查找相关资料,说一下中国古代数学辉煌史。如:祖冲之的圆周率......
中国古代数学辉煌史 中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的 陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址 的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具 。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用 十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴 、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、 股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记 数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发 展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家 认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”( 无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半, 万世不竭”等命题。 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、 方、平、直、次(相切)、端(点)等等。 墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限 分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果 。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。 中国古代数学体系的形成 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期, 它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。 《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是 世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、 盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法( 特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发 展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。 《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来 的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。 这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固 封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战 国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合 的数学问题及其解法,这与当时社会的发展情况是完全一致的。 《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十 进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的 发展。 中国古代数学的发展 魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析 义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注 ,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代 数学体系奠定了理论基础。 赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充 的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图 证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式 ,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的 数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他 的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程 中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率 为 157/50和 3927/1250。 刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问 题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。 东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数 学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他 们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖(日恒)原理;提出二次与三次 方程的解法等。 据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这 个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在 圆周率计算方面,比西方领先约一千年之久; 祖冲之之子祖(日恒)总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其 任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理 ,解决了刘徽尚未解决的球体积公式。 隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木 工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不 用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础 。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。 唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李 淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂 的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经 》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算 学家创立了二次函数的内插法,丰富了中国古代数学的内容。 算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹 速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和 珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优 点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横 列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。 唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书 书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运 算,它既适用于筹算,也适用于珠算。 中国古代数学的繁荣 960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术 突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第 一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。 从11~14世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪的《黄帝九章算法细草》, 刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章 算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学 的高峰,其中一些成就也是当时世界数学的高峰。 从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九 章算法纂类》中载有贾宪“增乘开平方法”、“增乘开立方法”;在《详解九章算法》中载有贾宪的“开 方作法本源”图、“增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发 现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的 帕斯卡三角形早提出600多年。 把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中“田亩比类 乘除捷法”卷,介绍了原书中22个二次方程和 1个四次方程,后者是用增乘开方法解三次以上的高次方程 的最早例子。 秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次 数为10)的问题。为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种 类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母 ,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二 位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多 年。 元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在“缀术推星” 题、朱世杰在《四元玉鉴》“如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的 内插公式。 用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号 ,并用符号运算来解决建立高次方程的问题。现存最早的天元术著作是李冶的《测圆海镜》。 从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今 ,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。 朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各 次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法, 其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然 后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这 是线性方法组解法的重大发展,比西方同类方法早400多年。 勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形 的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个 容圆公式,大大丰富了中国古代几何学的内容。 已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解 球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、 沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个 推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。 中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算 术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已 出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元 代。 宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外, 数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义 。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,“通神明”的数学是不存在的,只有“经世务 类万物”的数学;莫若在《四元玉鉴》序文中提出的“用假象真,以虚问实”则代表了高度抽象思维的思 想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑 是促进数学发展的重要因素。 中西方数学的融合 中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考 试制度。在这种情况下,除珠算外,数学发展逐渐衰落。 16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战 争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初 ,近代数学研究才真正开始。 从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言 杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭 必需用品列入一般的木器家具手册中。 随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀 ;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱 载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大 位的著作在国内外流传很广,影响很大。 1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《 测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在 他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学 说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同 时介绍进来。 在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译著作,绝大部分 数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它“不必疑”、“不必改”,“举世无一人不 当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。 其次应用最广的是三角学,介绍西方三角学的著作有《大测》《割圆八线表》和《测量全义》。《大 测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方 法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有 这些,在当时历法工作中都是随译随用的。 1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤 柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对 数表》《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。 后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中 通所著《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。 清初学者研究中西数学有心得而著书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书 辑要》(其中数学著作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中 的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现 了生机。年希尧的《视学》是中国第一部介绍西方****学的著作。 清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些著作。 1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。 1721年完成《律历渊源》100卷,以康熙“御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负 责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文著作;下编包括算术、代数、平面 几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等 数学百科全书,并有康熙“御定”的名义,因此对当时数学研究有一定影响。 综上述可以看到,清代数学家对西方数学做了大量的会通工作,并取得许多独创性的成果。这些成果 ,如和传统数学比较,是有进步的,但和同时代的西方比较则明显落后了。 雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不 能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主 的乾嘉学派。 随着《算经十书》与宋元数学著作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有 框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝 而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独 立得到的。 与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记—《畴人传》,收集了从 黄帝时期到嘉庆四年已故的天文学家和数学家270余人(其中有数学著作传世的不足50人),和明末以来介绍 西方天文数学的传教士41人。这部著作全由“掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一 手的原始资料,在学术界颇有影响。 1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学 。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展“洋务运动”,也主张介绍和学习西方数学,组织 翻译了一批近代数学著作。 其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《 代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》; 谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。 《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所著的符号代数学译 本;《决疑数学》是第一部概率论译本。在这些译著中,创造了许多数学名词和术语,至今还在应用,但 所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些著作便成为主要教科书。 在翻译西方数学著作的同时,中国学者也进行一些研究,写出一些著作,较重要的有李善兰的《《尖 锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思 想的研究成果。 由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下 ,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的 研究才真正开始。阿啵呲嘚2023-05-18 13:55:531
中国古代数学专著有哪些
周髀算经》是中国现存最早的一部数学典籍,成书时间大约在两汉之间 (纪元之后).也有史家认为它的出现更早,是孕于周而成于西汉,甚至更有人说它出现在纪元前1000年. 《九章算术》约成书于公元纪元前后,它系统地总结了我国从先秦到西汉中期的数学成就.该书作者已无从查考,只知道西汉著名数学家张苍、耿寿昌等人曾经对它进行过增订删补.全书分做九章,一共搜集了246个数学问题,按解题的方法和应用的范围分为九大类,每一大类作为一章.南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世. 》、《海岛算经》等10部数学著作.所以当时的数学教育制度对继承古代数学经典是有积极意义的. 公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式. 贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的.遗憾的是贾宪的《黄帝九章算法细草》书稿已佚. 秦九韶是南宋时期杰出的数学家.1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程).16世纪意大利人菲尔洛才提出三次方程的解法.另外,秦九韶还对一次同余式理论进行过研究. 李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义.尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论. 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和.公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法.公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式.郭守敬还运用几何方法求出相当于现在球面三角的两个公式. 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法.朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式. 14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势. 明代珠算开始普及于中国.1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作.但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一. 由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国.数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成).徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作.邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作tt白2023-05-18 13:55:533
古代数学经典有哪些?
九章算数 和圆周率wpBeta2023-05-18 13:55:533
关于中国古代数学的著作
关于一个三角形,有个什么“沟三、股四、玄五”的理论著作。水元素sl2023-05-18 13:55:534
写出5个中国古代数学家的故事与贡献
额,我这答的是贡献:刘 徽刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.贾 宪贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。秦九韶秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。李冶李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。朱世杰朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).祖冲之祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。祖 暅祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。杨辉杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。赵 爽赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。瑞瑞爱吃桃2023-05-18 13:55:531
中国十大古代数学家的故事
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 贾 宪 贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。FinCloud2023-05-18 13:55:524
元代朱世杰对我国古代数学做出了哪些贡献?
元代朱世杰受李冶《测圆海镜》和杨辉著作的影响,著有《四元玉鉴》,他把“天元术”推广为“四元术”,即四元高次联立方程,并提出消元的解法,欧洲到1775年法国人别朱才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到1670年英国人格里高利和1676年牛顿才提出内插法的一般公式。朱世杰的《算学启蒙》也是当时的一部启蒙教科书,由浅入深,循序渐进,直到当时数学比较高深的内容。宋元算书中所记载的辉煌成就再次证明:直到明代中期之前,我国科学技术的许多方面,是处在遥遥领先地位的。小白2023-05-18 13:55:521
请求帮助说出三位我国古代数学家,并说出他们的成就。
刘徽(魏晋,公元3世纪)(中国,2002),淄乡(今山东邹平县)人,布衣数学家,于263年撰《九章算术注》,不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造,奠定了这位数学家在中国数学史上的不朽地位,成为中国传统数学最具代表性的人物。祖冲之的著作《缀术》,取得了圆周率的计算和球体体积的推导两大数学成就。秦九韶(约1202-1261年),南宋普州安岳(今四川安岳)人,曾任和州(今安徽和县)守,1244年,因母丧离任,回湖州(今浙江吴兴)守孝三年。此间,秦九韶专心致志于研究数学,于1247年完成数学名著《数书九章》, 内容分为九类:大衍类、天时类、田域类、测望类、赋役类、钱谷类、营建类、军旅类、市易类,其中有两项贡献使得宋代算书在中世纪世界数学史上占有突出的地位。《数书九章》是我国古算中最早用圆圈Ο表示0号的著作。苏萦2023-05-18 13:55:514
中国古代数学家官员有哪些
南北朝的,祖冲之。。。。左迁2023-05-18 13:55:513
我国古代数学家有哪些
陈景瑞墨然殇2023-05-18 13:55:515
古代数学著作《详解九章算法》作者是谁
杨辉写的请采纳九万里风9 2023-05-18 13:55:502
古代数学著作还有哪些,除了《九章算数》
《张丘建算经》《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。《四元玉鉴》朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)《黄帝九章算经细草》贾宪:〈〈黄帝九章算经细草〉〉中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。《数书九章》秦九韶:〈〈数书九章〉〉秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。《测圆海镜》李冶:《测圆海镜》——开元术随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。《九章重差图》刘徽: 《海岛算经》 《九章算术注》 《九章重差图》263年左右,六会发现当圆内接正多边形的变数无限增加时,多边形的面积则可无限逼近圆面积,即所谓“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”刘徽采用了以直代曲、无限趋近、“内外夹逼”的思想,创立了“割圆术”《重差》原为《九章算术注》的第十卷,即后来的《海岛算经》,内容是测量目标物的高和远的计算方法。重差法是测量数学中的重要方法。祖冲之:(公元429年─公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。他当时就把圆周率 精确到小数点后7位(3.1415926<圆周率<3.1415927),比西方领先了1500年,并得出355/113的密率,22/7的约率。写书《缀术》,记载了他计算圆周率的方法,不过已经失传。gitcloud2023-05-18 13:55:505
对我国古代数学成就天元术的发展作出重要贡献的是
对我国古代数学成就天元术的发展作出重要贡献的是李冶。李冶是金元时期的数学家,在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。李冶一生著作虽多,但他最得意的还是《测圆海镜》。李冶的数学研究是以天元术为主攻方向的。这时天元术虽已产生,但还不成熟,就像一棵小树一样,需要人精心培植。李冶用自己的辛勤劳动,使它成长为一棵枝叶繁茂的大树。《测圆海镜》不仅保留了洞渊九容公式,即9种求直角三角形内切圆直径的方法,而且给出一批新的求圆径公式。《测圆海镜》重在列方程,对方程的解法涉及不多。但书中用天元术导出许多高次方程(最高为六次),给出的根全部准确无误,可见李冶是掌握高次方程数值解法的。测圆海镜》的成书标志着天元术成熟,它无疑是当时世界上第一流的数学著作。但由于内容较深,粗知数学的人看不懂。而且当时数学不受重视,所以天元术的传播速度较慢。他在结束避难生活、回元氏县定居以后,许多人跟他学数学,这使得他需要编写教学用书,《益古演段》便是在这种情况下写成的。《测困海镜》的研究对象是离生活较远而自成系统的圆城图式,《益古演段》则把天元术用于解决实际问题,研究对象是日常所见的方、圆面积。拌三丝2023-05-18 13:55:501
对我国古代数学成就天元术的发展作出重要贡献的是谁?
对我国古代数学成就天元术的发展作出重要贡献的是李冶。李冶的著作有很多,比如说《测圆海镜》、《益古演段》都介绍了用天元建立二次方程,除了这些以外,还有在水利工程方面的应用,为后人准备了材料。《测圆海镜》不仅保留了洞渊九容公式,即9种求直角三角形内切圆直径的方法,而且给出一批新的求圆径公式。卷一的“识别杂记”阐明了圆城图式中各勾股形边长之间的关系以及它们与圆径的关系,共六百余条,每条可看作一个定理(或公式)。扩展资料李冶方程理论进展第一,他改变了传统的把常数项看作正数的观念,常数项可正可负,而不再拘泥于它的几何意义。第二,李冶已能利用天元术熟练地列出高次方程。在这里,未知数已具有纯代数意义,二次方并非代表面积,三次方程也并非代表体积。第三,李冶完整解决了分式方程问题,他已懂得用方程两边同乘一个整式的方法化分式方程为整式方程。第四,李冶已懂得用纯代数方法降低方程次数。当方程各项含有公因子xn(n为正整数)时,李冶便令次数最低的项为实,其他各项均降低这一次数。肖振2023-05-18 13:55:495
哪些跟方程有关的古代数学故事
翻开数学教材,似乎里面也就只有这些西方大咖,中国数学家的身影从未出现过。今天探访一下中国古代商高是我国古代第一位数学家,生于大约公元前十一世纪。历史上记录很少关于他的生平,大概只知道他和周公是同一时期的人。在《周髀算经》中罕见地记载了一则“周公问数”的典故。有一天,周公对伏羲构造周天历度的事迹感到惊叹,便虚心求教商高:“我听说先生非常擅长数学,那么请教先生,这天地之间的距离怎么计算?”商高思考了片刻,便回答说:“故折矩,以为勾广三,股修四,径隅五”。商高这段话,简单点说就是:“数是根据圆和方的计算得来的,圆来自于方,方来自于直角三角形。当一条直角边(勾)为3,另一条直角边(股)为4,则斜边(弦)为5。”后人根据其特性,将之命名为“勾三股四弦五”,简称“勾股定理”也叫"商高定理"。以商高命名的勾股定理,不仅是中华民族的骄傲,还确定了东方几何学开创的"原点",是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”。而在遥远的西方,600年之后毕达哥拉斯(Pythagoras)才出生,不过由于毕达哥拉斯最早对此进行了证明,所以后人将其归功于毕达哥拉斯,不过超模君想,那肯定是商高忘记写证明了。刘徽历史上有部很牛的数学书,自汉朝起成为科学、数学、天文等领域的大V必修课,它就是《九章算术》,其作者可能已经彻底泯灭在历史长河中。现今流传的是在三国时期魏元帝景元四年(263年),刘徽为《九章算术》所作的注本。刘徽考察前者的文献著作,建立了中国古代数学体系并奠定了其理论基础,并在《九章算术注》中,整理提出数系理论、积与体积理论这两种体系。刘徽也是个颇有创造性的数学家。他在《九章算术之园田术》注中,用割圆术证明了圆面积的精确公式,并算到3072边形的面积,得到“徽率”π=3.1416。同时还在《九章算术之阳马术》注中,他在用无限分割的方法解决锥体体积时,也提出了关于多面体体积计算的刘徽原理。刘徽不仅对中国古代数学发展产生了深远影响,还在世界数学史上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以许多书把他称作“中国数学史上的牛顿”。祖冲之祖冲之,于429年大概是南朝元嘉的时候生于建康(今称南京),是个较为罕见富得过三的官三代。祖父担任过大匠卿,管理全朝廷土木工程,父亲担任过“奉朝请”,学识渊博,常被邀请参加皇室典礼宴,祖冲之从小就受到很好的家庭教育。爷爷常给他讲“斗转星移”的故事,父亲一有空便领他读经书典籍。家庭的熏陶,自身强烈的求知欲,使他对自然科学、文学和哲学,特别是天文学产生了浓厚兴趣。在青年时代他就有了博学之名,真真正正的是个小天子。年少的兴趣,加上历史的玩笑,使得祖冲之一生钻研自然科学,然而他在数学、天文历法和机械制造三方面都作出了巨大的贡献。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西(Al kasi)才打破了这一纪录,祖冲之足足比欧洲阿拉伯早了1000多年。他不仅数学方面有所建树,由他撰写的《大明历》还成为当时最科学最进步的历法,对后世的天文研究提供了正确的方法。秦九韶南宋嘉定元年(1208),秦九韶生于今四川安岳,父亲秦季栖官至秘书少监,类似今天国家图书馆馆长一职。话说老秦也是给力,小秦想要读什么书,老秦动动手指头就能够把书弄来,所以我们的秦九韶23岁就中进士并步入官场。秦九韶涉猎广泛,星象、音律、算术等他都精通,甚至连娱乐项目都不曾落下。不仅如此,小秦18岁时还返乡举兵抗元,任一方首领。然而为他留下赫赫声名的,还是他数学上的成就,在为母守孝的三年里,他留下了一本名为《数书九章》的奇书。每当我们谈起著名数学理论时,脑中闪过的往往是“哥德尔不定性原理”, “快速傅里叶变换理论”等等。然而,早在这些理论出现的几百年前,秦九韶提出的“大衍求一术”已囊括了“哥德尔不定性原理”的证明和“快速傅里叶变换理论”。而“大衍求一术”本身则被西方称作“中国剩余定理”。这些理论成果证明,中国古代数学有丝毫不落于欧洲的辉煌。2005年牛津大学出版的《数学史——从美索不达米亚到现代》重点介绍了十二位数学家,秦九韶是其中唯一的中国人。2010年BBC播出的纪录片《数学的故事》,其中花了17分钟来讲中国,秦九韶是唯一被提到的数学家。李冶李冶(1192-1279)是金元四大数学家之一,虽说是个数学家,但却不知不扣的是个“官二代”,父李通官至大兴府推官。他自幼聪慧,爱好读书,在求学过程中,对数学和文学都很感兴趣。李冶为官清廉、正直。在桐川上班时,他的研究工作是多方面的,包括数学、文学、历史、天文、哲学、医学。其中最有价值的工作是对天元术进行了全面总结,写成数学史上的不朽名著--《测圆海镜》。《测圆海镜》终于在l248年完搞,是我国现存最早的一部系统讲述天元术的著作虽然在那个时代,数学不被权贵重视,但李冶却执着地追求真理。李冶不仅学术精深,而且致力于传徒授业,对学生循循善诱,后人盛赞李冶“导掖其秀民,仁之至也,其徒卒昌于时,孰不曰文正公所作成也”。(文正为李冶谥号,古代有谥号的人都是品格出众之人)李冶以自己的毕生心血,在中国科学史上写下了光荣的一页,也因此被人们深深怀念着。杨辉杨辉,钱塘(今浙江杭州)人,是南宋杰出的数学家和数学教育家,生平履历不详史书上只剩下他曾担任过南宋地方行政官员,为政清廉,严查贪污,足迹遍及苏杭一带。相关典故又说他考证民间后,他总结出乘除捷算法、“垛积术”、纵横图,极大促进了数学的发展,同时他也是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。一生享有数学著作5种21卷,即《详解九章算法》12卷(1261),《日用算法》2卷(1262),《乘除通变本末》3卷(1274),《田亩比类乘除捷法》2卷(1275)和《续古摘奇算法》2卷(1275)。(其中《详解》和《日用算法》已非完书)其中后三种合称为《杨辉算法》,流传于世界,朝鲜、日本等国均有译本出版,也就是我们现在学的。杨辉还曾论证过弧矢公式,时人称为“辉术”。他与秦九韶、李冶、朱世杰并称“宋元数学四大家”。朱世杰朱世杰在1249年出生在燕山,一生都在研究《九章算术》,并在当时天元术的基础上脱颖出“四元术”,也就这个方法求解出了四元高次多项式方程。此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。主要著作是《算学启蒙》与《四元玉鉴》。本人更是享有“中世纪世界最伟大的数学家”之誉。墨然殇2023-05-18 13:55:491
对我国古代数学成就天元术的发展作出重要贡献的是谁?
对我国古代数学成就天元术的发展作出重要贡献的是李治和朱世杰。天元术主要贡献者是李治和朱世杰,李治在数学专著《测圆海镜》(12卷)中通过勾股容圆问题全面地论述了设立未知数和列方程的步骤、技巧、运算法则,以及文字符号表示法等,使天元术发展到相当成熟的新阶段。天元术是利用未知数列方程的一般方法,与现代代数学中列方程的方法基本一致,在古代数学中,列方程和解方程是相互联系的两个重要问题。“天元”二字首次出现在北宋数学家蒋周的《益古集》中。此后,李文一的《照胆》,石信道的《钤经》,刘汝谐的《如积释锁》,李思聪的《洞渊九容》等著作均对“天元术”进行了一定阐述。但这些方法不系统,一般浅谈辄止。对天元术贡献最大的数学家当属金元人李冶和朱世杰。李冶的《测圆海镜》、《益古演段》,朱世杰的《算学启蒙》、《四元玉鉴》都系统地介绍了用天元术建立二次方程。墨然殇2023-05-18 13:55:491
对我国古代数学成就天元术的发展
天元术天元术是利用未知数列方程的一般方法,与现代代数学中列方程的方法基本一致,在古代数学中,列方程和解方程是相互联系的两个重要问题。“天元”二字首次出现在北宋数学家蒋周的《益古集》中。此后,李文一的《照胆》,石信道的《钤经》,刘汝谐的《如积释锁》,李思聪的《洞渊九容》等著作均对“天元术”进行了一定阐述。但这些方法不系统,一般浅谈辄止。对天元术贡献最大的数学家当属金元人李冶和朱世杰。李冶的《测圆海镜》、《益古演段》,朱世杰的《算学启蒙》、《四元玉鉴》都系统地介绍了用天元术建立二次方程。公元1248年,12卷的《测圆海镜》的天元术专著诞生。从此书开始,文词代数演变成符号代数。《测圆海镜》是一本高雅、正宗的数学专著。其高雅之处有三:一是总结性强。该书第一卷“识别杂记”阐述了用勾股弦求内切圆直径的方法,这些方法都是整合前代数学家所成。该书600多条定义,就是古代勾股容圆的总结。从第二卷起,他总结出一套行之有效的天元术程序,并用182种方法先后解答了148个问题。二是专业度高。书中所列的天元术理论,勾股形解法,数学抽象化的新起点等知识,都是当时最先进的理论知识。三是敢于创新。为了计算方便,该书中首次使用了负号(在数字上面加一横)和符号○(中文数字),以及一套先进的小数记法。这些都比西方数学家早几百年。李治很快认识到,自己花费十几年心血写出的《测圆海镜》太过高雅、精深,一般人看不懂,普及天元术从何谈起?为此,他决心写一部天元术的基础读物。经过十几年努力,他终于完成了三卷《益古演段》。“益古”指蒋周的专著《益古集》,“演段”即《益古集》中演示的条段法。所谓条段法,是根据古书《九章算术》中用几何方法代替代数方程的方法,因方程中各项均用条形面积所表示而得名。很显然,条段法是一种旧法,虽然直观,但计算麻烦且占篇幅。《益古演段》正是把条段法转化为天元术的第一理论书,正如序言所讲:“使粗知十百者,便得入室啖其文,顾不快哉!”《益古演段》最大特色就是用天元术解决日常所见的方、圆面积等问题。除四道题是一次方程外,其它都是二次方程,内容安排基本上是从易到难。当时只要熟读《益古演段》,便可依葫芦画瓢地列出方程解决类似问题。可以这么说,目前初中数学教材上的一元二次方程,其解题思想均来自于李冶的《益古演段》。《测圆海镜》和《益古演段》成为世界上至今保留下来的有关“天西柚不是西游2023-05-18 13:55:491
中国古代有厉害的数学家吗 什么看书里那些厉害的古代数学家 什么什么定律都是希腊的
张衡 祖冲之 秦九昭bikbok2023-05-18 13:55:495
我国古代数学有哪些成就
按照历史排序大致分为以下成就:真颛2023-05-18 13:55:493
天元术做出贡献的金代数学家
天元术做出贡献的金代数学家是李冶和朱世杰。我国古代重要的数学成就天元术的主要贡献者是李冶,十二和十三世纪,中国北方终于出现了一种系统解一元方程的方法即著名的天元术,天元二字首次出现在北宋数学家蒋周的益古集中。天元术的特点主要是用于改进当时对方程的解法技巧,并且在其一些撰写的书籍当中也记录了用这一方法建立二次方程,后来开始运用在探索直角三角形内切圆的一些特性,为之后的数学研究起到关键的作用。天元术是利用未知数列方程的一般方法,与现代代数学中列方程的方法基本一致,在古代数学中,列方程和解方程是相互联系的两个重要问题。天元术是利用未知数列方程的一般方法,与现代代数学中列方程的方法基本一致,但写法不同。余辉2023-05-18 13:55:481
对我国古代数学成就天元术的发展作出重要贡献的是什么?
对我国古代数学成就天元术的发展作出重要贡献的是李冶。李冶在前人的基础上,将天元术改进成一种更简便而实用的方法。当时,北方出了不少算书,除《铃经》外,还有《照胆》、《如积释锁》、《复轨》等,这无疑为李冶的数学研究提供了条件。他在桐川得到了洞渊的一部算书,内有九客之说,专讲勾股容圆问题。此书对他启发甚大。为了能全面、深入地研究天元术,李冶把勾股容圆(即切圆)问题作为一个系统来研究。他讨论了在各种条件下用天元术求圆径的问题,写成《测圆海镜》十二卷,这是他一生中的最大成就。扩展资料李冶由于摆脱了几何思维束缚,在方程理论上取得了四项进展:第一,他改变了传统的把常数项看作正数的观念,常数项可正可负,而不再拘泥于它的几何意义。第二,李冶已能利用天元术熟练地列出高次方程。在这里,未知数已具有纯代数意义,二次方并非代表面积,三次方程也并非代表体积。第三,李冶完整解决了分式方程问题,他已懂得用方程两边同乘一个整式的方法化分式方程为整式方程。第四,李冶已懂得用纯代数方法降低方程次数。当方程各项含有公因子xn(n为正整数)时,李冶便令次数最低的项为实,其他各项均降低这一次数。此外,李冶还发明了负号,他的负号不同,是数字上画一条斜线。而在国外,德国人是在15世纪才引入负号的。李冶还发明了一套相当简明的小数记法,在李冶之前,小数记法离不开数名,如7.59875尺记作七尺五寸九分八厘七毫五丝。无尘剑 2023-05-18 13:55:481
对我国古代数学成就天元术的发展作出重要贡献的是
对我国古代数学成就天元术的发展作出重要贡献的是李冶。李冶是金元时期的数学家,在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。李冶一生著作虽多,但他最得意的还是《测圆海镜》。李冶的数学研究是以天元术为主攻方向的。这时天元术虽已产生,但还不成熟,就像一棵小树一样,需要人精心培植。李冶用自己的辛勤劳动,使它成长为一棵枝叶繁茂的大树。《测圆海镜》不仅保留了洞渊九容公式,即9种求直角三角形内切圆直径的方法,而且给出一批新的求圆径公式。《测圆海镜》重在列方程,对方程的解法涉及不多。但书中用天元术导出许多高次方程(最高为六次),给出的根全部准确无误,可见李冶是掌握高次方程数值解法的。李冶简介李冶(1192年—1279年),原名李治,字仁卿,自号敬斋,真定栾城(今河北省石家庄市栾城区)人。金元时期的数学家。金正大末进士,辟知钧州。金亡北渡后,流落忻崞间,常与元好问唱和,世称“元李”。晚家封龙山(今河北省元氏县)下,隐居讲学。元世祖至元初,以翰林学士召,就职期月,以老病辞归。能诗词,有《敬斋集》,今有考订之作《敬斋古今黈》40卷传世。另著有《测圆海镜》12卷(1248年)、《益古演段》3卷(1259年)、《泛说》40卷、《壁书丛削》12卷。李冶在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。与杨辉、秦九韶、朱世杰并称为“宋元数学四大家”。西柚不是西游2023-05-18 13:55:471
金代数学家天元术的发展是谁?
金代数学家天元术的发展是李治。金代数学家天元术的发展是李冶,天元术是利用未知数列方程的一般方法,与现代代数学中列方程的方法基本一致,在古代数学中,列方程和解方程是相互联系的两个重要问题。宋代以前,数学家要列出一个方程,如唐代王孝通运用几何方法列三次方程,往往需要高超的数学技巧、复杂的推导和大量的文字说明。天元术的历史地位天元术最主要的贡献者是李冶和朱世杰两位数学家。1248年,金代数学家李冶在其著作测圆海镜、益古演段,以及元代数学家朱世杰的算学启蒙下卷四元玉鉴,都系统地介绍了用天元术建立二次方程。天元术是利用未知数列方程的一般方法,与现代代数学中列方程的方法基本一致,但写法不同。它首先要立天元一为某某,相当于设x 为某某,再根据问题给出的条件列出两个相等的代数式。然后,通过类似合并同类项的过程,得出一个一端为零的方程。随着宋代创立的增乘开方法的发展,解方程有了完善的方法,这就直接促进了对于列方程方法的研究,于是,又出现了中国数学的又一项杰出创造天元术。此后故乡只2023-05-18 13:55:471
天元术的金代数学家叫什么名字
天元术是数学家李冶发明的。他原在金朝做小官,元灭金后,隐居湾山,潜心研究学问,于1248年著成《测园海镜》12卷,以解直角三角形容圆内切圆问题为典型问题,论述“天元术”。李冶毕生致力于数学研究,对中国古代数学的发展做出了卓越的贡献。为了能全面、深入地研究天元术,李冶把勾股容圆(即切圆)问题作为一个系统来研究。他讨论了在各种条件下用天元术求圆径的问题,写出了《测园海镜》这是他一生中的最大成就。人物经历李冶一生不求显贵,却潜心著述,乐于教人。他学识渊博,因材施教,循循善诱,前来就学的学生越来越多,连一些有官职的中年人也慕名而来,以聆听李冶的教诲为乐事。后来家里容纳不下,就在乡人的提议和帮助下建了一座讲堂斋。这就是后来名闻遐迩的“封龙书院”。李冶在封龙书院讲授数学、儒经、文学、历史等知识,呕心沥血29余年,培育了大批人才,各地官府都争相任用他的学生。元朝大将、中书右宰相史天泽及其子史杠、史杞,廉访使荆幼纪,集贤学士焦养直,翰林修撰秉直郎王德渊等,都是李冶的学生。1257年,忽必烈委派专人带着自己的亲笔信专程请李冶,信中称他“学优才赡,潜德不耀”,把李冶请到开城(今内蒙古正蓝旗)问政。李冶在这次著名的王庭问对中提出了“立法度,正纲纪”、“辨奸邪”、“止征伐”和摒弃种族歧视、任人唯贤等建议,对忽必烈日后理政产生了一定影响。水元素sl2023-05-18 13:55:471
天元术的金代数学家叫什么名字
天元术的金代数学家叫李冶。李冶(1192年—1279年),原名李治,字仁卿,自号敬斋,真定栾城(今河北省石家庄市栾城区)人。金元时期的数学家。金正大末进士,辟知钧州。李冶在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。与杨辉、秦九韶、朱世杰并称为“宋元数学四大家”。天元术是利用未知数列方程的一般方法,与现代代数学中列方程的方法基本一致,在古代数学中,列方程和解方程是相互联系的两个重要问题。天元术的主要影响天元术的出现,提供了列方程的统一方法,其步骤要比阿拉伯数学家的代数学进步得多。而在欧洲,只是到了十六世纪才做到这一点。此外,宋代创立的增乘开方法又简化了求解数学高次方程正根的运算过程。因此,在这一时期,列方程和解方程都有了简单明确的方法和程式,中国古典代数学发展到了比较完备的阶段。不仅如此,继天元术之后,数学家又很快把这种方法推广到多元高次方程组,如李德载《两仪群英集臻》有天、地二元,刘大鉴《乾坤括囊》有天、地、人三元等,最后又由朱世杰创立了四元术。以上内容参考百度百科-李冶真颛2023-05-18 13:55:461
天元术的金代数学家叫什么名字
天元术的金代数学家叫李冶。李冶(1192年—1279年),流落在忻、埠(今山西省忻县与哼县)之间,著书立说。一二六五年,被召为元朝翰林院学士,几个月之后,以病老告归,于元氏(今河北省元氏县)封龙山下买田讲学,直至终年。李冶的一生,没有参加过很多的活动,但他绝不是尊崇孔教、信古疑今的旧俗儒生。他力主法治,敢于一针见血地指出当时朝政落后的根本原因。在思想上,他具有朴素的唯物主义思想。正因为如此,在当时儒家门徒对自然科学极力歪曲、贬低的思潮中,李冶能够不计功名,不畏讥讽,信心十足,全力以赴地从事数学科学的总结、普及、提高工作,为我国古代数学的发展,做出了杰出的贡献。李冶的数学贡献李冶由于摆脱了几何思维束缚,在方程理论上取得了四项进展:一、他改变了传统的把常数项看作正数的观念,常数项可正可负,而不再拘泥于它的几何意义。二、李冶已能利用天元术熟练地列出高次方程。在这里,未知数已具有纯代数意义,二次方并非代表面积,三次方程也并非代表体积。三、李冶完整解决了分式方程问题,他已懂得用方程两边同乘一个整式的方法化分式方程为整式方程。四、李冶已懂得用纯代数方法降低方程次数。当方程各项含有公因子xn(n为正整数)时,李冶便令次数最低的项为实,其他各项均降低这一次数。q大鱼炖火锅2023-05-18 13:55:431
金代数学家是谁?
金代数学家是:李冶。李冶(1192年-1279年),字仁卿,自号敬斋,真定栾城(今河北省石家庄市栾城区)人,金元时期的数学家,金正大末进士,辟知钧州。金亡北渡后,流落忻崞间,常与元好问唱和,世称“元李”。晚家封龙山(今河北省元氏县)下,隐居讲学。元世祖至元初,以翰林学士召,就职期月,以老病辞归。能诗词,有《敬斋集》,今有考订之作《敬斋古今黈》40卷传世。另著有《测圆海镜》12卷(1248年)、《益古演段》3卷(1259年)、《泛说》40卷、《壁书丛削》12卷。李冶在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。与杨辉、秦九韶、朱世杰并称为“宋元数学四大家”。此后故乡只2023-05-18 13:55:431
金代数学家是谁?
金代数学家是李冶。李冶(1192年—1279年),原名李治,字仁卿,自号敬斋,真定栾城(今河北省石家庄市栾城区)人。金元时期的数学家。金正大末进士,辟知钧州。李冶在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。与杨辉、秦九韶、朱世杰并称为“宋元数学四大家”。思想1232年北渡黄河以前,李冶的哲学思想偏于孔孟,信守儒家学说。但北渡之后,他的思想逐渐转为向道家靠拢。从他的读书笔记《敬斋古今黈》中展现的思想看来,他对庄子的思想理解甚为深刻,也很赞同。他对朱熹的理学思想并不全面认同,认为其中不通和有争议的地方也十分多,不应该盲目认同。而他认为“数学虽然是六艺中地位最低的一种技艺,但在实际生活中却是最需要的”的思想,也有可能来源于庄子。以上内容参考:百度百科-李冶无尘剑 2023-05-18 13:55:431
天元术的金代数学家叫什么名字
对天元术做出贡献的金代数学家有李冶、杨辉、秦九韶、朱世杰。1、李冶李冶(1192年—1279年),原名李治,字仁卿,自号敬斋,真定栾城(今河北省石家庄市栾城区)人。金元时期的数学家。金正大末进士,辟知钧州。李冶在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。与杨辉、秦九韶、朱世杰并称为“宋元数学四大家”。2、杨辉杨辉,字谦光,汉族,钱塘(今浙江省杭州)人,南宋杰出的数学家。他曾担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带。他在总结民间乘除捷算法、“垛积术”、纵横图以及数学教育方面,均做出了重大的贡献。他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。还曾论证过弧矢公式,时人称为“辉术”。3、秦九韶秦九韶(1208年-1268年),字道古,汉族,祖籍鲁郡(今河南省范县),出生于普州(今四川安岳县)。精研星象、音律、算术、诗词、弓、剑、营造之学,历任琼州知府、司农丞,后遭贬,卒于梅州任所。4、朱世杰朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。天元术的影响天元术的出现,提供了列方程的统一方法,其步骤要比阿拉伯数学家的代数学进步得多。而在欧洲,只是到了十六世纪才做到这一点。此外,宋代创立的增乘开方法又简化了求解数学高次方程正根的运算过程。因此,在这一时期,列方程和解方程都有了简单明确的方法和程式,中国古典代数学发展到了比较完备的阶段。不仅如此,继天元术之后,数学家又很快把这种方法推广到多元高次方程组,如李德载《两仪群英集臻》有天、地二元,刘大鉴《乾坤括囊》有天、地、人三元等,最后又由朱世杰创立了四元术。拌三丝2023-05-18 13:55:431
欧几里得讲的全是几何问题? 和我们平时学的高等数学,线性代数,概率论有关系吗?
他几何中提到的穷竭法对微积分影响很大。其他我也不知道有什么关系了。北营2023-05-18 13:55:414
谁能介绍一下我国古代数学家~刘徽?
中国历史上最杰出的数学家之一,刘徽的数学成就已得到国际的承认,但令人遗憾的是,历史上却没有留下有关他的详细生平史料。对于他的一生经历我们所知甚少,而且没有定论。根据一些零星的记载,只能大致推断他的生活年代主要是在三国时期。其出生地大约为今山东淄博市淄川人。然而这些方面的缺失也许并没有那么重要,因为他有自己伟大的数学成就留传于世,对于一个数学家而言,还有什么比这更重要、更令人欣慰的呢? 刘徽在幼年时就学习过《九章算术》,成年后又继续深入研究,在魏景元四年(263)注《九章算术》,并撰《重差》作为《九章算术》注第十卷。(唐初以后,《重差》以《海岛算经》为名单行。)刘徽的数学成就完整地保留在他为《九章算术》所作的注释中。可以说,《九章算术》的刘徽注是我国古代数学上的又一伟大成就。在刘徽注中有着丰富多彩的创见与发明。 他的割圆术思想是现代人经常引用的伟大成果之一。这是他创造的一种运用极限思想证明圆面积公式的方法。他首先从圆内接正6边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形的面积与圆面积之差越小,“割之又割,以至于不可割,则与圆周合体而无所失矣。”这一思想又提供了计算圆周率的科学方法。正是他提出的计算圆周率的方法,使后来的祖冲之能够进一步将圆周率可靠数字推进到八位。奠定了此后千余年中国圆周率计算在世界上的领先地位。 这种将无穷小分割方法与极限思想引入数学证明,以现代的观点看,是刘徽最杰出的贡献。除了用极限思想严格证明了《九章算术》提出的圆面积公式,他还提出并用极限方法证明了一个与体积有关的重要原理,现在称为刘徽原理。可以说,刘徽的极限思想的深度超过古希腊的同类思想。 他的另一项著名成果是提出了解决球体积公式的正确途径。但他自己未能完全解决这一问题。他表示“以俟能言者”,充分显示了一位伟大学者寄希望于后学的坦荡胸怀。二百年后,祖冲之父子在刘徽研究的基础上,提出“幂势既同则积不容异”的祖□原理,从而得出了正确的球体积公式。祖冲之父子也是我国历史上重要的数学家。他们的重要著作《缀术》一书由于内容过于深奥而失传。他们的数学贡献可以确信的有两项:一是关于圆周率的研究;一是关于球体积公式。而这两项成果都是建立在刘徽的研究基础之上的。由此可见,刘徽对后世数学的影响。事实上,刘徽的数学成果还不止于此。在线性方程组解法中,他创造了解线性方程组的互乘相消法与方程新术。在对分数、负数、无理数问题上他都提出了一些珍知灼见。在有关的章节中我们还会提到,这里不再多说。 除了这些具体的数学成果之外,刘徽的重要贡献还体现在他的数学思想上。 他以严密的数学用语描述了有关数学概念,提出并定义了许多数学概念,从而改变了自墨学衰微以来靠约定俗成确定数学概念的涵义的作法。 他提出了许多公认正确的判断作为证明的前提。他的大多数推理、证明都合乎逻辑,十分严谨,从而把《九章算术》及他自己提出的解法、公式建立在必然性的基础之上。对《九章算术》中的许多结论给出了严格证明。通过“析理以辞、解体用图”,给概念以定义,给判断和命题以逻辑证明,并建立了它们之间的有机联系。 简而言之,刘徽沿袭我国古代的几何传统,使之趋于完备,形成具有独特风格的几何体系。如果说《九章算术》本身建立了中国古代数学理论的框架,刘徽《九章算术》的出现,标志着中国古代理论体系的完成。刘徽的数学之树是在《九章算术》的数学框架基础上加以改造,注入了血肉和灵魂,形成了一个以计算为中心,以演绎推理为主要逻辑方法的理论系统。 因而,刘徽成为我国古典数学理论的奠基者之一。吴文俊先生说:“从对数学贡献的角度来衡量,刘徽应该与欧几里德、阿基米德等相提并论。”再也不做站长了2023-05-18 09:39:561
我国古代数学家刘徽在1700多年前就开始使用小数了
刘徽(约公元225年—295年),汉族,山东邹平县人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是中国最早明确主张用逻辑推理的方式来论证数学命题的人.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。刘徽的数学成就大致为两方面:一是整理中国古代数学体系并奠定了它的理论基础,这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:数系理论①用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术 的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。刘徽评传②在筹式演算理论方面, 先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。③在勾股理论方面 逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。面积与体积理论用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:①割圆术与圆周率, 他在《九章算术?圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3.14,又算到3072边形的面积,得到π=3927/1250=3.1416,称为“徽率”。②刘徽原理 在《九章算术?阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。“牟合方盖”说在《九章算术 开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。方程新术在《九章算术 方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。重差术在自撰《海岛算经》中,他提出了重差术,采用了重表、连索和 累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学史上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。小白2023-05-18 09:39:541
古代数学家刘徽哪里人?有哪些数学成就?
刘徽,淄乡(今山东邹平)人。生卒年不详,活动于公元3世纪,数学家。刘徽自述“幼习《九章》,长再详览,观阴阳之割裂,总算术之根源,探赜之暇,遂悟其意,是以敢竭顽鲁,采其所见,为之作注”。《晋书》、《隋书》之“律历志”称“魏陈留王景元四年(263)刘徽注《九章》”。《九章算术注》原10卷,第10卷“重差”为刘徽自撰自注,大约在南北朝后期单行,因其第l问为测望海岛之高、远,遂称为《海岛算经》。唐李淳风编纂《算经十书》,刘、李注《九章算术》与《海岛算经》并列为其中的两部。刘徽又著《九章重差图》l卷,已失传。刘徽在北宋大观三年(1109)被封为淄乡男。同时所封60余人,多依其里贯。据《汉书》“地理志”、“王子侯表”以及北宋王存《元丰九域志》所载资料考证,淄乡在今山东省邹平县境,汉淄乡侯为文帝子梁王刘武之后。kikcik2023-05-18 09:39:521
线性代数里面,这个拉普拉斯展开式怎么推的?
如图所示NerveM 2023-05-18 09:39:502
开会广泛代数式赌东道
艰苦大多数似的大多数Ntou1232023-05-18 05:46:262
基础的近世代数问题
抽象代数即近世代数。 代数〔Algea〕是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。 初等代数学是指19世纪上半叶以前发展的方程理论,主要研究某一方程〔组〕是否可解,如何求出方程所有的根〔包括近似根〕,以及方程的根有何性质等问题。 法国数学家伽罗瓦〔1811-1832〕在1832年运用「群」的思想彻底解决了用根式求解代数方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数的创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。 抽象代数学对于全部现代数学和一些其它科学领域都有重要的影响。抽象代数学随着数学中各分支理论的发展和应用需要而得到不断的发展。经过伯克霍夫、冯.诺伊曼、坎托罗维奇和斯通等人在1933-1938年所做的工作,格论确定了在代数学的地位。而自20世纪40年代中叶起,作为线性代数的推广的模论得到进一步的发展并产生深刻的影响。泛代数、同调代数、范畴等新领域也被建立和发展起来。 中国数学家在抽象代数学的研究始于30年代。当中已在许多方面取得了有意义和重要的成果,其中尤以曾炯之、华罗庚和周炜良的工作更为显著。可桃可挑2023-05-18 05:46:241
近世代数z6是什么?
商群就是在正规子群H的全体陪集上定义了乘法运算构成的群,由于aH=Ha,所以全体陪集集合唯一。商群和原群的集合虽然表面上看起来不同,但是从运算看,商群的运算都归结为陪集代表元的运算,所以两者运算性质没有什么差别。换句话,群G和商群G/H有个自然同态f(x)=xH,任给x∈G。注意,设H是G的一个子群,在左陪集空间G/H={gH│g∈G}可以定义运算aH*bH=(ab)H的充分必要条件是:H是G的正规子群,或者等价地,由aRb当且仅当a-1b∈H所定义的关系R(容易验证R是等价关系)是G上的合同关系。至于例8,还是自己思考为好。只要考虑下同态就理解了。bikbok2023-05-18 05:46:242
近世代数 有什么用?
近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的方程理论,主要研究某一方程组是否可解,如何求出方程所有的根〔包括近似根〕,以及方程的根有何性质等问题。法国数学家伽罗瓦〔1811-1832〕在1832年运用「群」的思想彻底解决了用根式求解代数方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。苏州马小云2023-05-18 05:46:233
什么是代数
以字母代替数值小白2023-05-18 05:46:237
有没有一本书可以系统的介绍微积分,概率论,线性代数等数学知识
应该有的mlhxueli 2023-05-18 05:46:234
代数结构概览,泛代数
首先定义运算的元,或者运算的阶。简单来讲就是一元运算,二元运算,等等。 每一个运算都可以表示为一个函数符号,比如 ,定义时还要指明他的元数,我们都知道前面的运算都是二元运算,可以将他们记为有序二元对的形式, 。类似的可以定义出n元运算 ,将这些运算作为元素可以构成一个集合,称之为代数的类型,或者代数的语言,记为F。.(个人感觉称之为代数的类型比较合适)这个集合包含多少元素是随意的,可以只含一个运算,也可以含许多个运算。 由于大家一般接触到的几乎都是二元运算,这里稍作介绍,一元运算就是对一个量都可以进行运算,比如取逆元,转置,共轭,最简单的就是取相反数, .。 至于零元运算,其实就是指定一个元素,感觉也称不上运算,比如,规定一个群的单位元是e,或者规定自然数中0是一个特殊的元素,任何自然数加零数值不变。 于是,一个代数就可以定义为,一个集合A,以及一个代数类型F,用序对表示为 ,称之为类型为F的代数A,其中要求A是非空集合,F为有限元运算的集合(例如,实数序列的无穷级数可以看作实数上的无限元运算),集合A往往又称为基础集,F中的元素称之为基本运算。 如果F是有限集,通常可以将记号 记为 ,也就是说显式的把运算写出来,一般要把元数多的运算写在前面,元数少的写在后面,也就是按照元数排序。 下面就是按照这种表示法给出的一些代数结构。 只含有一元运算的代数,运算个数没有要求,对元数有要求。 只含有一个一元运算的代数,个数,元数都指定了。 只含有一个二元运算的代数,对于一元运算,0元运算的个数没有限制。这个唯一的二元运算可以记为 或者 。运算的结果称之为和或者积。 基础集A是有限集 基础集A只含一个元素 可以记为 ,基础集G,一个二元运算,一个一元运算,一个零元运算。并且满足下面的等式。结合律,单位元,逆交换群 交换群和群的记号是一样的,不过还需满足交换律记为 ,并满足交换半群 满足交换律的半群记为 ,满足当然也有交换幺半群。 记为 ,有三个二元运算,满足带有恒等元的准群 ,满足今天比较高兴,所以更一下。凡尘2023-05-18 05:46:221
抽象代数简介及详细资料
基本简介 抽象代数作为数学的一门学科,主要研究对象是代数结构,比如群、环、域、模、矢量空间和代数。这些代数结构中,有的在19世纪就已经被给出了正式的定义。事实上,对抽象代数的研究是应数学更严格化的要求而发展起来的。对抽象代数的研究还使人们形成了对全部数学和自然科学的基础性逻辑假设(的复杂性)的整体认识,现今,几乎没有那一个数学分支用不到代数学的结论。此外,随着抽象代数的发展,代数学家们发现:明显不同的逻辑结构通过类比可以得到一个很简练的由公理构成的核心。这对深入研究代数的数学家是有益的,并赋予他们更大的本领。 抽象代数 “抽象代数”这词,是为了与“初等代数”区别开,后者教授公式和代数表达式的运算方法,其中有实数、复数和未知项。20世纪初,抽象代数有时也称为现代代数,近世代数。 在泛代数中有时用抽象代数这一称呼,但作者大多简单的称作“代数”。 具体定义 抽象代数是研究各种抽象的公理化代数系统的数学学科。由于代数可处理实数与复数以外的物集,例如向量(vector)、矩阵(matrix)、变换(transformation)等,这些物集的分别是依它们各有的演算定律而定,而数学家将个别的演算经由抽象手法把共有的内容升华出来,并因此而达到更高层次,这就诞生了抽象代数。抽象代数,包含有群(group)、环(ring)、Galois理论、格论等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象代数已经成了当代大部分数学的通用语言。 其它称号 抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。法国数学家伽罗瓦〔1811-1832〕在1832年运用「群」的思想彻底解决了用根式求解代数方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。抽象代数,包含有群论、环论、伽罗瓦理论、格论、线性代数等许多分支。 创始人 被誉为天才数学家的Galois(1811-1832)是近世代数的创始人之一。他深入研究了一个方程能用根式求解所必须满足的本质条件,他提出的“Galois域”、“Galois群”和“Galois理论”都是近世代数所研究的最重要的课题。Galois群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。Galois群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。 1843年,Hamilton发明了一种乘法交换律不成立的代数——四元数代数。第二年,Gras *** ann推演出更有一般性的几类代数。1857年,Cayley设计出另一种不可交换的代数——矩阵代数。他们的研究打开了抽象代数(也叫近世代数)的大门。实际上,减弱或删去普通代数的某些假定,或将某些假定代之以别的假定(与其余假定是兼容的),就能研究出许多种代数体系。 1870年,Kronecker给出了有限Abel群的抽象定义;Dedekind开始使用“体”的说法,并研究了代数体;1893年,韦伯定义了抽象的体;1910年,施坦尼茨展开了体的一般抽象理论;Dedekind和Kronecker创立了环论;1910年,施坦尼茨总结了包括群、代数、域等在内的代数体系的研究,开创了抽象代数学。 奠基人 有一位杰出女数学家被公认为抽象代数奠基人之一,被誉为"代数女皇",她就是Emmy Noether, 1882年3月23日生于德国埃尔朗根,1900年入埃朗根大学,1907年在数学家哥尔丹指导下获博士学位。Noether的工作在代数拓扑学、代数数论、代数几何的发展中有重要影响。1907-1919年,她主要研究代数不变式及微分不变式。她在博士论文中给出三元四次型的不变式的完全组。还解决了有理函式域的有限有理基的存在问题。对有限群的不变式具有有限基给出一个构造性证明。她不用消去法而用直接微分法生成微分不变式,在哥廷根大学的就职论文中,讨论连续群(Lie群)下不变式问题,给出Noether定理,把对称性、不变性和物理的守恒律联系在一起。1920~1927年间她主要研究交换代数与交换算术。1920年,她已引入“左模”、“右模”的概念。1921年写出的<<整环的理想理论>>是交换代数发展的里程碑。建立了交换Noether环理论,证明了准素分解定理。1926年发表<<代数数域及代数函式域的理想理论的抽象构造>>,给Dedekind环一个公理刻画,指出素理想因子唯一分解定理的充分必要条件。Noether的这套理论也就是现代数学中的“环”和“理想”的系统理论,一般认为抽象代数形式的时间就是1926年,从此代数学研究对象从研究代数方程根的计算与分布,进入到研究数字、文字和更一般元素的代数运算规律和各种代数结构,完成了古典代数到抽象代数的本质的转变。Noether当之无愧地被人们誉为抽象代数的奠基人之一。1927-1935年,Noether研究非交换代数与非交换算术。她把表示理论、理想理论及模理论统一在所谓“超复系”即代数的基础上。后又引进交叉积的概念并用决定有限维Galois扩张的布饶尔群。最后导致代数的主定理的证明,代数数域上的中心可除代数是循环代数。 Emmy Noether 1930年,毕尔霍夫建立格论,它源于1847年的bool代数;第二次世界大战后,出现了各种代数系统的理论和Bourbaki学派;1955年,Cartan等建立了同调代数理论。 发展历史 被誉为天才数学家的伽罗瓦(1811-1832)是近世代数的创始人之一。他深入研究了一个方程能用根式求解所必须满足的本质条件,他提出的“伽罗瓦域”、“伽罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题。伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。 天才数学家——伽罗瓦 1920~1927年 间她主要研究交换代数与「交换算术」。1916年后,她开始由古典代数学向抽象代数学过渡。1920年,她已引入「左模」、「右模」的概念。建立了交换诺特环理论,给戴德金环一个公理刻画,指出素理想因子唯一分解定理的充分必要条件。诺特的这套理论也就是现代数学中的“环”和“理想”的系统理论。 1927-1935年 ,诺特研究非交换代数与「非交换算术」。后又引进交叉积的概念并用决定有限维枷罗瓦扩张的布饶尔群。 诺特的思想通过她的学生范.德.瓦尔登的名著<<近世代数学>>得到广泛的传播。她的主要论文收在<<诺特全集>>(1982)中。 1930年 ,毕尔霍夫建立格论,它源于1847年的布尔代数;第二次世界大战后,出现了各种代数系统的理论和布尔巴基学派;1955年,嘉当、格洛辛狄克和爱伦伯克建立了同调代数理论。 数学家们已经研究过200多种这样的代数结构,其中最主要德若当代数和李代数是不服从结合律的代数的例子。这些工作的绝大部分属于20世纪,它们使一般化和抽象化的思想在现代数学中得到了充分的反映。 中国数学家在抽象代数学的研究始于30年代。当中已在许多方面取得了有意义和重要的成果,其中尤以曾炯之、华罗庚和周炜良的工作更为显著。Chen2023-05-18 05:46:221
线性代数,泛函分析,抽象代数,分别是哪年创立的?
首先说明,线代、泛分、抽代这些数学分支的创立都不是一下子完成的,学术界对创立时间都还存在争论,下面是比较认可的说法:1、线性代数现代线性代数的历史可以上溯到1843年和1844年。1843年,哈密顿发现了四元数。1844年,格拉斯曼发表了他的著作《Die lineare Ausdehnungslehre》。1857年,阿瑟·凯莱介入了矩阵,这是最基础的线性代数思想之一。这些早期的文献掩饰了线性代数主要在二十世纪发展的事实: 在抽象代数的环论开发之前叫做矩阵的类似数的对象是难于名次列前的。随着狭义相对论的到来,很多开拓者增值了线性代数的微妙。进一步的,解偏微分方程的克莱姆法则的例行应用导致了大学的标准教育中包括了线性代数。例如,E.T. Copson 写到:“ 当我在 1922 年到爱丁堡做年轻的讲师的时候,我惊奇的发现了不同于牛津的课程。这里包括了我根本就不知道的主题如勒贝格积分、矩阵论、数值分析、黎曼几何... ”—E.T. Copson, 《偏微分方程》前言, 19731888 年,弗兰西斯·高尔顿发起了相关系数的应用。经常有多于一个随机变量出现并且它们可以互相关。在多变元随机变量的统计分析中,相关矩阵是自然的工具。所以这种随机向量的统计研究帮助了矩阵用途的开发。2、泛函分析泛函分析(Functional Analysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。泛函分析是由对函数的变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。巴拿赫(Stefan Banach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家伏尔泰拉(Vito Volterra)对泛函分析的广泛应用有重要贡献。3、抽象代数抽象代数作为数学的一门学科,主要研究对象是代数结构,比如群、环、域、模、向量空间和代数。这些代数结构中,有的在19世纪就已经被给出了正式的定义。事实上,对抽象代数的研究是应数学更严格化的要求而发展起来的。对抽象代数的研究还使人们形成了对全部数学和自然科学的基础性逻辑假设(的复杂性)的整体认识,现今,几乎没有那一个数学分支用不到代数学的结论。此外,随着抽象代数的发展,代数学家们发现:明显不同的逻辑结构通过类比可以得到一个很简练的由公理构成的核心。这对深入研究代数的数学家是有益的,并赋予他们更大的本领。“抽象代数”这词,是为了与“初等代数”区别开,后者教授公式和代数表达式的运算方法,其中有实数、复数和未知项。20世纪初,抽象代数有时也称为现代代数,近世代数。在泛代数中有时用抽象代数这一称呼,但作者大多简单的称作“代数”。ardim2023-05-18 05:46:221
如何理解抽象代数的用途
抽象代数又称近世代数(Modern algebra),产生于十九世纪。那么如何理解抽象代数的用途? 1、 抽象代数(Abstract algebra)又称近世代数(Modern algebra),产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。 2、 抽象代数包含群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象代数也是现代计算机理论基础之一。 3、 抽象代数学对于全部现代数学和一些其它科学领域都有重要的影响。抽象代数学随着数学中各分支理论的发展和应用需要而得到不断的发展。经过伯克霍夫、冯·诺伊曼、坎托罗维奇和斯通等人在1933-1938年所做的工作,格论确定了在代数学的地位。而自20世纪40年代中叶起,作为线性代数的推广的模论得到进一步的发展并产生深刻的影响。泛代数、同调代数、范畴等新领域也被建立和发展起来。 4、 抽象代数包含有群(group)、环(ring)、Galois理论、格论等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科 5、 中国数学家在抽象代数学的研究始于30年代。当中已在许多方面取得了有意义和重要的成果,其中尤以曾炯之、华罗庚和周炜良的工作更为显著。 6、 现代数学的基础课程正在更新。50年代数学系的教学计划,以“高等微积分”、“高等代数”、“高等几何”为主体。时至今日,人们认为光靠这“老三高”已不够用了,应该发展“新三高”,即抽象代数、拓扑学和泛函分析。现代数学理论是由这三根支柱撑着的。 以上的就是关于如何理解抽象代数的用途内容介绍了。再也不做站长了2023-05-18 05:46:221
【抽象代数】伽罗瓦理论简介
在研究域 F 的代数扩张 E 时,首要的前提是扩域 E 是存在的,其次还要让所有扩域在同一个空间,即它们之间是可运算的。满足这样条件的空间便是 F 的代数闭包,使用集合论的语言,代数闭包可以描述成所有多项式的分裂域之并。这个定义合法性其实还是需要推敲的,你可以结合代数扩域的性质自行讨论,这里就先假定它的存在性。其次,不同的闭包之间并不一定是互通的,下面的讨论将回避这种“平行世界”的讨论,将范围限制在某个选定的代数闭包 中。 即使只在某个闭包中,满足特定条件的扩域总也有多种选择的方法,这种将域对应到闭包中的映射一般称为 域的嵌入 ,不同的嵌入之间称为 共轭域 。它不仅给域找到了统一的闭包,还是研究扩域结构的重要方法(共轭域当然都保持 F 完全不变)。在前面构造单扩域时,你可能已经发现,构造出的扩域其实与根的选取无关,它们互为共轭域。如果将单扩域嵌入到闭域中,每一种嵌入方法正好对应 的一个根,这些共轭域之间可能有互异元素,也可能元素相同但嵌入的方法不同。 以上出现互异元素是因为,可能不是所有根都在同一个单扩域中,我们自然要问:那么不同的分裂域嵌入还会有互异元素吗?更一般地,考察多项式集合 的分裂域 ,假设 同构于另一个分裂域 且同构映射为 。因为任何 的系数在 F 中,所以总有 ,所以 只是 的一个置换。由此若设 S的所有根为 R,则有以下推导过程,也就是说 是 的自同构。 只有自同构共轭的域叫 自共轭域 ,像分裂域这种保持 F 不变的域被称为 F-自共轭域。以上结论证明了:多项式集合的分裂域是自共轭域。容易证明自同构和 F-自同构都形成群,其中自同构群记作 Aut(E),F-自同构群又叫 伽罗瓦群 ,一般记作 ,这个群将是我们研究的重点。如果 E 是 在 上的分裂域, 也叫多项式 的伽罗瓦群,记作 或 。 • 证明 只有恒等自同构,而 C 的自同构有无穷多个。 F-自共轭域体现了扩域的唯一性,而另外我们知道,代数扩域可以从任何代数元的单扩域开始。考察 F-自共轭的扩域 E 中任意不可约多项式 ,如果它在 E 上有一个根 a,则 E 可以从 开始生成。前面的讨论中已知,它共轭于一个从 生成的扩域(a′为 的另外一个根),由F-自共轭域的唯一性可知 ,故 在 中是分裂的。对任意不可约多项式 ,若它有根在扩域 E 中,必能得出其它根也在 E 中,这种扩域叫 正规扩域 (要注意,若 在 没有根,并不意味 在 中不可分解)。刚才的结论就是说F-自共轭域是正规扩域,还容易证明正规扩域可以看成是其所有可分裂多项式的生成域,结合前面的结论,以下三个命题是等价的(E为 F 的代数扩域)。 (1)E是F的正规扩张; (2)E是F[x]中某个多项式集合的分裂域; (3)E是F-自共轭域。 特别地,若扩张为有限扩张,则第二个命题可以改成某个多项式的分裂域。通过这些等价定义容易证明,正规扩张的交也是正规扩张。所有包含E的正规扩张的交被称为 正规闭包 ,对有限扩张容易证明,生成元的最小多项式集合的分裂域便是正规闭包。 前面提到过,F-自同构群是自同构群 的子群,不同的子域F对应于不同的子群。这就提醒我们去研究这两者的关联,但要注意这里有两种关联方法,一种是由F确定伽罗瓦群 ,另一种则是由 的子群 确定一个子域 ,它被称为 G 的固定子域。这两个映射不一定是相同的,至少还需要一些条件,这将是本节的重点。 先来看看这些映射的基本性质,首先比较显然,映射的像的包含关系都和原像的包含关系相反(公式(3),以下将 简写为 。另外也很容易证明,两种映射的复合将原像的范围放大了(公式(4))。对于像这样的复合运算,分别采用和两个视角,结合前面两个包含关系便容易得到复合运算的“消去律”(公式(5))。这些基本性质在下面的讨论中非常重要,你需要熟记于心并不产生混淆。 为了研究自同构子群和子域的关系,我们需要先对它们的特点做进一步研究。先来考察伽罗瓦群 ,它的每个元素是一个F-自同构,群的阶就是自同构的个数。对有限扩域有 ,所有的嵌入都可以拆分为一系列单扩域 的嵌入。之前的结论告诉我们,每个单扩域嵌入的个数 不大于 最小多项式 的次数 ,相等的条件是 没有重根。如果还要求是自同构嵌入,则还要求 的根都在 E 中。 总嵌入的个数自然是 ,伽罗瓦群的个数不大于总嵌入数,相等的条件是E是正规扩域。总结以上讨论便有公式(6)成立,而且等号的成立的一个充分条件是:E 既是正规扩域,又是可离扩域。这种可离正规扩张被称为伽罗瓦扩张,当然我们仅关注有限伽罗瓦扩张。 现在反过来,对E自同构群的有限子群 G,考察 与 的关系。如果 E 对 F 是有限扩张,由公式和容易得到 。对此Artin却给出了截然相反的结论,他证明了 (这时E自然是F的有限扩张),结合这两点则恒有公式(7)成立。证明过程充分利用了扩域和自同构的性质,可以作为一个很好的例题示范,下面就来介绍其大致思路。 设 ,先来考察扩域 E 在 F 上的线性空间的维数,如果维数有限,取 m 大于该维数,则 E 中任何 m 个元素 都是线性相关的。精确一点描述便是,线性方程 在F上总有非零解,现在我们就来证明 时方程有解。为了联系上G,设它的 n 个元素是 ,原方程等价于方程组 在F上有解。由于 ,该方程组在 E 中必定有非零解,我们需要由此构造出 F 上的解。 将任意 作用在方程组上得 ,由于 只是 的一个置换,方程组除了顺序没有发生变化,故 也是是原方程组的解。因为 非零,可设 ,则 也是方程组的解。若 都成立,我们的结论得证。否则设 ,这就是说存在 使得 。由于 也是方程组的根,与 相减便得另一个非零解 ,其中非零的元素个数比 少。这个过程只能进行有限步,最终必定可以得到 F 上的非零解,Artin 定理得证。 • K为F的扩域, ,求证: 。 有了公式(6)和(7),现在回来讨论自同构子群和子域的关系,由于公式(6)等号成立的一个充分条件是伽罗瓦扩张,而伽罗瓦扩张不能处处成立,所以我们把研究限定在某个伽罗瓦扩张中。子域F对应一个它的伽罗瓦域 ,反之G又对应到它的固定子域 。现在来比较 和 ,根据公式和分别有 和 ,而公式说明 ,所以有 ,子域和自同构子群在有限伽罗瓦扩张上建立了对应。 若设 的所有中间域 组成集合 ,容易证明 E 对 中的所有元素都是有限伽罗瓦扩张。若设 G 的所有子群构成集合 ,则以上结论则建立了从 到 的单射 ,它满足公式(8)。反之对任何 ,首先有 ,而由公式(6)得 ,所以有 。这就说明了 是满射,从而便是一一映射,所有Σ和Γ之间存在一一映射,满足公式(8)。 根据 的定义,容易有公式(9)成立,其中 表示生成群(域)。另外,由于 , ,则 (后者表示子群的指数)。看到这个式子,你可能会问一个问题:F′ 是伽罗瓦扩域与 G′ 是正规子群之间是不是有什么关联?容易验证,对任何 , 在映射 中的原像为 。所以 为正规子群的等价条件是 ,即 为正规扩域,再由 显然是分离扩域,故 为正规子群的等价条件是 为伽罗瓦扩域。 进一步地,设 ,构造同态映射 ,使得 满足 ,显然同态核为 ,从而 H 与 同构(公式(10))。 正多边形作图同“三大作图难题”一样古老且著名,有时候它们一起并称为“四大作图难题”。首先容易证明,如果 互质且正 边形都可以作出,那么正 边形也可以作出。根据算术基本定理, ,而正 边形很容易作出,所以只需研究正 边形的作图。 高斯在 20 岁时作出了正 17 边形,并给出了正 m 边形可作图的充要条件,这里我们用域的语言重新描述一下论证思路。要想作正 边形,其实就是作出 的根 (式(11))。显然 是 分裂域的生成元,即 。上一节的作图理论中我们知道, 可被作图的充要条件是: 。 由于 E 是一个分裂域,它是伽罗瓦扩张,所以有 。E 的 Q-自同构 由 唯一确定, 只能取 ,其中 。由初等数论的知识, 可取 个数,所以 。首先有 ,再由初等数论的知识,必须有 ,且 为素数。 满足形式(12)的数叫费马数,以上结论就是说 边形可作图的充要条件是: 且 为费马素数。那么 边形可作图的条件就是式子(13),其中 为互异的费马素数。前 5 个费马数恰好是素数,费马当时断言所有费马数都是素数,但至今都还没有找到第6个费马素数。 多项式求根是古代代数的重要内容,早在公元前的古巴比伦,人们就已经掌握了二次的方程的求根。而文艺复兴时期的意大利人,则给出了求解三、四次方程的一般方法和公式,主要的思想都是降次法。对于三次方程,先通过简单的代换 消除二次项(式(14)),然后利用立方和公式的形式特点将 参数化 。由于 可以连续变化,再添加限制条件 ,带入式便将原方程等价于较简单的方程组(15)。 对于四次方程同样使用 消除三次项,然后引入参数 并配方(式(16))。找到合适的 使方程右侧可配方,这样四次方程就降为了二次方程。而配方成立时t满足一个三次方程,上面已经给出了它的求解方法,这样四次方程也成功求解。三、四次方程的完整公式十分复杂,这里就不给出了(也没必要)。 当人们迫不及待地向一般五次方程进军时,却发现无论如何都找不到求解公式。所谓“公式”就是四则运算和开方组成的表达式,为了利用扩域的理论,这里需要为开方定义一种的扩域。设 ,代数闭包中 的任一根记作 ,单扩域 称为根式扩张。多项式的根如果可用“公式”表示,就表示存在一个根式扩张链(式(17)),它们可包含分裂域 E。这样的多项式称为是根式可解的,我们问题就是:什么样的多项式根式求解? 我们先对根式扩张作一些常规讨论,为下面的论证提供有用的工具,以下讨论默认扩域可离,所以分裂域都是伽罗瓦扩域。先来考虑方程 ,它的根称为 次单位根 。在复数域中,所有单位根组成一个循环群,其中的生成元称为 次 本原根 。其实这个结论在一般域中也成立,因为 ,所以我们只需找到 次本原根即可。容易证明 的根就是本原根,这样 的分裂域其实就是 。 伽罗瓦群的每个元素由 唯一确定,且有到 的单同态映射,所以是一个交换群,这样的扩张称为 阿贝尔扩张 。对于 的根 ,易知 也是方程的根。为了同样使用单扩域表示分离域,事先假定 ,故 的分裂域为 。 伽罗瓦群的每个元素由 唯一确定,且有到 的单同态映射,所以是一个循环群,这样的扩张称为 循环扩张 。 把目光专注在根式扩张 上,以上结论说明,当 时 为 p 阶循环群。反之若 为 阶循环群 ,取任一 ,记 ,构造如下 (式(18))。把它们看成是 的方程组,由于范德蒙行列式(参考线性代数)非零,必有某个 。另外可以验证 ,故由伽罗瓦理论知 ,所以 E 为根式扩张。总结以上便是,若 ,则根式扩张等价于 阶循环扩张。 现在就来讨论什么样的多项式是根式可解的,根式可解表示有根式扩张链 。为了用上伽罗瓦理论,可以将其它根都添加到扩张链中,可以假设 K 已经是伽罗瓦扩张。为了使用上面的结论,令所有根数 的最小公倍数为 且 次本原根为 ,将链表中的每个扩域进行单扩张 ,显然 次本原根也在 F 中。新扩张链(式(19))的每一步都是伽罗瓦扩张,根据伽罗瓦理论知所有伽罗瓦群形成一个正规群列。又因为每个伽罗瓦群都是交换群,故 为可解群,所以子群 也是可解群。 反之若 是可解群,取 次本原根 ,由前面的习题知 是 的子群,故也是可解群。根据伽罗瓦理论知存在 到 伽罗瓦扩张链,每个扩张的伽罗瓦群都是素数阶循环群。再由上面的习题知每个伽罗瓦扩张的阶 都是 的因子,故 阶本原根在 中,所以每个扩张为根式扩张。由于 也是根式扩张,故 可由 根式扩张而来,所以方程根式可解。 这就得到了伽罗瓦的天才的结论:多项式有根式解的充要条件是,它的伽罗瓦群为可解群。这个结论可以应用到任何一个具体的多项式,但方程的“公式”解其实是讨论参数化的一般多项式 (式(20)),其中 是不定元。方程的不变域是 ,而我们需要判断 在 的伽罗瓦群是否可解。由于 可由 用基本不等式表示,故分裂域 。 但由于 的值和相互关系是从 得来, 的伽罗瓦群并不好分析。我们更希望 是独立的不变元,为此我们用不定元 建立多项式 (式(21)),其系数 为 的基本不等式(pk不是不定元)。同样可有这个方程的不变域为 ,扩域为 。可以论证(略去)这两个多项式的伽罗瓦群是同构的(式(22)),而后者同构于 ( 为不定元),所以 有 个不同的根。再由于 时, 不是可解群,故 不能公式求解。 到这里关于抽象代数的知识,我们就介绍到这儿了。关于更加高阶的代数学知识就不涉猎了。抽象代数是近代数学的基石,它有着十分广博的内容和无限的智慧,学习它的最终目的,是锻炼我们的 抽象思维 和科学的数学观。带着这样的熏陶去学习别的科目,你会有不一样的高度,对事物的认识不再浮于表面。肖振2023-05-18 05:46:211
现代数学的分支有哪些?泛函,群论,几何代数,解析数论,黎曼几何,环论,非线性?
1..数学史 2..数理逻辑与数学基础 a..演绎逻辑学 亦称符号逻辑学 b..证明论 亦称元数学 c..递归论 d..模型论 e..公理集合论 f..数学基础 g..数理逻辑与数学基础其他学科 3..数论 a..初等数论 b..解析数论 c..代数数论 d..超越数论 e..丢番图逼近 f..数的几何 g..概率数论 h..计算数论 i..数论其他学科 4..代数学 a..线性代数 b..群论 c..域论 d..李群 e..李代数 f..Kac-Moody代数 g..环论 包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等 h..模论 i..格论 j..泛代数理论 k..范畴论 l..同调代数 m..代数K理论 n..微分代数 o..代数编码理论 p..代数学其他学科 5..代数几何学 6..几何学 a..几何学基础 b..欧氏几何学 c..非欧几何学 包括黎曼几何学等 d..球面几何学 e..向量和张量分析 f..仿射几何学 g..射影几何学 h..微分几何学 i..分数维几何 j..计算几何学 k..几何学其他学科 7..拓扑学 a..点集拓扑学 b..代数拓扑学 c..同伦论 d..低维拓扑学 e..同调论 f..维数论 g..格上拓扑学 h..纤维丛论 i..几何拓扑学 j..奇点理论 k..微分拓扑学 l..拓扑学其他学科 8..数学分析 a..微分学 b..积分学 c..级数论 d..数学分析其他学科 9..非标准分析 10..函数论 a..实变函数论 b..单复变函数论 c..多复变函数论 d..函数逼近论 e..调和分析 f..复流形 g..特殊函数论 h..函数论其他学科 11..常微分方程 a..定性理论 b..稳定性理论 c..解析理论 d..常微分方程其他学科 12..偏微分方程 a..椭圆型偏微分方程 b..双曲型偏微分方程 c..抛物型偏微分方程 d..非线性偏微分方程 e..偏微分方程其他学科 13..动力系统 a..微分动力系统 b..拓扑动力系统 c..复动力系统 d..动力系统其他学科 14..积分方程 15..泛函分析 a..线性算子理论 b..变分法 c..拓扑线性空间 d..希尔伯特空间 e..函数空间 f..巴拿赫空间 g..算子代数 h..测度与积分 i..广义函数论 j..非线性泛函分析 k..泛函分析其他学科 16..计算数学 a..插值法与逼近论 b..常微分方程数值解 c..偏微分方程数值解 d..积分方程数值解 e..数值代数 f..连续问题离散化方法 g..随机数值实验 h..误差分析 i..计算数学其他学科 17..概率论 a..几何概率 b..概率分布 c..极限理论 d..包括正态过程与平稳过程、点过程等 e..马尔可夫过程 f..随机分析 g..鞅论 h..应用概率论 具体应用入有关学科 i..概率论其他学科 18..数理统计学 a..抽样理论 包括抽样分布、抽样调查等b..假设检验 c..非参数统计 d..方差分析 e..相关回归分析 f..统计推断 g..贝叶斯统计 包括参数估计等 h..试验设计 i..多元分析 j..统计判决理论 k..时间序列分析 l..数理统计学其他学科 19..应用统计数学 a..统计质量控制 b..可靠性数学 c..保险数学 d..统计模拟 20..应用统计数学其他学科 21..运筹学 a..线性规划 b..非线性规划 c..动态规划 d..组合最优化 e..参数规划 f..整数规划 g..随机规划 h..排队论 i..对策论 亦称博弈论 j..库存论 k..决策论 l..搜索论 m..图论 n..统筹论 o..最优化 p..运筹学其他学科 22..组合数学 23..模糊数学 24..应用数学 具体应用入有关学科 25..数学其他学科就这些,其他的太偏或者是不讨论Jm-R2023-05-18 05:46:201
李代数的简介
一类重要的非结合代数。非结合代数是环论的一个分支,与结合代数有着密切联系。结合代数的定义中把乘法结合律删去,就是非结合代数。李代数是挪威数学家索菲斯·李在19世纪后期研究连续变换群时引进的一个数学概念,它与李群的研究密切相关。在更早些时候,它曾以含蓄的形式出现在力学中,其先决条件是“无穷小变换”概念,这至少可追溯到微积分的发端时代。可用李代数语言表述的最早事实之一是关于哈密顿方程的积分问题。李是从探讨具有r个参数的有限单群的结构开始的,并发现李代数的四种主要类型。法国数学家嘉当在1894年的论文中给出变数和参变数在复数域中的全部单李代数的一个完全分类。他和德国数学家基灵都发现,全部单李代数分成4个类型和5个例外代数,嘉当还构造出这些例外代数。嘉当和德国数学家外尔还用表示论来研究李代数,后者得到一个关键性的结果。“李代数”这个术语是1934年由外尔引进的。随着时间的推移,李代数在数学以及古典力学和量子力学中的地位不断上升。到20世纪80年代,李代数不再仅仅被理解为群论问题线性化的工具,它还是有限群理论及线性代数中许多重要问题的来源。李代数的理论不断得到完善和发展,其理论与方法已渗透到数学和理论物理的许多领域。瑞瑞爱吃桃2023-05-18 05:46:191
李代数 李群 需要哪些基础 知识
李代数(Liealgebra)一类重要的非结合代数。非结合代数是环论的一个分支,与结合代数有着密切联系。结合代数的定义中把乘法结合律删去,就是非结合代数。李代数是挪威数学家S.李(数学家李)在19世纪后期研究连续变换群时引进的一个数学概可桃可挑2023-05-18 05:46:191
结合代数的韦德伯恩理论
关于有限维结合代数的韦德伯恩理论,对代数的研究有深远的影响。这一理论的主要内容是:①任意有限维结合代数A含有一个极大的幂零理想N(所谓N是幂零的,意指存在一个自然数n,使N中任意n个元素之积都是零),它包含A的一切幂零理想,N称为A的幂零根,而商代数A/N的幂零根为零,幂零根为零的代数,称为半单代数;②半单代数是有限个单代数的直和;③F上单代数必具有形式Dn,其中D是F上可除代数,且D和n是唯一的;④任意代数A=N+S(向量空间的直和),其中N是A的幂零根,S是A的半单代数。Α.И.马尔采夫证明了④中的子代数S在不计内自同构的意义下是唯一的。根据上述韦德伯恩定理,有限维代数的研究,基本上可归结为对幂零代数与可除代数的研究。实际上这是研究代数的一个模式:对代数引入根的概念,从而可将对任意代数的研究化归为对两类特殊代数的研究。结合环的阿廷理论和雅各布森理论,以及关于非结合代数和环的一些研究都是按照这一模式进行的。F上单代数A有单位元1,因此可认定F=F·1吇A。若A的中心(即与A中任意元素都是乘法可换的元素的全体)恰是F,则A称为F上中心单代数。Fn是F上中心单代数。张量积在研究单代数时起着重要作用。设A、B是F有单位元的代数。取A在F上的一个基;取B在F上的一个基,。以符号集为基可作F上一个向量空间,记作A×B。规定A×B的一个乘法,则得F上一个结合代数A×B,称之为F上代数A和B的张量积。可以证明,代数A×B与A和B之基的选择无关。两个F上中心单代数的张量积仍是F上中心单代数。利用张量积可以定义张量代数,或者外代数、格拉斯曼代数(见多重线性代数)。令G表示F上有限维中心单代数的全体。在集合G中引入关系~:A~B当且仅当存在m、n∈Z +使得。容易证明,这是一个等价关系。令凴表示A所在的等价类,。在集合强中规定一个乘法:。可以证明,这个乘法定义是合理的,即与等价类凴的代表选择无关,并且强关于此乘法作成一个群。称群{强,·}为域F上的布饶尔群,记作B(F)。B(F)的结构反映了中心单代数间的张量积的性质。可以证明B(F)是交换周期群。 若A是F上n2维中心单代数,且含有一个子域K,而K是F上n次正规扩域,则A称为一个交叉积。若K是域F上的循环扩域,则交叉积A特称为循环代数。交叉积有比较简单的乘法表,然而它有很好的代表性:B(F)中任一元素(即等价类凴中)必含有一个交叉积。康康map2023-05-18 05:46:181
结合代数的例题
设A是非空集,F是域。在集A上定义有加法+和乘法·两个运算,在F和A之间定义有数乘运算,即对于任意α∈F,α∈A有αα∈A,且满足以下条件:①A关于加法+和乘法·作成结合环;②A关于加法+及数乘运算构成域F上的向量空间;③对任意α∈F,α、b∈A有α(αb)=(αα)b=α(αb),这种代数系统记作{A,+,·,数乘}并称为域F 上结合代数,简称F上代数A或代数A。域F上向量空间A的维数也称为F上代数A的维数。环的加法群是一个交换群,而代数的加法群是域F上的向量空间,后者较前者的结构要简单得多。例如,向量空间A必有基{αi,i∈I},而任意α∈A可唯一表成 。于是只要知道αi之间的乘法表,便可以计算A中任二元的乘积称为代数A的构造常数。反之,通过规定向量空间A的一组基元之间的乘法,可线性扩张成A中的一个乘法。人们常利用这种方便定义新代数。与环相类似,结合代数也有子代数、理想、同态、直积等概念。例如,代数A的理想B,即指B是向量空间A的子空间,又是环A的理想。与除环和单环相应的概念,是可除代数和单代数等。仿照由实数来构造复数的方法,可用复数来构造新的数。设Q是一切复数对(α,b)的集合,规定(α,b)=(с,d)当且仅当 α=с,b=d,并定义如下的运算婔,廀是复数с,d的共轭数,α是实数。直接验证可知,Q是实数域R上的一个四维结合代数,除了乘法交换律之外,Q的运算具有通常的数运算的所有性质。这是第一个非交换可除代数的例子。如令则它们组成R上代数Q的一个基,而Q关于此基的乘法表是:1是单位元。这就是著名的四元数代数。ardim2023-05-18 05:46:181
李代数是什么?
就是在线性空间上定义一个运算(a,b)->[a,b], 我们称之为李括号,并且呢,这种运算要满足,下面的三个性质,1.[a,b]=-[b,a], 2. 双线性性,3, 雅克比恒等式。我们称定义了满足这三个性质的李括号的线性空间,称为一个李代数。再也不做站长了2023-05-18 05:46:175
代数包括哪些
好多好多啊。比如结合代数(群、环、域等等,在代数方程、代数几何、晶体结构分类等等方面都有用),非结合代数(我只知道李代数);交换代数(是代数几何所用的重要工具)、非交换代数(是非交换几何的重要工具);涉及数论(包括密码学)、组合(比如图论、组合几何等等一大堆)等等。可以到Wiki上搜一下Algebra。北营2023-05-18 05:46:171
代数学习题集柯斯特利金怎么样
不好学。这本书非常适合已经学过一遍高等代数,希望在代数方面进一步巩固、加深并拓展的人。对于在代数方面除初等代数以外无任何基础的初学者而言,此书无论是从思想、内容还是习题来讲都相当具有挑战性。柯斯特利金,1929年2月生于大莫雷斯。主要从事李代数、有限群、非结合代数、上同调群、群和代数的组合理论、表示论、整数格等的研究。无尘剑 2023-05-18 05:46:171
代数是什么意思
代数的意思为研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。代数读音:dài shù。释义:是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。词类:名词。例句:该模型计算简单,通过代数运算可以得到具有较高精度的磁力计算结果。代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支,其中将算术关系加以概括并用代表数字的字母符号、变量或其它数学实体来探讨(如矢量和矩阵),字母符号是结合起来的,尤指在按照指定的规律形成方程的情况下。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。中文名:代数。外文名:algebra。所属学科:数学。学科特点:抽象。重要理论:伽罗瓦理论。常见类型:对称代数、张量代数。介绍:在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解代数方程的原理为中心问题的初等代数。代数(algebra)是由算术(arithmetic)演变来的,这是毫无疑问的。至于什么年代产生的代数学这门学科,就很不容易说清楚了。比如,如果你认为“代数学”是指解bx+k=0这类用符号表示的代数方程的技巧。这种“代数学”是在十六世纪才发展起来的。定义:代数是数学的一个分支。传统的代数用有字符 (变量) 的表达式进行算术运算,字符代表未知数或未定数。如果不包括除法 (用整数除除外),则每一个表达式都是一个含有理系数的多项式。例如: 1/2 xy +1/4z-3x+2/3. 一个代数方程式 (参见EQUATION)是通过使多项式等于零来表示对变量所加的条件。如果只有一个变量,那么满足这一方程式的将是一定数量的实数或复数——它的根。一个代数数是某一方程式的根。代数数的理论——伽罗瓦理论是数学中最令人满意的分支之一。建立这个理论的伽罗瓦(Evariste Galois,1811-32)在21岁时死于决斗中。他证明了不可能有解五次方程的代数公式。用他的方法也证明了用直尺和圆规不能解决某些著名的几何问题(立方加倍,三等分一个角)。多于一个变量的代数方程理论属于代数几何学,抽象代数学处理广义的数学结构,它们与算术运算有类似之处。参见,如: 布尔代数(BOOLEAN ALGEBRA);群 (GRO-UPS);矩阵(MATRICES);四元数(QUA-TERNIONS );向量(VECTORS)。这些结构以公理 (见公理法 AXIOMATICMETHOD) 为特征。特别重要的是结合律和交换律。代数方法使问题的求解简化为符号表达式的操作,已渗入数学的各分支。设K为一交换体. 把K上的向量空间E叫做K上的代数,或叫K-代数,如果赋以从E×E到E中的双线性映射。换言之,赋以集合E由如下三个给定的法则所定义的代数结构:——记为加法的合成法则(x,y)↦x+y;——记为乘法的第二个合成法则(x,y)↦xy;——记为乘法的从K×E到E中的映射(α,x)↦αx,这是一个作用法则;这三个法则满足下列条件:a) 赋以第一个和第三个法则,E则为K上的一个向量空间;b) 对E的元素的任意三元组(x,y,z),有x(y+z)=xy+xz(y+z)x=yx+zx;c)对K的任一元素偶(α,β)及对E的任一元素偶(x,y),有(αx)(βy)=(αβ) (xy)。设A为一非空集合. 赋予从A到K中的全体映射之集ℱ(A,K)以如下三个法则:则ℱ(A, K)是K上的代数, 自然地被称为从A到K中的映射代数.当A=N时, 代数ℱ(A,K)叫做K的元素序列代数。无论是在代数还是在分析中,代数结构都是最常见到的结构之一。十九世纪前半叶末,随着哈密顿四元数理论的建立,非交换代数的研究已经开始。 在十九世纪下半叶,随着M.S.李的工作,非结合代数出现了。到二十世纪初,由于放弃实数体或复数体作为算子域的限制,代数得到了重大扩展。与外代数,对称代数,张量代数,克利福德代数等一起,代数结构在多重线性代数中也建立了起来。苏萦2023-05-18 05:46:178
Kac-Moody代数的释义
是此 Kac–Moody 代数的一嘉当子代数。若g是 Kac–Moody 代数的一元,使得其中 ω 是的一元,则称g为权(weight) ω的。我们可分解一Kac–Moody 代数成其幂空间,则嘉当子代数的幂为零,ei的幂为α*i,而fi的幂为−α*i。若二幂特征向量的李括号非零,则其幂是二幂之和。(若) 则 一条件即指 α*i 都是简单根。苏州马小云2023-05-18 05:46:161
线性代数:向量组等价
(a1,a2,b1,b2)=1 1 2 01 0 -1 10 1 3 -10 1 3 -1r1-r20 1 3 -11 0 -1 10 1 3 -10 1 3 -1r3-r1,r4-r10 1 3 -11 0 -1 10 0 0 00 0 0 0所以 r(a1,a2) = r(a1,a2,b1,b2) = 2而显然有 r(b1,b2)=2所以有 r(a1,a2) = r(a1,a2,b1,b2) = r(b1,b2)所以两个向量组等价.kikcik2023-05-16 14:52:552
线性代数:什么是向量组等价吖^_^
两个向量组等价就是能互相线性表示。向量组等价有相同的秩。A = (α1, α2, α3 ) =[1 1 1][1 2 3][1 3 6]行初等变换为[1 1 1][0 1 2][0 2 5]行初等变换为[1 1 1][0 1 2][0 0 1]r(α1, α2, α3)=3.B = (β1, β2, β3 ) =[1 a 3][2 2 4][-3 1 2]行初等变换为[2 2 4][-3 1 2][1 a 3]行初等变换为[1 1 2][0 4 8][0 a-1 1]行初等变换为[1 1 2][0 1 2][0 0 3-2a]r(β1, β2, β3 )=3, 则 a≠3/2。北有云溪2023-05-16 14:52:541
线性代数向量组等价?
两个向量组可以互相线性表出,即是第一个向量组中的每个向量都能表示成第二个向量组的向量的线性组合,且第二个向量组中的每个向量都能表示成第一二个向量组的向量的线性组合。向量组等价,是两向量组中的各向量,都可以用另一个向量组中的向量线性表示。矩阵等价,是存在可逆变换(行变换或列变换,对应于1个可逆矩阵),使得一个矩阵之间可以相互转化。如果是行变换,相当于两矩阵的列向量组是等价的。如果是列变换,相当于两矩阵的行向量组是等价的。扩展资料:1、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。2、任一向量组和它的极大无关组等价。3、向量组的任意两个极大无关组等价。4、两个等价的线性无关的向量组所含向量的个数相同。5、等价的向量组具有相同的秩,但秩相同的向量组不一定等价。参考资料来源:百度百科-等价向量组无尘剑 2023-05-16 14:52:541
线性代数 向量组等价??一到选择 求教啊
答案没错啊,解释的很清楚啊。C的列向量可用A的列向量表示,A的列向量也可用C的列向量表示,当然C的列向量与A的列向量等价。ardim2023-05-16 14:52:542
线性代数向量组等价
向量组等价,是两向量组中的各向量,都可以用另一个向量组中的向量线性表示。矩阵等价,是存在可逆变换(行变换或列变换,对应于1个可逆矩阵),使得一个矩阵之间可以相互转化。如果是行变换,相当于两矩阵的列向量组是等价的。如果是列变换,相当于两矩阵的行向量组是等价的。九万里风9 2023-05-16 14:52:531
线性代数:证明两个向量组等价,用什么方法
两个向量组能够相互表示。表示则等价。因为向量组可以组成矩阵,反过来矩阵又存在行向量组和列向量组,所以可以利用矩阵的等价来定义向量组的等价(只要把两个向量组都做成矩阵即可)。一般定义向量组的等价,是用另外一个说法,就是“相互线性表示”。向量组a:a1,a2,...,am与向量组b:b1,b2,...,bk等价:向量组a中的每一个向量都可以由向量组b线性表示;向量组b中的每一个向量也可由向量组a线性表示。一般不讨论两个向量的等价,如果按照定义来理解的话,就是两个向量的元素对应成比例。基本定义向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。(注意区分粗体字与普通字母所表示的不同意义)或者说:两个向量组可以互相线性表示,则称这两个向量组等价。以上内容参考:百度百科-等价向量组韦斯特兰2023-05-16 14:52:531
线性代数向量组等价?
两个向量组可以互相线性表出, 即是第一个向量组中的每个向量都能表示成第二个向量组的向量的线性组合,且第二个向量组中的每个向量都能表示成第一二个向量组的向量的线性组合。康康map2023-05-16 14:52:532
线性代数:证明两个向量组等价,用什么方法
两向量组相互之间,其中任意一个向量组中的任意一个向量均能由另一个向量组线性表示,即这两个向量组相互之间能线性表示就称这两个向量组等价,但是这个线性关系有时求解比较复杂。所以有一些必要的验证方法(仅仅是验证作用,也就是必要条件,达不到充分性):(1)根据等价向量组的秩相等,如果向量组的秩不相等,则这两个向量组一定不是等价向量组,反之,未必成立。(2)同一向量组的所有最大无关组均是等价的。(因为任意一个最大无关组中的任意一个向量均能由另一个最大无关组线性表示)Ntou1232023-05-16 14:52:535
线性代数给出过程,等价向量组和等秩向量组是什么意思
等价向量组,是向量组A中向量,都可以被向量组B中向量的线性表示反过来,也是成立的。等秩向量组,仅仅是两个向量组的秩相等,不一定能被对方线性表示黑桃花2023-05-16 14:52:531
线性代数:什么是向量组等价
向量组等价一般指等价向量组。向量组等价的基本判定是:两个向量组可以互相线性表示。需要重点强调的是:等价的向量组的秩相等,但是秩相等的向量组不一定等价。向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。扩展资料:三种性质:向量组间的一种重要关系.如果线性空间V的向量组Ⅰ中的每个向量都可由V的向量组Ⅱ线性表出,并且向量组Ⅱ中的每个向量也可由向量组Ⅰ线性表出,则称向量组Ⅰ与向量组Ⅱ等价.向量组之间的等价满足:1.反身性:每个向量组都与自身等价.2.对称性:如果向量组Ⅰ与向量组Ⅱ等价,则向量组Ⅱ也与向量组Ⅰ等价.3.传递性:如果向量组Ⅰ与向量组Ⅱ等价,向量组Ⅱ与向量组Ⅲ等价,则向量组Ⅰ与向量组Ⅲ也等价.北境漫步2023-05-16 14:52:521
线性代数 关于向量组等价
向量组等价,是两向量组中的各向量,都可以用另一个向量组中的向量线性表示。矩阵等价,是存在可逆变换(行变换或列变换,对应于1个可逆矩阵),使得一个矩阵之间可以相互转化。如果是行变换,相当于两矩阵的列向量组是等价的。如果是列变换,相当于两矩阵的行向量组是等价的。小菜G的建站之路2023-05-16 14:52:513
线性代数:什么是向量组等价
两个向量组可以相互线性表出,比如A向量组中的向量(α1,……,αn),B向量组中的向量(β1,……,βn),A中的任意一个向量αi可由β1,……,βn线性表出,同时B中的任意一个向量βi可由α1,……,αn线性表出,则A和B两个向量组等价真颛2023-05-16 14:52:501
求行列式中的代数余子式?
解:由题意,A31、A32、A33、A34是行列式D第三行元素的代数余子式。其中D=31-12-513-4201-11-53-3现构造一个新的行列式G,使G=31-12-513-413-221-53-3∴G与D除了第三行元素不同,其余元素均对应相等。扩展资料:基本介绍定义在n阶行列式D中划去任意选定的k行、k列后,余下的元素按原来顺序组成的n-k阶行列式M,称为行列式D的k阶子式A的余子式。如果k阶子式A在行列式D中的行和列的标号分别为i1,i2,…,ik和j1,j2,…,jk。则在A的余子式M前面添加符号:后,所得到的n-k阶行列式,称为行列式D的k阶子式A的代数余子式。参考资料来源:搜狗百科-代数余子式墨然殇2023-05-16 14:51:151
线性代数求代数余子式
斯托克斯公式韦斯特兰2023-05-16 14:51:142
关于代数余子式
其实这道题是考察对代数余子式的理解~~~A11+A12+……A1n=a11*A11+a12*A12+……+a1n*A1n因此,我取a11=a12=…=a1n=1因此,我可以构造一个行列式Dn=第一行1 1 1……1第二行1 2 0……0第三行1 0 3……0……第n行 1 0 0……n只要求出这个行列式,就会求出A11+A12+……A1n了~~有不懂欢迎追问hi投2023-05-16 14:51:142
行列式的全部代数余子式之和?
根据性质可知A11+A12+A13=0,A21+A22+A23=0,而A31+A32+A33=原行列式,所以全部代数余子式之和=原行列式=-9,答案是b。CarieVinne 2023-05-16 14:51:144
代数余子式性质是什么?
在n阶行列式中,把元素ai所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素ai的余子式,记作M,将余子式M再乘以-1的o+e次幂记为A,A叫做元素a的代数余子式。带有代数符号的余子式称为代数余子式,计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号。相关内容:设A为一个 m×n 的矩阵,k为一个介于1和m之间的整数,并且m≤n。A的一个k阶子式是在A中选取k行k列之后所产生的k个交点组成的方块矩阵的行列式。A的一个k阶余子式是A去掉了m−k行与n−k列之后得到的k×k矩阵的行列式。由于一共有k种方法来选择该保留的行,有k种方法来选择该保留的列,因此A的k阶余子式一共有 Ckm*Ckn个。如果m=n,那么A关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式,简称为A的k阶余子式。n×n的方块矩阵A关于第i行第j列的余子式Mij是指A中去掉第i行第j列后得到的n1阶子矩阵的行列式。有时可以简称为A的(i,j)余子式。Chen2023-05-16 14:51:141
什么叫代数余子式?怎么计算?
第1行的代数余子式之和等于把原行列式的第1行元素换为1所得的行列式,第2行的代数余子式之和等于把原行列式的第2行元素都换为1所得的行列式。①行列式A中某行或列用同一数k乘,其结果等于kA。②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。扩展资料带有代数符号的余子式,计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号。在n阶行列式中,把元素ai所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素ai的余子式,记作M,将余子式M再乘以-1的o+e次幂记为A,A叫做元素a的代数余子式。ardim2023-05-16 14:51:141
代数余子式与余子式
1:元素2的代数余子式是0,40,3行列式结果=0元素-2的代数余子式是-3,45,3行列式结果=-9-20=-29计算:1:4,3,11,-2,35,7,0化简得到:0,11,-111,-2,30,17,-15行列式=-11×1×17-(-15×11×1)=-2232×[1,2,3]1=3×1+2×2+1×3=10北营2023-05-16 14:51:142
代数余子式怎么算
代数余子式和【余子式】概念相关:代数余子式=对应的【余子式】×【位置系数】(要不+1,要不-1).韦斯特兰2023-05-16 14:51:132
什么叫做行列式的代数余子式?
第1行的代数余子式之和等于把原行列式的第1行元素换为1所得的行列式,第2行的代数余子式之和等于把原行列式的第2行元素都换为1所得的行列式。①行列式A中某行或列用同一数k乘,其结果等于kA。②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。扩展资料带有代数符号的余子式,计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号。在n阶行列式中,把元素ai所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素ai的余子式,记作M,将余子式M再乘以-1的o+e次幂记为A,A叫做元素a的代数余子式。mlhxueli 2023-05-16 14:51:131
矩阵A的代数余子式计算
书错了你没错可桃可挑2023-05-16 14:51:138
代数余子式怎么求?
所有代数余子式之和等于这个伴随矩阵所有元素之和,直接求它的伴随矩阵就行,然后伴随矩阵各个元素相加即为所求。在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。扩展资料计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的,但一般不用此法,其原因是计算量太大,注意到行列式D中元素的代数余子式与的值无关,仅与其所在位置有关。利用这一点,可将D的某一行(或列)元素的代数余子式的线性组合表示为一个行列式,而构造这一行列式是不难的,只需将其线性组合的系数替代D的该行(或该列)元素,所得的行列式就是所要构造的行列式,再应用下述行列式的展开定理,即命题1和命题2,就可求得的值。参考资料来源:百度百科-代数余子式ardim2023-05-16 14:51:131
什么是代数余子式?
在n阶行列式中,划去元aij所在的第i行与第j列的元,剩下的元不改变原来的顺序所构成的n-1阶行列式称为元aij的余子式。在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。关系:一个矩阵的A(i,j)代数余子式是指A的(i,j)余子式Mij与的乘积,即:A的余子矩阵是指将A的(i,j)代数余子式摆在第i行第j列所得到的矩阵,记为C。C的转置矩阵称为A的伴随矩阵,伴随矩阵类似于逆矩阵,并且当A可逆时可以用来计算它的逆矩阵。扩展资料相关应用在五阶行列式 中,划定第二行、四行和第二列、三列,就可以确定D的一个二阶子行列式A的相应的余子式M为:子行列式A的相应的代数余子式为:参考资料来源:百度百科-余子式参考资料来源:百度百科-代数余子式凡尘2023-05-16 14:51:131
代数余子式的计算
以三阶方阵为例,高阶的类似 A= a11 a12 a13 a21 a22 a23 a31 a32 a33 则A*= A11 A21 A31 A12 A22 A32 A13 A23 A33 其中Aij是aij对应的代数余子式CarieVinne 2023-05-16 14:51:133