代数

代数余子式的定义是什么?怎么算?

第1行的代数余子式之和等于把原行列式的第1行元素换为1所得的行列式,第2行的代数余子式之和等于把原行列式的第2行元素都换为1所得的行列式。①行列式A中某行或列用同一数k乘,其结果等于kA。②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。扩展资料带有代数符号的余子式,计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号。在n阶行列式中,把元素ai所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素ai的余子式,记作M,将余子式M再乘以-1的o+e次幂记为A,A叫做元素a的代数余子式。
meira2023-05-16 14:51:131

什么是代数余子式?

代数余子式是从行列式的公式中提取出来的,它的作用是把n阶行列式化简为n – 1阶行列式。在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。在n阶行列式中,划去元aij所在的第i行与第j列的元,剩下的元不改变原来的顺序所构成的n-1阶行列式称为元aij的余子式。关系:代数余子式本身是n - 1阶行列式,它可以继续展开成n - 2阶行列式……如此展开下去,直到1阶行列式为止,其核心思想是把一个复杂的高阶行列式转换成多个简单的低阶行列式。扩展资料代数余子式本身就是行列式,只是它的正负号需要单独判断,判断方法是根据选定元素行号和列号之和的奇偶性。用Cij表示aij的代数余子式,当i + j是偶数时,行列式取正号,是奇数则取符号。比如三阶行列式中,C12的行列号之和是3,它对应的代数余子式取符号。通过消元法计算是正确的选择,通常也应该这么做,实际上不难看出这个A是一个奇异矩阵,所以它的行列式等于0,现在用行列式的公式来验证这个结论。根据公式, |A|的大多数展开项都等0,没有被淘汰的只有两项,二者相加等于0:参考资料来源:百度百科-余子式参考资料来源:百度百科-代数余子式
阿啵呲嘚2023-05-16 14:51:131

如何算这个代数余子式啊?

余子式M41,M42...代数余子式A41,A42...你说的a41A41+a42A42...是行列式的值了。行列式的值等于某一行(列)元素乘它对应的代数余子式,再加和。
LuckySXyd2023-05-16 14:51:133

余子式和代数余子式是什么?有什么关系?

我觉得如果有怎么求007列或者行就好了
此后故乡只2023-05-16 14:51:124

什么是代数余子式?

代数余子式:在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。例子:例1 在五阶行列式 中,划定第二行、四行和第二列、三列,就可以确定D的一个二阶子行列式A的相应的余子式M为:子行列式A的相应的代数余子式为:扩展资料:代数余子式求和带有代数符号的余子式称为代数余子式,计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号  。计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的,但一般不用此法,其原因是计算量太大,注意到行列式D中元素  的代数余子式  与  的值无关。仅与其所在位置有关,利用这一点,可将D的某一行(或列)元素的代数余子式的线性组合表示为一个行列式,而构造这一行列式是不难的,只需将其线性组合的系数替代D的该行(或该列)元素,所得的行列式  就是所要构造的行列式,再应用下述行列式的展开定理,即命题1和命题2,就可求得  的值。命题 1 n阶行列式  等于它的任一行(列)的所有元素与其对应的代数余子式的乘积之和:命题2 n阶行列式  的任一行(列)的元素与另一行(列)对应元素的代数余子式乘积之和等于零:参考资料:百度百科---代数余子式
墨然殇2023-05-16 14:51:121

矩阵A的代数余子式计算

以三阶方阵为例,高阶的类似A=a11 a12 a13a21 a22 a23a31 a32 a33则A*=A11 A21 A31A12 A22 A32A13 A23 A33其中Aij是aij对应的代数余子式在n阶行列式D中划去任意选定的k行、k列后,余下的元素按原来顺序组成的n-k阶行列式M,称为行列式D的k阶子式A的余子式。如果k阶子式A在行列式D中的行和列的标号分别为i1,i2,?,ik和j1,j2,?,jk。则在A的余子式M前面添加符号。扩展资料:设A为一个 m×n 的矩阵,k为一个介于1和m之间的整数,并且m≤n。A的一个k阶子式是在A中选取k行k列之后所产生的k个交点组成的方块矩阵的行列式。计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的,仅与其所在位置有关。利用这一点,可将D的某一行(或列)元素的代数余子式的线性组合表示为一个行列式,而构造这一行列式是不难的,只需将其线性组合的系数替代D的该行(或该列)元素。参考资料来源:百度百科——代数余子式
小白2023-05-16 14:51:121

什么是代数余子式?

余子式和代数余子式有三个区别:指代不同、特点不同、用处不同。一、指代不同1、余子式:行列式的阶数越低,越容易计算。因此,我们自然会问一个高阶行列式能否转换成低阶行列式进行计算。2、代数余子式:在第n阶行列式中,去掉元素a的另一行和e列ₒₑI后,剩下的n-1阶行列式称为元素a-I的余子式二、特点不同1、余子式:关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式。2、代数余子式:元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。三、用处不同1、余子式:转置矩阵称为A的伴随矩阵。伴随矩阵类似于逆矩阵,当A可逆时可用来计算A的逆矩阵。2、代数余子式:在计算元素的代数余子式时,首先要注意不要忽略余子式的代数符号。当计算一行(或一列)的元素余因子的线性组合时,可以直接计算每个余因子,然后将其求和。
gitcloud2023-05-16 14:51:121

求代数余子式的方法。

A*T=AT*可以,A转置的伴随矩阵等于A的伴随矩阵的转置。
左迁2023-05-16 14:51:123

余子式与代数余子式有什么区别?

一、指代不同1、余子式:行列式的阶越低越容易计算,于是很自然地提出,能否把高阶行列式转换为低阶行列式来计算。2、代数余子式:在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式二、特点不同1、余子式:关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式。2、代数余子式:元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。三、用处不同1、余子式:转置矩阵称为A的伴随矩阵,伴随矩阵类似于逆矩阵,并且当A可逆时可以用来计算它的逆矩阵。2、代数余子式:计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号 。计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的。参考资料来源:百度百科-代数余子式参考资料来源:百度百科-余子式
可桃可挑2023-05-16 14:51:121

代数余子式的求法

主换位,副变号”是简便记法.由定义,求伴随矩阵要求“各元素的代数余子式构成的矩阵”然后转置,对二阶矩阵,其结果就是主对角线换位,副对角线变号.
Jm-R2023-05-16 14:51:122

代数余子式怎么求?

代数余子式:在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。例子:例1 在五阶行列式 中,划定第二行、四行和第二列、三列,就可以确定D的一个二阶子行列式A的相应的余子式M为:子行列式A的相应的代数余子式为:扩展资料:代数余子式求和带有代数符号的余子式称为代数余子式,计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号  。计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的,但一般不用此法,其原因是计算量太大,注意到行列式D中元素  的代数余子式  与  的值无关。仅与其所在位置有关,利用这一点,可将D的某一行(或列)元素的代数余子式的线性组合表示为一个行列式,而构造这一行列式是不难的,只需将其线性组合的系数替代D的该行(或该列)元素,所得的行列式  就是所要构造的行列式,再应用下述行列式的展开定理,即命题1和命题2,就可求得  的值。命题 1 n阶行列式  等于它的任一行(列)的所有元素与其对应的代数余子式的乘积之和:命题2 n阶行列式  的任一行(列)的元素与另一行(列)对应元素的代数余子式乘积之和等于零:参考资料:百度百科---代数余子式
mlhxueli 2023-05-16 14:51:121

代数余子式是什么?

代数余子式是从行列式的公式中提取出来的,它的作用是把n阶行列式化简为n – 1阶行列式。在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。在n阶行列式中,划去元aij所在的第i行与第j列的元,剩下的元不改变原来的顺序所构成的n-1阶行列式称为元aij的余子式。关系:代数余子式本身是n - 1阶行列式,它可以继续展开成n - 2阶行列式……如此展开下去,直到1阶行列式为止,其核心思想是把一个复杂的高阶行列式转换成多个简单的低阶行列式。扩展资料代数余子式本身就是行列式,只是它的正负号需要单独判断,判断方法是根据选定元素行号和列号之和的奇偶性。用Cij表示aij的代数余子式,当i + j是偶数时,行列式取正号,是奇数则取符号。比如三阶行列式中,C12的行列号之和是3,它对应的代数余子式取符号。通过消元法计算是正确的选择,通常也应该这么做,实际上不难看出这个A是一个奇异矩阵,所以它的行列式等于0,现在用行列式的公式来验证这个结论。根据公式, |A|的大多数展开项都等0,没有被淘汰的只有两项,二者相加等于0:参考资料来源:百度百科-余子式参考资料来源:百度百科-代数余子式
mlhxueli 2023-05-16 14:51:121

什么叫代数余子式?

代数余子式是从行列式的公式中提取出来的,它的作用是把n阶行列式化简为n – 1阶行列式。在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。在n阶行列式中,划去元aij所在的第i行与第j列的元,剩下的元不改变原来的顺序所构成的n-1阶行列式称为元aij的余子式。关系:代数余子式本身是n - 1阶行列式,它可以继续展开成n - 2阶行列式……如此展开下去,直到1阶行列式为止,其核心思想是把一个复杂的高阶行列式转换成多个简单的低阶行列式。扩展资料代数余子式本身就是行列式,只是它的正负号需要单独判断,判断方法是根据选定元素行号和列号之和的奇偶性。用Cij表示aij的代数余子式,当i + j是偶数时,行列式取正号,是奇数则取符号。比如三阶行列式中,C12的行列号之和是3,它对应的代数余子式取符号。通过消元法计算是正确的选择,通常也应该这么做,实际上不难看出这个A是一个奇异矩阵,所以它的行列式等于0,现在用行列式的公式来验证这个结论。根据公式, |A|的大多数展开项都等0,没有被淘汰的只有两项,二者相加等于0:参考资料来源:百度百科-余子式参考资料来源:百度百科-代数余子式
wpBeta2023-05-16 14:51:121

余子式和代数余子式有什么不同吗?

一、指代不同1、余子式:行列式的阶越低越容易计算,于是很自然地提出,能否把高阶行列式转换为低阶行列式来计算。2、代数余子式:在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式二、特点不同1、余子式:关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式。2、代数余子式:元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。三、用处不同1、余子式:转置矩阵称为A的伴随矩阵,伴随矩阵类似于逆矩阵,并且当A可逆时可以用来计算它的逆矩阵。2、代数余子式:计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号 。计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的。参考资料来源:百度百科-代数余子式参考资料来源:百度百科-余子式
大鱼炖火锅2023-05-16 14:51:121

代数余子式和余子式的区别是什么?

1、指代是各不相同的也就是行列式的阶如果越低的话就越容易计算,于是很自然的能够提出把高阶行列式转换为低阶行列式来计算;而代数余子式却指代的是n-1这类型的阶行列式。2、特点和用处都是不同的通常在数学所学的线性代数当中,一个矩阵A,它的余子式(同时又称之为余因式),就是指代将A的某些行以及某些列去掉了之后,所余留下的一些方阵的行列式。而相应的方阵在一些情况下会被称之为余子阵。而另一种情况就是将方阵A的一行以及一列都去掉了之后,所得到的余子式,可以用来获得相应的一些代数余子式,后者这个代数余子式在计算方阵的行列式以及逆时会派上一些用场。扩展资料:带有代数符号的余子式称为代数余子式,计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号。计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的,但一般不用此法,其原因是计算量太大。
铁血嘟嘟2023-05-16 14:51:111

余子式与代数余子式有什么区别?

余子式和代数余子式有三个区别:指代不同、特点不同、用处不同。一、指代不同1、余子式:行列式的阶数越低,越容易计算。因此,我们自然会问一个高阶行列式能否转换成低阶行列式进行计算。2、代数余子式:在第n阶行列式中,去掉元素a的另一行和e列ₒₑI后,剩下的n-1阶行列式称为元素a-I的余子式二、特点不同1、余子式:关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式。2、代数余子式:元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。三、用处不同1、余子式:转置矩阵称为A的伴随矩阵。伴随矩阵类似于逆矩阵,当A可逆时可用来计算A的逆矩阵。2、代数余子式:在计算元素的代数余子式时,首先要注意不要忽略余子式的代数符号。当计算一行(或一列)的元素余因子的线性组合时,可以直接计算每个余因子,然后将其求和。
阿啵呲嘚2023-05-16 14:51:111

代数余子式和余子式的区别

代数余子式和余子式的区别在于: 1、指代不同 余子式:行列式的阶越低越容易计算,于是很自然地提出,能否把高阶行列式转换为低阶行列式来计算。 代数余子式:在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式。 2、特点不同 余子式:关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式。 代数余子式:元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。 3、用处不同 余子式:转置矩阵称为A的伴随矩阵,伴随矩阵类似于逆矩阵,并且当A可逆时可以用来计算它的逆矩阵。 代数余子式:计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号。计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的。
墨然殇2023-05-16 14:51:111

什么是代数余子式?

代数余子式:在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。例子:例1 在五阶行列式 中,划定第二行、四行和第二列、三列,就可以确定D的一个二阶子行列式A的相应的余子式M为:子行列式A的相应的代数余子式为:扩展资料:代数余子式求和带有代数符号的余子式称为代数余子式,计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号  。计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的,但一般不用此法,其原因是计算量太大,注意到行列式D中元素  的代数余子式  与  的值无关。仅与其所在位置有关,利用这一点,可将D的某一行(或列)元素的代数余子式的线性组合表示为一个行列式,而构造这一行列式是不难的,只需将其线性组合的系数替代D的该行(或该列)元素,所得的行列式  就是所要构造的行列式,再应用下述行列式的展开定理,即命题1和命题2,就可求得  的值。命题 1 n阶行列式  等于它的任一行(列)的所有元素与其对应的代数余子式的乘积之和:命题2 n阶行列式  的任一行(列)的元素与另一行(列)对应元素的代数余子式乘积之和等于零:参考资料:百度百科---代数余子式
韦斯特兰2023-05-16 14:51:111

代数余子式之和是什么?

第1行的代数余子式之和等于把原行列式的第1行元素都换为1所得的行列式, 第2行的代数余子式之和等于把原行列式的第2行元素都换为1所得的行列式, ... 第n行的代数余子式之和等于把原行列式的第n行元素都换为1所得的行列式。 所有代数余子式之和就是上面n个新行列式之和。
北营2023-05-16 14:51:111

代数余子式怎么求

在一个n阶行列式D中,把元素aij(i,j=1,2,.....n)所在的行与列划去后,剩下的(n-1)^2个元素按照原来的次序组成的一个n-1阶行列式Mij,称为元素aij的余子式,Mij带上符号(-1)^(i+j)称为aij的代数余子式,记作Aij=(-1)^(i+j)Mij。
西柚不是西游2023-05-16 14:51:113

余子式与代数余子式有何区别?

一、指代不同1、余子式:行列式的阶越低越容易计算,于是很自然地提出,能否把高阶行列式转换为低阶行列式来计算。2、代数余子式:在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式二、特点不同1、余子式:关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式。2、代数余子式:元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。三、用处不同1、余子式:转置矩阵称为A的伴随矩阵,伴随矩阵类似于逆矩阵,并且当A可逆时可以用来计算它的逆矩阵。2、代数余子式:计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号 。计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的。参考资料来源:百度百科-代数余子式参考资料来源:百度百科-余子式
阿啵呲嘚2023-05-16 14:51:111

余子式和代数余子式有什么区别?

余子式和代数余子式有三个区别:指代不同、特点不同、用处不同。一、指代不同1、余子式:行列式的阶数越低,越容易计算。因此,我们自然会问一个高阶行列式能否转换成低阶行列式进行计算。2、代数余子式:在第n阶行列式中,去掉元素a的另一行和e列ₒₑI后,剩下的n-1阶行列式称为元素a-I的余子式二、特点不同1、余子式:关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式。2、代数余子式:元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。三、用处不同1、余子式:转置矩阵称为A的伴随矩阵。伴随矩阵类似于逆矩阵,当A可逆时可用来计算A的逆矩阵。2、代数余子式:在计算元素的代数余子式时,首先要注意不要忽略余子式的代数符号。当计算一行(或一列)的元素余因子的线性组合时,可以直接计算每个余因子,然后将其求和。
善士六合2023-05-16 14:51:111

代数余子式

这只是二阶啊,首先,a,划掉a所在行所在列,所以a的就是d。其次,b,划掉b所在行所在列即c乘以负一的1+2次(第一行第二列),所以b的就是-c。同理,对于c,等于b乘以负一的2+1次,所以为-b。d的就是a。明白?建议你百度下代数余子式的概念。
陶小凡2023-05-16 14:51:103

线性代数余子式问题?

余子数都是正数,代数余子式有正有负…比如按第一列展开 Ai1=(-1)^(i+1)*Mi1.其中Mi1就是余子式,Ai1是代数余子式 .这个是行列式的展开定理.按i行的展开式D=(-1)^(i+1)ai1Mi1+(-1)^(i+2)ai2Mi2+……+(-1)^(i+n)ainMin(...
水元素sl2023-05-16 14:51:102

代数余子式和余子式的区别是什么?

一、指代不同1、余子式:行列式的阶数越低,越容易计算。因此,我们自然会问一个高阶行列式能否转换成低阶行列式进行计算。2、代数余子式:在第n阶行列式中,去掉元素a的另一行和e列ₒₑI后,剩下的n-1阶行列式称为元素a-I的余子式二、特点不同1、余子式:关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式。2、代数余子式:元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。简介A的一个k阶余子式是A去掉了m−k行与n−k列之后得到的k×k矩阵的行列式。由于一共有k种方法来选择该保留的行,有k种方法来选择该保留的列,因此A的k阶余子式一共有 Ckm*Ckn个。如果m=n,那么A关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式,简称为A的k阶余子式。
FinCloud2023-05-16 14:51:101

代数余子式怎么算

在一个n阶行列式D中,把元素aij(i,j=1,2,……n)所在的行与列划去后,剩下的(n-1)^2个元素按照原来的次序组成的一个n-1阶行列式Mij,称为元素aij的余子式,Mij带上符号(-1)^(i+j)称为aij的代数余子式,记作Aij=(-1)^(i+j)Mij。 在一个n阶行列式D中,把元素aij(i,j=1,2,……n)所在的行与列划去后,剩下的(n-1)^2个元素按照原来的次序组成的一个n-1阶行列式Mij,称为元素aij的余子式,Mij带上符号(-1)^(i+j)称为aij的代数余子式,记作Aij=(-1)^(i+j)Mij。
拌三丝2023-05-16 14:51:092

什么是代数余子式?

代数余子式:在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。例子:例1 在五阶行列式 中,划定第二行、四行和第二列、三列,就可以确定D的一个二阶子行列式A的相应的余子式M为:子行列式A的相应的代数余子式为:扩展资料:代数余子式求和带有代数符号的余子式称为代数余子式,计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号  。计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的,但一般不用此法,其原因是计算量太大,注意到行列式D中元素  的代数余子式  与  的值无关。仅与其所在位置有关,利用这一点,可将D的某一行(或列)元素的代数余子式的线性组合表示为一个行列式,而构造这一行列式是不难的,只需将其线性组合的系数替代D的该行(或该列)元素,所得的行列式  就是所要构造的行列式,再应用下述行列式的展开定理,即命题1和命题2,就可求得  的值。命题 1 n阶行列式  等于它的任一行(列)的所有元素与其对应的代数余子式的乘积之和:命题2 n阶行列式  的任一行(列)的元素与另一行(列)对应元素的代数余子式乘积之和等于零:参考资料:百度百科---代数余子式
小菜G的建站之路2023-05-16 14:51:091

代数余子式之和是什么?

所有代数余子式之和等于这个伴随矩阵所有元素之和,直接求它的伴随矩阵就行,然后伴随矩阵各个元素相加即为所求。在n阶行列式中,把元素ai所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素ai的余子式,记作M,将余子式M再乘以-1的o+e次幂记为A,A叫做元素a的代数余子式。一个元素ai的代数余子式与该元素本身没什么关系,只与该元素的位置有关。数学:数学是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
LuckySXyd2023-05-16 14:51:091

代数余子式怎么求

在一个n阶行列式D中,把元素aij (i,j=1,2,.....n)所在的行与列划去后,剩下的(n-1)^2个元素按照原来的次序组成的一个n-1阶行列式Mij,称为元素aij的余子式,Mij带上符号(-1)^(i+j)称为aij的代数余子式,记作Aij=(-1)^(i+j) Mij。
真颛2023-05-16 14:51:094

代数余子式的计算方法是什么?

所有代数余子式之和等于这个伴随矩阵所有元素之和,直接求它的伴随矩阵就行,然后伴随矩阵各个元素相加即为所求。在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。扩展资料计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的,但一般不用此法,其原因是计算量太大,注意到行列式D中元素的代数余子式与的值无关,仅与其所在位置有关。利用这一点,可将D的某一行(或列)元素的代数余子式的线性组合表示为一个行列式,而构造这一行列式是不难的,只需将其线性组合的系数替代D的该行(或该列)元素,所得的行列式就是所要构造的行列式,再应用下述行列式的展开定理,即命题1和命题2,就可求得的值。参考资料来源:百度百科-代数余子式
mlhxueli 2023-05-16 14:51:091

关于代数余子式的计算

在一个n级行列式D中,把元素aij (i,j=1,2,.....n)所在的行与列划去后,剩下的(n-1)^2个元素按照原来的次序组成的一个n-1阶行列式Mij,称为元素aij的余子式,Mij带上符号(-1)^(i+j)称为aij的代数余子式,记作Aij=(-1)^(i+j)Mij这个题中,第二行第三个元素的代数余子式应该记为A23,而不是A32就是去掉第二行第三个元素所在的行和列,一个三阶的方阵,其行列式记做M23此题中M23=|1 2 -1|=6 |0 2 -1| |5 0 3|A23=(-1)^(2+3)M23 =-M23=-6
人类地板流精华2023-05-16 14:51:091

代数余子式与余子式

我记得余子式是行列式的概念,不过百度百科上讲的是矩阵,不知道准确的应该怎样。如果是矩阵的话,一定要是方阵。比如有如下行列式(或方阵)A:|1 2 3 ||4 5 6 ||7 8 9 |那么第一行第一列的余子式A(1,1)就是去掉第一行第一列 留下来的行列式的值M(1,1):|5 6 ||8 9 |这个行列式的值,所以是5*9-6*8=-3代数余子式A(i,j)=M(i,j)*(-1)^(i+j)A(1,1)=M(1,1)*(-1)^(1+1)=-3
再也不做站长了2023-05-16 14:51:091

常数的代数余子试????

余子式是去掉一行一列由剩下和元素组成的行列式,而常数可以看作一阶矩阵或一阶行列式,它没有办法定义余子式,也就没有代数余子式。
善士六合2023-05-16 14:51:091

余子式和代数余子式是什么?

代数余子式是从行列式的公式中提取出来的,它的作用是把n阶行列式化简为n – 1阶行列式。在n阶行列式中,把元素ai所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素ai的余子式,记作M,将余子式M再乘以-1的o+e次幂记为A,A叫做元素a的代数余子式。在n阶行列式中,划去元aij所在的第i行与第j列的元,剩下的元不改变原来的顺序所构成的n-1阶行列式称为元aij的余子式。相关内容介绍:代数余子式本身就是行列式,只是它的正负号需要单独判断,判断方法是根据选定元素行号和列号之和的奇偶性。用Cij表示aij的代数余子式,当i + j是偶数时,行列式取正号,是奇数则取符号。比如三阶行列式中,C12的行列号之和是3,它对应的代数余子式取符号。通过消元法计算是正确的选择,通常也应该这么做,实际上不难看出这个A是一个奇异矩阵,所以它的行列式等于0,现在用行列式的公式来验证这个结论。
ardim2023-05-16 14:51:082

余子式和代数余子式有什么区别和联系?

余子式和代数余子式有三个区别:指代不同、特点不同、用处不同。一、指代不同1、余子式:行列式的阶数越低,越容易计算。因此,我们自然会问一个高阶行列式能否转换成低阶行列式进行计算。2、代数余子式:在第n阶行列式中,去掉元素a的另一行和e列ₒₑI后,剩下的n-1阶行列式称为元素a-I的余子式二、特点不同1、余子式:关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式。2、代数余子式:元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。三、用处不同1、余子式:转置矩阵称为A的伴随矩阵。伴随矩阵类似于逆矩阵,当A可逆时可用来计算A的逆矩阵。2、代数余子式:在计算元素的代数余子式时,首先要注意不要忽略余子式的代数符号。当计算一行(或一列)的元素余因子的线性组合时,可以直接计算每个余因子,然后将其求和。
水元素sl2023-05-16 14:51:081

究竟什么是余子式,什么是代数余子式?

在一个n级行列式D中,把元素aij (i,j=1,2,.....n)所在的行与列划去后,剩下的(n-1)^2个元素按照原来的次序组成的一个n-1阶行列式Mij,称为元素aij的余子式,Mij带上符号(-1)^(i+j)称为aij的代数余子式,记作Aij=(-1)^(i+j)Mij
北营2023-05-16 14:51:083

代数余子式和余子式的区别

代数余子式和余子式的区别在于计算方法和所得结果的不同。1、计算方法不同:余子式是指把矩阵中某个元素划掉所得到的子矩阵的行列式值。例如,对于一个3阶矩阵A,其元素a21的余子式可以表示为A21"=det(A"21),其中A"21是把第2行和第1列删除后所得的2阶子矩阵。余子式的计算方法相对于代数余子式来说稍微复杂一些,但结果是一个矩阵。2、所得结果的不同:代数余子式是一个标量值,而余子式是一个矩阵。在矩阵的逆、伴随矩阵等相关运算中,它们的作用也是不同的。
gitcloud2023-05-16 14:51:081

线性代数里的特征多项式是什么?求其概念。

要理解特征多项式,首先需要了解一下特征值与特征向量,这些都是联系在一起的:设A是n阶矩阵,如果数λ和n维非零列向量x使得关系式Ax=λx成立,那么,这样的数λ就称为方阵A的特征值,非零向量x称为A对应于特征值λ的特征向量。然后,我们也就可以对关系式进行变换:(A-λE)x=0其中E为单位矩阵这是n个未知数n个方程的齐次线性方程组,它有非零解的充要条件是系数行列式为0,即|A-λE|=0带入具体的数字或者符号,可以看出该式是以λ为未知数的一元n次方程,称为方阵A的特征方程,左端|A-λE|是λ的n次多项式,也称为方阵A的特征多项式。到此为止,特征多项式的定义表述完毕。
ardim2023-05-16 14:50:541

高等代数多项式有理数域可约问题,f不可约的充要条件是g(x)=f(ax+b)不可约,怎么样才能找到适合的b呢?

通过我所接触到的这类题目,用x=y+1,x=y-1其中之一能解决问题的占了100%。所以我的建议是只用试试x=y+1,x=y-1,如果都不成功,很可能说明本题不能用爱森斯坦判别法。尝试其他方法。顺便,如果你想刨根问底,可以在百度问 电灯剑客 ,他是高等代数高手!
善士六合2023-05-16 14:50:532

高等代数问题: 如何求这个多项式的有理根?

求几重根用求导没有任何帮助。如果知道根x1,用多项式g(x)不停除以(x-x1)直到不能除尽就可以了。
瑞瑞爱吃桃2023-05-16 14:50:526

线性代数:什么是向量组等价

两个向量组可以相互线性表出,比如A向量组中的向量(α1,……,αn),B向量组中的向量(β1,……,βn),A中的任意一个向量αi可由β1,……,βn线性表出,同时B中的任意一个向量βi可由α1,……,αn线性表出,则A和B两个向量组等价
此后故乡只2023-05-16 14:50:483

线性代数中两个向量组等价是什么意思

两个向量组可以互相线性表出, 即是第一个向量组中的每个向量都能表示成第二个向量组的向量的线性组合,且第二个向量组中的每个向量都能表示成第一二个向量组的向量的线性组合
可桃可挑2023-05-16 14:50:475

线性代数,等价是什么意思

等价本来是一个很宽泛的概念,在线性代数里除此之外还有另一种意思:如果存在一组初等变换把矩阵A变成矩阵B,或者说存在可逆阵P和Q使得PAQ=B,那么称A和B等价(也叫相抵)类似地有行等价和列等价不过要注意酉等价是酉相似的意思,而不仅仅是相抵
凡尘2023-05-16 14:50:452

线性代数中的向量组等价具体指的是什么?

向量组等价一般指等价向量组。向量组等价的基本判定是:两个向量组可以互相线性表示。需要重点强调的是:等价的向量组的秩相等,但是秩相等的向量组不一定等价。向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。(注意区分粗体字与普通字母所表示的不同意义)或者说:两个向量组可以互相线性表示,则称这两个向量组等价。注:1、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。2、任一向量组和它的极大无关组等价。3、向量组的任意两个极大无关组等价。4、两个等价的线性无关的向量组所含向量的个数相同。5、等价的向量组具有相同的秩,但秩相同的向量组不一定等价。扩展资料设有两个向量组(Ⅰ):α1,α2,……,αm;(Ⅱ):β1,β2,……,βm;如果(Ⅰ)中每个向量都可以由向量组(Ⅱ)线性表示,则称(Ⅰ)可由(Ⅱ)线性表示;如果(Ⅰ)与(Ⅱ)可以相互线性表示,则称(Ⅰ)与(Ⅱ)等价,记为(Ⅰ)≌(Ⅱ)。例如:,若β1=α1+α2,β2=α1-2α2,β3=α1,则向量组(Ⅰ)={α1,α2}与向量组(Ⅱ)={β1,β2,β3}等价。事实上,给定的条件已表明(Ⅱ)可由(Ⅰ)线性表示,又容易得到α1=(2/3)β1+(1/3)β2+0β3,α2=(1/3)β1-(1/3)β2+0β3,这表明(Ⅰ)也可以由(Ⅱ)线性表示,由定义即知(Ⅰ)与(Ⅱ)等价。
黑桃花2023-05-16 14:50:431

线性代数,等价是什么意思

线性代数,等价是什么意思等价--相同
tt白2023-05-16 14:50:423
 首页 上一页  8 9 10 11 12 13