代数

跪求汉书《九章算术》中的所有古代数学问题`!!!

九章算术——勾股〔一〕今有句三尺,股四尺,问为弦几何?  荅曰:五尺。〔二〕今有弦五尺,句三尺,问为股几何?  荅曰:四尺。〔三〕今有股四尺,弦五尺,问为句几何?  荅曰:三尺。  句股术曰:句股各自乘,并,而开方除之,即弦。  又股自乘,以减弦自乘,其余开方除之,即句。  又句自乘,以减弦自乘,其余开方除之,即股。〔四〕今有圆材径二尺五寸,欲为方版,令厚七寸。问广几何?  荅曰:二尺四寸。  术曰:令径二尺五寸自乘,以七寸自乘减之,其余开方除之,即广。  〔五〕今有木长二丈,围之三尺。葛生其下,缠木七周,上与木齐。问葛长几何?  荅曰:二丈九尺。  术曰:以七周乘三尺为股,木长为句,为之求弦。弦者,葛之长。〔六〕今有池方一丈,葭生其中央,出水一尺。引葭赴岸,适与岸齐。问水深、葭长各几何?  荅曰:  水深一丈二尺;  葭长一丈三尺。  术曰:半池方自乘,以出水一尺自乘,减之,余,倍出水除之,即得水深。加出水数,得葭长。〔七〕今有立木,系索其末,委地三尺。引索却行,去本八尺而索尽。问索长几何?  荅曰:一丈二尺、六分尺之一。  术曰:以去本自乘,令如委数而一,所得,加委地数而半之,即索长〔八〕今有垣高一丈。倚木于垣,上与垣齐。引木却行一尺,其木至地。问木几何?  荅曰:五丈五寸。  术曰:以垣高十尺自乘,如却行尺数而一,所得,以加却行尺数而半之,即木长数。〔九〕今有圆材,埋在壁中,不知大小。以鐻鐻之,深一寸,鐻道长一尺。问径几何?  荅曰:材径二尺六寸。  术曰:半鐻道自乘,如深寸而一,以深寸增之,即材径。〔一0〕今有开门去阃一尺,不合二寸。问门广几何?  荅曰:一丈一寸。  术曰:以去阃一尺自乘,所得,以不合二寸半之而一,所得,增不合之半,即得门广。〔一一〕今有户高多于广六尺八寸,两隅相去适一丈。问户高、广各几何?  荅曰:  广二尺八寸;  高九尺六寸。  术曰:令一丈自乘为实。半相多,令自乘,倍之,减实,半其余。以开方除之,所得,减相多之半,即户广。加相多之半,即户高。〔一二〕今有户不知高广,竿不知长短。横之不出四尺,从之不出二尺,邪之适出。问户高、广、袤各几何?  荅曰:  广六尺,  高八尺,  袤一丈。  术曰:从、横不出相乘,倍,而开方除之。所得加从不出即户广,加横不出即户高,两不出加之,得户袤。〔一三〕今有竹高一丈,末折抵地,去本三尺。问折者高几何?  荅曰:四尺、二十分尺之十一。  术曰:以去本自乘,令如高而一,所得,以减竹高而半其余,即折者之高也。〔一四〕今有二人同所立。甲行率七,乙行率三。乙东行。甲南行十步而邪东北与乙会。问甲乙行各几何?  荅曰:  乙东行一十步半;  甲邪行一十四步半及之。  术曰:令七自乘,三亦自乘,并而半之,以为甲邪行率。邪行率减于七自乘,余为南行率。以三乘七为乙东行率。置南行十步,以甲邪行率乘之,副置十步,以乙东行率乘之,各自为实。实如南行率而一,各得行数。〔一五〕今有句五步,股十二步。问句中容方几何?  荅曰:方三步、十七分步之九。  术曰:并句、股为法,句股相乘为实,实如法而一,得方一步。〔一六〕今有句八步,股十五步。问句中容圆,径几何?  荅曰:六步。  术曰:八步为句,十五步为股,为之求弦。三位并之为法,以句乘股,倍之为实。实如法得径一步。〔一七〕今有邑方二百步,各中开门。出东门十五步有木。问出南门几何步而见木?  荅曰:六百六十六步、太半步。  术曰:出东门步数为法,半邑方自乘为实,实如法得一步。〔一八〕今有邑,东西七里,南北九里,各中开门。出东门十五里有木。问出南门几何步而见木?  荅曰:三百一十五步。  术曰:东门南至隅步数,以乘南门东至隅步数为实。以木去门步数为法。实如法而一。〔一九〕今有邑方不知大小,各中开门。出北门三十步有木,出西门七百五十步见木。问邑方几何?  荅曰:一里。  术曰:令两出门步数相乘,因而四之,为实。开方除之,即得邑方。〔二0〕今有邑方不知大小,各中开门。出北门二十步有木。出南门十四步,折而西行一千七百七十五步见木。问邑方几何?  荅曰:二百五十步。  术曰:以出北门步数乘西行步数,倍之,为实。并出南门步数为从法,开方除之,即邑方。〔二一〕今有邑方十里,各中开门。甲乙俱从邑中央而出。乙东出;甲南出,出门不知步数,邪向东北磨邑,适与乙会。率甲行五,乙行三。问甲、乙行各几何?  荅曰:  甲出南门八百步,邪东北行四千八百八十七步半,及乙。  乙东行四千三百一十二步半。  术曰:令五自乘,三亦自乘,并而半之,为邪行率。邪行率减于五自乘者,余,为南行率。以三乘五,为乙东行率。置邑方半之,以南行率乘之,如东行率而一,即得出南门步数。以增邑方半,即南行。置南行步求弦者,以邪行率乘之,求东者以东行率乘之,各自为实。实如南行率得一步。〔二二〕有木去人不知远近。立四表,相去各一丈,令左两表与所望参相直。从后右表望之,入前右表三寸。问木去人几何?  荅曰:三十三丈三尺三寸、少半寸。  术曰:令一丈自乘为实,以三寸为法,实如法而一。〔二三〕有山居木西,不知其高。山去木五十三里,木高九丈五尺。人立木东三里,望木末适与山峰斜平。人目高七尺。问山高几何?  荅曰:一百六十四丈九尺六寸、太半寸。  术曰:置木高减人目高七尺,余,以乘五十三里为实。以人去木三里为法。实如法而一,所得,加木高即山高。〔二四〕今有井径五尺,不知其深。立五尺木于井上,从木末望水岸,入径四寸。问井深几何?  荅曰:五丈七尺五寸。  术曰:置井径五尺,以入径四寸减之,余,以乘立木五尺为实。以入径四寸为法。实如法得一寸。【 以上“句股”中的“句”字系繁体字 (liaowj加注) 】
左迁2023-05-20 17:39:111

《九章算术》对我国古代数学有哪些影响?

春秋时期,筹算已得到普遍的应用,筹算记数法已普遍使用十进位值制,这种记数法对世界数学的发展具有划时代的意义。这个时期的测量数学在生产上有了广泛应用,在数学上也有相应的提高。战国时期,随着铁器的出现,生产力的提高,我国开始了由奴隶制向封建制的过渡。新的生产关系促进了科学技术的发展与进步。此时私学已经开始出现了。昀晚在春秋末期时,人们已经掌握了完备的十进位值制记数法,普遍使用了算筹这种先进的计算工具。秦汉时期,社会生产力得到恢复和发展,给数学和科学技术的发展带来新的活力,人们提出了若干算术难题,并创造了解勾股形、重差等新的数学方法。同时,人们注重先秦文化典籍的收集、整理。作为数学新发展及先秦典籍的抢救工作的结晶,便是《九章算术》的成书。它是西汉丞相张苍、天文学家耿寿昌收集秦火遗残,加以整理删补而成的。《九章算术》是由国家组织力量编纂的一部官方性数学教科书,集先秦至西汉数学知识之大成,是我国古代昀重要的数学经典,对两汉时期以及后来数学的发展产生了很大的影响。《九章算术》成书后,注家蜂起。《汉书·艺文志》所载《许商算术》、《杜忠算术》就是研究《九章算术》的作品。东汉时期马续、张衡、刘洪、郑玄、徐岳、王粲等通晓《九章算术》,也为之作注。这些著作的问世,推动了稍后的数学理论体系的建立。《九章算术》的出现,奠定了我国古代数学的基础,它的框架、形式、风格和特点深刻影响了我国和东方的数学。数学理论体系的建立《九章算术》问世之后,我国的数学著述基本上采取两种方式:一是为《九章算术》作注;二是以《九章算术》为楷模编纂新的著作。其中刘徽的《九章算术注》被认为是我国古代数学理论体系的开端。
小菜G的建站之路2023-05-20 17:39:091

中国古代数学如何记数的?

古时候人们计数的方法有结绳记数,筹码记数和算盘记数。筹码计数:每一筹码代表1,或10,或100等,以此类推.  商码计数  【释义】我国旧时表示数目的符号,也叫草码,商码.  此外,零还是0.  【商码字符】〡 〢 〣 〤 〥 〦 〧 〨 〩 十  【对应数字】  商码:〡 〢 〣 〤 〥 〦 〧 〨 〩 十  汉字:一 二 三 四 五 六 七 八 九 十  大写:壹 贰 叁 肆 伍 陆 柒 捌 玖 拾  阿拉伯:1 2 3 4 5 6 7 8 9 10【书写】  1,就写一个竖;  2,两个竖:〢  3, 三个竖:〣  4,是个交叉:〤  5,写成〥,其实只是 5 字写得草和快  6,写成一点加一横,其中的一点,代表了5: 〦  7,写成一点加两横:〧  8,一点加三横:〨  9,写成“久”的草体:〩
mlhxueli 2023-05-20 17:39:041

代数学之父——丢番图的“墓志铭”:

(4+5)/[1-(1/6+1/12+1/7+1/2)]=84(岁) 答活84岁.
九万里风9 2023-05-20 17:38:544

丢番图寿数几何?(代数式)

解:设:丢番图x岁。(1÷6)x+(1÷12)x+(1÷7)x+5+(1÷2)x+4 =x
kikcik2023-05-20 17:38:532

数学分为代数学,几何学还有什么

数学分类1.离散数学  2.模糊数学  3.经典数学   4.近代数学  5.计算机数学  6.随机数学  7.经济数学  8.算术  9.初等代数  10.高等代数  11.数论  12.欧几里得几何  13.非欧几里得几何  14.解析几何  15.微分几何  16.代数几何  17.射影几何学  18.几何拓扑学  19.拓扑学  20.分形几何  21.微积分学  22.实变函数论  23.概率和统计学  24.复变函数论  25.泛函分析  26.偏微分方程  27.常微分方程  28.数理逻辑  29.运筹学  30.计算数学  31.突变理论  32.数学物理学  33.类函数  34.会计总汇类
陶小凡2023-05-20 17:38:451

大学数学系本科好像都开设有微分几何,拓扑学,流行,代数几何等课程。 不知道今后数学系研究生还学不学?

问问教授不就好了。~~~·
北境漫步2023-05-20 17:38:422

麻烦一下,哪位高手能透彻的给我解释一下世界近代数学三大难题

世界近代三大数学难题之一四色猜想 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色 猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战 。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目, 实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。 -------- 世界近代三大数学难题之一 费马最后定理 被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有 关数学难题得以解决的消息,那则消息的标题是「在陈年数学困局中,终於有人呼叫『 我找到了』」。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的 男人照片。这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马 小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极 大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以「业余王子 」之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的 数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内 容是有关一个方程式 x2 + y2 =z2的正整数解的问题,当n=2时就是我们所熟知的毕氏定 理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之 两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有 整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13… 等等。 费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法 找到整数解。 当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙 法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百 多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最 后定理也就成了数学界的心头大患,极欲解之而后快。 十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和 三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫 斯克尔(P?Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人, 有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然 如此仍然吸引不少的「数学痴」。 二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的 ,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确 的(注286243-1为一天文数字,大约为25960位数)。 虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解 决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是 利用二十世纪过去三十年来抽象数学发展的结果加以证明。 五0年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志 村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八0年代德 国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联 论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论 由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报 告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的 证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以 修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6 月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金 ,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。 要证明费马最后定理是正确的 (即xn + yn = zn 对n33 均无正整数解) 只需证 x4+ y4 = z4 和xp+ yp = zp (P为奇质数),都没有整数解。 ---------------- 世界近代三大数学难题之一 哥德巴赫猜想 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。 1742年6月7日,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。但是对于更大的数目,猜想也应是对的,然而不能作出证明。欧拉一直到死也没有对此作出证明。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。 1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。至此,哥德巴赫猜想只剩下最后一步(1+1)了。陈景润的论文于1973年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”。1996年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想(1+1)的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了……”在他身后,将会有更多的人去攀登这座高峰。
hi投2023-05-20 17:38:292

二阶导数的代数记法

二阶导数记作 即y""=(y")"。 例如:y=x²的导数为y‘=2x,二阶导数即y"=2x的导数为y‘"=2。
韦斯特兰2023-05-20 17:38:081

什么是代数式 ,恒等变形

恒等变形就是两个式子,其实是一回事如果将两个代数式里的字母换成任意的数值,这两个代数式的值都相等,我们就说这两个代数式恒等。 表示两个代数式恒等的等式叫恒等式。 例如,a+b=b+a, 3x+8x=11x, (2ax)(3ax2)=6a2x3, a2-b2=(a+b)(a-b), …… 这些都是恒等式。 把一个代数式变成另一个和它恒等的代数式叫做恒等变形
余辉2023-05-20 17:37:551

什么是代数函数,什么是超越函数

超越函数 (Transcendental Functions) 变量之间的关系不能用有限次加、减、乘、除、乘方、开方 运算表示的函数。 如对数函数,反三角函数,指数函数,三角函数等就属于超越函数,如y=f(x),y=cosx。它们属于初等函数中的初等超越函数。 超越函数是指那些不满足任何以多项式作系数的多项式方程的函数。说的更技术一些,单变量函数若为代数独立于其变量的话,即称此函数为超越函数。 对数和指数函数即为超越函数的例子。超越函数这个名词通常被拿来描述三角函数。 非超越函数则称为代数函数。代数函数的例子包括多项式和平方根函数。 一函数的不定积分运算是超越函数的丰富来源,如对数函数便来自倒数函数的不定积分。在微分代数里,人们研究不定积分如何产生与某类“标准”函数代数独立的函数,例如将三角函数与多项式的合成取不定积分。补充 在数学领域中, 超越函数与代数函数相反, 是指那些不满足任何以多项式方程的函数, 即函数不满足以变量自身的多项式为系数的多项式方程.换句话说, 超越函数就是"超出"代数函数范围的函数, 也就是说函数不能表示为有限次的加、减、乘、除和开方的运算. 严格的说, 关于变量 z 的解析函数 f(z) 是超越函数, 如果该函数是关于变量z是代数独立的. 对数和指数函数即为超越函数的例子. 超越函数这个名词通常被拿来描述三角函数, 例如正弦,余弦,正割,余割,正切,余切,正失,半正失等. 非超越函数则称为代数函数. 代数函数的例子有多项式和平方根函数. 对代数函数进行不定积分运算能够产生超越函数. 如对数函数便是在对双曲角围成的面积研究中, 对倒数函数y = ?x不定积分得到的. 以此方式得到的双曲函数sinh, cosh, tanh 都是超越函数. 微分代数的某些研究人员研究不定积分如何产生与某类“标准”函数代数独立的函数, 例如将三角函数与多项式的合成取不定积分.
人类地板流精华2023-05-20 14:31:232

线性代数与空间解析几何有什么关系?

线性代数学起来最容易了。。如果你只想学好线代。就不要专门去学空间解析几何。如果你想知道空间解析几何。下面一个网你可以去看看。。
墨然殇2023-05-20 14:31:154

实变函数与高等代数的区别与联系

实变函数就是实变量的函数,数学分析中微积分的那部分所讨论的函数都属于实变函数。以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。
NerveM 2023-05-20 08:57:451

谈谈对实变函数的认识。(可结合高等代数 数学分析 近世代数作答) 哪位高手能帮忙答下啊

以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。所谓点集论,就是专门研究点所成的集合的性质的理论,也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。
无尘剑 2023-05-20 08:57:431

当代最伟大的代数几何大师是谁?(不算与上帝同在的)

陈冠希
再也不做站长了2023-05-20 08:57:293

代数几何的代数簇

一个代数簇V的定义方程中的系数以及V中点的坐标通常是在一个固定的域k中选取的,这个域就叫做V的基域。当V为不可约时(即如果V不能分解为两个比它小的代数簇的并),V上所有以代数式定义的函数全体也构成一个域,叫做V的有理函数域,它是k的一个有限生成扩域。通过这样的一个对应关系,代数几何也可以看成是用几何的语言和观点进行的有限生成扩域的研究。代数簇V关于基域k的维数可以定义为V的有理函数域在k上的超越次数。一维的代数簇叫做代数曲线,二维的代数簇叫做代数曲面。代数簇的最简单的例子是平面中的代数曲线。例如,著名的费马猜想(又称费马大定理)就可以归结为下面的问题:在平面中,由方定义的曲线(称为费马曲线)当n≥3时没有坐标是非零的有理数点。另一方面,下面的齐次方程组在复数域上的射影空间中定义了一条曲线。这是一条椭圆曲线。人们对代数簇的研究通常分为局部和整体两个方面。局部方面的研究主要是用交换代数方法讨论代数簇中的奇异点以及代数簇在奇异点周围的性质。作为奇异点的例子,可以考察由方程x2y3所定义的平面曲线中的原点(0,0)。这是一个歧点。  不带奇异点的代数簇称为非奇异代数簇。数学家広中平祐在1964年证明了基域k的特征为0时的奇点解消定理:任意代数簇都是某个非奇异代数簇在双有理映射下的像。一个代数簇V1到另一个代数簇V2的映射称为双有理映射,如果它诱导有理函数域之间的同构。两个代数簇V1,V2称为双有理等价的,如果在V1中有一个稠密开集同构于V2的一个稠密开集。这个条件等价于V1和V2的有理函数域同构。由于这个等价关系,代数簇的分类常常可以归结为对代数簇的双有理等价类的分类。当前代数几何研究的重点是整体问题,主要是代数簇的分类以及给定的代数簇中的子簇的性质。同调代数的方法在这类研究中起着关键的作用。代数几何中的分类理论是这样建立的:对每个有关的分类对象(这样的分类对象可以是某一类代数簇,例如非奇异射影代数曲线,也可以是有关的代数簇的双有理等价类),人们可以找到一组对应的整数,称为它的数值不变量。例如在射影代数簇的情形,它的各阶上同调空间的维数就都是数值不变量。然后试图在所有具有相同的数值不变量的分类对象组成的集合上建立一个自然的代数结构,称为它们的参量簇,使得当参量簇中的点在某个代数结构中变化时,对应的分类对象也在相应的代数结构中变化。建立有较完整的分类理论的只有代数曲线、代数曲面的一部分,以及少数特殊的高维代数簇。现在研究得最深入的是代数曲线和阿贝尔簇的分类。与子簇问题密切相关的有著名的霍奇猜想:设X是复数域上的一个非奇异射影代数簇,p为小于X的维数的一个正整数。则X上任一型为(p,p)的整上同调类中都有代数代表元。黎曼1857年引入并发展了代数函数论;从而使代数曲线的研究获得了一个关键性的突破。黎曼把他的函数定义在复数平面的某种多层复迭平面上,从而引入了所谓黎曼曲面的概念。用现代的语言,紧致的黎曼曲面就一一对应于抽象的射影代数曲线。黎曼还首次考虑了亏格g相同的所有黎曼曲面的双有理等价类的参量簇问题,并发现这个参量簇的维数应当是3g-3,虽然黎曼未能严格证明它的存在性。黎曼还应用解析方法证明了黎曼不等式:l(D)≥d(D)-g+1,这里D是给定的黎曼曲面上的除子。随后他的学生G.罗赫在这个不等式中加入一项,使它变成了等式。这个等式就是著名的F.希策布鲁赫和A.格罗腾迪克的黎曼-罗赫定理的原始形式(见代数函数域)。概型理论的另一个重要意义是把代数几何和代数数域的算术统一到了一个共同的语言之下,这使得在代数数论的研究中可以应用代数几何中大量的概念、方法和结果。这种应用的两个典型的例子就是:①P.德利涅于1973年把韦伊关于ζ函数的定理推广到了有限域上的任意代数簇,即证明了著名的韦伊猜想,正是利用了格罗腾迪克的概型理论。②G.法尔廷斯在1983年证明了莫德尔猜想。这个结果的一个直接推论是费马方程xn+yn=1在n≥4时最多只有有限多个非零有理解,从而使费马猜想的研究获得了一个重大突破。在另一方面,20世纪以来复数域上代数几何中的超越方法也得到了重大的进展,例如G.-W.德·拉姆的解析上同调理论,W.V.D.霍奇的调和积分论的应用,以及小平邦彦和D.C.斯潘塞的变形理论以及P.格里菲思的一些重要工作等。周炜良对20世纪前期的代数几何发展作出了许多重要的贡献。他建立的周环、周簇、周坐标等概念对代数几何的许多领域的发展起了重要的作用。他还证明了著名的周定理:若一个紧致复解析流形是射影的,则它必定是代数簇。20世纪后期,在古典的复数域上低维代数簇的分类理论方面也取得了许多重大进展。在代数曲线的分类方面,由于D.B.芒福德等人的工作,人们对代数曲线参量簇 Mg已经有了极其深刻的了解。芒福德在60年代把格罗腾迪克的概型理论用到古典的不变量理论上,从而创立了几何不变量理论,并用它证明了Mg的存在性以及它的拟射影性。人们已经知道 Mg是一个不可约代数簇,而且当g≥24时是一般型的。对Mg的子代数簇的性质也开始有所了解。代数曲面的分类理论也有很大的进展。例如,60年代中期小平邦彦彻底弄清了椭圆曲面的分类和性质;1976年,丘成桐和宫冈洋一同时证明了一般型代数曲面的一个重要不等式:с娝≤3с2,其中с娝和с2是曲面的陈数。同时,三维或更高维代数簇的分类问题也开始引起人们越来越大的兴趣。
瑞瑞爱吃桃2023-05-20 08:57:291

代数几何学的抽象代数几何

代数几何沿着Weil的道路进行着它的抽象化征程,其间,Kodaira(小平邦彦)用调和积分理论将Riemann-Roch定理由曲线推广到曲面,德国数学家Hirzebruch不久又用sheaf的语言和拓扑成果把它推广到高维复流形上,J-P.Serre在sheaf的基础上定义了一般的代数簇,使得代数簇成为具有Zariski拓扑的拓扑空间,从而在代数几何里引入了日后起重要作用的上同调理论,不过,Serre在代数几何里最重要的贡献,我觉得是吸引Grothendieck到代数几何里来。自从Grothendieck介入代数几何后,代数几何的面貌完全改观,尽管在代数几何里王者辈出,但是,大家心目中的教皇只有一个,那就是伟大的Grothendieck。Grothendieck是法国数学家,Bourbaki成员,1928年生于德国柏林,由于第二次世界大战,致使他没有受到正规的大学阶段的数学训练。 1953年以前主要致力于泛函分析,创造了核空间,拓扑张量积等概念,这些概念现于泛函分析里十分基本和重要,一系列深刻的泛函分析工作就足以使他跻身于数学界的巨人行列,但是,他的影响更为深远的工作是后来在代数几何上划时代的贡献,代数几何学经过Van Der Waerden,Zariski, Weil和Serre等人的推广,代数簇已经完全抽象化了,但是,代数簇最彻底的推广则是Grothendieck在20世纪50年代末做出的,这就是他的抽象概型理论和强有力的上同调理论。仿射概型(Affine Schemes)是一个局部戴环空间(X,Ox),而且它同构于(作为局部戴环空间)某个环的谱。概型是局部戴环空间,在它中每点有一个开邻域U使得拓扑空间U和限制层Ox|U是一个Affine Schemes,X叫做概型(X,Ox)的承载拓扑空间,Ox叫做它的结构层。例如,若K是域,Spec K则是一个Affine Schemes,它的拓扑空间由一点组成,它的结构层由域K组成。Grothendick为了给它的这座大厦打下坚实的基础,和他的老师 Dieudonne合作写了一部四卷本的巨著,总共有7本书,这就是前面Serre提到过的”更加难懂的《代数几何原理》“,(《Ele"ments de Ge"ome"trie Alge"brique 》简称EGA,道上的朋友只要听到EGA,就知道你要说什么了),这是世界上概型和上同调最权威的参考文献,Dieudonne评价说:” Clearly, the theory of schemes includes ,by definition, all of commutative algebra as well as all of the theory of the varieties of Serre。“Scheme把代数几何和代数数域的算术统一到一个共同的语言之下,使得在代数数论的研究中可以应用代数几何中的大量概念和思想以及技巧。开始的时候,人们对Grothendieck这套庞大的抽象体系究竟有什么用感到非常的茫然,但是,在Deligne使用Grothendieck的理论证明了高维Weil猜想后(这是Weil的另外一个猜想,是有限域上高维代数簇的Riemann猜想的模拟),情形就发生了剧烈的变化,到了70年代末,这套概型语言和上同调机制已经被许多同行所熟悉和掌握,并已成为研究现代代数几何学与数论(主要是指算术几何)的通用语言和基本工具。1983年 Faltings(法尔斯廷)证明Mordell猜想也使用了这套机制,由此可见Grothendieck所建立的这套概型理论是多么的重要。1973年Deligne 证明的高维Weil猜想是特征P(有限域上)的算术几何的巨大进步,10年后Faltings所证明的Modell猜想则是特征0(整体域上)的算术几何的巨大突破,这里又一次说明了能解决具体问题的抽象才是好的抽象,才是有意义的,为抽象而抽象的工作最终将被人们遗弃。Grothendieck的另一个目标是致力于发展各种上同调理论,如L—adic上同调和etale上同调,以致最后他走向了”终极上同调不变量“,即动机理论(motive theory),使得所有其他的上同调理论都是它的一种表示或者化身(即它的具体化),这个理论随着1970年 Grothendieck的”金盆洗手“,也成了一个美丽的Grothendieck之梦。不过,已经由它产生了大量好的数学,如1970年Deligne和 R.Langlands猜想motives和自守表示之间的精确关系,A.Wiles的FLT(费马大定理)的证明,本质上就是证明了这个猜想在椭圆曲线所产生的2维 motievs的特殊情况,这个猜想使得motives和现今著名的Langlands纲领联系起来了,而且2002年菲奖得主Voevodsky的工作也与motives有关,Grothendieck的梦想或许有一天又会成为一个伟大的理论。
Jm-R2023-05-20 08:57:281

代数曲面的地理学问题

是否存在这样的代数曲面,使得它的不变量恰好有指定的值呢?这就是代数曲面理论所要研究的课题--称为曲面地理学。其次我们要将所有的曲面按照各类不变量进行分类,就好比按照生物的不同性状分成各个种类。 因此人们把这一工作形象地称为曲面的生物学分类。代数曲面上的。 著名的黎曼洛赫定理(Riemann-Roch定理)就是揭示曲线和曲面关系的一个深刻结果。Enriques 按照小平邦彦的小平维数,给出了曲面的一个粗糙的分类定理。 其中一般型极小曲面是最难研究的曲面类型。2. 与射影平面双有理等价的曲面是所谓的有理直纹面。 它们也称作Hirzebruch曲面。它们的小平维数等于-∞.3.一般型曲面是代数曲面中最复杂的曲面, 至今还没有完全被研究清楚。4. 除此之外, 还有Abel曲面,Enriques曲面,椭圆曲面,K3曲面等等。
可桃可挑2023-05-20 08:57:281

代数几何简介及详细资料

正文 现代数学的一个重要分支学科。它的基本研究对象是在任意维数的(仿射或射影)空间中,由若干个代数方程的公共零点所构成的集合的几何特性。这样的集合通常叫做代数簇,而这些方程叫做这个代数簇的定义方程组。一个代数簇V的定义方程中的系数以及V中点的坐标通常是在一个固定的域k中选取的,这个域就叫做V的基域。当V为不可约时(即如果V不能分解为两个比它小的代数簇的并),V上所有以代数式定义的函式全体也构成一个域,叫做V的有理函式域,它是k的一个有限生成扩域。通过这样的一个对应关系,代数几何也可以看成是用几何的语言和观点进行的有限生成扩域的研究。 代数簇V关于基域 k的维数可以定义为V的有理函式域在k上的超越次数。一维的代数簇叫做代数曲线,二维的代数簇叫做代数曲面。 代数簇的最简单的例子是平面中的代数曲线。例如,著名的费马猜想(又称费马大定理)就可以归结为下面的问题:在平面中,由方程 代数几何 定义的曲线(称为费马曲线)当n≥3时没有坐标都是非零有理数的点。 另一方面,下面的齐次方程组 代数几何 在复数域上的射影空间中定义了一条曲线。这是一条椭圆曲线。 人们对代数簇的研究通常分为局部和整体两个方面。局部方面的研究主要是用交换代数方法讨论代数簇中的奇异点以及代数簇在奇异点周围的性质。 作为奇异点的例子,可以考察由方程xy所定义的平面曲线中的原点(0,0)。这是一个歧点。 不带奇异点的代数簇称为非奇异代数簇。数学家広中平祐在1964年证明了基域k的特征为0时的奇点解消定理:任意代数簇都是某个非奇异代数簇在双有理映射下的像。 一个代数簇V1到另一个代数簇V2的映射称为双有理映射,如果它诱导有理函式域之间的同构。两个代数簇V1,V2称为双有理等价的,如果在V1中有一个稠密开集同构于V2的一个稠密开集。这个条件等价于V1和V2的有理函式域同构。由于这个等价关系,代数簇的分类常常可以归结为对代数簇的双有理等价类的分类。 当前代数几何研究的重点是整体问题,主要是代数簇的分类以及给定的代数簇中的子簇的性质。同调代数的方法在这类研究中起著关键的作用。 代数几何中的分类理论是这样建立的:对每个有关的分类对象(这样的分类对象可以是某一类代数簇,例如非奇异射影代数曲线,也可以是有关的代数簇的双有理等价类),人们可以找到一组对应的整数,称为它的数值不变数。例如在射影代数簇的情形,它的各阶上同调空间的维数就都是数值不变数。然后试图在所有具有相同的数值不变数的分类对象组成的集合上建立一个自然的代数结构,称为它们的参量簇,使得当参量簇中的点在某个代数结构中变化时,对应的分类对象也在相应的代数结构中变化。目前建立有较完整的分类理论的只有代数曲线、代数曲面的一部分,以及少数特殊的高维代数簇。厰在研究得最深入的是代数曲线和阿贝尔簇的分类。 与子簇问题密切相关的有著名的霍奇猜想:设X是复数域上的一个非奇异射影代数簇,p为小于X的维数的一个正整数。则X上任一型为(p,p)的整上同调类中都有代数代表元。 1935年4月26日著名科学家爱因斯坦在追悼诺特的大会上说:“据现代权威数学家们判断,诺特女士是自从妇女开始受到高等教育以来最重要的、富于创造性的数学天才。在最有天赋的数学家们为之忙碌了多少世纪的代数领域里。她发现了一套方法,当前一代年轻数学家的成长已证明了它的巨大意义,依据这套方法,纯粹数学成了一首逻辑概念的诗篇。 诺特(EmmyNoether,1882-1935),1882年3月23日生于德国大学城——爱尔兰根的一个犹太人家庭,父亲马克思·诺特(MaxNoether,1844-1921)是一位颇有名气的数学家,他从1875年起到1921年逝世前,一直在爱尔兰根大学当教授。 弟弟弗黎获·诺特(FritzNoether,1884~)也是一位数学家,先在德国布雷斯劳工学院当教授,1935年受纳粹迫害逃往苏联,在西伯利亚托姆斯克数学力学研究所当教授,没多久被关进监狱,从此杳无音信。 诺特12岁时在爱尔兰根市高级女子学校读中学,她对那些专门为女孩子开设的宗教、钢琴、舞蹈等课程毫无兴趣,只对语言学习还感兴趣。中学毕业后,1900年4月她顺利地通过了法语和英语教师资格考试,原本准备去当教师,同年秋天她改变了主意,她决意要到父亲任教的爱尔兰根大学去学数学。 但是,当时德国不准女子在大学注册,只能当旁听生,并缴纳听课费,在极其罕见的情况下,才可能征得主讲教授的同意,参加考试而取得文凭。诺特总算幸运地于l903年7月通过了考试。当年冬天,她来到哥廷根大学,直接听到希尔伯特、克莱因、闵科夫斯基等著名数学家讲课,受到极大的鼓舞。1904年德国大学改制,允许女生注册,当年10月她便正式回到爱尔兰根注册学习,到1907年底,她通过了博士考试,其博士论文题目是“三元双二次型的不变数完全系”,导师是戈丹(PaulAlbertGordan,1837~1912)。 戈丹是诺特父亲的同事、至友,对诺特早年生活影响很大,诺特的这篇博士论文完全承袭了戈丹的工作特色,充满了戈丹式的公式,通篇都是符号演算。后来,尽管诺特离开了戈丹的研究方向,但她对导师一直怀着深深的敬意,在她的书房里一直挂著戈丹的画像。1912年戈丹去世了,接替他的先是施密特,后是费歇尔。在费歇尔指导下,诺特逐步实现了从戈丹的形式观念到希尔伯特研究方式的转变,从这种意义上讲,费歇尔对诺特的学术发展的影响,可能比戈丹更深入。 1915年,哥廷根大学的克莱因、希尔伯特邀请诺特去哥廷根。他们当时热衷于相对论研究,而诺特在不变式理论方面的实力对他们的研究会有帮助。1916年,诺特离开爱尔兰根,定居哥廷根。希尔伯特很想帮她在哥廷根大学取得授课资格,但是当时哥廷根大学哲学系中的语言学教授、历史学教授却极力反对,其理由就因诺特是女人。希尔伯特在校务会议上不无气愤地说:“先生们,我不明白为什么候选人的性别是阻碍她取得讲师资格的理由,我们这里毕竟是大学而不是浴池。”也许正因为这番话,更激怒了他的对手们,诺特仍然没有获准通过。 然而,她还是在哥廷根的讲台上向学生讲了课,不过是在希尔伯特的名义之下。第一次世界大战结束后,德意志共和国成立了,情况才发生变化。1919年诺特才当上了讲师,1922年至1933年,她取得“编外副教授”职位,这是没工资的头衔,只因她担当了代数课的讲授,才从学生所缴学费中支付给她一小笔薪金。在这种艰难的情况下,诺特在希尔伯特、克莱因的相对论研究的思想影响下,于1918年发表了两篇重要论文,一篇是把黎曼几何和广义相对论中常用的微分不变式问题化为代数不变式问题,一篇是把物理学中守恒律同不变性联系起来,被称为“诺特定理”。 1920年以后,诺特开始走上自己独立创建“抽象代数学”的道路。她从不同领域的相似现象出发,把不同的对象加以抽象化、公理化,然后用统一的方法加以处理,得出一般性的理论,用她的这种理论又能处理各个不同领域的特殊性的问题。诺特的这套理论也就是现代数学中的“环”和“理想”的系统理论,完成于1926年。一般认为抽象代数形式的时间就是1926年,从此代数学研究对象从研究代数方程根的计算与分布,进入到研究数字、文字和更一般元素的代数运算规律和各种代数结构,完成了古典代数到抽象代数的本质的转变。诺特当之无愧地被人们誉为抽象代数的奠基人之一。诺特的学术论文只有40多篇,她对抽象代数学发展所产生的巨大影响,并不完全出自她的论文,更重要的还是出自她与同事、学生的接触、交往、合作与讲课。她的讲课技巧并不高明,既匆忙又不连贯。但是,她常详细叙述自己尚末最终定型的新想法,其中充满了深刻的哲理,也充满了不同凡响的创造 *** 。她很喜爱自己的学生,在她身边形成了一个熙熙攘攘的“家庭”,这些学生被称为“诺特的孩子们”。其中有十几位学生后来成为著名数学家。1928年在义大利波隆那举行的国际数学家大会上,诺特应邀作了一个3O分钟的分组报告。1932年在苏黎世举行的国际数学家大会上,诺特作了一小时的全会报告。她的报告得到许多数学家的赞扬,赢得了极高的国际声誉。一些年迈的数学家亲眼得见他们用旧式计算方法不能解决的问题,被诺特用抽象代数方法漂亮而简捷地解决了,不得不心悦诚服。同年,由于她在代数学方面的卓越成就,诺特和阿廷共同获得了“阿克曼·特布纳奖”。可,大会之后仅几个星期厄运降临了。1933年1月,希特勒上台后疯狂地迫害犹太人,当年4月26日,地方报纸刊登了一项通告,哥廷根大学6位犹太人教授被勒令离开大学,其中之一就是诺特。霎时间,诺特在哥廷根大学的报酬极低的职务被剥夺了,她几乎走投无路了。起初,她曾想去前苏联。因为在1928年至1929年的冬天,她访问过莫斯科大学,在那里讲授抽象代数,并指导一个代数几何讨论班,对前苏联数学和数学家都产生了良好的影响,与前苏联著名数学家亚历山得罗夫等也给下了友谊。亚历山得罗夫当即表示欢迎诺特来莫斯科大学任教,由于种种原因,未能成功。后来,经著名数学家韦尔介绍和帮助,1933年9月,诺特才得以移居美国,在美国布林马尔女子学院任教,并在普林斯顿高等研究院 *** 。 在美国期间,诺特每周去普林斯顿讲课,当时听她讲课的奎因教授回忆说,诺特身材不高,体态略胖,肤色黝黑,剪得短短的黑发还夹着几缕灰丝。她戴着一副厚厚的近视眼镜,用不甚连贯的英语讲课。她喜欢散步,常与学生外出远足,途中往往全神贯注地谈论数学,不顾来往的行人与车辆,以致学生们不得不保护她的安全。在诺特一生中,或许从来没有像在布林马尔学院和普林斯顿高等研究院,受到如此尊敬、同情和友情。但是,她依然怀念著祖国,怀念著哥廷根。1934年夏天,她曾回到哥廷根,看到哈塞仍然努力重建哥廷根光荣而悠久的数学传统,感到由衷的欣慰。 1935年春,当诺特返回美国后,经医生检查发现,她已被癌症缠身,肿瘤急剧地损伤着她的身体,只有手术才可能挽救她的生命。手术后病情一度好转,大家都期待她康复。不料得了手术并发症。 4月14日这位终生未婚,把全部精力献给了她所热爱的数学事业的伟大女数学家,辞然与世长辞,终年53岁。4月26日布林马尔学院为诺特举行了追悼会,爱因斯坦为她写了讣文,韦尔为她写了长篇悼词,深情地缅怀她的生活、工作和人格: 她曾经是充满生命活力的典范, 以她那刚毅的心情和生活的勇气, 坚定地屹立在我们这个星球上, 所以大家对此毫无思想准备。 她正处于她的数学创造能力的顶峰。 她那深远的想像力, 同她那长期经验积累起来的技能, 已经达到完美的平衡。 她热烈地开始了新问题的研究。而这一切现在突然宣告结束, 她的工作猝然中断。 坠落到了黑暗的坟墓, 美丽的、仁慈的、善良的, 他们都轻轻地去了; 聪颖、机智的、勇敢的, 他们都平静地去了; 我知道,但我决不认可, 而且我也不会顺从。 代数几何 我们对她的科学工作与她的人格的记忆决不会很快消逝。她是一位伟大的数学家,而且我坚信,也是历史曾经产生过的最伟大的女性之一 发展 代数几何的起源很自然地是从关于平面中的代数曲线的研究开始的。对于一条平面曲线,人们首先注意到的一个数值不变数是它的次数,即定义这条曲线的方程的次数。由于次数为一或二的曲线都是有理曲线(即在代数几何的意义下同构于直线的曲线),人们今天一般认为,代数几何的研究是从19世纪上半叶关于三次或更高次的平面曲线的研究开始的(早期人们研究的代数簇都是定义在复数域上的)。例如,N.H.阿贝尔在1827~1829年关于椭圆积分的研究中,发现了椭圆函式的双周期性,从而奠定了椭圆曲线(它们都可以表示成平面中的三次曲线)理论基础。另一方面,C.G.J.雅可比考虑了椭圆积分反函式问题,他的工作是今天代数几何中许多重要概念的基础(如曲线的雅可比簇、θ函式等)。 B.黎曼1857年引入并发展了代数函式论,从而使代数曲线的研究获得了一个关键性的突破。黎曼把他的函式定义在复数平面的某种多层复迭平面上,从而引入了所谓黎曼曲面的概念。用现代的语言,紧致的黎曼曲面就一一对应于抽象的射影代数曲线。运用这个概念,黎曼定义了代数曲线的一个最重要的数值不变数:亏格。这也是代数几何历史上出现的第一个绝对不变数(即不依赖于代数簇在空间中的嵌入的不变数)。黎曼还首次考虑了亏格g 相同的所有黎曼曲面的双有理等价类的参量簇问题,并发现这个参量簇的维数应当是3g-3,虽然黎曼未能严格证明它的存在性。 黎曼还套用解析方法证明了黎曼不等式:l(D)≥d(D)-g+1,这里D是给定的黎曼曲面上的除子。随后他的学生G.罗赫在这个不等式中加入一项,使它变成了等式。这个等式就是著名的F.希策布鲁赫和A.格罗腾迪克的黎曼-罗赫定理的原始形式(见代数函式域)。 代数几何 - 内容 在黎曼之后,德国数学家M.诺特等人用几何方法获得了代数曲线的许多深刻的性质。诺特还对代数曲面的性质进行了研究。他的成果给以后义大利学派的工作建立了基础。 从19世纪末开始,出现了以G.卡斯特尔诺沃,F.恩里奎斯和F.塞维里为代表的义大利学派以及以H.庞加莱、(C.-)É.皮卡和S.莱夫谢茨为代表的法国学派。他们对复数域上的低维代数簇的分类作了许多非常重要的工作,特别是建立了被认为是代数几何中最漂亮的理论之一的代数曲面分类理论。但是由于早期的代数几何研究缺乏一个严格的理论基础,这些工作中存在不少漏洞和错误,其中个别漏洞直到目前还没有得到弥补。 20世纪以来代数几何最重要的进展之一是它在最一般情形下的理论基础的建立。20世纪30年代,O.扎里斯基和B.L.范·德·瓦尔登等首先在代数几何研究中引进了交换代数的方法。在此基础上,A.韦伊在40年代利用抽象代数的方法建立了抽象域上的代数几何理论,然后通过在抽象域上重建义大利学派的代数对应理论,成功地证明了当k是有限域的时候,关于代数曲线ζ函式具有类似于黎曼猜想的性质。50年代中期,法国数学家J.P.塞尔把代数簇的理论建立在层的概念上,并建立了凝聚层的上同调理论,这个为格罗腾迪克随后建立概型理论奠定了基础。概型理论的建立使代数几何的研究进入了一个全新的阶段。概型的概念是代数簇的推广,它允许点的坐标在任意有单位元的交换环中选取,并允许结构层中存在幂零元。 概型理论的另一个重要意义是把代数几何和代数数域的算术统一到了一个共同的语言之下,这使得在代数数论的研究中可以套用代数几何中大量的概念、方法和结果。这种套用的两个典型的例子就是:①P.德利涅于1973年把韦伊关于ζ函式的定理推广到了有限域上的任意代数簇,即证明了著名的韦伊猜想,正是利用了格罗腾迪克的概型理论。②G.法尔廷斯在1983年证明了莫德尔猜想。这个结果的一个直接推论是费马方程x+y=1在n≥4时最多只有有限多个非零有理解,从而使费马猜想的研究获得了一个重大突破。 在另一方面,20世纪以来复数域上代数几何中的超越方法也得到了重大的进展,例如G.-W.德·拉姆的解析上同调理论,W.V.D.霍奇的调和积分论的套用,以及小平邦彦和D.C.斯潘塞的变形理论以及P.格里菲思的一些重要工作等。 周炜良对20世纪前期的代数几何发展作出了许多重要的贡献。他建立的周环,周簇,周坐标等概念对代数几何的许多领域的发展起了重要的作用。他还证明了著名的周定理:若一个紧致复解析流形是射影的,则它必定是代数簇。 20世纪后期,在古典的复数域上低维代数簇的分类理论方面也取得了许多重大进展。在代数曲线的分类方面,由于D.B.芒福德等人的工作,人们现在对代数曲线参量簇 Mg已经有了极其深刻的了解。芒福德在60年代把格罗腾迪克的概型理论用到古典的不变数理论上,从而创立了几何不变数理论,并用它证明了Mg的存在性以及它的拟射影性。人们已经知道 Mg是一个不可约代数簇,而且当g≥24时是一般型的。目前对Mg的子代数簇的性质也开始有所了解。 代数曲面的分类理论也有很大的进展。例如,60年代中期小平邦彦彻底弄清了椭圆曲面的分类和性质;1976年,丘成桐和宫冈洋一同时证明了一般型代数曲面的一个重要不等式:с娝≤3с2,其中с娝和с2是曲面的陈数。同时,三维或更高维代数簇的分类问题也开始引起人们越来越大的兴趣。 代数几何与数学的许多分支学科有着广泛的联系。除了上面提到的数论之外,还有如解析几何、微分几何、交换代数、 代数群、K理论、拓扑学等。代数几何的发展和这些学科的发展起着相互促进的作用。同时,作为一门理论学科,代数几何的套用前景也开始受到人们的注意,其中的一个显著的例子是代数几何在控制论中的套用。 近年来,人们在现代粒子物理的最新的超弦理论中,已广泛套用代数几何工具,这预示古老的代数几何学将对现代物理学的发展发挥重要的作用。
凡尘2023-05-20 08:57:271

代数子的成语

一马当先 一枝独秀 一言九鼎 一诺千金 二龙戏珠 三羊开泰 三心二意 三顾茅庐 四世同堂 五花八门 五光十色 七上八下 八仙过海 九九归一 十全十美
阿啵呲嘚2023-05-20 08:57:2015

下列式子,符合代数式书写格式的是(  )A.a÷cB.3baC.a×5D.117

A、正确的书写格式是ac,不符合题意;B、符合题意;C、正确的书写格式是5a,不符合题意;D、正确的书写格式是87,不符合题意;故选B.
CarieVinne 2023-05-20 08:57:201

下列式子,符合代数式书写格式的是(  ) A.a÷c B.1 1 3 X C.a×3 D. b

A、正确的书写格式是 a c ,不符合题意;B、正确的书写格式是 4 3 X,不符合题意;C、正确的书写格式是3a,不符合题意;D、符合题意.故选D.
人类地板流精华2023-05-20 08:57:201

下列式子中符合代数式的书写格式的是(  )A.x?5B.m÷3nC.x?y4D.234a

A、正确的书写格式是5x,不符合题意;B、正确的书写格式是m3n,不符合题意;C、符合题意;D、正确的书写格式是114ab,不符合题意,故选:C.
gitcloud2023-05-20 08:57:201

下列式子中符合代数式的书写格式的是(  )A.x?12yB.m÷3nC.x?y4D.234a

A、x?12y应写为x2y,故本选项错误;B、m÷3n应写为m3n,故本选项错误;C、x?y4书写合格,故本选项正确;D、234ab应写为114ab,故本选项错误.故选C.
黑桃花2023-05-20 08:57:201

下列式子,符合代数式书写格式的是( )A.a÷cB.113XC.a×3D.ba

解:A、正确的书写格式是ac,不符合题意;B、正确的书写格式是43X,不符合题意;C、正确的书写格式是3a,不符合题意;D、符合题意.故选D.
gitcloud2023-05-20 08:57:201

下列式子,符合代数式书写格式的是(  )A.a÷cB.113XC.a×3D.b

A、正确的书写格式是ac,不符合题意;B、正确的书写格式是43X,不符合题意;C、正确的书写格式是3a,不符合题意;D、符合题意.故选D.
豆豆staR2023-05-20 08:57:201

下列式子中符合代数式的书写格式的是(  )A.x?20yB.2÷abC.(a-b)千克D.223mn千

CA:x?20y,正确格式为20xy,故本项错误.B:2÷ab,正确格式应为2    ab    ,故本项错误.C:(a-b)千克为正确的书写,故本项正确.D:22    3    mn千米,正确格式为8    3    mn千米,故本项错误.故应选:C
苏萦2023-05-20 08:57:202

下列式子中,符合代数式书写格式的是(  ) A.8 1 3 a 2 b 3 B. - y x

选项A正确的书写格式是 25 3 a 2 b 3 ,B正确,C正确的书写格式是5xy,D正确的书写格式是ab 2 c.故选B.
瑞瑞爱吃桃2023-05-20 08:57:191

下列式子中,符合代数式书写格式的是

c.a+b=b+a附:代数式定义:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式注意:1、不包括等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈。2、可以有绝对值。希望能够帮到你
LuckySXyd2023-05-20 08:57:191

下列式子中符合代数式的书写格式的是(  ) A.x?20y B.2÷ab C.(a-b)千克 D. 2 2 3

A:x?20y,正确格式为20xy,故本项错误.B:2÷ab,正确格式应为 2 ab ,故本项错误.C:(a-b)千克为正确的书写,故本项正确.D:2 2 3 mn千米,正确格式为 8 3 mn千米,故本项错误.故应选:C.
北有云溪2023-05-20 08:57:191

下列式子中符合代数式书写格式的是(1)a乘以40b. (2)3除以ab. (3)四分之一

(2),(3),(4)
meira2023-05-20 08:57:192

下列式子,符合代数式书写格式的是A.a÷cB.1

答案:D解析:试题分析:代数式是数与字母因式的积,因此A不正确,B中不能是,不正确,C数放到了字母的后面,不正确,故选D.考点:代数式的概念
wpBeta2023-05-20 08:57:191

下列式子中符合代数式的一般书写格式要求的是(  )A.a×bB.3x2C.2÷abD.223

A、应省略乘号;B、符合代数式的一般书写格式;C、不应出现除号;D、带分数应化为假分数.故选:B.
小白2023-05-20 08:57:191

是不是除了有等于,大于等于小于号之类的负号,且符合代数式书写格式的式子就是代数式啊

应该是的吧
韦斯特兰2023-05-20 08:57:191

下列式子,符合代数式书写格式的是(  )A.a÷3B.213xC.a×3D.a

A、a÷3应写为a3,B、213a应写为73a,C、a×3应写为3a,D、ab正确,故选:D.
瑞瑞爱吃桃2023-05-20 08:57:181

下列式子,符合代数式书写格式的是( )A.a÷cB.113XC.a×3D.ba

试题答案:A、正确的书写格式是ac,不符合题意;B、正确的书写格式是43X,不符合题意;C、正确的书写格式是3a,不符合题意;D、符合题意.故选D.
豆豆staR2023-05-20 08:57:181

高等代数的若尔当标准型怎么求?已经知道初等因子了,就最后这个过程不了解,谢谢

如图
拌三丝2023-05-20 08:57:131

高等代数的若尔当标准型怎么求?已经知道初等因子了,就最后这个过程不了解,谢谢。,

如图所示
康康map2023-05-20 08:57:131

半单代数一定是群代数吗

半单代数一定不是群代数。根据查询相关公开信息,半单代数是一类特殊的代数。若尔当代数Jordanalgebra是一种交换的非结合代数。它满足若尔当恒等式。任何交换结合代数都是若尔当代数。
北境漫步2023-05-20 08:57:121

高等代数理论基础59:若尔当标准形的理论推导

若尔当块 的初等因子为 特征矩阵 显然 即 的n级行列式因子 由 有一个n-1级子式为故它的n-1级行列式因子为1,从而它以下各级行列式因子全是1 故它的不变因子 由此可得 的初等因子为 设 为一个若尔当形矩阵 其中 的初等因子为 ,故 与 等价 故 等价 故 的全部初等因子为即每个若尔当形矩阵的全部初等因子由它的全部若尔当块的初等因子构成 每个若尔当块完全被它的级数n与主对角线上元素 刻画,而这两个数都反映在它的初等因子 中,故若尔当块被它的初等因子唯一确定 若尔当形矩阵除去其中若尔当块排列的次序外被它的初等因子唯一确定 定理:每个n级复数矩阵A都与一个若尔当形矩阵相似,这个若尔当形矩阵除去其中若尔当块的排列次序外被矩阵A唯一确定,称为A的若尔当标准形 证明:注:若尔当形矩阵包括对角矩阵,即由一级若尔当块构成的若尔当形矩阵 定理:复数矩阵A与对角矩阵相似的充要条件为 的初等因子全为一次的 注:矩阵A的最小多项式即A的最后一个不变因子 定理:复数矩阵A与对角矩阵相似的充要条件为 的不变因子都没有重根 注:每个复数矩阵A都与一个若尔当形矩阵相似 可规定上三角形矩阵 为若尔当块
ardim2023-05-20 08:57:121

高等代数理论基础78:若尔当标准形的几何理论(1)

找一组基使线性变换 在这组基下的矩阵称为若尔当标准形 定义:对于线性空间V中的线性变换 的多项式 及任意向量 ,若有 ,则称 是 对于 的零化多项式,若 是 对于 的零化多项式中次数最低的首一多项式,则称 为 对于 的最小多项式 易证 对 的最小多项式整除 对 的任一零化多项式 引理:对 上有限维空间 上的线性变换 ,下列结论等价 1. 在基 下的矩阵是若尔当块2. , , , , 是 的基且 3. ,且 是 的最小多项式 证明:由线性变换矩阵的定义,显然成立必要性 ,有此时 是 的一个零化多项式 设为 由 但 是 的一组基,线性无关 故 即 故 是 的最小多项式 充分性 首先 是 的零化多项式 故 有 作带余除法, 则有 即 为 的线性组合 设 则 令 则 若 ,则 与 是 的最小多项式矛盾 故 故 即证 线性无关 故为 的基 定理: , 如上 则 在某基下的矩阵为若尔当形的充要条件为 中存在 ,使且每个 的最小多项式是 证明:是 -不变子空间的直和 且每个 在 上有基使它的矩阵是 ,对每个 ,有 使 且 对 的最小多项式为 注:定理说明,要证若尔当标准形存在,只需证存在不变子空间的直和分解
墨然殇2023-05-20 08:57:121

有谁能看懂高等代数北大3版的若尔当标准型那个引理的证明?

那个引理的证明,其实只需要用一个知识点就可以看明白,关键就在这里。
bikbok2023-05-20 08:57:121

有谁能看懂高等代数北大3版的若尔当标准型那个引理的证明?

那本书写的,天才才看得懂。我反正懒得看那书。那些习题,不看答案,谁能做出来大部分,哥佩服死他
LuckySXyd2023-05-20 08:57:121

《复半单李代数引论》pdf下载在线阅读,求百度网盘云资源

《复半单李代数引论》(孟道骥)电子书网盘下载免费在线阅读资源链接:链接:https://pan.baidu.com/s/1WCtLzYxzenuGV1d3y6DmOQ 提取码:ec3i    书名:复半单李代数引论作者:孟道骥出版社:北京大学出版社出版年份:1998-01-01页数:327内容简介:李群、李代数理论,从其产生至今已有非常巨大的发展,并与理论物理等学科有密切联系,现已成为数学中不可或缺的分支,被称为李理论。复半单李代数是李理论中最基础、最重要的部分,同时也是最完善、最完美的部分。本书全面系统地论述复半单李代数的基本理论。全书共分七章。内容包括:李代数的基本概念,李代数半单性、幂零性、可解性的判别准则,复半单李代数的结构、存在性、分类、有限维表示以及例外单李代数等。
hi投2023-05-20 08:56:581

李代数的李定理

令F是一个特征为0的代数闭域,V是F上一个n(大于零)维向量空间,g是g{(V)的一个可解子代数,则存在V 的一个非零向量v,使得对于每一X ∈g都有Xv=φ(X)v,φ(X)∈F。因此适当选取V的基可以使得g嶅t(n,F)。单李代数、半单李代数  域F上一个李代数g是所谓单的,即指除了g本身和{0}以外,g不含其他理想。F上一个有限维李代数g是所谓半单的,即指g不含非零可解理想。每一个有限维李代数g都含有惟一的最大可解理想r,就是这样一个理想, 它包含g的一切可解理想,称为g的根基。g是半单的当且仅当它的根基 r={0}。除一维李代数外,有限维单李代数都是半单的。特征为0的域上每一个半单李代数都是一些单李代数的直和。
铁血嘟嘟2023-05-20 08:56:581

李代数的李代数的表示

令g是域F上一个李代数,V 是F上一个向量空间。李代数的一个同态ρ: g→g{(V),称为g在V上的一个线性表示,简称表示。用(ρ,V)代表g在V上的表示ρ,V称为ρ的表示空间。当dimV=n时,取定V的一个基,将g{(V)与g{(n,F)看成一样,于是就得到一个李代数同态ρ: g→g{(n,F),仍记作ρ,称为g的一个矩阵表示。如果g的一个表示ρ是单射,那么就称(ρ,V)是一个忠实表示。有阿多-岩沢定理:域F上每一个有限维李代数都有一个忠实表示。设(ρ,V)是李代数g的一个表示。V的一个子空间W称为ρ(g)不变的,即指W在一切ρ(X)(X∈g)之下不变。李代数g的一个表示(ρ,V)称为不可约的,是指除{0}和V本身外,V没有其他ρ(g)不变子空间。所谓(ρ,V)是完全可约的,意即V是一些ρ(g)不变的子空间的直和,并且ρ在每一个这样的子空间上的限制都是不可约的。有外尔定理:特征为 0的域上半单李代数的每一(有限维)表示都是完全可约的。最重要的一种表示就是所谓伴随表示。设X是李代数g的一个元素。对于每一Y∈g,定义adX(Y)=【X,Y】,则adX是g的一个线性变换,并且ad∶X→adX(X∈g)是g到g{(g)的一个同态映射(利用雅可比恒等式很容易验证)。因此,(ad,g)是g的一个表示。表示空间就是g本身,称为g的伴随表示。设(ρ,V)是g的一个有限维表示。定义一个对称双线性型 k:g×g→F;对于X、Y ∈g, 定义k(X,Y)=Trρ(X)·ρ(Y)(ρ(X)ρ(Y)的迹)。特别,当g是有限维的而ρ是伴随表示ad时, k称为g的基灵型。基灵型在研究李代数的结构中起重要的作用。例如有嘉当判定准则:特征为0的域上一个(有限维)李代数是半单的,必要而且只要g的基灵型非退化。
meira2023-05-20 08:56:581

李代数的定义

假设L是域F上的向量空间。如果L上有一个运算L×L→L,(x,y)→[x,y]满足以下三个条件,则称L是一个李代数。(1)这个运算是双线性的,即 [ax+by,cz+dw]=ac[x,z]+cb[y,z]+ad[x,w]+bd[y,w]。(2)[x,x]=0,对L中任意元素x。(3)[x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0,对所有L中元素x,y,z。首两个条件蕴含反对称性[x,y]=-[y,x]。条件(3)称为雅可比恒等式。我们也可以把[x,]看成一个导子,即满足莱布尼兹法则的导算子,将此导子记为ad x。L的子空间K称为(李)子代数,如果K关于运算[,]封闭。L 的子代数I若满足[x,y]∈I,对于任意的x∈L,y∈I,则称I为L的一个理想或不变子代数。显然,它是L的子李代数。李代数g作为F上向量空间,它的维数称为李代数g的维数。设g是域F上一个向量空间,在g中定义换位运算:对于X,Y∈g,令【X,Y】=0,则g作成一个李代数,称为交换(或阿贝尔)李代数。在R^3={(x1,x2,x3)|xi∈R,R 是实数域,i=1, 2,3}中, 设①:[X,Y]=②,则R3作成R上一个李代数。令V 是域F上一个向量空间。可知V的一切线性变换作成F上一个向量空间,设ƒ、g是V的线性变换,令ƒg表示ƒ与g的合成,并定义【ƒ,g】=ƒg-gƒ,直接验证可知,V的全体线性变换所组成的向量空间,对于这样定义的换位运算,作成F上一个李代数。这个李代数称为全线性李代数,记作g{(V)。类似地,域F上全体n×n矩阵所组成的向量空间,对于换位运算【A,B】=AB-BA(A、B是n×n矩阵),作成F上一个李代数,并称之为F上全阵李代数,记作g{(n,F)。更一般地,设U是域F上一个结合代数。对于α、b∈U定义【α,b】=αb-bα,则U作成F上一个李代数。子代数、理想、商代数、同态 令g是域F上一个李代数,α、b是g的子空间。记【α,b】={Σ【A,B】(有限和)│A∈α,B∈b },则【α, b】是g的一个子空间。设α是g的一个子空间。如果【α, α】嶅α,那么就称α是g的一个子代数;如果【α, g】嶅α,那么α就称为g的一个理想。由于【α,g】=【g,α】,因此李代数的理想都是双边的。如果α是g的一个理想,在商空间g/α里,定义【X+α,Y+α】=【X,Y】+α,那么g/α作成F上一个李代数,称为g模α的商代数。设g1、g2是域F上李代数。ƒ:g1→g2是一个线性映射。如果对于X、Y∈g,ƒ(【X,Y】)=【ƒ(X), ƒ(Y)】,那么ƒ就称为一个同态映射。如果ƒ还是一个双射,那么就称ƒ是一个同构映射,这时g1与g2就称为同构,记作g1≌g2。设ƒ:g1→g2是一个同态映射,则 Im ƒ=ƒ(g1)是g2的一个子代数,而Kerƒ=ƒ-1(0)是g1的一个理想,并且ƒ导出一个同构g1/Ker ƒ≌Im ƒ。设V是域F上一个n维向量空间。通过取定V的一个基,可以在全线性李代数g{(V)与全阵李代数 g{(n, F)之间建立同构,因而常把这两个李代数看成是一样的。g{(n,F)(或g{(V))的子代数称为线性李代数。一些重要的线性李代数如下:  t(n,F)={(αij)|(αij)∈g{(n,F),αij=0,若i>j}。它是F上一切n×n上三角形矩阵所组成的集合。  n(n,F)={(αij)|(αij)∈t(n,F),αij=0,1≤i≤n},即主对角线上元素都是0的 n×n上三角形矩阵所组成的集合。容易验证,t(n,F)和n(n,F)都是g{(n,F)的子代数。域F上一切迹是0(即主对角线上元素的和等于0)的n×n 矩阵,作成g{(n,F)的一个理想,记作s{(n,F)。当F是复数域,而n=l+1(l≥1)时,这个李代数通常记作Al,称为特殊线性李代数。取定域F上一个n×n对称或反对称矩阵M。 令g={X∈g{(n,F)| tXM+MX =0}(X表示X的转置), 则g是g{(n,F)的子代数。现设F是复数域,M是一个非退化对称矩阵,于是M与以下两个矩阵之一合同:当n=2l+1,③;当n=2l,④。在前一情形,与之相当的g记作Bl;在后一情形,记作Dl。这两类李代数都称为正交代数。如果M是一个非退化反对称矩阵,那么n一定是偶数:n=2l,因此M与⑤合同。与此相当的李代数g称为辛代数,记作Cl。可解李代数、幂零李代数  设g是域F上一个李代数,α、b是g的理想,那么【α,b】仍是g的一个理想,特别,g(1)=【g,g】, g(2)=【g(1),g(1)】,…,gn+1=【g(n), g(n)】,…都是g的理想。于是有g叾g(1)叾g(2)叾…,称为g的导出链。g(1)称为g的导出代数。如果存在一个正整数n,使得g(n)={0},那么就说g是可解的。再定义g1=g,g2=【g,g1】,…,gn+1=【g,gn】,…,又可得到g的一个理想序列g1叾g2叾…,称为g的降中心链。如果存在一个正整数n,使得gn={0},那么就说g是幂零的。因为g(i)嶅gi,所以幂零李代数一定是可解的。
bikbok2023-05-20 08:56:571

李代数的恩格尔定理

令V是域F上一个n(大于零)维向量空间,g是g{(V)的一个子代数。如果g的元素都是V的幂零线性变换, 那么存在V的一个非零向量v,使得对于每一个X∈g都有X·v=0,因此,适当选取V的基,并且将g{(V)与g{(n,F)看成一样的,就有g嶅n(n,F)。
u投在线2023-05-20 08:56:571

李群李代数是大几课程

大四必修课。大四基本上是这样的,第一学期上课,第二学前面10周还有课程,后面7周就纯粹做答辩的准备,整体而言大四必修课程比大三少了很多,而且必修课程比较水,但是选修课多而且大多数课程的深度都比较深,像李群和李代数这种真的就开始烧脑了。至于讲有限群理论的一些前沿课题,比如单群的分类问题、Burnside定理的证明方法、Frattini子群定理和Frobenius定理的证明和应用时就真的开始怀疑自己智商是不是有问题了。大学代数方面的学习需要学习完李代数初步课程,李代数需要学习到可解李代数、幂零李代数、半单李代数、卡丹分解这一部分,后面的话就不学了,算是给研究生数学系学习李群和李代数开个头。微分几何是必须学习的,但是要求没那么深入,因为在俄罗斯一般高等级微分几何算作研究生课程,而本科至少需要了解到黎曼张量、超曲面、李导数这里。 因为学习李代数需要用到微分几何中的很多概念去推出李群。
此后故乡只2023-05-20 08:56:571

线性代数怎么求对称矩阵

元素以主对角线为对称轴对应相等的矩阵1.对于任何方形矩阵X,X+X^T是对称矩阵。2.A为方形矩阵是A为对称矩阵的必要条件。3.对角矩阵都是对称矩阵。
黑桃花2023-05-20 08:56:561

线性代数中的共轭矩阵和对称矩阵有什么区别?

对称矩阵不一定是厄米特阵厄米特阵不一定是对称矩阵当矩阵为实矩阵时,上述两点均可改为一定
Jm-R2023-05-20 08:56:543

有关代数的英文单词

有理数rational number 无理数irrational number 复数complex number 整式integral expression 分式fraction 根式radical
Jm-R2023-05-20 08:56:362

代数符号有哪些?

线性代数中,涉及的符号,一般有矩阵相似a~ba≃b矩阵的合同a≅b矩阵的等价a*伴随矩阵符号*a⊗b矩阵的直积(克罗内克积)a⊕b克罗内克和
FinCloud2023-05-20 08:56:351

线性代数的符号都有哪些

线性代数中,涉及的符号,一般有矩阵相似A~BA ≃ B矩阵的合同 A ≅ B 矩阵的等价A* 伴随矩阵符号*A⊗B 矩阵的直积(克罗内克积)A ⊕ B 克罗内克和
阿啵呲嘚2023-05-20 08:56:351

近世代数的发展历史

抽象代数又称近世代数,它产生于十九世纪。 抽象代数是研究各种抽象的公理化代数系统的数学学科。 由于代数可处理实数与复数以外的物集,例如向量、矩阵超数、变换等,这些物集的分别是依它们各有的演算定律而定,而数学家将个别的演算经由抽象手法把共有的内容升华出来,并因此而达到更高层次,这就诞生了抽象代数。 抽象代数,包含有群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。 抽象代数已经成了当代大部分数学的通用语言。 被誉为天才数学家的伽罗瓦(1811-1832)是近世代数的创始人之一。 他深入研究了一个方程能用根式求解所必须满足的本质条件,他提出的“伽罗瓦域”、“伽罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题。 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。 他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。 伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。 最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。 哈密顿发明了一种乘法交换律不成立的代数——四元数代数。 第二年,Gras *** ann推演出更有一般性的几类代数。 1857年,凯莱设计出另一种不可交换的代数——矩阵代数。 他们的研究打开了抽象代数(也叫近世代数)的大门。 实际上,减弱或删去普通代数的某些假定,或将某些假定代之以别的假定(与其余假定是兼容的),就能研究出许多种代数体系。 1870年,克隆尼克给出了有限阿贝尔群的抽象定义;狄德金开始使用“体”的说法,并研究了代数体;1893年,韦伯定义了抽象的体;1910年,施坦尼茨展开了体的一般抽象理论;狄德金和克隆尼克创立了环论;1910年,施坦尼茨总结了包括群、代数、域等在内的代数体系的研究,开创了抽象代数学。 有一位杰出女数学家被公认为抽象代数奠基人之一,被誉为代数女皇,她就是诺特, 1882年3月23日生于德国埃尔朗根,1900年入埃朗根大学,1907年在数学家哥尔丹指导下获博士学位。 诺特的工作在代数拓扑学、代数数论、代数几何的发展中有重要影响。 1907-1919年,她主要研究代数不变式及微分不变式。 她在博士论文中给出三元四次型的不变式的完全组。 还解决了有理函数域的有限有理基的存在问题。 对有限群的不变式具有有限基给出一个构造性证明。 她不用消去法而用直接微分法生成微分不变式,在格丁根大学的就职论文中,讨论连续群(李群)下不变式问题,给出诺特定理,把对称性、不变性和物理的守恒律联系在一起。 1920~1927年间她主要研究交换代数与「交换算术」。 1916年后,她开始由古典代数学向抽象代数学过渡。 1920年,她已引入「左模」、「右模」的概念。 1921年写出的<<整环的理想理论>>是交换代数发展的里程碑。 建立了交换诺特环理论,证明了准素分解定理。 1926年发表<<代数数域及代数函数域的理想理论的抽象构造>>,给戴德金环一个公理刻画,指出素理想因子唯一分解定理的充分必要条件。 诺特的这套理论也就是现代数学中的“环”和“理想”的系统理论,一般认为抽象代数形式的时间就是1926年,从此代数学研究对象从研究代数方程根的计算与分布,进入到研究数字、文字和更一般元素的代数运算规律和各种代数结构,完成了古典代数到抽象代数的本质的转变。 诺特当之无愧地被人们誉为抽象代数的奠基人之一。 1927-1935年,诺特研究非交换代数与「非交换算术」。 她把表示理论、理想理论及模理论统一在所谓“超复系”即代数的基础上。 后又引进交叉积的概念并用决定有限维枷罗瓦扩张的布饶尔群。 最后导致代数的主定理的证明,代数数域上的中心可除代数是循环代数。 通过她的学生范.德.瓦尔登的名著<<近世代数学>>得到广泛的传播。 她的主要论文收在<<诺特全集>>(1982)中。 1930年,毕尔霍夫建立格论,它源于1847年的布尔代数;第二次世界大战后,出现了各种代数系统的理论和布尔巴基学派;1955年,嘉当、格洛辛狄克和爱伦伯克建立了同调代数理论。 数学家们已经研究过200多种这样的代数结构,其中最主要德若当代数和李代数是不服从结合律的代数的例子。 这些工作的绝大部分属于20世纪,它们使一般化和抽象化的思想在现代数学中得到了充分的反映。 中国数学家在抽象代数学的研究始于30年代。 当中已在许多方面取得了有意义和重要的成果,其中尤以曾炯之、华罗庚和周炜良的工作更为显著。
阿啵呲嘚2023-05-20 08:56:251

抽象代数的发展历史

最初来源于解高次代数方程,后来挪威数学家阿贝尔最初提出群的思想,并且经过法国数学家伽罗瓦的创造性工作,近世代数就诞生了
北境漫步2023-05-20 08:56:243

近世代数理论基础35:伽罗瓦群及其子群的固定子域

设 为伽罗瓦扩张, 为它的伽罗瓦群, 为 的子群 令 ,即 是在H中任一相对F自同构作用下不变的元所组成的子域,显然有 例: 的6个元中, 是恒等映射 它对应的固定子域 故 , 是2阶子群 易知 类似地, 也都是2阶子群故 易知 故 是一个3阶循环群,且 方程 的3个根为 方程的伽罗瓦群 是这3个根的置换群 若用循环置换表示,并1代表 ,2代表 ,3代表 ,则 , , , , 即 中的偶置换群 易知 的固定子域为 定理:若 是伽罗瓦扩张, ,则 证明:定理:设 为伽罗瓦扩张, , ,则 和 互为逆映射,给出了 和 之间的反序一一对应 注:反序指:若 ,则 ,若 ,则 证明:例: 1.令 表示有 个元的有限域,其中q为素数方幂,将 看作它的子域 的n次扩张 是由 相对 的自同构 生成的n阶循环群 其中 G的任一子群 ,r为n的因子 ,故 当且仅当 ,即子群 对应的固定子域是 2.设p为素数,p次本原单位根 在 上的极小多项式为 g为模p的原根, 是由相对 的自同构 生成的p-1阶循环群G的任一子群 ,其中e是p-1的因子 推论:设 , ,则 , 其中 为由 和 生成的G的子群, 表示域 生成的子域 证明:
可桃可挑2023-05-20 08:56:231

近世代数理论基础43:根式可解与伽罗瓦群

引理:设p为素数, 为p次本原单位根, 是p次循环扩张,则有 ,使 ,故 是根式扩张 证明:引理:设 为域扩张,则 再K上的伽罗瓦群同构于 在F上的伽罗瓦群的子群 证明:引理:设 为有限可分扩张,N为包含E的F上的最小正规扩张(称为E在F上的正规闭包),若 有根式扩张序列,则 也有根式扩张序列 证明:定理:F的特征为0, 且为首1多项式, ,则 在F上根式可解当且仅当 在F上的伽罗瓦群为可解群 证明:
余辉2023-05-20 08:56:231

近世代数理论基础34:域的相对自同构

定义:设E是F的扩域, 为域的扩张, 为E的自同构,若 ,有 ,即 在F上是恒等映射,则称 为E相对于F的自同构,所有E相对于F的自同构组成一个群,称为扩张E/F的伽罗瓦群,记作 例: 1.设p为素数,p次本原单位根 在 上的极小多项式为 的所有根为 ,故 是 在 上的分裂域 定义 相对 的自同构 , 在 上为恒等映射,且 在任一 相对 的自同构下, 一定映射为 的某一个根,故 是 的所有相对 的自同构,即 ,故 显然 群 与模p乘法群 同构,后者是循环群,任一模p的原根g是它的生成元,故伽罗瓦群 也是循环群 当g为模p的原根时, 即 的生成元 伽罗瓦群 中任一相对自同构可看作多项式 所有根的一个置换 注:将求解代数方程转化为研究方程所有根的一个置换群(伽罗瓦群) 2.令 表示有 个元的有限域,其中q为素数方幂,将 看作它的子域 的n次扩张 , 是 上的一个n次不可约多项式 的根 的所有根为 ,故 是 的正规扩张 域 相对 的任一自同构必将 映射为 的某一个根 令 为 相对 的自同构 ,有 ,则 是由 生成的n阶循环群,其中 引理:设 为有限扩张,则 证明:定义:域的可分正规扩张称为伽罗瓦扩张,域的有限可分正规扩张称为有限伽罗瓦扩张 注: 为交换群或循环群时, 分别称为交换扩张(阿贝尔扩张)或循环扩张 定理:若 是有限伽罗瓦扩张,则 证明:注:若K为F和E的中间域( ),E/F为伽罗瓦扩张,E为F的可分正规扩张,则E也是K上的可分正规扩张,故E/K也是伽罗瓦扩张,此时K是F上的可分扩张,但不一定是正规扩张 例: 1.设p为素数,p次本原单位根 , 是伽罗瓦扩张 2.令 表示有 个元的有限域,其中q为素数方幂,将 看作它的子域 的n次扩张, 是伽罗瓦扩张 定义:设 为域F上的多项式,E为 在F上的分裂域,则称 为多项式 或方程 在F上的伽罗瓦群 例:设 , ,E为 在 上的分裂域,故 是伽罗瓦扩张 在 上的极小多项式为 , 在 上的极小多项式为 故 又 故 ,以 表示 中6个相对 的自同构, 在 和 上的作用分别为
北境漫步2023-05-20 08:56:231

近世代数中怎么判断群的阶?

就是群的元素个数
mlhxueli 2023-05-20 08:56:234

数学分析和高等代数考研参考书哪本好?

以下是数学分析和高等代数考研参考书:钱吉林编的《数学分析题解精粹》《高等代数题解精粹》,考研用,内收集了国内各大高校的考研试题(有少部分国外的,数学123的,竞赛试题)。数学分析第一名著菲赫金哥尔茨的《微积分学教程》(3卷),代数上与其齐名的是柯斯特利金的《代数学引论》(3卷,其实是高代几何近世代数)。还有像鲁丁三部曲(除了泛函分析之外可以考虑读读他的数学分析原理、实分析和复分析)。辛钦《数学分析八讲》,卓里奇的《数学分析》,哈代的《纯数学教程》(他的《不等式》是写数学分析里的不等式的,也不错),俄罗斯教材选译(建国以来我们学的苏联,他们的教材不会太吃力)、华章数学译从等等。
Ntou1232023-05-20 08:56:221

高等代数理论基础68:酉空间介绍

定义:设V是复数域上的线性空间,在V上定义一个二元复函数,称为内积,记作 , 具有性质: 1. , 为 的共轭复数 2. 3. 4. 是非负实数,且 这样的线性空间称为酉空间 例:在线性空间 中,对向量 , ,定义内积为显然满足定义条件,故 成为一个酉空间 由内积定义 1. 2. 3. 称为向量 的长度,记作 4. ,有 ,当且仅当 线性相关时等号成立 柯西-布涅柯夫斯基不等式 5. 时称 正交或互相垂直 注:酉空间中内积 一般为复数,故向量之间不易定义夹角 6.任一组线性无关的向量可用施密特过程正交化,并扩充为一组标准正交基 7.对n级复矩阵 ,用 表示以A的元素的共轭复数作元素的矩阵,若A满足 ,则称为酉矩阵 注: 1)酉矩阵行列式的绝对值为1 2)两组标准正交基的过渡矩阵是酉矩阵 8.若酉空间V的线性变换 满足 ,则称为V的一个酉变换 注: 1)酉变换在标准正交基下的矩阵是酉矩阵 2)酉变换类似欧氏空间的正交变换 9.若矩阵A满足 ,则称为Hermite矩阵 在酉空间 中令 ,则 注:埃尔米特矩阵类似欧氏空间的对称矩阵 10.V是酉空间, 是子空间, 是 的正交补,则 设 是对称变换的不变子空间,则 也是不变子空间 11.埃尔米特矩阵的特征值为实数,它的属于不同特征值的特征向量必正交 12.若A是埃尔米特矩阵,则有酉矩阵C,使 是对角矩阵 13.设A为埃尔米特矩阵,二次齐次函数称为埃尔米特二次型,有酉矩阵C,当 时
北营2023-05-20 08:56:021

急!!!数学家卡尔高斯的学术贡献对现代数学的影响,联系到今天...

高斯分布,高斯分布的特征只与数学期望、方差有关。在通信中噪声的模拟与计算、生成伪随机序列、以及其谱密度的衡量上有作用。
余辉2023-05-20 08:55:452

求英汉线性代数分词汇English-Chinese Linear algebra Vocabulary

简单的弄了一个,不少术语都记不大请了,还请见谅。Abscissa 横坐标 Absolute Value 绝对值 Absolute Value Rules 绝对值法则 Acceleration 加速度 Accuracy 准确性 Additive Inverse of a Matrix 加法逆矩阵A的 Algebra 代数 Analytic Geometry 解析几何 Analytic Methods 分析方法 Argument of a Function 函数论 Arithmetic Progression 算术级数 Arithmetic Sequence 算术序列 Arithmetic Series 算术系列 Asymptote 渐近 Augmented Matrix 增广矩阵 Average Rate of Change 平均变动率 Axes 轴Axis of Reflection 轴的映射Axis of Symmetry 轴对称 Axis of Symmetry of a Parabola 轴对称抛物线 Back Substitution 回到替代 Base of an Exponential Expression 指数表达基础 Binomial Coefficients 二项式系数 Binomial Coefficients in Pascal"s Triangle Pascal三角形的二项式系数 Binomial Theorem 二项式定理 Cartesian Coordinates 直角坐标系 Cartesian Form 笛卡尔形式 Cartesian Plane 直角平面 Ceiling Function 上限函数 Change of Base Formula 基本公式变换 Check a Solution 解的检验 Closed Interval 闭区间 Coefficient 系数 Coefficient Matrix 系数矩阵 Column of a Matrix 矩阵列 Combination 组合 Combination Formula 组合公式 Combinatorics 组合 Common Logarithm 公对数Common Ratio 公比 Complex Conjugate 复共轭 Complex Fraction 复分数 Complex Number Formulas 复量计算公式 Complex Numbers 复数 Complex Plane 复平面 Composite 综合 Composition 组成 Compound Fraction 复合分数 Compound Inequality 复合不平等 Compound Interest 复利 Compounded 复杂 Compounded Continuously 复合连续性 Compute 计算 Conditional Equation 条件方程 Conditional Inequality 条件不等式 Conic Sections 圆锥曲线部分 Conjugate Pair Theorem 共轭对定理 Consistent System of Equations 同系统方程 Constant 常数 Constant Function 常数函数 Continued Sum 累加Continuous Compounding 连续复合 Continuously Compounded Interest 连续复利 Convergent Sequence 收敛序列 Convergent Series 收敛级数 Coordinate Geometry 坐标几何 Coordinate Plane 坐标平面 Coordinates 坐标 Cramer"s Rule 克莱姆法则 Cube Root 立方根 Cubic Polynomial 三次多项式 Decreasing Function 减函数 Dependent Variable 依变项 Descartes" Rule of Signs 笛卡尔法治的标志 Determinant 行列式 Diagonal Matrix 对角矩阵 Difference Quotient 差商 Dilation 扩张 Dilation of a Graph 扩张图 Dimensions of a Matrix 矩阵维度 Direct Proportion 成正比 Directly Proportional 成正比 Directrix of a Parabola 抛物线准线 Discriminant of a Quadratic 二次判别式 Distance Formula 距离公式 Distributing Rules 分布规律 Diverge 发散 Divergent Sequence 发散序列 Divergent Series 发散系列 Domain 域 Domain of Definition 域的定义 Double Cone 双锥 Double Root 双根 Doubling Time 倍增时间 Echelon Form of a Matrix 矩阵梯式 Element of a Matrix 矩阵元素 Ellipse 椭圆 Equation 方程 Equation of a Line 线方程 Equivalent Systems of Equations 等效系统方程 Evaluate 估算 Even Function 偶函数Exponent 指数 Exponent Rules 指数规则 Exponential Decay 指数衰减 Exponential Function 指数函数 Exponential Growth 指数增长 Exponential Model 指数模型 Exponentiation 幂 Expression 表达 Extraneous Solution 无关解 Extreme Values of a Polynomial 多项式极值 Extremum 极值 Factor of a Polynomial 多项式因子 Factor Theorem 因子定理 Factorial 阶乘 Factoring Rules 阶乘规则 Focal Radius 焦距 Foci of an Ellipse 椭圆焦点 Foci of a Hyperbola 双曲线焦点 Focus 焦点 Focus of a Parabola 抛物线焦点 Formula 公式 Fractional Equation 分数方程 Fractional Exponents 分数指数 Fractional Expression 分数的表达 Function 功能 Fundamental Theorem of Algebra 代数基本定理 Fundamental Theorem of Arithmetic 算术基本定理 Gauss-Jordan Elimination 高斯-约旦消除 Gaussian Elimination 高斯消去法 General Form for the Equation of a Line 直线一般形式 Geometric Mean 几何平均数 Geometric Progression 几何级数 Geometric Sequence 几何序列 Geometric Series 几何级数 Golden Ratio 黄金比例 Golden Spiral 黄金螺旋 Graph of an Equation or Inequality 方程或不等式图形 Graphic Methods 图解法 Gravity 重力 Greatest Common Factor 最大的公因数 Greatest Integer Function 最大的整函数 Half-Closed Interval 半封闭区间 Half-Life 半衰期 Half-Open Interval 半开区间 Harmonic Mean 调和平均数 Harmonic Progression 谐和级数 Harmonic Sequence 谐和序列 Harmonic Series 谐和级数 Horizontal Compression 水平压缩 Horizontal Dilation 水平拉伸 Horizontal Reflection 水平反射 Horizontal Translation 水平转换 Hyperbola 双曲线 Identity (Equation) 判别式(方程) Identity Matrix 矩阵判别式 Imaginary Numbers 虚数 Imaginary Part 虚部 Increasing Function 增函数 Independent Variable 独立变量 Inequality 不等式 Infinite Geometric Series 无限几何级数 Infinite Series 无穷级数 Interest 利率Interval 区间 Interval Notation 间隔符号 Inverse 逆 Inverse Function 反函数 Inverse of a Matrix 逆矩阵 Inverse Proportion 反比例 Inversely Proportional 成反比 Invertible Matrix 可逆矩阵 Joint Variation 因变量LCM 最小公倍数 Leading Term 最高次项 Least Common Multiple 最小公倍数 Linear 线性 Linear Combination 线性组合 Linear Equation 线性方程组 Linear Factorization 线性因式分解 Linear Inequality 线性不等式 Linear Polynomial 线性多项式 Linear Programming 线性规划 Linear System of Equations 线性系统方程 Locus 轨迹 Logarithm 对数 Logarithm Rules 对数规则 Logistic Growth Logistic增长 Main Diagonal of a Matrix 矩阵主要对角线 Major Axis of an Ellipse 椭圆长轴 Major Axis of a Hyperbola 双曲线长轴 Mathematical Model 数学模型 Matrix 矩阵 Matrix Addition 此外矩阵 Matrix Element 矩阵元 Matrix Inverse 矩阵求逆 Matrix Multiplication 矩阵乘法 Matrix Subtraction 矩阵的减法 Mean 有意义 Mean of a Random Variable 平均随机变量 Midpoint 中点 Midpoint Formula 中点公式 Minor Axis of an Ellipse 椭圆短轴 Minor Axis of a Hyperbola 双曲线短轴 Model 模型 Monomial 单项 Multiplicity 多重 Multivariable 多变量 Multivariate 多元 Natural Domain 自然域 Natural Logarithm 自然对数 Negative Exponents 负指数 No Slope 没有斜率Noninvertible Matrix 不可逆矩阵 Nonreal numbers 非实数 Nonsingular Matrix 非奇异矩阵 Nontrivial 非平凡 nth Root n次方根 nth Root Rules n次方根规则 Oblique Asymptote 斜渐近 Odd Function 奇函数 One Dimension 一维 One-to-One Function 一对一函数 Open Interval 开区间 Ordered Pair 有序数对 Oval 椭圆形 Parabola 抛物线 Partial Fractions 部分分式 Pascal"s Triangle 杨辉三角 Permutation 置换 Permutation Formula 置换公式 Piecewise Function 分段函数 Point of Symmetry 点对称 Point-Slope Equation of a Line 点斜式直线方程 Polynomial 多项式 Precision 精度 Proportional 比例 Pure Imaginary Numbers 纯虚数 Quadrants 象限 Quadratic 二次 Quadratic Equation 二次方程 Quadratic Formula 二次公式 Quadratic Polynomial 二次多项式 Quartic Polynomial 四次多项式 Quintic Polynomial 五次多项式 Range 范围 Rational Equation 有理方程 Rational Expression 有理表达 Rational Function 有理函数 Rational Numbers 有理数 Rational Root Theorem 有理根定理 Rationalizing the Denominator 分母有理化 Real Numbers 实数 Real Part 实部 Rectangular Coordinates 直角坐标 Recursive Formula of a Sequence 递推公式的一个序列 Reflection 反射 Relation 关系 Remainder Theorem 剩余定理 Restricted Domain 有限域 RMS 有效值 Root Mean Square 均方根 Root of an Equation 方程根 Root Rules 根规则 Rotation 旋度 Satisfy 满足 Sequence 序列 Series 系列 Set-Builder Notation 设置建设者乐谱 Shift 转移 Shrink 收缩 Side of an Equation 方程的一侧 Sigma Notation 西格玛乐谱 Simple Interest 简单利率 Simplify 简化 Simultaneous Equations 联立方程 Singular Matrix 奇异矩阵 Slope of a Line 直线斜率 Solution 解 Solution Set 解集 Speed 速度 Square Root 平方根 Square Root Rules 平方根规则 Standard Form for the Equation of a Line 直线标准式 Strict Inequality 严格的不等式 Symmetric 对称 Symmetric about the Origin 原点对称 Symmetric about the x-axis X轴对称 Symmetric about the y-axis Y轴对称 System of Equations 方程系 System of Linear Equations 线性方程组系 Trinomial 三项 Triple Root 三根 Two Dimensions 二维 Variable 变量 Velocity 速度 Vertex of an Ellipse 椭圆顶点 Vertex of a Hyperbola 双曲线顶点 Vertex of a Parabola 抛物线顶点 Vertical Compression 竖直压缩 Vertical Dilation 竖直扩张 Vertical Ellipse 竖直椭圆 Vertical Hyperbola 竖直双曲线 Vertical Line Equation 垂线方程 Vertical Parabola 竖直抛物线 Vertical Reflection 竖直反射 Weighted Average 加权平均 x -intercept X轴交点 y -intercept Y轴交点 Zero Slope 零斜率 也可以到 http://www.mathwords.com/ 看一下,上面的数学术语很全,而且有详尽说明,不过全都是英文的。
再也不做站长了2023-05-20 08:55:441

简单介绍一下现代数学的发展

数学 分类参考 ◆ 数学史 * 中国数学史 * 外国数学史:巴比伦数学,埃及古代数学,希腊古代数学,印度古代数学,玛雅数学,阿拉伯数学,欧洲中世纪数学,十六、十七世纪数学,十八世纪数学,十九世纪数学。 * 中国数学家:刘徽 祖冲之 祖暅 王孝通 李冶 秦九韶 杨辉 王恂 郭守敬 朱世杰 程大位 徐光启 梅文鼎 年希尧 明安图 汪莱 李锐 项名达 戴煦 李善兰 华蘅芳 姜立夫 钱宝琮 李俨 陈建功 熊庆来 苏步青 江泽涵 许宝騄 华罗庚 陈省身 林家翘 吴文俊 陈景润 丘成桐 * 国外数字家:泰勒斯 毕达哥拉斯 欧多克索斯 欧几里得 阿基米德 阿波罗尼奥斯 丢番图 帕普斯 许帕提娅 阿耶波多第一 博伊西斯,A.M.S. 婆罗摩笈多 花拉子米 巴塔尼 阿布·瓦法 奥马·海亚姆 婆什迦罗第二 斐波那契,L. 纳西尔丁·图西 布雷德沃丁,T. 奥尔斯姆,N. 卡西 雷格蒙塔努斯,J. 塔尔塔利亚,N. 卡尔达诺,G. 费拉里,L. 邦贝利,R. 韦达,F. 斯蒂文,S. 纳皮尔,J. 德扎格,G. 笛卡尔,R. 卡瓦列里,(F)B. 费马,P.de 沃利斯,J. 帕斯卡,B. 巴罗,I. 格雷果里,J. 関孝和 牛顿,I. 莱布尼茨,G.W. 洛必达,G.-F.-A.de 伯努利家族 棣莫弗,A. 泰勒,B. 马克劳林,C. 欧拉,L. 克莱罗,A.-C. 达朗贝尔,J.le R. 蒙蒂克拉,J.E. 朗伯,J.H. 贝祖,E. 拉格朗日,J.-L. 蒙日,G. 拉普拉斯,P.-S. 勒让德,A.-M. 傅里叶,J.-B.-J. 热尔岗,J.-D. 高斯,C.F. 泊松,S.-D. 波尔查诺,B. 贝塞尔,F.W. 彭赛列,J.-V. 柯西,A.-L. 麦比乌斯,A.F. 皮科克,G. 罗巴切夫斯基 格林,G 沙勒,M. 拉梅,G. 施泰纳,J. 施陶特,K.G.C.von 普吕克,J. 奥斯特罗格拉茨基,M.B. 阿贝尔,N.H. 波尔约,J. 斯图姆,C.-F. 雅可比,C.G.J. 狄利克雷,P.G.L. 哈密顿,W.R. 德·摩根,A. 刘维尔,J. 格拉斯曼,H.G. 库默尔,E.E. 伽罗瓦,E. 西尔维斯特,J.J. 外尔斯特拉斯,K.(T.W.) 布尔,G. 斯托克斯,G.G. 切比雪夫 凯莱,A. 埃尔米特,C. 艾森斯坦,F.G.M. 贝蒂,E. 克罗内克,L. 黎曼,(G.F.)B. 康托尔,M.B. 克里斯托费尔,E.B. 戴德金(J.W.)R. 杜布瓦-雷P.D.G. 诺伊曼,C.G.von 李普希茨,R.(O.S.). 克莱布什,R.F.A. 富克斯,I.L. 贝尔特拉米,E. 哥尔丹,P.A. 若尔当,C. 韦伯,H. 达布,(J.-)G. 李,M.S. 施瓦兹,H.A. 诺特,M. 康托尔,G.(F.P.) 克利福德,W.K. 米塔-列夫勒,(M.)G. 弗雷格,(F.L.)G. 克莱因,(C.)F. 弗罗贝尼乌斯,F.G. 柯瓦列夫斯卡娅,C.B. 亥维赛,O. 里奇,G. 庞加莱,(J.-)H. 马尔可夫,A.A. 皮卡,(C.-)E. 斯蒂尔杰斯,T.(J.) 李亚普诺夫,A.M. 皮亚诺,G. 胡尔维茨,A. 沃尔泰拉,V. 亨泽尔,K. 希尔伯特,D. 班勒卫,P. 闵科夫斯基,H. 阿达尔,J.(-S.) 弗雷德霍姆,(E.)I. 豪斯多夫,F. 嘉当,E.(-J.) 波莱尔,(F.-E.-J.-E) 策梅洛,E.F.F. 罗素,B.A.W. 列维-齐维塔,T. 卡拉西奥多里,C. 高木贞治 勒贝格,H.L. 哈代,G.H. 弗雷歇,M.-R. 富比尼,G. 里斯,F.(F.) 伯恩施坦,C.H. 布劳威尔,L.E.J. 诺特,(A.)E. 米泽斯,R.von 卢津,H.H. 伯克霍夫,G.D. 莱夫谢茨,S. 李特尔伍德,J.E. 外尔,(C.H.)H. 莱维,P. 赫克,E. 拉马努金,S.A. 费希尔,R.A. 维诺克拉多夫 莫尔斯 巴拿赫,S. 辛钦 霍普夫,H. 维纳,N. 奈望林纳,R. 西格尔,C.L. 阿廷,E. 哈塞,H. 扎里斯基,O. 博赫纳,S. 布饶尔,R.(D.) 塔尔斯基,A. 瓦尔德,A. 柯尔莫哥洛夫,A.H. 冯·诺伊曼,J. 嘉当,H. 卢伊,H. 哥德尔,K. 韦伊,A. 勒雷,.J. 惠特尼,H. 克列因 阿尔福斯,L.V. 庞特里亚金 谢瓦莱,C. 坎托罗维奇 盖尔范德 爱尔特希 施瓦尔茨 小平邦彦。 * 数字著作:《算数书》《算经十书》《周髀算经》《九章算术》《海岛算经》《孙子算经》《张丘建算经》《五曹算经》《五经算术》《缀术》《数术记遗》《夏侯阳算经》《缉古算经》《数理精蕴》《畴人传》《数书九章》《测圆海镜》《益古演段》《四元玉鉴》《算法统宗》《则古昔斋算学》《几何原本》《自然哲学的数学原理》《几何基础》 * 中国古代数学计算方法:筹算,珠算,孙子剩余定理,增乘开方法,贾宪三角,招差法,盈不足术,百鸡术。 * 其他:纵横图,记数法,黄金分割,希腊几何三大问题,计算工具,和算,费尔兹奖,沃尔夫奖,希尔伯特数学问题,国际数学教育委员会,国际数学联合会,国际数学家大会,数学刊物,中国数学教育,中国数学研究机构,中国数学会。 ◆ 数学基础:逻辑主义,形式主义,直觉主义。 ◆ 数理逻辑 * 逻辑演算:命题、一阶、高阶、无穷、多值-模糊、模态、构造逻辑等。 * 模型论:模态模型论,非标准模型等。 * 公理集合论:集合论公理系统,力迫方法,选择公理,连续统假设等。 * 逆归论:算法,递归函数,递归可枚举集,不可解度,广义递归论,判断问题,分层理论等。 * 证明论:数学无矛盾性,哥德尔不完备性定理,构造性数学,希尔伯计划等。 ◆ 集合论:集合,映射,序数,基数,超限归纳法,悖论,数系(实数,虚数),组合数学,图论(四色问题)、算术等。 ◆ 代数学 * 多项式:代数方程等。 * 线性代数:行列式,线性方程组,矩阵,自向量空间,欧几里得空间,线性变换,线性型,二次性,多重线性代数等。 * 群:有限群、多面群体、置换群、群表示论、有限单群等。 * 无限群:交换群,典型群,线性代数群,拓扑群,李群,变换群,算术群,半群等。 * 环:交换环,交换代数,结合代数,非结合代数-李代数,模,格-布尔代数等。 * 乏代数 * 范畴 * 同调代数-代数理论 * 域:代数扩张,超越扩张,伽罗瓦理论-代数基本定理,序域,赋值,代数函数域,有限域,p进数域等。 ◆ 数论 * 初等数论:整除,同余,二次剩余,连分数,完全数,费马数,梅森数,伯努利数,数论函数,抽屉原理等。 * 不定方程:费马大定理等。 * 解析数论:筛法,素分布法,黎曼ζ函数,狄利克雷特征,狄利克雷L函数,堆垒数论-整数分拆,格点问题,欧拉常数等。 * 代数数论:库默尔扩张,分圆域,类域论等。 * 数的几何 * 丢番图逼近 * 一致分布 * 超越数论 * 概率数论 * 模型式论 * 二次型的算术理论 * 代数几何 ◆ 几何学 * 欧几里得几何学-希尔伯特公理系统:欧里几得空间,坐标系,圆周率,多边形,多面体等。 * 解析几何学:直线,平面,二次曲线,二次曲面,二次曲线束,二次曲面束,初等几何变换,几何度量等。 * 三角学 * 综合几何学:尺规作图-希腊几何三大问题等。 * 仿射几何学:仿射变换等。 * 射影几何学:对偶原理,射影坐标,射影测度,绝对形,交比-圆点,直线几何等。 * 埃尔朗根纲领 * 百欧几里得几何学 * 微分几何学:曲线,曲面-直纹面-可展曲面-极小曲面等。 * 微分流形:张量,张量分析,外微分形式,流形上的偏微分算子,复流形,辛流形,黎曼几何学,常曲率黎曼空间-齐性空间-黎曼流形的变换群-闵科夫斯基空间,广义相对论,联络论,杨-米尔斯理论,射影微分几何学,仿射微分几何学,一般空间微分几何学,线汇论,积分几何学等。 ◆ 拓扑学 * 一般拓扑学(拓扑空间,度量空间,维数,多值映射 * 代数拓扑学(同调论,同伦论-CW复形,纤维丛-复叠空间,不动点理论-闭曲面的分类-庞加莱猜想 * 微分拓扑学(流形-横截性 * 纽结理论 * 可微映射的奇点理论 * 突变理论 * 莫尔斯理论 ◆ 分析学 * 微积分学 ** 函数:初等函数,隐函数等。 ** 极限:函数的连续性等。 ** 级数 ** 微分学:导数,微分,中值定理,极值等。 ** 积分学:积分,原函数,积分法,广义积分,含参变量积分等。 ** 多元微积分学:偏导数,全微分,方向导数,雅可比矩阵,雅可比行列式,向量,向量分析,场论等。 * 复变函数论:复变函数(解析函数,柯西积分定理,解析函数项级数,幂级数,泰勒级数,洛朗级数,留数,调和函数,最大模原理,共形映射,特殊函数,整函数,亚纯函数,解析开拓,椭圆函数,代数函数,模函数,函数值分布论,黎曼曲线,单叶函数,正规族,拟共形映射,解析函数边值问题,狄利克雷级数,解析函数边界性质,拉普拉斯变换,积分变换,泰希米勒空间,广义解析几何等)。 * 多复变函数论 * 实变函数论:勒贝格积分,有界变差函数,测度论,黎曼-斯蒂尔杰斯积分,赫尔德不等式,施瓦兹不等式,闵科夫斯基不等式,延森不等式等。 * 泛函分析:泛函数,函数空间,索伯列夫空间,拓扑线性空间,巴拿赫空间,半序线性空间,希尔伯特空间,谱论,向量值积分,线性算子,全连续算子,谱算子,线性算子扰动理论,赋范代数,广义函数,非线性算子(泛函积分,算子半群,遍历理论,不变子空间问题)等。 * 变分法:变分法,大范围变分法等。 * 函数逼近论:函数构造论,复变函数逼近(外尔斯特拉斯-斯通定理,拉格朗日插值多项式逼近,埃尔米特插值多项式逼近,三角多项式,连续模,强迫逼近,有理函数逼近,正交多项式,帕德逼近,沃外尔什逼近,联合逼近,抽象逼近,宽度,熵,线性正算子逼近,傅里叶和)等 * 傅里叶分析:三角函数,傅里叶级数,傅里叶变换-积分(傅里叶积分算子,乘子,共轭函数,卢津问题,李特尔伍德-佩利理论,正交系,极大函数,面积积分,奇异积分,算子内插,BMO空间,Hp空间,奇异积分的变换子,佩利-维纳定理,卷积,Ap权),概周期函数,群上调和分析(哈尔测度,正定函数,谱综合)等。 * 流形上的分析:霍奇理论,几何测度论,位势论等。 * 凸分析 * 非标准分析 ◆ 微分方程 * 常微分方程(初等常数微分方程,线性常微分方程,常微分方程初值问题,常微分方程边值问题,常微分方程解析理论,常微分方程变换群理论,常微分方程定性理论,常微分方程运动稳定性理论,哈密顿系统,概周期微分方程,抽象空间微分方程,泛函数分方程-微分差分方程,常微分方程摄动方法,常微分方程近似解似解,动力系统-拓扑动力系统-微分动力系统 * 偏微分方程(数学物理方程,一阶偏微分方程,哈密顿-雅可比理论,偏微分方程特征理论,椭圆型偏微分方程-拉普拉斯方程,双曲型偏微分方程-波动方程,双曲守恒律的间断解,抛物型偏微分方程-热传导方程,混合型偏微分方程,孤立子,索伯列夫空间,偏微分方程的基本解,局部可解性,偏微分算子的特征值与特征函数,数学物理中的反问题,自由边界问题,分歧理论,发展方程,不适定问题 * 积分方程:弗雷德霍姆积分方程,沃尔泰拉积分方程,对称核积分方程,奇异积分方程,维纳-霍普夫方程,维纳-霍普夫方法等。 ◆ 计算数学 * 数值分析:数值微分等。 * 数值逼近:插值,曲线拟合等。 * 计算几何:样条函数值积分-数论网格求积分法,有限差演算,有限差方程等。 * 常微分方程初值问题数值解法:单步法,多步法,龙格-库塔法,亚当斯法等。 * 常微分方程边值问题数值解法:打靶法等。 * 高次代数方程求根 * 超越方程数值解法 * 非线性方程组数值解法:迭代法,牛顿法等。 * 最优化 * 线性规划:单纯形方法等。 * 无约束优化方法 * 约束优化方法 * 概率统计计算 * 蒙特卡罗达:伪随机数等。 * 代数特征值问题数值解法:广义特征值问题数值解法等。 * 线性代数方程组数值解法:稀疏矩阵,广义逆矩阵,对角优势矩阵,病态矩阵,消元法-高斯消去法,松驰法,共轭梯度法等。 * 偏微分方程边值问题差分方法 * 偏微分方程初值问题差分方法:计算流体力学,特片线法,守恒格式,分步法(局部一维方法、交替方向隐式法、显式差分方法、隐式差分方法),有限差分方法,有限元方法,里茨-加廖金方法(里茨法、加廖金法),玻耳兹曼方程数值解法,算图-诺模图等。 * 数值软件:并行算法,误差,最小二乘法,外推极限法,快速傅里叶变换-快速数论变换,数值稳定性,区间分析,计算复杂性等。 ◆ 概率论 * 概率分布(数学期望,方差,矩,正态分布,二项分布,泊松分布 * 随机过程(马尔可夫过程,平稳过程,鞅,独立增量过程,点过程,布朗运动,泊松过程,分支过程,随机积分,随机微分方程,随机过程的极限定理,随机过程统计,滤波,无穷粒子随机系统等。 * 概率,随机变量 * 概率论中的收敛 * 大数律 * 中心极限定理 * 条件期望 ◆ 数理统计学 * 参数估计:点估计,区间估计等。 * 假设检验:列联表等。 * 线性统计模型:回归分析,方差分析等。 * 多元统计分析:相关分析等。 * 统计质量管理:控制图,抽样检验,寿命数据统计分析,概率纸等。 * 总体 * 样本 * 统计量 * 实验设计法 * 抽样调查 * 统计推断 * 大样本统计 * 统计决策理论 * 序贯分析 * 非参数统计 * 稳健统计 * 贝叶斯统计 * 时间序列分析 * 随机逼近 * 数据分析 ◆ 运筹学 * 数学规则:线性规划,非线性规划,无约束优化方法,约束优化方法,几何规划,整数规划,多目标规划,动态规划-策略迭代法,不动点算法,组合最优化-网络流,投入产出分析等。 * 军事运筹学:彻斯特方程,对抗模拟,对策论,最优化等。 * 马尔可夫决策过程 * 搜索论 * 排队论 * 库存论 * 决策分析 * 可靠性数学理论 * 计算机模拟 * 统筹学 * 优选学 ◆ 数学物理 ◆ 控制理论 ◆ 信息论 ◆ 理论计算机科学 ◆ 模糊性数学
铁血嘟嘟2023-05-20 08:55:302

怎么用抽象代数里的拉格朗日定理,剩余类证明费马小定理,不要用数论的

先证明Zn里满足(a,n)=1的所有元素的集合在乘法下构成一个群G。不妨设a,b∈G,由(a,n)=1,(b,n)=1推出(ab,n)=1,即ab∈G,乘法是闭的。剩余类乘法是结合的。显然1是单位元。又(a,n)=1,所以存在整数s,t使as+nt=1,则as=1(n),且(s,n)=1故a-1=s∈G,这样G是一个群,且o(G)=φ(n)。根据Lagrange定理,当(a,n)=1时有a^φ(n)=1(mod n)。特别地,n为素数p时,φ(p)=p-1,所以a^(p-1)=1(mod p),两边同时乘以a得a^p=a(mod p) (1)若p整除a,则(1)显然成立。证毕。
左迁2023-05-19 20:17:441

近世代数理论基础6:费马小定理·欧拉定理

定义: , ,若 ,则称a与b模m同余,记作 ,否则称a与b模m不同余,记作 利用同余,可在整数集合Z上诱导出一个关系 ,称为模m同余关系 定理: ,则模m同余关系是等价关系,即 (1) ,有 (2) (3) 注: 1.模m同余关系的商集记作 2.任一整数a所在的同余类记作 ,也称为同余类或剩余类 3.任一整数a用m除所得的余数只能为 中的一个, 为模m的完全剩余类,其中 为那些除m所得的余数为i的所有整数构成的集合 定理: , ,则 1.若 ,则2. 3. 4.若 ,d为a,b,m的任一公因数,则5.若 ,则6. 7. 证明: 3. 定义: , ,若其中任意两个数均不在模m的同一个剩余类中,则称 为模m的一个完全剩余系 若 中有某个数与m互素,则 中所有的数与m均互素,此时称 为与模m互素的一个剩余类,因而有 个与模m互素的剩余类,在与模m互素的每个剩余类中取一个数,得到 个与模m互素的数,它们组成的集合称为模m的一个缩系 定理:若 ,则 为模m的一个缩系 且 ,有 定理:若 ,且 ,则当x与y分别跑遍模m的一个完全剩余系时, 恰好跑遍模mn的一个完全剩余系 证明:定理:若 且 ,则当 分别跑遍模m,n的一个缩系时, 恰好跑遍模mn的一个缩系, 证明:推论:设 ,则定理:设 , ,则 证明:在实际应用中经常要计算 模m的值,利用欧拉定理,先计算 ,其中 ,即 ,即 ,从而简化运算 推论:若p为素数, ,则 证明:
真颛2023-05-19 20:17:401

在我国古代数学著作《九章算术》中记载了一道有趣的问题

看吧,全部答案,所以书的答案我都有
左迁2023-05-19 20:17:374

近世代数理论基础5:算术基本定理

设 为任一整数,则 与 是他的因数,称为平凡因数 若 只有平凡因数,则称p为素数,否则称为合数 定理:设p为素数,则 ,有 或 证明:推论:设 , 为素数,且 ,则p整除某个 证明:定理:任一大于1的整数一定能表成素数的乘积,且该表示法除了次序外是唯一的,即若 ,则有 ,其中 为素数,且若又有 ,其中 为素数,则 ,且适当调整次序后,对任意的 都有 证明:推论: (1)任一大于1的正整数a都可唯一写成a的标准分解式其中 为素数 (2) 且 则 其中 定义:设 ,记集合 中与a互素的整数个数为 , 是一个定义在全体正整数集合上的一个函数,称为欧拉函数 例:设p为素数,则集合 中,与p互素的元为 ,因此 注: ,有 集合 中有 个元,对于该集合中任一元a, ,故与 不互素的元有 个,从而与 互素的元有 个
NerveM 2023-05-19 20:17:291

我国近代数学家的成就

回国后华罗庚开创了中国的近代数学,并建立了中科院数学研究所,培养了大批数学家如陈景润,王元等号称华学派,后来致力于应用数学,将数学应用于工业生产,推广"优选法"和"统筹法"!由于华罗庚的重大贡献,有许多用他的名字命名的定理,如华引理、华不等式、华算子与华方法。另外华罗庚还被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。美国著名数学家贝特曼著文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有著名科学院院士”。中国最著名的五大数学家
陶小凡2023-05-19 20:17:042

数学建模中s型曲线定义(代数表达式)是什么,如何使用?

表达式:y=1/{a+b*e^(-x)} 其中a是常数项,b是待估参数先将s型曲线表达式线性化 过程为:1.根据表达式推得1/y=a+b*e^(-x) 2.令1/y=y" e^(-x)=x" 得y"=a+b*x" 这样就线性化了3.进行线性化处理,求出常数项a和待估参数b4发现在线性化的过程中a b都没有发生变化,因此直接代入原表达式即可。
韦斯特兰2023-05-19 20:17:042

可怕的科学代数任我行丢番图p三次方+1=q² 真的只有p=2 q=3这一对解吗? 感觉很不对啊

~~如果p、q是自然数呢?
瑞瑞爱吃桃2023-05-19 20:16:401

代数之父是谁?

丢番图
墨然殇2023-05-19 20:16:4010

代数的发展是什么?

代数的发展是:1、西方人将公元前三世纪古希腊数学家丢番图看作是代数学的鼻祖,而真正创立代数的则是古阿拉伯帝国时期的伟大数学家默罕默德·伊本·穆萨(我国称为“花剌子密”,生卒约为公元780-850年)。而在中国,用文字来表达的代数问题出现的就更早了。2、代数的起源可以追溯到古巴比伦的时代,当时的人们发展出了较之前更进步的算术系统,使其能以代数的方法来做计算。经由此系统地被使用,他们能够列出含有未知数的方程并求解,这些问题在今日一般是使用线性方程、二次方程和不定线性方程等方法来解答的。3、相对地,这一时期大多数的埃及人及西元前1世纪大多数的印度、希腊和中国等数学家则一般是以几何方法来解答此类问题的,如在兰德数学纸草书、绳法经、几何原本及九章算术等书中所描述的一般。希腊在几何上的工作,以几何原本为其经典,提供了一个将解特定问题解答的公式广义化成描述及解答代数方程之更一般的系统之架构。4、代数(algebra)导源于阿拉伯语单字“al-jabr”,其出自al-Kitāb al-muḫtaṣar fīḥisāb al-ğabr wa-l-muqābala这本书的书名上,意指移项和合并同类项之计算的摘要,其为波斯回教数学家花拉子米于820年所著。Al-Jabr此词的意思为“重聚”。传统上,希腊数学家丢番图被认为是“代数之父”,的成果到今日都还有用途,且他更给出了一个解答二次方程的一详尽说明。5、而支持丢番图的人则主张在Al-Jabr里出现的代数比在Arithmetical里出现的更为基本,且Arithmetical是简字的而Al-Jabr却完全是文辞的。另一位波斯数学家欧玛尔·海亚姆发展出代数几何出,且找出了三次方程的一般几何解法。印度数学家摩诃吠罗和婆什迦罗与中国数学家朱世杰解出了许多三次、四次、五次及更高次多项式方程的解了。
u投在线2023-05-19 20:16:401

有学过数论,高等几何,近世代数或者离散数学的学霸没

数论导引线性代数及其应用高等代数与解析几何数值分析运筹学数学模型引论应用概率统计概率论及试验统计数学实验泛函分析微积分(上,下)计算方法引论数学物理方法数学物理方程与特殊函数PASCAL语言程序设计常微分方程动力系统基础近世代数初步离散数学复变函数与积分变换微分几何数学建模方法实分析与泛函分析数学史概论初等几何研究抽象代数基础高等几何数学方法论与解题研究随机过程及应用矩阵理论微积分和数学分析引论数学——它的内容,方法和意义代数特征值问题代数几何常微分方程数学与猜想数学中的归纳和类比(第一卷)数学与猜想合情理模式(第二卷)数学概观拓扑空间论《现代数学基础丛书》数理统计引论Geifond-Baker方法在丢番图议程中的应用多元统计分析引论概率论基础微分动力系统原理二阶椭圆议程与椭圆议程组分析概率论非线性发展方程黎曼曲面傅里叶积分算子理论及其应用微分方程定性理论概率论基础和随机过程复解析动力系统模型论基础环与代数仿微分算子引论辛几何引论同调代数巴拿赫空间引论近代调和分析方法及其应用递归论拓扑群引论公理集合论引导丢番图逼近引论Banach代数紧黎曼曲面引论线性整数规划的数学基础对称性分岔理论基础复变函数逼近论线性微分议程的非线性扰动组合矩陈论随机点过程及其应用实分析导论Banach空间中的非线性逼近理论广义哈密顿系统理论及其应用解析数论基础算子代数Geifond-Baker方法在丢番图议程中的应用半群的S-系理论以上书目均由科学出版社出版
hi投2023-05-19 20:16:401

负数是什么?(小学现代数学六年级)

负负得正 正正得正 正负得负负数就是比零还小的数!! 负数的简介 任何正数前加上负号都等于负数 比零小(<0 )的数.用负号(即相当于减号)“-”标记. 如-2, -5.33, -45, -0.6. 参见:非负数(Nonnegative),负数(negative number) 正数(Positive), 零(Zero),负号/减号(Minus Sign). 例1、我们在小学学过自然数1,2,3,...;一个物体也没有,就用0来表示,测量和计算有时不能得到整数的 结果,这就要用分数和小数表示.同学们还见过其他种类的数吗? 现在有两个温度计,温度计液面指在0以上第6刻度,它表示的温度是6℃,那么温度计液面指在0以下第6 刻度,这时的温度如何表示呢? 提示: 如果还用6℃来表示,那么就无法区分是零上6℃还是零下6℃,因此我们就引入一种新数——负数. 参考答案: 记作-6℃. 说明: 我们为了区分零上6℃与零下6℃这一组具有相反意义的量,因而引入了负数的概念. 例2、下面我们再看一个例子,从中国地形图上可以看到,有一座世界最高峰——珠穆朗玛峰,图上标着8844; 还有一个吐鲁番盆地,图上标着-155.你能说出它们的高度各是多少吗? 提示: 中国地形图上可以看到,上述两处都标有它们的高度的数,图上标的数表示的高度是相对海平面说的, 通常称为海拔高度.8844表示珠穆朗玛峰比海平面高8844米,-155表示吐鲁番盆地比海平面低155米. 参考答案: 珠穆朗玛峰的高度是海拔8844米; 吐鲁番盆地的高度是海拔-155米. 说明: 这个例子也说明了我们为了实际需要引入负数,是为了区分海平面以上与海平面以下高度,它们也表示 具有相反意义的量. 例3、甲地海拔高度是35米 乙地海拔高度是15米,丙地海拔高度是-20米,请问哪个地方最高,哪个地方 最低?最高的地方比最低的地方高多少? 提示: 35米,15米,-20米分别表示什么意义? 参考答案: 甲地最高,丙地最低,最高的地方比最低的地方高55米。 说明: 35米表示高出海平面35米,15米表示高出海平面15米,-20米表示低于海平面20米,所以甲地最高, 丙地最低,且甲地比丙地高55米。 例4、我们已经知道,具有相反意义的量可以用正,负数表示。例如:零上5℃和零下6℃可记为+5℃和 -6℃;高出海平面10米和低于海平面8米可记为+10米和-8米;收入200元和支出300元可记为 +200元和-300元;前进30米和后退40米可记为+30米和-40米,请问上升7米和向东运动9米可记为 +7米和-9米吗? 提示: 上升和向东运动是具有相反意义的量吗? 参考答案: 不可以记为+7米和-9米。 说明: 具有相反意义的量必须满足两个条件:(1)它们必须是同一属性的量;(2)它们的意义相反。上升 和下降;向东运动和向西运动才是相反意义的量,因为上升和向东运动不是具有相反意义的量,所以不可 以记为+7米和-9米。 -π是超越数,不是有理数[编辑本段]负数的由来 人们在生活中经常会遇到各种相反意义的量。比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。 据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。 我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。 刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。 我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。 用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。” 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。 用不同颜色的数表示正负数的习惯,一直保留到现在。现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。 负数是正数的相反数。在实际生活中,我们经常用正数和负数来表示意义相反的两个量。夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。 在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。然而,在中国的传统数学中,已较早形成负数和相关的运算法则。 除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。他在算法启蒙中,负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。 与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性。16、17世纪欧洲大多数数学家不承认负数是数。帕斯卡认为从0减去4是纯粹的胡说。帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理。英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年)。他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为负数是虚构的。他用以下的例子说明这一点:“父亲56岁,其子29岁。问何时父亲年龄将是儿子的二倍?”他列方程56+x=2(29+x),并解得x=-2。他称此解是荒唐的。当然,欧洲18世纪排斥负数的人已经不多了。随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立。[编辑本段]负数的应用 负数被广泛应用于温度、楼层、海拔、水位、盈利、增产/减产、支出/收入、得分/扣分等方面中。[编辑本段]负数 我国在《九章算术》《方程》章中就引入了负数(negative number)的概念和正负数加减法的运算法则。在某些问题中,以卖出的数目为正(因是收入),买入的数目为负(因是付款);余钱为正,不足钱为负。在关于粮谷计算中,则以加进去的为正,减掉的为负。“正”、“负”这一对术语从这时起一直沿用到现在。 在《方程》章中,引入的正负数加法法则称为“正负术”。正负数的乘除法则出现得比较晚,在1299 年朱世杰编写的《算学启蒙》中,《明正负术》一项讲了正负数加减法法则,一共八条,比《九章算术》更加明确。在“明乘除段”中有“同名相乘为正,异名相乘为负”之句,也就是(±a)×(±b)=+ab,(±a)×( b)=-ab,这样的正负数乘法法则,是我国最早的记载。宋末李冶还创用在算筹上加斜划表示负数,负数概念的引入是中国古代数学最杰出的创造之一。 印度人最早在我国之后提出负数,628年左右的婆罗摩笈多(约598-665)。他提出了负数的运算法则,并用小点或小圈记在数字上表示负数。在欧洲初步认识提出负数概念,最早要算意大利数学家斐波那契(1170-1250)。他在解决一个盈利问题时说∶我将证明这个问题不可能有解,除非承认这个人可以负债。15世纪的舒开(1445?-1510?)和16世纪的史提非(1553)虽然他们都发现了负数,但又都把负数说成是荒谬的数,卡当(1545)给出了方程的负根,但他把它说成是“假数”。韦达知道负数的存在,但他完全不要负数。笛卡儿部分地接受了负数,他把方程的负根叫假根,因它比“无/零”更小。 哈雷奥特(1560-1621)偶然地把负数单独地写在方程的一边,并用“-”表示它们,但他并不接受负数。邦别利(1526-1572)给出了负数的明确定义。史提文在方程里用了正、负系数,并接受了负根。基拉德(1595-1629)把负数与正数等量齐观、并用减号“-”表示负数。总之在16、17世纪,欧洲人虽然接触了负数,但对负数的接受的进展是缓慢的。 负数加减乘除的计算法则: + 负数1+负数2=-|负数1+负数2|=负数 负数+正数=|正数-负数| - 负数1-负数2=|负数1-负数2| 负数-正数=-|正数+负数|=负数 × 负数1×负数2=|负数1×负数2| =正数 负数×正数=-|正数×负数| =负数 ÷ 负数1÷负数2=|负数1÷负数2| =正数 负数÷正数=-|负数÷正数| =负数
陶小凡2023-05-19 11:02:109

求初中和高中数学公式,代数几何的全要,越全越好。

上学吧网站有全面的资料。。可以进去找找
韦斯特兰2023-05-19 11:01:084

天元术的金代数学家叫什么名字

为天元术的发展做出贡献的金代数学家叫李冶。李冶(1192年—1279年),原名李治,字仁卿,自号敬斋,真定栾城(今河北省石家庄市栾城区)人。金元时期的数学家。金正大末进士,辟知钧州。金亡北渡后,流落忻崞间,常与元好问唱和,世称“元李”。晚家封龙山(今河北省元氏县)下,隐居讲学。元世祖至元初,以翰林学士召,就职期月,以老病辞归。能诗词,有《敬斋集》,今有考订之作《敬斋古今黈》40卷传世。另著有《测圆海镜》12卷(1248年)、《益古演段》3卷(1259年)、《泛说》40卷、《壁书丛削》12卷。李冶在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。与杨辉、秦九韶、朱世杰并称为“宋元数学四大家”。
Ntou1232023-05-18 13:55:541

中国古代数学著作有哪些?要作者和书名。比如《周脾算经》

《周髀算经》是中国现存最早的一部数学典籍,成书时间大约在两汉之间 (纪元之后)。也有史家认为它的出现更早,是孕于周而成于西汉,甚至更有人说它出现在纪元前1000年。 《九章算术》约成书于公元纪元前后,它系统地总结了我国从先秦到西汉中期的数学成就。该书作者已无从查考,只知道西汉著名数学家张苍、耿寿昌等人曾经对它进行过增订删补。全书分做九章,一共搜集了246个数学问题,按解题的方法和应用的范围分为九大类,每一大类作为一章。南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。 》、《海岛算经》等10部数学著作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。 公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。 贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。 秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式。14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。 明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作。但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作。邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作。
西柚不是西游2023-05-18 13:55:543

古代数学名人有哪些?

张丘建:《张丘建算经》 《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。 朱世杰:《四元玉鉴》 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法) 。贾宪:《黄帝九章算经细草》 中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成《黄帝九章算经细草》,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉《详解九章算法》(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。《详解九章算法》同时录有贾宪进行高次幂开方的“增乘开方法”。 贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。 秦九韶:《数书九章》 秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶:《测圆海镜》——开元术 随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。 李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。 刘徽: 《海岛算经》、《九章算术注》、《九章重差图》 263年左右,六会发现当圆内接正多边形的变数无限增加时,多边形的面积则可无限逼近圆面积,即所谓“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”刘徽采用了以直代曲、无限趋近、“内外夹逼”的思想,创立了“割圆术”《重差》原为《九章算术注》的第十卷,即后来的《海岛算经》,内容是测量目标物的高和远的计算方法。重差法是测量数学中的重要方法。
左迁2023-05-18 13:55:531
 首页 上一页  6 7 8 9 10 11 12 13  下一页  尾页