023-05-20 22:10:082

我国古代数学名著《孙子算经》的作者跟孙膑的关系

应该没有关系,因为他们不是同一时代的著作,只是姓氏相同吧
wpBeta2023-05-20 22:10:065

中国古代数学的历史

春秋前中国数学的萌芽我们的先民在从野蛮走向文明的漫长历程中,逐渐认识了数与形的概念。出土的新石器时期的陶器大多为圆形或其他规则形状,陶器上有各种几何图案,通常还有三个着地点,都是几何知识的萌芽。先秦典籍中有“隶首作数”、“结绳记事”、“刻木记事”的记载,说明人们从辨别事物的多寡中逐渐认识了数,并创造了记数的符号。殷商甲骨文(公元前14—前11世纪)中已有13个记数单字,最大的数是“三万”,最小的是“一”。一、十、百、千、万,各有专名。其中已经蕴含有十进位置值制萌芽。传说伏羲创造了画圆的“规”、画方的“矩”,也传说黄帝臣子倕[chui垂]是“规矩”和“准绳”的创始人。早在大禹治水时,禹便“左准绳”(左手拿着准绳),“右规矩”(右手拿着规矩)(《史记·禹本纪》)。因此,我们可以说,“规”、“矩”、“准”、“绳”是我们祖先最早使用的数学工具。人们丈量土地面积,测算山高谷深,计算产量多少,粟米交换,制定历法,都需要数学知识。《周髀〔bi婢〕算经》载商高答周公问,提到用矩测望高深广远。相传西周初年周公(公元前11世纪)制礼,数学成为贵族子弟教育中六门必修课程——六艺之一。不过当时学在官府,数学的发展是相当缓慢的。春秋时期,随着铁器的出现,生产力的提高,中国开始了由奴隶制向封建制的过渡。新的生产关系促进了科学技术的发展与进步。此时王权衰微,畴人四散,私学开始出现。最晚在春秋末年人们已经掌握了完备的十进位置值制记数法,普遍使用了算筹这种先进的计算工具。人们已谙熟九九乘法表、整数四则运算,并使用了分数。战国至两汉中国数学框架的确立战国时期,各诸侯国相继完成了向封建制度的过渡。思想界、学术界诸子林立,百家争鸣,异常活跃,为数学和科学技术的发展创造了良好的条件。尽管没有一部先秦的数学著作留传到后世,但是,人们通过田地及国土面积的测量,粟米的交换,收获及战利品的分配,城池的修建,水利工程的设计,赋税的合理负担,产量的计算,以及测高望远等生产生活实践,积累了大量的数学知识。据东汉初郑众记载,当时的数学知识分成了方田、粟米、差分、少广、商功、均输、方程、赢不足、旁要九个部分,称为“九数”。九数确立了《九章算术》的基本框架。秦始皇结束了列国纷争,首次建立了中央集权的封建帝国,本应有利于数学的发展。但他的专制政策窒息了百家争鸣的学术空气。秦朝的残暴统治,尤其是焚书坑儒,给中国文化事业造成空前的浩劫。不久,刘邦利用推翻暴秦的农民起义,统一了中国,建立了汉朝,史称西汉。西汉政府与民生息,社会生产力得到恢复、发展,给数学和科学技术的发展带来新的活力,人们提出了若干算术难题,并创造了解勾股形、重差等新的数学方法。同时,人们注重先秦文化典籍的收集、整理。作为数学新发展及先秦典籍的抢救工作的结晶,便是《九章算术》的成书。《九章算术》(省称《九章》)是中国最重要的数学经典,它之于中国和东方数学,大体相当于《几何原本》之于希腊和欧洲数学。在世界古代数学史上,《九章》与《原本》像两颗璀灿的明珠,东西辉映。《九章》之前还有一部《周髀算经》,它本是一部以数学方法阐述盖天说的天文著作,一般认为于公元前1世纪成书。卷上记载了商高答周公问,陈子答荣方问。前者有勾股定理的特例32+42=52,后者有用勾股定理及比例算法测太阳高远及直径的内容。近年湖北省张家山出土的竹简《算数书》正在整理,其少广一问与《九章》少广章第1问基本相同,两者的关系有待于研究。《九章》集先秦到西汉数学知识之大成。据东汉末大学者郑玄(公元127—200年)引东汉初郑众(?—公元83年)说,西汉在先秦九数基础上又发展出勾股、重差两类数学方法。魏刘徽说:《九章》是由九数发展而来的,由于秦朝焚书而散坏。西汉张苍(?—公元前152年)、耿寿昌(公元前1世纪)收集秦火遗残,加以整理删补,便成为《九章算术》。方田章提出了完整的分数运算法则,各种多边形、圆、弓形等的面积公式;粟米章提出了比例算法;衰[cui崔]分①章提出了比例分配法则;少广章给出了完整的开平方、开立方程序;商功章讨论各种立体体积公式及工程分配方法;均输章解决赋役中的合理负担,也是比例分配问题,还有若干结合西汉社会实际的算术杂题;盈不足章解决盈亏问题及可以用盈不足术解决的一般算术问题;方程章是线性方程组解法,并给出了正负数加减法则;勾股章由旁要发展而成,提出了勾股定理、解勾股形及若干测望问题的方法。全书以计算为中心,有90余条抽象性算法、公式,246道例题及其解法,基本上采取算法统率应用问题的形式。它的许多成就居世界领先地位,奠定了此后中国数学居世界前列千余年的基础。《九章》分类不甚合理,没有任何定义和推导,少数公式不准确,个别公式有错误,则是不容讳言的缺点。《九章》的框架、形式、风格和特点深刻影响了中国和东方的数学。《九章算术》成书后,注家蜂起。《汉书·艺文志》所载《许商算术》、《杜忠算术》(公元前1世纪)估计为研究《九章》的作品。东汉马续、张衡、刘洪、郑玄、徐岳、王粲等通晓《九章算术》,或为之作注。这些著作都未传世,从后来刘徽(今山东邹平人,生卒不详)《九章算术注》所反映的信息看,这些研究基本上停留在归纳验证《九章算术》的正确性方面,理论上未能在《九章》基础上作出长足进步。魏晋至唐初中国数学理论体系的建立《九章算术》之后,中国的数学著述基本上采取两种方式:一是为《九章算术》作注;二是以《九章算术》为楷模编纂新的著作。经过两汉社会经济和科学技术的大发展,到魏晋,中国封建社会进入一个新的阶段,庄园农奴制和门阀士族占据了经济政治舞台的中心。思想文化领域中,儒家的统治地位被削弱,谶纬迷信和繁琐的经学退出历史舞台,代之以谈三玄——《周易》、《老子》、《庄子》为主的辩难之风。学者们通过析理,探讨思维规律,思想界出现了战国的百家争鸣以来所未有过的生动局面。与此相适应,数学家重视理论研究,力图把自先秦到两汉积累起来的数学知识建立在必然的可靠的基础之上。刘徽和他的《九章算术注》便是这个时代造就的最伟大的数学家和最杰出的数学著作。大约与刘徽同时或稍前,有赵爽(又名婴,字君卿,生卒不详,估计是三国吴人)的《周髀算经注》,其可观者为“勾股圆方图”,用600余字概括了两汉以来勾股算术的成果。刘徽《九章算术注》作于魏景元四年(公元263年),原十卷。前九卷全面论证了《九章》的公式、解法,发展了出入相补原理、截面积原理、齐同原理和率的概念,在圆面积公式和锥体体积公式的证明中引入了无穷小分割和极限思想,首创了求圆周率的正确方法,指出并纠正了《九章》的某些不精确的或错误的公式,探索出解决球体积的正确途径,创造了解线性方程组的互乘相消法与方程新术,用十进分数逼近无理根的近似值等,使用了大量类比、归纳推理及演绎推理,并且以后者为主。第十卷原名重差,为刘徽自撰自注,发展完善了重差理论,此卷后来单行,因第一问为测望一海岛的高远,名之曰《海岛算经》。他还著有《九章重差图》一卷,已佚。刘徽生活在辩难之风兴起而尚未流入清谈的魏晋之交,受思想界“析理”的影响,对《九章算术》“析理以辞,解体用图”(《九章算术注·序》),并对各种算法进行总结分析,认为数学像一株枝条虽分而同本干的大树,发自一端,形成了一个完整的理论体系。刘徽博览群书,谙熟诸子百家,他不迷信古人,敢于创新,实事求是。对他未能解决的牟合方盖,坦诚直书,表示“以俟能言者”(《九章算术·少广章注》),表现了一位伟大学者寄希望于后学的坦荡胸怀。《孙子算经》三卷,常被误认为春秋军事家孙武所著,实际上是公元400年前后的作品,作者不详。这是一部数学入门读物,给出了筹算记数制度及乘除法则等预备知识,其河上荡杯、鸡兔同笼等问题后来在民间广泛流传,“物不知数”题则开一次同余式解法之先河。张丘建(今山东人,生平不详)著的《张丘建算经》三卷,成书于北魏(5世纪下半叶)。此书补充了等差级数的若干公式,其百鸡问题是著名的不定方程问题,后世十分重视。《缀术》包含了祖冲之(公元429—500年)和儿子祖暅〔geng 更〕之(一作祖暅,生平不详)的数学贡献。由于其内容深奥,隋唐算学馆学官(相当于今天大学数学系教授)读不懂,遂失传。据认为,将圆周率精确到八位有效数字、球体积的解决及含有负系数的二次、三次方程皆是其中的内容。祖冲之,字文远,祖籍范阳逎(今河北省涞源县)人。刘宋大明六年(公元462年)造大明历,使用岁差,改革闰制。他的改革遭到守旧派官僚戴法兴的反对,祖冲之不畏权势,据理驳斥,坚持了反对谶纬迷信,不虚推古人,实事求是的科学精神。他对机械深有研究,制造过水碓、水磨、指南车、千里船、漏壶等,并著《安边论》、《述异记》等。祖暅之,字景烁。从小爱好数学,巧思入神,极其精微。专心致志之时,雷霆不能入。有一次走路时思考问题,仆射徐勉迎面而来竟然没有发现,头撞到徐勉身上,徐勉唤他,他才知道撞了人。其父的《大明历》经他的努力在梁朝颁行。北周甄鸾(今河北无极人,生卒不详)有三部数学著作传世,即《五曹算经》、《五经算术》、《数术记遗》。前二部内容浅近,无足道者。《数术记遗》一卷,传本题(东)汉徐岳撰、北周甄鸾注,近人多以为系甄鸾自撰自注,假托徐岳。书中记载了三种大数进位制及14种算法,其中珠算虽不同于元明的珠算盘,然开后者之先河,似无可疑。隋唐是中国封建社会经济政治文化的鼎盛时期,然而数学上除天文历法研究中刘焯(公元544—610年)创造等间距内插公式(7世纪初)和僧一行(公元683—727年)创造不等间距内插公式(8世纪)外,几无创造,数学成就及理论水平远远低于魏晋南北朝。唐初王孝通(生卒不详)撰《缉古算经》一卷,解决了若干复杂的土方工程及勾股问题,且都用三次或四次方程解决,是为现存记载三次、四次方程的最早著作。然而,《缉古算经》未必是高于《缀术》的著作。王孝通是历算博士,曾任太史丞,在天文历法方面是保守的。他在《上〈缉古算经〉表》中指责《缀术》全错不通,于理未尽,大约他与当时别的数学家一样读不懂《缀术》。他自诩他的《缉古算经》千金不能排其一字,他一旦瞑目,其方法后人莫晓。科学家不必作谦谦君子,但如此狂妄,也是不足取的。隋唐统治者在国子监设算学馆,置算学博士、助教指导学生学习。唐李淳风等奉敕于显庆元年(公元656年)为《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《夏侯阳算经》、《缀术》、《张丘建算经》、《五曹算经》、《五经算术》、《缉古算经》等十部算经作注,作为算学馆教材,这就是著名的《算经十书》,该书是中国古代数学奠基时期的总结。李淳风等注释保存了许多宝贵资料,但注释水平并不高。由于种种原因,算学馆实际未培养出像样的数学家。唐中叶至宋元中国数学的高潮经过盛唐的大发展,唐中叶之后,生产关系和社会各方面逐渐产生新的实质性变革,到10世纪下半叶,赵匡胤建立宋朝,统一中国,中国封建社会进入了另一个新的阶段,土地所有制以国有为主变为私有为主,租佃农民取代了魏唐的具有农奴身份的部曲、徒附。农业、手工业、商业和科学技术得到更大发展。中国古代四大发明,有三项——印刷术之广泛应用及活字印刷,火药用于战争,指南针用于航海——完成于唐中叶至北宋。宋秘书省于元丰七年(公元1084年)首次刊刻了《九章算术》等十部算经(时《夏侯阳算经》、《缀术》已失传,因8世纪下半叶一部韩延《算术》开头有“夏侯阳曰”云云而误认为是前者而刻入,后者只好付之阙如),是世界上首次出现的印刷本数学著作。后来南宋数学家鲍澣之翻刻了这些刻本,有《九章算术》(半部)、《周髀算经》、《孙子算经》、《五曹算经》、《张丘建算经》五种及《数术记遗》等孤本流传到现在,是目前世界上传世最早的印刷本数学著作。宋元数学家贾宪、李冶、杨辉、朱世杰的著作,大都在成书后不久即刊刻。数学著作借助印刷术得以空前广泛的流传,对传播普及数学知识,其意义尤为深远。宋元数学高潮早在唐中叶已见端倪。随着商业贸易的蓬勃发展,人们改进筹算乘除法,新、旧《唐书》记载了大量这类书籍,可惜绝大多数失传,只有韩延(生平不详)《算术》(8世纪)以《夏侯阳算经》的名义流传下来,该书提出了若干化乘除为加减的捷算法,并在运算中使用了十进小数,极可宝贵。11世纪上半叶贾宪(生平不详)撰《黄帝九章算经细草》,是为北宋最重要的数学著作。贾宪曾任左班殿直(低级武官),是当时著名天文学家、数学家楚衍的学生。还著有《算法
hi投2023-05-20 22:10:051

中国古代数学形成学科出现在哪个朝代?他比世界上其他国家早出现多少年?

秦汉、魏晋、南北朝,共400年间的数学发展历史。而西方古希腊时期就形成了以毕达哥拉斯、欧几里得、阿基米德、阿波罗尼奥斯为主的数学几何学,所以从形成理论来说,中国要晚500年至1000年。一、中国数学的起源与早期发展 据《易·系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间﹝法则是:一纵十横,百立千僵,千、十相望,万、百相当﹞,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。 在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理﹝西方称勾股定理﹞的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。 战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:「圆,一中同长也」、「平,同高也」等等。墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如「至大无外谓之大一,至小无内谓之小一」、「一尺之棰,日取其半,万世不竭」等。这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的186年(应该在此前)。 西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有较复杂的开方问题和分数运算等。 《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年﹝公元前一世纪﹞。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。 魏晋时期中国数学在理论上有了较大的发展。其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。赵爽还提出了用几何方法求解二次方程的新方法。263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰著《海岛算经》,发扬了古代勾股测量术----重差术。 南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。约于公元四-五世纪成书的《孙子算经》给出「物不知数」问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题。  公元五世纪,祖冲之、祖暅父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。他们同时在天文学上也有突出的贡献。其著作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到3.1415926 <π< 3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值,欧洲直到十六世纪德国人鄂图(valentinus otto)和荷兰人安托尼兹(a.anthonisz)才得出同样结果;(2)祖暅在刘徽工作的基础上推导出球体体积的正确公式,并提出"幂势既同则积不容异"的体积原理,即二立体等高处截面积均相等则二体体积相等的定理。欧洲十七世纪意大利数学家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)发展了二次与三次方程的解法。 同时代的天文历学家何承天创调日法,以有理分数逼近实数,发展了古代的不定分析与数值逼近算法。  三、中国数学教育制度的建立 隋朝大兴土木,客观上促进了数学的发展。唐初王孝通撰《缉古算经》,主要是通过土木工程中计算土方、工程的分工与验收以及仓库和地窖计算等实际问题,讨论如何以几何方式建立三次多项式方程,发展了《九章算术》中的少广、勾股章中开方理论。 隋唐时期是中国封建官僚制度建立时期,随着科举制度与国子监制度的确立,数学教育有了长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》(包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》﹞,作为算学馆学生用的课本。对保存古代数学经典起了重要的作用。 由于南北朝时期的一些重大天文发现在隋唐之交开始落实到历法编算中,使唐代历法中出现一些重要的数学成果。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式,这在数学史上是一项杰出的创造,唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。 唐朝后期,计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。 四、中国数学发展的高峰 唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪﹝宋、元两代﹞,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》﹝11世纪中叶﹞,刘益的《议古根源》﹝12世纪中叶﹞,秦九韶的《数书九章》﹝1247﹞,李冶的《测圆海镜》﹝1248﹞和《益古演段》﹝1259﹞,杨辉的《详解九章算法》﹝1261﹞、《日用算法》﹝1262﹞和《杨辉算法》﹝1274-1275﹞,朱世杰的《算学启蒙》﹝1299﹞和《四元玉鉴》﹝1303﹞等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有: 公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。 (《黄帝九章算法细草》已佚)公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。 公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。 公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。 公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。 五、中国数学的衰落与日用数学的发展 这一时期指十四世纪中叶明王朝建立到明末的1582年。数学除珠算外出现全面衰弱的局面,当中涉及到中算的局限、十三世纪的考试制度中已删减数学内容、明代大兴八段考试制度等复杂的问题,不少中外数学史家仍探讨当中涉及的原因。 明代最大的成就是珠算的普及,出现了许多珠算读本,及至程大位的《直指算法统宗》﹝1592﹞问世,珠算理论已成系统,标志着从筹算到珠算转变的完成。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。 六、西方初等数学的传入与中西合璧 十六世纪末开始,西方传教士开始到中国活动,由于明清王朝制定天文历法的需要,传教士开始将与天文历算有关的西方初等数学知识传入中国,中国数学家在“西学中源”思想支配下,数学研究出现了一个中西融合贯通的局面。 十六世纪末,西方传教士和中国学者合译了许多西方数学专着。其中第一部且有重大影响的是意大利传教士利马窦和徐光启合译的《几何原本》前6卷﹝1607﹞,其严谨的逻辑体系和演译方法深受徐光启推崇。徐光启本人撰写的《测量异同》和《勾股义》便应用了《几何原本》的逻辑推理方法论证中国的勾股测望术。此外,《几何原本》课本中绝大部份的名词都是首创,且沿用至今。在输入的西方数学中仅次于几何的是三角学。在此之前,三角学只有零星的知识,而此后获得迅速发展。介绍西方三角学的著作有邓玉函编译的《大测》﹝2卷,1631﹞、《割圆八线表》﹝6卷﹞和罗雅谷的《测量全义》﹝10卷,1631﹞。在徐光启主持编译的《崇祯历书》﹝137卷,1629-1633﹞中,介绍了有关圆椎曲线的数学知识。入清以后,会通中西数学的杰出代表是梅文鼎,他坚信中国传统数学「必有精理」,对古代名著做了深入的研究,同时又能正确对待西方数学,使之在中国扎根,对清代中期数学研究的高潮是有积极影响的。与他同时代的数学家还有王锡阐和年希尧等人。 清康熙帝爱好科学研究,他「御定」的《数理精蕴》﹝53卷,1723﹞,是一部比较全面的初等数学书,对当时的数学研究有一定影响。 七、传统数学的整理与复兴 乾嘉年间形成一个以考据学为主的干嘉学派,编成《四库全书》,其中数学著作有《算经十书》和宋元时期的著作,为保存濒于湮没的数学典籍做出重要贡献。 在研究传统数学时,许多数学家还有发明创造,例如有「谈天三友」之称的焦循、汪莱及李锐作出不少重要的工作。李善兰在《垛积比类》﹝约1859﹞中得到三角自乘垛求和公式,现在称之为「李善兰恒等式」。这些工作较宋元时期的数学进了一步。阮元、李锐等人编写了一部天文学家和数学家传记《畴人传》46卷﹝1795-1810﹞,开数学史研究之先河。  八、西方数学再次东进 1840年鸦战争后,闭关锁国政策被迫中止。同文馆内添设「算学」,上海江南制造局内添设翻译馆,由此开始第二次翻译引进的高潮。 主要译者和著作有:李善兰与英国传教士伟烈亚力合译的《几何原本》后9卷﹝1857﹞,使数学的还有江泽涵﹝1927﹞、陈省身﹝1934﹞、华罗庚﹝1936﹞、许宝騤﹝1936﹞等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素﹝1920﹞,美国的伯克霍夫﹝1934﹞、奥斯古德﹝1934﹞、维纳﹝1935﹞,法国的阿达马﹝1936﹞等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年〈中国数学会学报〉和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝騤在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。 1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊﹝1952年改为《数学学报》﹞,1951年10月《中国数学杂志》复刊﹝1953年改为《数学通报》﹞。1951年8月中国数学会召开建国后第一次国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。 建国后的数学研究取得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》﹝1953﹞、苏步青的《射影曲线概论》﹝1954﹞、陈建功的《直角函数级数的和》﹝1954﹞和李俨的《中算史论丛》5集﹝1954-1955﹞等专着,到1966年,共发表各种数学论文约2万余篇。 除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论着达到世界先进水平,同时培养和成长起一大批优秀数学家。 60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。 1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。 1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专着的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。 十、中国数学的特点 (1)以算法为中心,属于应用数学。中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。 (2)具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。 (3)寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等。 十一、中国数学对世界的影响 数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展。 中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展。
苏州马小云2023-05-20 22:10:041

古代数学著作

古代数学著作有:《九章算术》、《周髀算经》、《海岛算经》等。1、《九章算术》,为《算经》十书中重要的一部,是一本综合性历史著作,也是当时世界上最简练有效的应用数学巨著。2、《周髀算经》,是《算经》的十书之一,为中国最古老的天文学和数学著作,主要阐明了当时的盖天说和四分历法。3、《海岛算经》,是中国最早一部测量数学著作,为地图学提供了数学基础,由魏晋时期刘徽编撰,被称为实用三角法的启蒙著作。数学名著,狭义上是指在数学上具有经典意义、被人们广泛认可的优秀数学著作。
苏州马小云2023-05-20 22:10:041

中国古代数学的十大瑰宝——《算经十书》讲的是什么?

我国古代千余年间陆续出现了10部数学著作,被称为中国古代数学的十大瑰宝。它们是(1)《周髀算经》:这是一部我国流传至今最早的数学著作,也是一部天文学著作。在数学方面主要讲了学习数学的方法。(2)《九章算术》:是算经十书中最重要的一种。(3)《孙子算经》:较系统地叙述了算筹记数法和算筹的乘、除、开方以及分数等计算的步骤和法则。(4)《五曹算经》:北周甄鸾所著,全书共收集了67个问题。所谓“五曹”是指五类官员,即“田曹”、“兵曹”、“集曹”、“仓曹”、“金曹”五大类问题。(5)《夏侯阳算经》:全书共3卷,收有83个数学问题,内容与《孙子算经》类似。(6)《张丘建算经》:南北朝时期的著作,除《九章算术》的内容外,还有等级数问题、二次方程问题、不定方程问题。(7)《海岛算经》:魏晋时期刘徽著,以测海岛的高、远而得名。(8)《五经算术》:北周甄鸾著,对《易经》、《诗经》、《周礼》、《礼记》、《论语》、《左传》等儒家经典中与数学有关的地方加以注释。(9)《缀术》。(10)《缉古算经》。以上10部书统称为《算经十书》。
ardim2023-05-20 22:10:041

中国古代或近代数学家的生平 ,简历,故事,成就。

中国古代著名数学家及其主要贡献    刘徽(生于公元250年左右)  刘徽刘徽(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.其生卒年月、生平事迹,史书上很少记载.据有限史料推测,他是魏晋时代山东邹平人.终生未做官.他在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.  《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.  《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.  刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.  刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.  祖冲之(公元429年─公元500年)  祖冲之(公元429年─公元500年)是我国杰出的数学家,科学家.南北朝时期人,汉族人,字文远.生于未文帝元嘉六年,卒于齐昏侯永元二年.祖籍范阳郡遒县(今河北涞水县).其主要贡献在数学、天文历法和机械三方面.在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了.祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式.在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等.此外,对音乐也研究.他是历史上少有的博学多才的人物.  祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/113为密率,其中355/113取六位小数是3.141592,它是分子分母在16604以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接12288边形,这需要花费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".  祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.  祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".  中国古代其他著名数学家及其主要贡献  ▲张丘建--  《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详.最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就.“百鸡术”是世界著名的不定方程问题.13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西
Ntou1232023-05-20 22:10:041

古代数学书周什么算经

问题一:中国古代数学著作有哪些?要作者和书名。比如《周脾算经》 中国古代数学,和天文学以及其他许多科学技术一样,也取得了极其辉煌的成就。可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位。中国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。 例如现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。 开始,人们是用抄写的方法进行学习并且把数学知识传给下一代的。直到北宋,随着印刷术的发展,开始出现印刷本的数学书籍,这恐怕是世界上印刷本数学著作的最早出现。现在收藏于北京图书馆、上海图书馆、北京大学图书馆的传世南宋本《周髀算经》、《九章算术》等五种数学书籍,更是值得珍重的宝贵文物。 从汉唐时期到宋元时期,历代都有著名算书出现:或是用中国传统的方法给已有的算书作注解,在注解过程中提出自己新的算法;或是另写新书,创新说,立新意。在这些流传下来的古算书中凝聚着历代数学家的劳动成果,它们是历代数学家共同留下来的宝贵遗产。 《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说――“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。 对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部。它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330―前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的。在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。 《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201―前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书・艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者耽含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。 从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法。书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题。《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方......>> 问题二:古代著名的数学书 《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书.十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》. 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪).《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说――“盖天说”的天文著作.就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算.当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的 问题三:我国古代数学家张丘建在《算经》一书中提出了“百鸡问题”:鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一. 设公鸡有x只,母鸡有y只,小鸡有z只,根据题意,得5x+3y+z3=100x+y+z=100,整理得:7x+4y=100.x=100?4y7;因为x≥0,y≥0,且都是自然数,所以100?4y7≥0,所以y≤25,100-4y是7的倍数,且三种鸡都有买,所以100-4y=7,14,21,所以共有3种情况:①公鸡4只,母鸡18只,小鸡78只;②公鸡8只,母鸡11只,小鸡81只;③公鸡12只,母鸡4只,小鸡84只. 问题四:<<算经十书>>的作者分别是谁? 《周髀算经》的作者不详。从它的成书时间来看,它并非一人一时之作,而是对先秦数学成就的总结,是集体智慧的结晶。 西汉早期的著名数学家张苍(前201―前152)、耿寿昌等人都曾经对它进行过增订删补 《孙子算经》的作者与编纂年代史书没有确实的记载.大约在公元四,五世纪,成书于祖冲之以前 《五曹算经》北周甄鸾 《夏侯阳算经》作者夏侯阳,史家大多同意其为晋朝人 《张丘建算经》张丘建 >由唐代王孝通所撰 (我是一个一个找的,好困难啊!!!!) 问题五:我国古代名著孙子算经中记载的三大数学趣题指的是什么? 《算经十书》是指汉、唐一千多年间的十部著名的数学著作,他们曾经是隋唐时代国子监算学科的教科书。十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《辑古算经》、《缀术》、《五曹算经》、《孙子算经》。《算经十书》标志着中国古代数学的高峰。 问题六:c语言我国古代数学家张丘健在算经一书中提出了百鸡问题,鸡翁一值钱五 设公鸡有x只,母鸡有y只,小鸡有z只,根据题意,得5x+3y+z3=100x+y+z=100,整理得:7x+4y=100.x=100?4y7;因为x≥0,y≥0,且都是自然数,所以100?4y7≥0,所以y≤25,100-4y是7的倍数,且三种鸡都有买,所以100-4y=7,14,21,所以共有3种情况:①公鸡4只,母鸡18只,小鸡78只;②公鸡8只,母鸡11只,小鸡81只;③公鸡12只,母鸡4只,小鸡84只.
西柚不是西游2023-05-20 22:10:031

我国古代数学以什么为代表作

我国古代数学主要是《九章算术》、《周髀算经》、《海岛算经》、《张丘建算经》和《缉古算经》等五部。《九章算术》,为《算经》十书中重要的一部,是一本综合性历史著作,也是当时世界上最简练有效的应用数学,作者不祥,约成书于公元前一世纪。《周髀算经》,原名《周髀》,是《算经》的十书之一,为中国最古老的天文学和数学著作,约成书于公元前一世纪,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名为《周髀算经》。《海岛算经》,是中国学者编撰的最早一部测量数学著作,为地图学提供了数学基础。该书,本为《九章算术注》之第十卷,题为《重差》,由刘徽于三国魏景元四年(公元263年)编撰。它被称为实用三角法的启蒙著作,只是未涉及三角学中的正余弦概念。《张丘建算经》,是中国古代数学著作,约成书于公元五世纪,现传本有九十二问。该书突出的成就,是最大公约数与最小公倍数的计算,各种等差数列问题的解决,及某些不定方程问题求解等。《缉古算经》,原名《缉古算术》,是中国古代数学著作之一,为中国现存最早解决三次方程的著作,由唐代初期数学家王孝通编撰。
FinCloud2023-05-20 22:10:031

古代数学家刘微的故事

  说到中国古代的数学,就不能不提起《九章算术》这本书,它大约写成于公元一世纪,原作者是谁不清楚,但人们常常把后来为它作注释的刘徽与它相提并论。下面是我整理的古代数学家刘微的故事,欢迎查看。   数学家刘徽的故事   13刘徽是魏晋时期有名的数学家,他在数学上有着极大的成就,在数学界中占据着极其重要的位置。他在十分简陋的环境中,冥思苦想,提出了一个又一个令人振奋的理论。接下来,让我们来看一看与刘徽有关的故事吧。   刘徽是中国古代历史上,乃至世界知名的数学家,他通过自己不断地研究,在十分简陋的环境下,提出了“割圆术”,进而得出了更精确地圆周率。这在当时是一个十分伟大的发现,也使中国对圆周率的计算在世界上一直处于领先的地位。   刘徽在他的著作中,提出了割圆术的理论,可以利用它来计算圆周率。《九章算术》中提到“周三径一”,这句话的意思就是说圆周率的近似值为三。但是,刘徽认为这个数字太笼统,不够准确,所以指出这个数字不能作为圆周率。后来,在一次偶然的事件中,刘徽发现圆内接多边形的边数增加得越多,那么多边形的周长就与圆的周长越来越接近,这也就是割圆术的由来了。利用割圆术,刘徽从圆内接正六边形开始切割,然后就是十二边形等一直计算下去,直到计算到九十六边形为止,能够得出的圆周率的近似值是3。14。然而刘徽对此并不满意,他后来又继续深入计算,得出了当时世界上最精确的圆周率为3。1416。   刘徽是一个伟大的数学家,他在数学上的成就对后世数学的发展,形成了十分深远的影响。    拓展:刘徽在海岛算经   刘徽是实至名归的世界数学界的泰斗,他利用了各种优秀的理念,使传统数学得到了转变,数学研究也步上了一个新的台阶。他留下的数学著作对数学界来说是珍宝一般的存在,《海岛算经》就是其中的一部。   263年,刘徽著作了《九章算术注》,而《海岛算经》就是其中的"第十卷。直到唐朝时,《海岛算经》才开始单独作为一部著作出现。这部书是中国最早的一部测量学著作,测量的都是与高和距离的问题。因此,有人说它是三角法的起源,但这其中并未涉及相关的理论和知识点。这部书一共有九个关于测量计算高远深广的问题,且都是采用表尺从不同的位置测望,然后取得这些测望值的差距,通过这些差距再来计算山高等距离问题。而在这些计算中,所运用的方法是筹算。因为这些问题中的第一个问题与海盗有关,所以这部书被取名为《海岛算经》。   这部书,在唐初时单独成册,后来又被收录进了一部百科全书式的文献集中。幸运的是,经历了千年的颠簸,这部书没有消逝在时间的长河里,如今被妥善的保管着。遗憾的是,虽然这部书没有失传,但是却没能留存于国内,而是被保存于英国剑桥大学图书馆。   有人曾指出,《海岛算经》让中国的测量学达到了巅峰,其测量术比欧洲早了整整一千四百年左右,可见古代中国测量学的先进。
九万里风9 2023-05-20 22:10:021

中国古代数学的十大瑰宝——《算经十书》讲的是什么呢?

我国古代千余年间陆续出现了10部数学著作,被称为中国古代数学的十大瑰宝。它们是(1)《周髀算经》:这是一部我国流传至今最早的数学著作,也是一部天文学著作。在数学方面主要讲了学习数学的方法。(2)《九章算术》:是算经十书中最重要的一种。(3)《孙子算经》:较系统地叙述了算筹记数法和算筹的乘、除、开方以及分数等计算的步骤和法则。(4)《五曹算经》:北周甄鸾所著,全书共收集了67个问题。所谓“五曹”是指五类官员,即“田曹”、“兵曹”、“集曹”、“仓曹”、“金曹”五大类问题。(5)《夏侯阳算经》:全书共3卷,收有83个数学问题,内容与《孙子算经》类似。(6)《张丘建算经》:南北朝时期的著作,除《九章算术》的内容外,还有等级数问题、二次方程问题、不定方程问题。(7)《海岛算经》:魏晋时期刘徽著,以测海岛的高、远而得名。(8)《五经算术》:北周甄鸾著,对《易经》、《诗经》、《周礼》、《礼记》、《论语》、《左传》等儒家经典中与数学有关的地方加以注释。(9)《缀术》。(10)《缉古算经》。以上10部书统称为《算经十书》。
阿啵呲嘚2023-05-20 22:10:021

我国古代数学家赵爽的勾股圆方园大正方形,13,1

首先说明一下 a平方我打不出来所以a2就代表a平方了 由图得a2+b2=13 (b-a)2=1 即b2+a2-2ab=1 所以2ab=12,ab=6 所以(a+b)2=25 因为a、b均为正数 所以a+b=5 因为(b-a)2=1 所以b-a=1 成立方程组并解得 b=3,a=2
人类地板流精华2023-05-20 22:10:011

古代数学家赵爽名言

他详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之,为弦实。开方除之,即弦。”
u投在线2023-05-20 22:10:001

我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形

13-2=11 11/4=2.75 2.75的因数末尾只能是“5”所以,2.75/5=0.55 (0.55+5)*(0.55+5)=30.8025 答案是30.8025相信你一定会懂的!
苏州马小云2023-05-20 22:10:002

我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图1.图2由弦图变

将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=9,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=9,故3x+12y=9,x+4y=3,所以S2=x+4y=3,故答案为:3.
此后故乡只2023-05-20 22:09:591

我国汉代数学家赵爽为了证明勾股定理,创造了一副“弦图”,后人称其为“赵爽弦图”(如图1)

图?
gitcloud2023-05-20 22:09:594

中国古代数学家(越多越快越好),标清年代和成就

刘徽 ——(东汉)杨辉 ——(南宋)赵爽 ——(东汉)沈括 ——(北宋)汪莱 ——(清朝)朱世杰 ——(元朝)秦九韶 ——(南宋)徐光启 ——(明朝)祖冲之 ——(南北朝)
bikbok2023-05-20 22:09:583

古代数学著作周髀算经中髀是指什么

算筹
豆豆staR2023-05-20 22:09:504

古代数学著作周髀算经中髀是指什么

[单选]我国古代著作《周髀算经》中的“髀”是指().A.太阳影子B.竖立的表或杆子C.直角尺D.算筹参考答案:B
ardim2023-05-20 22:09:462

用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)时,从n=k到n=k+1,左边需增乘的代数式是?

(k+k+1)(k+1+k+1) a1=(1+1)=2=2^1*1 a2=(2+1)(2+2)=12=2^2*1*3 a3=(3+1)(3+2)(3+3)=120=2^3*1*3*5 …… ak=(k+1)(k+2)…(k+k)=2^k*1*3*…*(2k-1) ak+1=(k+1+1)(k+2+1)…(k+k)*(k+k+1)(k+1+k+1) =〔(k+1)(k+2)…(k+k-1)(k+k)〕(k+k+1)(k+1+k+1)/(k+1) 关键在这一步 =〔2^k*1*3*…*(2k-1)〕*(k+k+1)〔(k+1+k+1)/(k+1)〕注意中括号内可以约去k+1 =2^k*1*3*…*(2k-1)〕*(2k+1)*2 =2^(k+1)*1*3*…*(2k-1)*(2k+1) 得证。
大鱼炖火锅2023-05-20 22:09:342

用数学归纳法证明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,从“k到k+1”左端需增乘的代数

B 依题意当 时,左边 , 时,左边 .从“k到k+1”左端需增乘的代数式为 .故选B.
u投在线2023-05-20 22:09:341

中国古代数学都是用什么符号表示的?

fsdgb
Jm-R2023-05-20 22:09:346

(n+1)*(n+2)....(n+n)=2n*1*3*...(2n-1),从k到K+1,左端应增乘代数式为?

(2k+1)(2k+2)/(k+1)=2(2k+1);B
黑桃花2023-05-20 22:09:341

中国古代数学的辉煌史

杨辉三角
西柚不是西游2023-05-20 22:09:333

中国古代数学有多牛,仅留下的书籍就将近1500万字,中国古代有哪些数学成就?

中国古代的数学其实成就是很高的。我国是世界上最早使用十进制计数的国家之一,商代甲骨文中已有十进制计数。在人类历史上,曾出现过五进制、十二进制、十六进制、二十进制、六十进制等,但除了计时和角度仍保留着六十进制外,其他进制都被十进制所取代了。数字写法有“顺序”,从左到右,或从右到左,或从上到下,于是同一个计数符号写在不同位置上,其数值大小也不相同,这就是位值制。《孙子算经》记载:凡算之法,先识其位,一从十横,百立千僵,千十相望,万百相当。中国古代用算筹记数,进行加减乘除的运算,唐代末年,算筹的乘除法被改进,到宋代产生算筹的乘除法歌诀。中国人还首创了世界上第一个数学专科学校,这就是国子监所辖的六学之一的算学,长安与洛阳各置一所,专门培养数学人才。算学招收学生,置有算学博士等学官,负责学生的教学工作。
康康map2023-05-20 22:09:332

中国古代数学辉煌史

还记得3.1415926吗?
北有云溪2023-05-20 22:09:338

中国古代数学家简介

这次的搜索这次的搜索很满意
苏萦2023-05-20 22:09:3213

中国古代数学家有哪些成就

祖冲之 圆周率
豆豆staR2023-05-20 22:09:314

用数学归纳法证明“(n+1)(n+2)....(n+n)=1*3*...*(2n-1)*2^n”时“从k到k+1”左边需要增乘的代数式是

实际上是N1和N2,两者是不同的
gitcloud2023-05-20 22:09:314

我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代

⑴ ⑵能,证明见解析 解:(1)       ……………………1分  ;   ………………3分又   ,     ……………………4分∴   .  …………6分⑵ …8分      …………10分      …………………………11分∴    ……12分(说明:若在整个推导过程中,始终带根号运算当然也正确。)(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘 ,保持等式不变,构成完全平方公式,再进行计算.
凡尘2023-05-20 22:09:271

我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口

如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸.因为积水深9寸,所以水面半径为 1 2 (14+6)=10 寸.则盆中水的体积为 1 3 π×9( 6 2 +1 0 2 +6×10)=588π (立方寸).所以则平地降雨量等于 588π π×1 4 2 =3 (寸).故答案为3.
左迁2023-05-20 22:09:261

我国古代数学家秦九韶在《九章算术》中记述了“三斜求积术”,怎么推导出海伦公式

由三斜求积直接推导出海伦公式,不过需要两个公式的代换
阿啵呲嘚2023-05-20 22:09:256

中国古代数学著作有哪些?要作者和书名。比如《周脾算经》

中国古代数学,和天文学以及其他许多科学技术一样,也取得了极其辉煌的成就。可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位。中国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。 例如现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。 开始,人们是用抄写的方法进行学习并且把数学知识传给下一代的。直到北宋,随着印刷术的发展,开始出现印刷本的数学书籍,这恐怕是世界上印刷本数学著作的最早出现。现在收藏于北京图书馆、上海图书馆、北京大学图书馆的传世南宋本《周髀算经》、《九章算术》等五种数学书籍,更是值得珍重的宝贵文物。 从汉唐时期到宋元时期,历代都有著名算书出现:或是用中国传统的方法给已有的算书作注解,在注解过程中提出自己新的算法;或是另写新书,创新说,立新意。在这些流传下来的古算书中凝聚着历代数学家的劳动成果,它们是历代数学家共同留下来的宝贵遗产。 《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。 对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部。它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330—前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的。在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。 《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书·艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。 从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法。书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题。《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方程(首项系数不是负)的数值解法。还有整整一章是讲述联立一次方程解法的,这种解法实质上和现在中学里所讲的方法是一致的。这要比欧洲同类算法早出一千五百多年。在同一章中,还在世界数学史上第一次记载了负数概念和正负数的加减法运算法则。 《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足”(也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。 《算经十书》中的第三部是《海岛算经》,它是三国时期刘徽(约225—约295)所作。这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法(参见本书第98页),他还首次把极限概念应用于解决数学问题。 《算经十书》的其余几部书也记载有一些具有世界意义的成就。例如《孙子算经》中的“物不知数”问题(一次同余式解法,参见本书第106页),《张丘建算经》中的“百鸡问题”(不定方程问题)等等都比较著名。而《缉古算经》中的三次方程解法,特别是其中所讲述的用几何方法列三次方程的方法,也是很具特色的。 《缀术》是南北朝时期著名数学家祖冲之的著作。很可惜,这部书在唐宋之际公元十世纪前后失传了。宋人刊刻《算经十书》的时候就用当时找到的另一部算书《数术记遗》来充数。祖冲之的著名工作——关于圆周率的计算(精确到第六位小数),记载在《隋书·律历志》中(参见本书第101页)。 《算经十书》中用过的数学名词,如分子、分母、开平方、开立方、正、负、方程等等,都一直沿用到今天,有的已有近两千年的历史了。 中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年), 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。 《数书九章》主要讲述了两项重要成就:高次方程数值解法和一次同余式解法(分别参见本书第119页和第110页)。书中有的问题要求解十次方程,有的问题答案竟有一百八十条之多。《测圆海镜》和《益古演段》讲述了宋元数学的另一项成就:天元术(用代数方法列方程,参见本书第121页);也还讲述了直角三角形和内接圆所造成的各线段间的关系,这是中国古代数学中别具一格的几何学。杨辉的著作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法。这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件。朱世杰的《算学启蒙》不愧是当时的一部启蒙教科书,由浅入深,循序渐进,直到当时数学比较高深的内容。《四元玉鉴》记载了宋元数学的另两项成就:四元术(求解高次方程组问题,参见本书第123页)和高阶等差级数、高次招差法(参见本书第131页)。 宋元算书中的这些成就,和西方同类成果相比:高次方程数值解法比霍纳(1786—1837)方法早出五百多年,四元术要比贝佐(1730—1783)①早出四百多年,高次招差法比牛顿(1642—1727)等人早出近四百年。 宋元算书中所记载的辉煌成就再次证明:直到明代中叶之前,中国科学技术的许多方面,是处在遥遥领先地位的。 宋元以后,明清时期也有很多算书。例如明代就有著名的算书《算法统宗》。这是一部风行一时的讲珠算盘的书。入清之后,虽然也有不少算书,但是像《算经十书》、宋元算书所包含的那样重大的成就便不多见了。特别是在明末清初以后的许多算书中,有 不少是介绍西方数学的。这反映了在西方资本主义发展进入近代科学时期以后我国科学技术逐渐落后的情况,同时也反映了中国数学逐渐融合到世界数学发展总的潮流中去的一个过程。   中国数学发展的历史表明:中国数学曾经为世界数学的发展作出过卓越的贡献,只是在近代才逐渐落后了。我们深信,经过努力,中国数学一定能迎头赶上世界
u投在线2023-05-20 22:09:251

我国古代数学家九韶在《数书九章》中记述了三斜求积术的推理过程

我国著名的数学家九韶在《数书九章》提出了“三斜求积术”。  秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。
Chen2023-05-20 22:09:231

宋代数学家秦九韶的数学著作是

宋代数学家秦九韶的数学著作是如下:宋代著名数学家秦九昭的著作是数书九章。资料扩展:秦九韶(1208年-1268年),字道古,汉族,祖籍鲁郡(今河南省范县),出生于普州(今四川安岳县)。南宋著名数学家,与李冶、杨辉、朱世杰并称宋元数学四大家。精研星象、音律、算术、诗词、弓、剑、营造之学,历任琼州知府、司农丞,后遭贬,卒于梅州任所,1247年完成著作《数书九章》,其中的大衍求一术(一次同余方程组问题的解法,也就是现在所称的中国剩余定理)、三斜求积术和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献,表述了一种求解一元高次多项式方程的数值解的算法——正负开方术。秦九韶,字道古。祖籍鲁郡(今河南省范县),出生于普州(今资阳市安岳县)。中国古代数学家。南宋嘉定元年(1208年)生;约景定二年(1261年)被贬至梅州,咸淳四年(1268)二月,在梅州辞世,时年61岁。秦九韶其父秦季栖,进士出身,官至上部郎中、秘书少监。秦九韶聪敏勤学。宋绍定四年,秦九韶考中进士,先后担任县尉、通判、参议官、州守、同农、寺丞等职。
水元素sl2023-05-20 22:09:231

我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.

c22是什么东东
tt白2023-05-20 22:09:233

中国古代数学的成就

最早发现勾股定理魏晋数学家刘徽运用极限理论提出计算圆周率的正确方法祖冲之最早把圆周率推算到小数点后七位,比外国早一千年。世界上最早的十进位值制记数法,勾股定理与陈子测日,九九歌的故事,《墨经》几何学,《周易》、《庄子》和孙膑的数学成就等。《算经十书》与汉唐数学,科举考试与《算经十书》,中国古代数学的代表作《九章算术》,《海岛算经》与重差术,有趣的"韩信暗点兵"问题,《缉古算经》与一元三次方程等。
NerveM 2023-05-20 22:09:233

中国古代数学家1000字以上简介急.........

祖冲之小的时候祖父经常给讲一些科学家的故事,其中张衡发明地动仪的故事深深打动了祖冲之幼小的心灵。祖冲之常随祖父去建筑工地,晚上,在那里他常同农村小孩们一起乘凉、玩耍。天上星星闪烁,在祖冲之看来,这些星星很杂乱地散布着,而农村孩子们却能叫出星星的名称,如牛郎、织女以及北斗星等,此时,祖冲之觉得自己实在知道得很少。祖冲之不喜欢读古书。5岁时,父亲教他学枟论语枠,两个月他也只能背诵十几句。气得父亲又打又骂。可是他喜欢数学和天文。一天晚上,祖冲之躺在床上想白天老师说的“圆周是直径的3倍”这话似乎不对。第二天早,他就拿了一段妈妈绱鞋子的绳子,跑到村头的路旁,等待过往的车辆。一会儿,来了一辆马车,祖冲之叫住马车,对驾车的老人说:“让我用绳子量量您的车轮,行吗?”老人点点头。祖冲之用绳子把车轮量了一下,又把绳子折成同样大小的3段,再去量车轮的直径。量来量去,他总觉得车轮的直径没有1/3的圆周长。祖冲之站在路旁,一连量了好几辆马车车轮的直径和周长,得出的结论是一样的。这究竟是为什么?这个问题一直在他的脑海里萦绕。他决心要解开这个谜。 经过多年的努力学习,祖冲之研究了刘徽的“割圆术”。所谓“割圆术”就是在圆内画个正6边形,其边长正好等于半径,再分12边形,用勾股定理求出每边的长,然后再分24、48边形,一直分下去,所得多边形各边长之和就是圆的周长。祖冲之非常佩服刘徽这个科学方法,但刘徽的圆周率只得到96边,得出3 . 14的结果后就没有再算下去,祖冲之决心按刘徽开创的路子继续走下去,一步一步地计算出192边形、384边形 ⋯⋯ 以求得更精确的结果。当时,数字运算还没利用纸、笔和数码进行演算,而是通过纵横相间地罗列小竹棍,然后按类似珠算的方法进行计算。祖冲之在房间地板上画了个直径为1丈的大圆,又在里边做了个正6边形,然后摆开他自己做的许多小木棍开始计算起来。此时,祖冲之的儿子祖恒已13岁了,他也帮着父亲一起工作,两人废寝忘食地计算了十几天才算到96边,结果比刘徽的少0 . 000002丈。祖恒对父亲说:“我们计算得很仔细,一定没错,可能是刘徽错了。”祖冲之却摇摇头说:“要推翻他一定要有科学根据。”于是,父子俩又花了十几天的时间重新计算了一遍,证明刘徽是对的。祖冲之为避免再出误差,以后每一步都至少重复计算两遍,直到结果完全相同才罢休。祖冲之从12288边形,算到24567边形,两者相差仅0 . 0000001。祖冲之知道从理论上讲,还可以继续算下去,但实际上无法计算了,只好就此停止,从而得出圆周率必然大于3 . 1415926,而小于3 . 1415927。 很多朋友知道了祖冲之计算的成绩,纷纷登门向他求教。之后,祖冲之又进一步得出圆周率的密率是355/113,约率是22/7。直到1000多年后,德国数学家鄂图才得出相同的结果。
Ntou1232023-05-20 22:09:232

谁知道中国古代数术4大符号体系?要具体的,谢谢

中国古代数学的发展 在古代世界四大文明中,中国数学持续繁荣时期最为长久。从公元前后至公元14世纪,中国古典数学先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期和宋元时期,并在宋元时期达到顶峰。 与以证明定理为中心的希腊古典数学不同,中国古代数学是以创造算法特别是各种解方程的算法为主线。从线性方程组到高次多项式方程,乃至不定方程,中国古代数学家创造了一系列先进的算法(中国数学家称之为“术”),他们用这些算法去求解相应类型的代数方程,从而解决导致这些方程的各种各样的科学和实际问题。特别是,几何问题也归结为代数方程,然后用程式化的算法来求解。因此,中国古代数学具有明显的算法化、机械化的特征。以下择要举例说明中国古代数学发展的这种特征。 1.1 线性方程组与“方程术” 中国古代最重要的数学经典《九章算术》(约公元前2世纪)卷8的“方程术”,是解线性方程组的算法。以该卷第1题为例,用现代符号表述,该问题相当于解一个三元一次方程组: 3x+2y+z=39 2x+3y+z=34 x+2y+3z=26 《九章》没有表示未知数的符号,而是用算筹将x�y�z的系数和常数项排列成一个(长)方阵: 1 2 3 2 3 2 3 1 1 26 34 39 “方程术”的关键算法叫“遍乘直除”,在本例中演算程序如下:用右行(x)的系数(3)“遍乘”中行和左行各数,然后从所得结果按行分别“直除”右行,即连续减去右行对应各数,就将中行与左行的系数化为0。反复执行这种“遍乘直除”算法,就可以解出方程。很清楚,《九章算术》方程术的“遍乘直除” 算法,实质上就是我们今天所使用的解线性方程组的消元法,以往西方文献中称之为“高斯消去法”,但近年开始改变称谓,如法国科学院院士、原苏黎世大学数学系主任P.Gabriel教授在他撰写的教科书[4]中就称解线性方程组的消元法为“张苍法”,张苍相传是《九章算术》的作者之一。 1.2 高次多项式方程与“正负开方术” 《九章算术》卷4中有“开方术”和“开立方术”。《九章算术》中的这些算法后来逐步推广到开更高次方的情形,并且在宋元时代发展为一般高次多项式方程的数值求解。秦九韶是这方面的集大成者,他在《数书九章》(1247年)一书中给出了高次多项式方程数值解的完整算法,即他所称的“正负开方术”。 用现代符号表达,秦九韶“正负开方术”的思路如下:对任意给定的方程 f(x)=a0xn+a1xn-1+……+an-2x2+an-1x+an=0 (1) 其中a0≠0,an<0,要求(1)式的一个正根。秦九韶先估计根的最高位数字,连同其位数一起称为“首商”,记作c,则根x=c+h,代入(1)得 f(c+h)=a0(c+h)n+a1(c+h)n-1+……+an-1(c+h)+an=0 按h的幂次合并同类项即得到关于h的方程: f(h)=a0hn+a1hn-1+……+an-1h+an=0 (2) 于是又可估计满足新方程(2)的根的最高位数字。如此进行下去,若得到某个新方程的常数项为0,则求得的根是有理数;否则上述过程可继续下去,按所需精度求得根的近似值。 如果从原方程(1)的系数a0,a1,…,an及估值c求出新方程(2)的系数a0,a1,…,an的算法是需要反复迭代使用的,秦九韶给出了一个规格化的程序,我们可称之为“秦九韶程序”, 他在《数书九章》中用这一算法去解决各种可以归结为代数方程的实际问题,其中涉及的方程最高次数达到10次,秦九韶解这些问题的算法整齐划一,步骤分明,堪称是中国古代数学算法化、机械化的典范。 1.3 多元高次方程组与“四元术” 绝不是所有的问题都可以归结为线性方程组或一个未知量的多项式方程来求解。实际上,可以说更大量的实际问题如果能化为代数方程求解的话,出现的将是含有多个未知量的高次方程组。 多元高次方程组的求解即使在今天也绝非易事。历史上最早对多元高次方程组作出系统处理的是中国元代数学家朱世杰。朱世杰的《四元玉鉴》(1303年)一书中涉及的高次方程达到了4个未知数。朱世杰用“四元术”来解这些方程。“四元术”首先是以“天”、“地”、“人”、“物”来表示不同的未知数,同时建立起方程式,然后用顺序消元的一般方法解出方程。朱世杰在《四元玉鉴》中创造了多种消元程序。 通过《四元玉鉴》中的具体例子可以清晰地了解朱世杰“四元术”的特征。值得注意的是,这些例子中相当一部分是由几何问题导出的。这种将几何问题转化为代数方程并用某种统一的算法求解的例子,在宋元数学著作中比比皆是,充分反映了中国古代几何代数化和机械化的倾向。 1.4 一次同余方程组与“中国剩余定理” 中国古代数学家出于历法计算的需要,很早就开始研究形如: X≡Ri (mod ai) i=1,2,...,n (1) (其中ai 是两两互素的整数)的一次同余方程组求解问题。公元4世纪的《孙子算经》中已有相当于求解下列一次同余组的著名的“孙子问题”: X≡2(mod3) ≡3(mod5) ≡2(mod7) 《孙子算经》作者给出的解法,引导了宋代秦九韶求解一次同余组的一般算法——“大衍求一术”。现代文献中通常把这种一般算法称为“中国剩余定理”。 1.5 插值法与“招差术” 插值算法在微积分的酝酿过程中扮演了重要角色。在中国,早从东汉时期起,学者们就惯用插值法来推算日月五星的运动。起初是简单的一次内插法,隋唐时期出现二次插值法(如一行《大衍历》,727年)。由于天体运动的加速度也不均匀,二次插值仍不够精密。随着历法的进步,到了宋元时代,便产生了三次内插法(郭守敬《授时历》,1280年)。在此基础上,数学家朱世杰更创造出一般高次内插公式,即他所说的“招差术”。 朱世杰的公式相当于 f(n)=n△+ n(n�1)△2+ n(n�1)(n�2)△3 + n(n�1)(n�2)(n�3)△4+…… 这是一项很突出的成就。 这里不可能一一列举中国古代数学家的所有算法,但仅从以上介绍不难看到,古代与中世纪中国数学家创造的算法,有许多即使按现代标准衡量也达到了很高的水平。这些算法所表达的数学真理,有的在欧洲直到18世纪以后依赖近代数学工具才重新获得(如前面提到的高次代数方程数值求解的秦九韶程序,与1819年英国数学家W. 霍纳重新导出的“霍纳算法”基本一致;多元高次方程组的系统研究在欧洲也要到18世纪末才开始在E. 别朱等人的著作中出现;解一次同余组的剩余定理则由欧拉与高斯分别独立重新获得;至于朱世杰的高次内插公式,实质上已与现在通用的牛顿-格列高里公式相一致)。这些算法的结构,其复杂程度也是惊人的。如对秦九韶“大衍求一术”和“正负开方术”的分析表明,这些算法的计算程序,包含了现代计算机语言中构造非平易算法的基本要素与基本结构。这类复杂的算法,很难再仅仅被看作是简单的经验法则了,而是高度的概括思维能力的产物,这种能力与欧几里得几何的演绎思维风格截然不同,但却在数学的发展中起着完全可与之相媲美的作用。事实上,古代中国算法的繁荣,同时也孕育了一系列极其重要的概念,显示了算法化思维在数学进化中的创造意义和动力功能。以下亦举几例。 1.6 负数的引进 《九章算术》“方程术”的消元程序,在方程系数相减时会出现较小数减较大数的情况,正是在这里,《九章算术》的作者们引进了负数,并给出了正、负数的加减运算法则,即“正负术”。 对负数的认识是人类数系扩充的重大步骤。公元7世纪印度数学家也开始使用负数,但负数的认识在欧洲却进展缓慢,甚至到16世纪,韦达的著作还回避负数。 1.7 无理数的发现 中国古代数学家在开方运算中接触到了无理数。《九章算术》开方术中指出了存在有开不尽的情形:“若开方不尽者,为不可开”,《九章算术》的作者们给这种不尽根数起了一个专门名词——“面”。“面”,就是无理数。与古希腊毕达哥拉斯学派发现正方形的对角线不是有理数时惊慌失措的表现相比,中国古代数学家却是相对自然地接受了那些“开不尽”的无理数,这也许应归功于他们早就习惯使用的十进位制,这种十进位制使他们能够有效地计算“不尽根数”的近似值。为《九章算术》作注的三国时代数学家刘徽就在“开方术”注中明确提出了用十进制小数任意逼近不尽根数的方法,他称之为“求微数法”,并指出在开方过程中,“其一退以十为步,其再退以百为步,退之弥下,其分弥细,则……虽有所弃之数,不足言之也”。 十进位值记数制是对人类文明不可磨灭的贡献。法国大数学家拉普拉斯曾盛赞十进位值制的发明,认为它“使得我们的算术系统在所有有用的创造中成为第一流的”。中国古代数学家正是在严格遵循十进位制的筹算系统基础上,建立起了富有算法化特色的东方数学大厦。 1.8 贾宪三角或杨辉三角 从前面关于高次方程数值求解算法(秦九韶程序)的介绍我们可以看到,中国古代开方术是以�c+h n的二项展开为基础的,这就引导了二项系数表的发现。南宋数学家杨辉著《详解九章算法》(1261年)中,载有一张所谓“开方作法本源图”,实际就是一张二项系数表。这张图摘自公元1050年左右北宋数学家贾宪的一部著作。“开方作法本源图”现在就叫“贾宪三角”或“杨辉三角”。二项系数表在西方则叫“帕斯卡三角”�1654年 。 1.9 走向符号代数 解方程的数学活动,必然引起人们对方程表达形式的思考。在这方面,以解方程擅长的中国古代数学家们很自然也是走在了前列。在宋元时期的数学著作中,已出现了用特定的汉字作为未知数符号并进而建立方程的系统努力。这就是以李冶为代表的“天元术”和以朱世杰为代表的“四元术”。所谓“天元术”,首先是“立天元一为某某”,这相当于“设为某某”,“天元一”就表示未知数,然后在筹算盘上布列“天元式”,即一元方程式。该方法被推广到多个未知数情形,就是前面提到的朱世杰的“四元术”。因此,用天元术和四元术列方程的方法,与现代代数中的列方程法已相类似。 符号化是近世代数的标志之一。中国宋元数学家在这方面迈出了重要一步,“天元术”和“四元术”,是以创造算法特别是解方程的算法为主线的中国古代数学的一个高峰�。 2 中国古代数学对世界数学发展的贡献 数学的发展包括了两大主要活动:证明定理和创造算法。定理证明是希腊人首倡,后构成数学发展中演绎倾向的脊梁;算法创造昌盛于古代和中世纪的中国、印度,形成了数学发展中强烈的算法倾向。统观数学的历史将会发现,数学的发展并非总是演绎倾向独占鳌头。在数学史上,算法倾向与演绎倾向总是交替地取得主导地位。古代巴比伦和埃及式的原始算法时期,被希腊式的演绎几何所接替,而在中世纪,希腊数学衰落下去,算法倾向在中国、印度等东方国度繁荣起来;东方数学在文艺复兴前夕通过阿拉伯传播到欧洲,对近代数学兴起产生了深刻影响。事实上,作为近代数学诞生标志的解析几何与微积分,从思想方法的渊源看都不能说是演绎倾向而是算法倾向的产物。 从微积分的历史可以知道,微积分的产生是寻找解决一系列实际问题的普遍算法的结果�6�。这些问题包括:决定物体的瞬时速度、求极大值与极小值、求曲线的切线、求物体的重心及引力、面积与体积计算等。从16世纪中开始的100多年间,许多大数学家都致力于获得解决这些问题的特殊算法。牛顿与莱布尼兹的功绩是在于将这些特殊的算法统一成两类基本运算——微分与积分,并进一步指出了它们的互逆关系。无论是牛顿的先驱者还是牛顿本人,他们所使用的算法都是不严格的,都没有完整的演绎推导。牛顿的流数术在逻辑上的瑕疵更是众所周知。对当时的学者来说,首要的是找到行之有效的算法,而不是算法的证明。这种倾向一直延续到18世纪。18世纪的数学家也往往不管微积分基础的困难而大胆前进。如泰勒公式,欧拉、伯努利甚至19世纪初傅里叶所发现的三角展开等,都是在很长时期内缺乏严格的证明。正如冯·诺伊曼指出的那样:没有一个数学家会把这一时期的发展看作是异端邪道;这个时期产生的数学成果被公认为第一流的。并且反过来,如果当时的数学家一定要在有了严密的演绎证明之后才承认新算法的合理性,那就不会有今天的微积分和整个分析大厦了。 现在再来看一看更早的解析几何的诞生。通常认为,笛卡儿发明解析几何的基本思想,是用代数方法来解几何问题。这同欧氏演绎方法已经大相径庭了。而事实上如果我们去阅读笛卡儿的原著,就会发现贯穿于其中的彻底的算法精神。《几何学》开宗明义就宣称:“我将毫不犹豫地在几何学中引进算术的术语,以便使自己变得更加聪明”。众所周知,笛卡儿的《几何学》是他的哲学著作《方法论》的附录。笛卡儿在他另一部生前未正式发表的哲学著作《指导思维的法则》(简称《法则》)中曾强烈批判了传统的主要是希腊的研究方法,认为古希腊人的演绎推理只能用来证明已经知道的事物,“却不能帮助我们发现未知的事情”。因此他提出“需要一种发现真理的方法”,并称之为“通用数学”(mathesis universakis)。笛卡儿在《法则》中描述了这种通用数学的蓝图,他提出的大胆计划,概而言之就是要将一切科学问题转化为求解代数方程的数学问题: 任何问题→数学问题→代数问题→方程求解而笛卡儿的《几何学》,正是他上述方案的一个具体实施和示范,解析几何在整个方案中扮演着重要的工具作用,它将一切几何问题化为代数问题,这些代数问题则可以用一种简单的、几乎自动的或者毋宁说是机械的方法去解决。这与上面介绍的古代中国数学家解决问题的路线可以说是一脉相承。 因此我们完全有理由说,在从文艺复兴到17世纪近代数学兴起的大潮中,回响着东方数学特别是中国数学的韵律。整个17—18世纪应该看成是寻求无穷小算法的英雄年代,尽管这一时期的无穷小算法与中世纪算法相比有质的飞跃。而从19世纪特别是70年代直到20世纪中,演绎倾向又重新在比希腊几何高得多的水准上占据了优势。因此,数学的发展呈现出算法创造与演绎证明两大主流交替繁荣、螺旋式上升过程: 演绎传统——定理证明活动 算法传统——算法创造活动 中国古代数学家对算法传统的形成与发展做出了毋容置疑的巨大贡献。 我们强调中国古代数学的算法传统,并不意味中国古代数学中没有演绎倾向。事实上,在魏晋南北朝时期一些数学家的工作中,已出现具有相当深度的论证思想。如赵爽勾股定理证明、刘徽“阳马”�一种长方锥体 体积证明、祖冲之父子对球体积公式的推导等等,均可与古希腊数学家相应的工作媲美。赵爽勾股定理证明示意图“弦图”原型,已被采用作2002年国际数学家大会会标。令人迷惑的是,这种论证倾向随着南北朝的结束,可以说是戛然而止。囿于篇幅和本文重点,对这方面的内容这里不能详述,有兴趣的读者可参阅参考文献�3�。 3 古为今用,创新发展 到了20世纪,至少从中叶开始,电子计算机的出现对数学的发展带来了深远影响,并孕育出孤立子理论、混沌动力学、四色定理证明等一系列令人瞩目的成就。借助计算机及有效的算法猜测发现新事实、归纳证明新定理乃至进行更一般的自动推理……,这一切可以说已揭开了数学史上一个新的算法繁荣时代的伟大序幕。科学界敏锐的有识之士纷纷预见到数学发展的这一趋势。在我国,早在上世纪50年代,华罗庚教授就亲自领导建立了计算机研制组,为我国计算机科学和数学的发展奠定了基础。吴文俊教授更是从70年代中开始,毅然由原先从事的拓扑学领域转向定理机器证明的研究,并开创了现代数学的崭新领域——数学机械化。被国际上誉为“吴方法”的数学机械化方法已使中国在数学机械化领域处于国际领先地位,而正如吴文俊教授本人所说:“几何定理证明的机械化问题,从思维到方法,至少在宋元时代就有蛛丝马迹可寻,”他的工作“主要是受中国古代数学的启发”。“吴方法”,是中国古代数学算法化、机械化精髓的发扬光大。 计算机影响下算法倾向的增长,自然也引起一些外国学者对中国古代数学中算法传统的兴趣。早在上世纪70年代初,著名的计算机科学家D.E.Knuth就呼吁人们关注古代中国和印度的算法�5�。多年来这方面的研究取得了一定进展,但总的来说还亟待加强。众所周知,中国古代文化包括数学是通过著名的丝绸之路向西方传播的,而阿拉伯地区是这种文化传播的重要中转站。现存有些阿拉伯数学与天文著作中包含有一定的中国数学与天文学知识,如著名的阿尔·卡西《算术之钥》一书中有相当数量的数学问题显示出直接或间接的中国来源,而根据阿尔·卡西本人记述,他所工作的天文台中就有不少来自中国的学者。 然而长期以来由于“西方中心论”特别是“希腊中心论”的影响以及语言文字方面的障碍,有关资料还远远没有得到发掘。正是为了充分揭示东方数学与欧洲数学复兴的关系,吴文俊教授特意从他荣获的国家最高科学奖中拨出专款成立了“吴文俊数学与天文丝路基金”,鼓励支持年轻学者深入开展这方面的研究,这是具有深远意义之举。 研究科学的历史,其重要意义之一就是从历史的发展中获得借鉴和汲取教益,促进现实的科学研究,通俗地说就是“古为今用”。吴文俊对此有精辟的论述,他说:“假如你对数学的历史发展,对一个领域的发生和发展,对一个理论的兴旺和衰落,对一个概念的来龙去脉,对一种重要思想的产生和影响等这许多历史因素都弄清了,我想,对数学就会了解得更多,对数学的现状就会知道得更清楚、更深刻,还可以对数学的未来起一种指导作用,也就是说,可以知道数学究竟应该按怎样的方向发展可以收到最大的效益”。数学机械化理论的创立,正是这种古为今用原则的硕果。我国科学技术的伟大复兴,呼唤着更多这样既有浓郁的中国特色、又有鲜明时代气息的创新。
无尘剑 2023-05-20 22:09:231

中国古代数字符号认怎么认

中国古人在进行数学计算时就已会用算筹为工具进行计算,这方法叫“筹算”。中国古人发明了十进制专用的数字计算符号,这十个符号的写法:〡、〢、〣、〤、〥、〦、〧、〨、〩、十。表示1、2、3、4、5、6、7、8、9、10(0)比如二斗四升写法是“〢×”;三尺四寸写法“〣×”。采用了这样10个数字计算符号,在写代数式时就及为方便。
Chen2023-05-20 22:09:201
 首页 上一页  5 6 7 8 9 10 11 12 13  下一页  尾页