- 北境漫步
-
刘 徽
刘徽(生于公元250年左右),南北朝时期数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
贾 宪
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。
朱世杰
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).
祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。
祖 暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
赵 爽
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
- 康康map
-
祖冲之将圆周率精确到小数点七位,九章算术最早提出勾股定理刘 徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
贾 宪
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。
朱世杰
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).
祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。
祖 暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
赵 爽
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
- 真颛
-
祖冲之 圆周率祖冲之 圆周率
- 豆豆staR
-
祖冲之 圆周率
数学归纳法中增乘怎么算
即n=1×2×3×...×(n-1)×n。数学归纳法增乘算法公式为,即n=1×2×3×...×(n-1)×n,阶乘亦可以递归方式定义:n=1,n=(n-1)×n,该算法是全日制高级中学教科书《数学》第三册内容。2023-05-20 18:59:511
增乘开方法的创立是什么时候?
我国是世界数学史上最早提出开平方、开立方的法则的国家。早在中国古代数学著作《九章算术》中的《少广》章里就讲述了开平方与开立方的法则,这个法则对解方程起了重要作用。因此,在世界数学史上占有重要的地位。公元5世纪,南北朝时期祖冲之进一步推广了开平方、开立方的方法,能求出一般的二次方程式和三次方程式的正根。到隋唐时代,在数学著作中,则有开差幂(由长宽不等的长方形面积求其长宽)、开差立(由长宽高不等的立方体的体积求其长宽高)的问题。1050年左右,北宋数学家贾宪在他编著的《九章算法细算》中创造了开任意高次幂的“增乘开方法”。其做法与现代教科书中所用的步骤相同,用所拟定的根数,边乘边加,变换原方程式的系数。增乘开方法对以后求高次方程式正根,有很大影响。如1247年秦九韶的《数书九章》、1248年李冶的(测圆海镜》等著作中都用了增乘开方法。在欧洲许多数学家用了种种方法求三项与高次方程式的实根,都比较复杂和不切实际。直到1840年意大利人罗斐尼和1819年英国人霍纳等才找到了与中国增乘开方法大致相同的算法,但是他们都比贾宪晚了800多年,而比祖冲之则晚了1300多年。2023-05-20 18:59:571
请教数学:增乘开方法(即唔用计算机计平方根)
用人手计算平方根的方法,是要将被开方的数由个位开始会两个位作一单位, 以872开方为例,由个位开始每两个位作用单为,变成 8 及 72 两组 先将第一组数字8找出比它较少的完全平方,即2,2的平方为4,如下的方法写在下一行。用除数的相似方法 872 – 400 变成472 将第一次得的平方根数值2,乘20倍变成40,估计开方根的第二位数字a,使 a 乘 40 + a 可以最接近但不大于 472,因些估计平方根的个位 a 为 9,而 9 x 49 = 441,写在如图的下方,又如除法的将 472 – 441 = 31 因这数左方没有数字,所以好像除法的一样要补 0,不过是补2个0,不是一个,如下图 将开方得的这两位数字 29 乘 20,变成 580,写在下一行,再估小数后的第一位 b,便 b(580 + b) < 3100,因此得小数后的第一位为 5 585 x 5 = 2925 用除数方法 3100 – 2925 = 175,再补两个零变成 17500 将之前开方得的数字 x 20 295x20 = 5900 用以上的方法一次一次地找下一位,便可以计到这数字的开方根。 2 9. 5 2 9 ────────────────────── )8 72 4 ────────────────────── 49)4 72 4 41 ────────────────────── 585) 31 00 29 25 ────────────────────── 5902) 1 75 00 1 18 04 ────────────────────── 59049) 56 96 00 53 14 41 ────────────────────── 3 81 59 用短除式 如64 因为不能打所以这样表示 64÷2=32 32÷2=16 16÷2=8 8÷2=4 4÷2=2 2÷2=1 现在有6个2 我地将佢地分成2组并做成质因数分解 即系有2个2的3次方 将其中1个2的3次方乘左佢 即系2x2x2 就知到64的平方根系8 参考: me2023-05-20 19:00:041
增函数乘以减函数等于什么?
增函数乘以减函数是减函数。增乘增为增,减乘减为增,减乘增为减,减加减为减,增加增为增,增加减不一定,奇加奇为奇,偶加偶为偶,奇加偶不一定,奇复合奇为偶,偶复合偶为偶,奇复合偶为奇.增减无复合方面的性质,奇偶无乘除的性质。单调性的判断方法增函数就是随x增大y增大,如y=x,减函数就是随x增大y减小,如y=1/x,一次函数的表达式是 y=kx+b,x可取任何实数,只要k<0时,一次函数是减函数,k>0时,一次函数是增函数,图像法,先作出函数图像,利用图像直观判断函数的单调性。增函数+增函数=增函数减函数+减函数=减函数增函数-减函数=增函数减函数-增函数=减函数增函数-增函数=不能确定减函数-减函数=不能确定判断函数单调性的基本方法有定义法,图像法,复合函数法,导数法等等。2023-05-20 19:00:131
增函数乘增函数单调性怎么看?增乘减 减乘减呢?
增函数乘增函数,还是增函数2023-05-20 19:00:283
增函数乘以增函数得增函数吗?
增乘增为增,减乘减为增,减乘增为减,减加减为减,增加增为增,增加减不一定,奇加奇为奇,偶加偶为偶,奇加偶不一定,奇复合奇为偶,偶复合偶为偶,奇复合偶为奇.增减无复合方面的性质,奇偶无乘除的性质.如果想方便记忆就举两个很熟悉的例子,比如f(x):y=x是增,g(x):y=-x是减,然后f(x)乘g(x)为x的平方,是条抛物线,就增减不一定啦.2023-05-20 19:00:373
增函数乘以增函数得增函数吗?
这个很容易记,可以把增函数看作正,减函数看作负,它们合成的时候看是正是负,比如增函数乘以增函数相当于两个正数相乘,所得为正,即增函数,类似的说法是同增异减2023-05-20 19:00:453
利用增乘开方法求x^3=54872
它的根的首位数是 3;(因为 64>54>27) 个位数是 8; (因为8³的个位数为2)2023-05-20 19:00:543
求增乘开方术详细介绍 万分感谢
告诉你:第一步,先用被开平方数开方,试商的整数部分。切记,此步是被开方数-商的平方!第二步,减得的数在从上搬两位下来,即如减得8,被开方数小数点后为0000000……,则搬两位下来,成800,再除——第三步,减得的800之类的数,做除法。除数为(第一步商的整数部分*20+x)形势(x即为这一步你要商的数),试商即可,根号8此时商得2.8第四步,同上,例根号8,商2.8,则除数为28*20+x(x为你这一步要商的数),再试商,根号8此时商得2.82依此类推,可以告诉你根号8小数点后12位是——8284271247462023-05-20 19:01:031
增函数乘增函数是增函数吗
下面的完全胡说 x是增函数?x都不是增函数还x乘x为x平方 教材上给的东西肯定对着呢2023-05-20 19:01:114
增函数乘以减函数等于什么?
增函数乘减函数得出的函数是无规律的。比如y=x是增函数,y=1/x是减函数,但是相乘之后是一个常函数y=1无单调性,而y=x^3是增函数,y=1/x是减函数,相乘之后是y=x^2,先减后增的。增减函数没有乘除法则,只有加减可以判断增减函数。函数的单调性也可以叫做函数的增减性。当函数f(x)的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。减函数乘增函数是什么:1.减函数乘增函数是减函数。函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。2.函数的增减性对加法有效,对其他的算法无效,如增乘增我们举下面的例子1,y=x是增函数,y=x^3还是增函数,两个一乘后是;y=x^4,在(0,+∞)上是增函数。2.y=x是增函数,y=1/x是减函数,两个一乘后是: y=1不增不减;3.增函数乘以减函数也是如此,只要上面的乘法函数改一下就行了;y=x是增函数,y=-x^3是减函数,相乘后是,y=x^4在(0,+∞)上是增函数,y=x是增函数,y=(1/x)是减函数,两个相乘后是:y=1,不增不减。2023-05-20 19:01:291
增函数乘增函数
没有任何规律性2023-05-20 19:01:455
单调递增函数相乘=单增或单减?单减乘以单减?单增乘以单减呢??
无论是增减性还是奇偶性,相乘除都是不能确定的,哪怕是增乘增或减乘减; 唯有:增函数+增函数或增函数-减函数=增函数; 减函数+减函数或减函数-增函数=减函数,16,请结合图形,2,需要根据两函数的正负性判断,基本思路是一样的: 例单调递增函数,对于x1 那么y1*z1与y2*z2的大小关系与y1、y2、z1、z2的正负性有关,1,一般地,相乘无法确定单调性。 但是,在同一个区间上,如果知道两个函数的符号,则可以判定。 如f(x)>0且单增,g(x)>0且单增 则fg单增,0,2023-05-20 19:01:591
增函数乘减函数得到什么函数,增函数乘增函数得到什么函数,减乘减函数得到什么?
函数的增减性对加法有效,对其他的算法无效,如增乘增等于什么呢?我们来下面的例子1,y=x是增函数,y=x^3还是增函数,两个一乘后是;y=x^4,在(0,+∞)上是增函数,2.y=x是增函数,y=1/x是减函数,两个一乘后是: y=1不增不减;3.增函数乘以减函数也是如此,只要上面的乘法函数改一下就行了;y=x是增函数,y=-x^3是减函数,相乘后是y=x^4在(0,+∞)上是增函数,y=x是增函数,y=(1/x)是减函数,两个相乘后是:y=1,不增不减,所以你的猜测是错误的;没有定理保证,2023-05-20 19:02:071
关于数学家的故事(50字左右)
这是对的热身赛生生世世的2023-05-20 19:02:2814
用数学归纳法证明“(n+1)(n+2)....(n+n)=1*3*...*(2n-1)*2^n”时“从k到k+1”左边需要增乘的代数式是
实际上是N1和N2,两者是不同的2023-05-20 19:03:014
两个函数相加减是不是复合函数?相乘除呢
都不是2023-05-20 19:03:083
中国十位最伟大的数学家,和他们简单的成就
1:祖冲之:南北朝时期人,他写了《缀术》一书,作为唐代国子监算学课本。祖冲之算出圆周率(π)的真值在3.1415926(朒数)和3.1415927(盈数)之间,相当于精确到小数第7位,成为当时世界上最先进的成就。这一纪录直到15世纪才由阿拉伯数学家卡西打破。 2:刘徽:《九章算术注》,最早提出了分数除法法则;最早给出最小公倍数的严格定义;最早应用小数;最早提出非平方数开方的近似值公式;最早提出负数的定义及加法法则;最早提出一次方程的定义及其完整解法;最早用无穷分割法证明了圆锥体的体积公式。经他注释的《九章算术》影响、支配中国古代数学的发展1000余年,成为东方数学的典范之一,在刘徽的《九章算术注》之后中国古代数学才真正形成了自己的理论体系。 3:秦九韶:系统地总结和发展了高次方程数值解法和一次同余组解法,提出了相当完备的“正负开方术”和“大衍求一术”,达到了当时世界数学的最高水平.著作《数书九章》,其中的大衍求一术、三斜求积术和秦九韶算法是具有世界意义的重要贡献。 4:商高:勾股定理的发现。 5:贾宪:创造了“贾宪三角”和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。6:华罗庚:在数论、矩阵几何学、典型群、自守函数论、多个复变数函数论、偏微分方程等很多领域都作出了卓越的贡献。他著有论文二百余篇、专著十本,成为美国科学院国外院士,法国南锡大学与香港中文大学荣誉博士。他的名字已进入美国华盛顿斯密司一宋尼博物馆,并被列为芝加哥科学技术博物馆中当今八十八个数学伟人之一。 7:陈省身:微分几何之父。结合微分几何与拓扑学的方法,完成了黎曼流形的高斯—博内一般形式和埃尔米特流形的示性类论.他首次应用纤维丛概念于微分几何的研究,引进了后来通称的陈氏示性类(简称陈类).为大范围微分几何提供了不可缺少的工具.他引近的一些概念、方法和工具,已远远超过微分几何与拓扑学的范围,成为整个现代数学中的重要组成部分. 8:苏步青:被誉为数学王,主要从事微分几何学和计算几何学等方面的研究。他在仿射微分几何学和射影微分几何学研究方面取得出色成果,在一般空间微分几何学、高维空间共轭理论、几何外型设计、计算机辅助几何设计等方面取得突出成就。 9:丘成桐:著名数学家。数学界最高荣誉菲尔兹奖得主之一。他在几何分析领域的贡献,在几何和物理的多个领域都产生的“深刻而引人注目的影响”。 10:杨乐:著名基础数学家。由于在函数模分布论、辐角分布论、正规族等方面的研究成果突出获得华罗庚数学奖。主要研究函数论中的整函数、亚纯函数的值分布理论。2023-05-20 19:03:191
谁知道用算盘怎么打,乘除法?
乘法有大九九口诀,小九九口诀。2023-05-20 19:03:274
中国古代数学家简介
这次的搜索这次的搜索很满意2023-05-20 19:04:4713
古代有几个数学家
刘 徽 刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 贾 宪 贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。 秦九韶 秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶 李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。 朱世杰 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法). 祖冲之 祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。 祖 暅 祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。 杨辉 杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 赵 爽 赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。 赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。2023-05-20 19:05:303
我国的数学专家有哪些?
你好,我是庆春路精锐教育的施老师,我国的数学家有:刘徽 刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 贾宪 贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。 秦九韶 秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶 李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。 朱世杰 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法). 祖冲之 祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。 祖暅 祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。 杨辉 杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 赵爽 赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。 赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。 华罗庚 华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。 1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。 代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专著和科普性著作数十种。 陈景润 数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学 数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16 ,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合 数学》等著作希望采纳,谢谢!2023-05-20 19:07:369
14世纪中国在数学发明了什么,现在还在使用?
解答:解:早在14世纪,中国就发明了一种计算工具,是算盘;故答案为:算盘.2023-05-20 19:07:523
古代中国数学
古代数学萌芽 一、中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 祖冲之 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。 墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。 编辑本段古代数学体系形成 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。 《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方 中国数学史 程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。 《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。 秦汉时期强调数学的应用性。成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法。 《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。 编辑本段古代数学发展 魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。 赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 3927/1250。 刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。 东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传 考古发现 统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖暅原理;提出二次与三次方程的解法等。 据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久; 祖冲之之子祖暅总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖暅公理。祖暅应用这个公理,解决了刘徽尚未解决的球体积公式。 隋炀帝大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。 唐初统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。 算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在 九章算术 布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。 唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。 编辑本段古代数学繁荣 960年,北宋的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。 从11~14世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》 中国数学史 等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰。 从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九章算法纂类》中载有贾宪“增乘开平方法”、“增乘开立方法”;在《详解九章算法》中载有贾宪的“开方作法本源”图、“增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的帕斯卡三角形早提出600多年。 把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中“田亩比类乘除捷法”卷,介绍了原书中22个二次方程和 1个四次方程,后者是用增乘开方法解三次以上的高次方程的最早例子。 秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次数为10)的问题。为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多年。 元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在“缀术推星”题、朱世杰在《四元玉鉴》“如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的内插公式。 用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。现存最早的天元术著作是李冶的《测圆海镜》。 从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。 朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这是线性方法组解法的重大发展,比西方同类方法早400多年。 勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个容圆公式,大大丰富了中国古代几何学的内容。 中国数学史 已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。 中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元代。 宋元数学家都在不同程度上反对理学家的象数神秘主义。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,“通神明”的数学是不存在的,只有“经世务类万物”的数学;莫若在《四元玉鉴》序文中提出的“用假象真,以虚问实”则代表了高度抽象思维的思想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑是促进数学发展的重要因素。2023-05-20 19:08:021
贾宪在数学上的成就有哪些?
贾宪是北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》和《算法斆古集》均已失传。他的主要贡献是创造了“贾宪三角”和增乘开方法。贾宪在数学知识的普及和教育过程中,注重数学教育的系统化?纲领化?抽象化及思维的多样化。从这里我们不难发现他的数学教育思想的闪光之处。现在知道其成就的贾宪是宋元时期第一位著名数学家。据《宋史》记载,贾宪师从北宋前期著名的天文学家和数学家楚衍学习天文?历算。对于《九章算术》?《缀术》?《海岛算经》诸算经的学习尤得其妙。根据记载,贾宪著有《黄帝九章算经细草》9卷?《算法斅古集》2卷及《释锁》,可惜均已失传。南宋时期著名数学家杨辉著《详解九章算法》中曾引用贾宪的“开方作法本源”图和“增乘开方法”。此外,贾宪给出的“立成释锁开方法”,完善的“勾股生变十三图”,以及创立的“增乘方求廉法”,都表明他对算法抽象化?程序化?机械化作出了重要贡献。虽然有关贾宪的资料保存下来的并不完整,但从杨辉缉录的《黄帝九章算经细草》中,我们仍然可以发现他的一些独到的数学思想和方法,主要有抽象分析法和程序化方法。贾宪在研究《九章算术》过程中,使用了抽象分析法,尤其在解决勾股问题时更为突出。他首先提出了“勾股生变十三图”,具备了勾股弦及其和差的所有关系,并对勾股问题进行了抽象分析。正是由于贾宪掌握了这一方法,才使他能够使用纯数学的方法改写《九章算术》术文,给后人留下公式化的解题范例。在方程术等其他章节的细草中,他也广泛运用了这种方法。程序化方法主要是指探究问题的思维程序?过程和步骤。适用于同一理论体系下,同一类问题的解决。贾宪的“增乘开方法”和“增乘方求廉法”尤其集中地体现了这一方法。贾宪在开立方过程中,已经形成了固定的程序。他的工作则使得开方程序系统化?规范化。贾宪的数学方法论,对宋元数学家产生了深远影响,纵观创造宋元数学主要成就的“宋元数学四大家”,莫不从中吸取精髓。贾宪的“增乘开方法”开创了开高次方的研究课题,后经秦九韶“正负开方术”加以完善,使高次方程求正根的问题得以解决。加之从李冶的天元术至朱世杰的四元术的建立,终于在14世纪初建立起一套完整的方程学理论,使之成为宋元数学界最有成就的课题。贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家B·帕斯卡重新发现。贾宪三角的给出,开创了高阶等差级数求和问题的研究方向。朱世杰从“三角”的每条斜线上发现了“三角垜”?“撒星形垜”等高阶等差级数求和公式。“增乘开方法”事实上简化了筹算程序,并使程序化更加合理,这对后世筹算乃至于算具的改进是有启迪意义的。《黄帝九章算经细草》开创的数学研究方法,被后世数学家广为借鉴。清代学术流派“乾嘉学派”在保存和整理数学著作时,就曾对《黄帝九章算经细草》等一批算书或注释或图说。古代学者著书立说目的之一就是教育世人。在数学知识的普及和教育过程中,贾宪重视对一般性解法的抽象,注重对知识纲要的概括,注重系统化,注重发散性思维的锻炼。从这里我们不难发现他的数学教育思想的闪光之处。贾宪重视对一般性解法的抽象。他之所以这样做,应该是深受我国古代早已有之的“授人以鱼不如授人以渔”的教育思想影响。据现在所知,《黄帝九章算经细草》约成书于1050年前后,此书出版后,在社会上流传较广,在一定程度上逐渐代替了《九章算术》。这也是当时社会对其数学教育思想的认可。贾宪注重对知识纲要的概括。他在给出“立成释锁开方法”之后,又提出“增乘方求廉法”并给出六阶贾宪三角,解释开各次方之间的联系。讨论勾股问题则先论“勾股生变十三图”,而后谈论问题的解法,给人以清晰的体系感。他的这些尝试,都体现了对知识纲要的重视。在数学教育上,注重对知识纲要的概括,也不失为一种良好的教学方法。现存资料显示,贾宪未涉足刘徽的分数和极限理论领域。再加上他在《黄帝九章算经细草》中所讨论的开方问题未涉及开不尽情况,他甚至把《九章算术》中有分数解的问题改题设以得整数解。这些迹象表明他的工作是建立在整数集之上的。在此基础上,贾宪提纲挈领地概括了勾股和开方问题,给出了诸多其他问题的一般性解法,从中我们隐约可以看到系统化方法的痕迹。事实上,以贾宪的数学知识水平,他不可能不熟知分数,也不会不了解刘徽的求微数思想,只是他对开方开不尽的问题没有研究透彻。因此在他的著述中才回避了分数,目的是把自己掌握的数学知识,系统地传于世人。这在古代数学教育史上是难能可贵的。贾宪注重发散性思维的锻炼。他讨论《九章算术》中诸类问题时,不是固守前人的思路和算法,发现了很多新的计算方法。如“课分法”?“减分法”?“今有术”?“合率术”?“分率术”?“方程术”?“两不足术”?“勾股旁要法”等。由此可见,贾宪不仅注重概括理论化的研究方法,同时也身体力行地致力于发散性思维的锻炼,这对于知识的创新是大有裨益的。《九章算术》是11世纪以前我国最著名的数学著作,在其流传过程中,为其作注的人很多。而在数学理论上有突出贡献的主要是3位数学家,即刘徽理论基础的奠定?贾宪理论水平的提高和杨辉理论的基本完善,贾宪起着承前启后的作用。另一方面,魏晋南北朝兴起的数学研究热潮自唐而中断,贾宪的数学方法论又激发了宋元时期的数学研究热潮,他又起到推波助澜的作用。贾宪对于《九章算术》中提出的问题,抽象分析,揭示数学本质;借助程序化,讲解方法的原理;提纲挈领,梳理知识脉络;注重知识系统化,避免产生悖论。这些思想方法对宋元数学家有着很深的影响。比如:杨辉著《详解九章算法》借鉴了贾宪的抽象和探索成果,对《九章》各题重新纂类;李冶著《测圆海镜》就继承并发扬了这些数学方法,建立了一个逻辑严密的演绎体系。朱世杰著《四元玉鉴》也用到这些思想方法,成就了我国古代数学史上的巅峰之作;秦九韶著《数术大略》不言具体数字更是师法贾宪,可见其方法论的生命力。当然,这些数学思想方法也并非贾宪独创,也是历代数学著述?研究?积累的结果,而贾宪又将其提炼和传承。总之,“贾宪三角”的发现及与之密切相关的“增乘开方法”的创立,对于我国古典数学于宋元时期达到高峰起到了重要的推动作用。贾宪2023-05-20 19:08:121
用数学归纳法证明...(n+1)(n+2)…(n+n)=
n=k+1尾项=n+n=(k+1)+(k+1)=2(k+1)如要用数学归纳法证明,参见我对另一题的回答: http://zhidao.baidu.com/question/171602796.html2023-05-20 19:08:212
用2颗数珠在计数器中可以表示出20以内(不包括20)的数有哪些
用2颗数珠在计数器中可以表示出20以内11,22023-05-20 19:08:412
中国古代数学的辉煌史
杨辉三角2023-05-20 19:08:563
中国古代数学有多牛,仅留下的书籍就将近1500万字,中国古代有哪些数学成就?
中国古代的数学其实成就是很高的。我国是世界上最早使用十进制计数的国家之一,商代甲骨文中已有十进制计数。在人类历史上,曾出现过五进制、十二进制、十六进制、二十进制、六十进制等,但除了计时和角度仍保留着六十进制外,其他进制都被十进制所取代了。数字写法有“顺序”,从左到右,或从右到左,或从上到下,于是同一个计数符号写在不同位置上,其数值大小也不相同,这就是位值制。《孙子算经》记载:凡算之法,先识其位,一从十横,百立千僵,千十相望,万百相当。中国古代用算筹记数,进行加减乘除的运算,唐代末年,算筹的乘除法被改进,到宋代产生算筹的乘除法歌诀。中国人还首创了世界上第一个数学专科学校,这就是国子监所辖的六学之一的算学,长安与洛阳各置一所,专门培养数学人才。算学招收学生,置有算学博士等学官,负责学生的教学工作。2023-05-20 19:09:062
朱世杰的天元术是?
朱世杰也是一位医生,肿瘤科的医生,在北京天健医院出诊,周二下午,周日全天。。。无痛病房2023-05-20 19:09:133
什么是开方,怎样开方
可以查平方根和立方根表。2023-05-20 19:09:283
客机空间太小 航空公司怎样增加座位呢?
航空公司和飞机制造商的想法都是类似的,那就是如何在飞机有限的空间内塞进更多的乘客,最好能像沙丁鱼罐头那样。以前有航空公司安装过缩水版座椅,还有航空公司提出过像自行车坐垫一样的休息位,为了能增加乘客数,航空公司可谓煞费苦心。我们最近发现了法国飞机座椅供货商Zodiac Seats 递交了一份新专利,这份专利中提到的另类座椅方案让人感到非常压抑,非常不爽。厂商将每排座椅的中间座位翻转向后,号称能够充分利用空间。“经济舱六边形”设计实际上让每位乘客周围的乘客数量由2人上升到4人。根据专利中的描述,这么安排座椅是为了至少让每一排有至少一个向前的座位和至少一个向后的座位。以前我们身边最多有两个人,现在飞下来全程你竟然要被包围在四个人中间,多了两个你开不开心?Zodiac表示新座椅设计不但能够增加客舱的乘客密度,每位乘客手部和肩部的空间比以前还大呢!朝后坐上半身的活动空间是大了,可对面有两个活生生的人啊,这要他妈怎么视而不见呢,你不想对面两个人盯着你看,那你又让他们往哪儿看呢?这种座椅只能适合于亲朋好友,或者希望和对方聊天的情况看,否则太尴尬了。这份专利让我们见识了航空公司如何最大化利用有限的座位空间,Zodiac还没有打算真的吧这种设计投入生产。在六边形设计进入量产之前,一定还需要进行一系列安全测试和符合性测试,更不用说这么难看的设计,一定会有很多旅客拒绝买账。# 空客(Airbus)这么干毫不出奇,之前空客还有个更寒酸的座位专利。2023-05-20 19:09:351
简述宋元时期对我国科学技术对世界文明的贡献
指南针为欧洲航海家发现美洲和进行环球航行提供了重要条件,促进了世界贸易的发展;印刷术的出现,加快了文化的传播,改变了欧洲只有上等人才能读书的状况;火药的出现,改变了作战方式,帮助欧洲资产阶级摧毁封建堡垒提供了条件。2023-05-20 19:10:144
中国古代数学辉煌史
还记得3.1415926吗?2023-05-20 19:10:238
做数学手抄报,我要从古到今的数学家资料,要写数学家和数学的接触
去百度搜吧2023-05-20 19:10:406
单调增乘以单调减是什么
x*(1/x)=1x^3(1/x)=x^2没代么特别的结果。2023-05-20 19:11:073
单调增乘以单调减是什么
1) 单调增:y1(x)=x 单调减:y2(x)=-x 乘 积:y=y1(x)y2(x)=-x^2 (A) x>0 y(x) 单调减; (B) x0 单调减:y2(x)=1/x x>0 乘 积:y=y1(x)y2(x)=1 (A) y=1,不增不减常值函数; 3) 结论:没有规律,视具体情况而定.2023-05-20 19:11:131
单调性口诀
有问题:增乘增为增(y=x增,y=x增,y=x^2有增有减),减乘减为增(y=-x减,y=-x减,y=x^2有增有减),减乘增为减(y=-x减,y=x增,y=-x^2有增有减) 奇变偶不变,符号看象限 具体指三角函数的吧 诱导公式kπ/2+α 奇变偶不变:如果k是奇数,那么sin变成cos,以此类推;如果k是偶数,那么sin仍为sin,以此类推. 符号看象限:假定α是第一象限角,根据kπ/2+α所在象限的三角函数的符号确定诱导公式的符号. 例如sin(3π/2+α),k=3是奇数所以变为cos,假定α是第一象限角则3π/2+α是第四象限角,第四象限角正弦值为负,所以符号是"-",所以sin(3π/2+α)=-cosα 又如tan(-π+α),k=-2是偶数所以仍是tan,假定α是第一象限角则-π+α是第三象限角,第三象限角正切值为正,所以符号是"+",所以tan(-π+α)=tanα2023-05-20 19:11:221
单调递增函数相乘=单增或单减?单减乘以单减?单增乘以单减呢? 谢谢!
请结合图形2023-05-20 19:11:315
增函数乘减函数得到什么函数,增函数乘增函数得到什么函数,减乘减函数得到什么?
函数的增减性对加法有效,对其他的算法无效,x0dx0a如增乘增等于什么呢?我们来下面的例子x0dx0a1,x0dx0ay=x是增函数,y=x^3还是增函数,两个一乘后是;y=x^4,在(0,+∞)上是增函数,x0dx0a2.x0dx0ay=x是增函数,x0dx0ay=1/x是减函数,两个一乘后是: y=1不增不减;x0dx0a3.x0dx0a增函数乘以减函数也是如此,只要上面的乘法函数改一下就行了;x0dx0ay=x是增函数,y=-x^3是减函数,相乘后是x0dx0ay=x^4在(0,+∞)上是增函数,x0dx0ay=x是增函数,y=(1/x)是减函数,两个相乘后是:x0dx0ay=1,不增不减,x0dx0a所以你的猜测是错误的;没有定理保证,2023-05-20 19:11:461
增函数乘减函数是什么函数,增函数乘增函数为什么,减乘减是什么
同增异减2023-05-20 19:11:543
增函数乘减函数是什么函数,增函数乘增函数为什么,减乘减是什么
函数的增减性对加法有效,对其他的算法无效,如增乘增等于什么呢?我们来下面的例子1,y=x是增函数,y=x^3还是增函数,两个一乘后是;y=x^4,在(0,+∞)上是增函数,2.y=x是增函数,y=1/x是减函数,两个一乘后是:y=1不增不减;3.增函数乘以减函数也是如此,只要上面的乘法函数改一下就行了;y=x是增函数,y=-x^3是减函数,相乘后是y=x^4在(0,+∞)上是增函数,y=x是增函数,y=(1/x)是减函数,两个相乘后是:y=1,不增不减,所以你的猜测是错误的;没有定理保证,2023-05-20 19:12:031
我国五位著名数学家的姓名,简介,成就
中央集权君主专制进一步强化,逐步演变成日后的皇帝一人独揽大权的局面,这不是算消极的影响。但是,推恩令的推行是对地方豪强的权利限制,因此它可能会成为豪强地主不满的导火线,也就可见它是东汉末年豪强地主纷纷拥兵一方分裂割据的原因之一2023-05-20 19:12:122
关于数学家的故事(50字左右)
1、朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。主要著作是《算学启蒙》与《四元玉鉴》。2、贾宪的主要贡献是创造了“贾宪三角”和“增乘开方法”。增乘开方法即求高次幂的正根法。目前中学数学中的综合除法,其原理和程序都与它相仿。增乘开方法比传统的方法整齐简捷,又更程序化,所以在开高次方时,尤其显出它的优越性。增乘开方法的计算程序大致和欧洲数学家霍纳(公元1819年)的方法相同,但比他早770年。在中国数学史上贾宪最早发现贾宪三角形。杨辉在所著《详解九章算法》《开方作法本元》一章中作贾宪开方作法图,并说明“出释锁算书,贾宪用此术”。贾宪开方作法图就是贾宪三角形。杨辉还详细解说贾宪还发明的释锁开平方法,释锁开立方法,增乘开平方法,增乘开立方法。3、陈景润(1933年5月22日-1996年3月19日),男,汉族,无党派人士,福建福州人,当代数学家。1949年至1953年就读于厦门大学数学系,1953年9月分配到北京四中任教。1955年2月由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所。1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。 1981年3月当选为中国科学院学部委员(院士)。曾任国家科委数学学科组成员,中国科学院原数学研究所研究员。1992年任《数学学报》主编。1996年3月19日下午1点10分,陈景润在北京医院去世,年仅63岁。 2018年12月18日,党中央、国务院授予陈景润同志改革先锋称号,颁授改革先锋奖章,并获评激励青年勇攀科学高峰的典范。 4、祖冲之(429年—500年),字文远,出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。5、苏步青(1902年9月23日—2003年3月17日),浙江温州平阳人,祖籍福建省泉州市,中国科学院院士,中国著名的数学家、教育家,中国微分几何学派创始人,被誉为“东方国度上灿烂的数学明星”、“东方第一几何学家”、“数学之王”。 1927年毕业于日本东北帝国大学数学系,1931年获该校理学博士学位,1948年当选为中央研究院院士,1955年被选聘为中国科学院学部委员,1959年加入中国共产党,1978年后任复旦大学校长、数学研究所所长,复旦大学名誉校长、教授。 从1927年起在国内外发表数学论文160余篇,出版了10多部专著,他创立了国际公认的浙江大学微分几何学学派;他对“K展空间”几何学和射影曲线的研究。苏步青主要从事微分几何学和计算几何学等方面的研究,在仿射微分几何学和射影微分几何学研究方面取得出色成果,在一般空间微分几何学、高维空间共轭理论、几何外型设计、计算机辅助几何设计等方面取得突出成就。6、华罗庚早年的研究领域是解析数论,他在解析数论方面的成就尤其广为人知,国际间颇具盛名的“中国解析数论学派”即华罗庚开创的学派,该学派对于质数分布问题与哥德巴赫猜想做出了许多重大贡献。华罗庚也是中国解析数论、矩阵几何学、典型群、自守函数论等多方面研究的创始人和开拓者。 [9] 华罗庚在多复变函数论,典型群方面的研究领先西方数学界10多年,是国际上有名的“典型群中国学派”。参考资料来源:百度百科-苏步青参考资料来源:百度百科-陈景润参考资料来源:百度百科-贾宪参考资料来源:百度百科-朱世杰参考资料来源:百度百科-祖冲之参考资料来源:百度百科-华罗庚2023-05-20 19:12:211
数学资料
什么意思2023-05-20 19:12:515
中国人对世界数学的贡献有哪些
发现了素数分布规律,编制出有分布规律的孪生素数表。2023-05-20 19:13:152
用数学归纳法证明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,从“k到k+1”左端需增乘的代数
B 依题意当 时,左边 , 时,左边 .从“k到k+1”左端需增乘的代数式为 .故选B.2023-05-20 19:13:221
中国古代数学都是用什么符号表示的?
fsdgb2023-05-20 19:13:586
有没有数学家资料
陈省身(国语罗马字:Shiing-shen Chern,1911年10月28日—2004年12月3日),美国华裔数学家、教育家,国际微分几何大师。美国国家科学院院士、中央研究院院士,同时是法国科学院、意大利国家科学院、英国皇家学会和中国科学院的外籍院士。 1911年生于浙江嘉兴秀水县。1922年秀州中学毕业,来到天津。1923年入扶轮中学(今天津铁路一中)。1926年毕业,入南开大学数学系,1930年毕业,获学士学位。同年入清华大学任助教并攻读研究生,师从中国微分几何先驱孙光远,研究射影微分几何,1934年毕业,获硕士学位,为中国自己培养的第一名数学研究生。同年获中华文化教育基金会奖学金(一说受清华大学资助),赴德国汉堡大学学习,师从著名几何学家布拉希开(Blaschke),1936年2月获科学博士学位;毕业时奖学金还有剩余,于是又转去法国巴黎跟从嘉当(E.Cartan)研究微分几何。 1937年,陈省身担任清华大学教授;后因抗战随学校内迁至云南昆明,在北京大学、清华大学、南开大学合组的西南联合大学讲授微分几何。 1943年,应美国数学家维布伦(O.Veblen)之邀,到普林斯顿高级研究所工作。此后两年间,他完成了一生中最重要的工作:证明高维的高斯-邦内公式(Gauss-Bonnet Formula),构造了现今普遍使用的陈示性类,为整体微分几何奠定了基础。 1946年抗战胜利后,回到上海,主持中央研究院数学研究所的工作,此后两三年中,他培养了一批青年拓扑学家。1949年初,中央研究院迁往台湾,陈省身应普林斯顿高级研究所所长奥本海默之邀举家迁往美国。1949年夏,在芝加哥大学接替了E.P.Lane的教授职位;E.P.Lane正是陈省身的导师孙光远当年在美留学时的导师;在此为复兴美国的微分几何做出了重要贡献。1960年,陈省身受聘为加州大学伯克利分校教授,直到1980年退休为止。1961年当选为美国科学院院士,1963年至1964年间,任美国数学会副主席。陈省身晚年的一项重要贡献是1981年在加州大学柏克莱分校筹建以纯粹数学为主的美国国家数学研究所,他是第一任所长。 1984年退休,陈省身先后受聘为北京大学、南开大学名誉教授。1985年,受中华人民共和国教育部之聘担任南开大学数学研究所所长。同年南开大学授予他名誉博士学位。 自1986年起,中国数学会设立并承办“陈省身数学奖”。 北京时间2004年12月3日19时14分,陈省身在天津逝世。 丘成桐、吴文俊、廖山涛、郑绍远等著名学者都曾师从陈省身。 [编辑] 成就 陈省身结合微分几何与拓扑方法,先后完成了两项划时代的重要工作:其一为黎曼流形的高斯-博内一般公式,另一为埃尔米特流形的示性类论。他引进的一些概念、方法与工具,已远远超出微分几何与拓扑学的范围而成为整个现代数学中的重要构成部分。陈省身其他重要的数学工作有: 紧浸入与紧逼浸入,由他和R.莱雪夫开始,历30余年,其成就已汇成专著。 复变函数值分布的复几何化,其中一著名结果是陈-博特定理。 积分几何的运动公式,其超曲面的情形系同严志达合作。 复流形上实超曲面的陈�莫泽理论,是多复变函数论的一项基本工作。 极小曲面和调和映射的工作。 陈-西蒙斯微分式是量子力学异常现象的基本工具。 [编辑] 荣誉 陈省身获得了许多科学荣誉。 1961年,陈省身继物理学家吴健雄之后当选为第二位华裔美国国家科学院院士,这是美国科学界的最高荣誉职位。 1970年,获得美国数学协会的肖夫内奖。 1976年,获美国福特总统颁发的美国国家科学奖章,这是美国在科学、数学、工程方面的最高奖;陈省身和吴健雄是最早获得该项荣誉的华人科学家。 1983年,美国数学会“全体成就”的斯蒂尔奖。 1984年获以色列总统贺索颁发的沃尔夫数学奖,这是世界数学领域的最高奖项;陈省身是获得沃尔夫奖荣誉的第一位华裔数学家、第二位华裔科学家。 此外,他还曾获得美国数学学会颁发的Chau-venet奖(1970年)、Steele奖(1983年)。并曾获得德国洪堡奖、俄罗斯罗巴切夫斯基数学奖等奖项。另外,他在2004年获首届邵逸夫数学科学奖。11月2日,经国际天文学联合会下属的小天体命名委员会讨论通过,1998CS2小行星被命名为“陈省身星”。 陈省身曾经三次应邀在国际数学家大会上作演讲:1950年在美国波士顿的剑桥,1958年在苏格兰的爱丁堡,1970年在法国的尼斯。1950年和1970年都是一小时报告,这是国际数学家大会上最高规格的学术演讲。 陈省身曾出任美国数学学会副主席。他还是法国、意大利、中国等国的外籍院士。他也是第三世界科学院的创始发起者,英国皇家学会国外会员,巴西科学院的通讯院士,印度数学会名誉会员等。他曾被瑞士联邦理工大学、柏林工业大学、香港科技大学等多所著名大学授予荣誉博士学位。 陈省身被认为是20世纪最伟大的微分几何学家。陈省身和华罗庚、冯康被认为是三位具有世界顶尖成果和国际性影响的华人数学家。他还是菲尔茨奖得主丘成桐在伯克莱加州大学的导师。 吴文俊 吴文俊,中国人,1919年5月12日生于上海。1940年毕业于上海交通大学,1949年在法国斯特拉斯堡大学获博士学位。1951年回国,1957年任中国科学院学部委员,1984年当先为中国数学会理事长。吴文俊在数学上作出了许多重大的贡献。 拓扑学方面,在示性类、示嵌类等领域获得一系列成果,还得到了许多著名的公式,指出了这些理论和方法的广泛应用。他还在拓扑不变量、代数流形等问题上有创造性工作。1956年吴文俊因在拓扑学中的示性类和示嵌类方面的卓越成就获中国自然科学奖一等获。 机器证明方面,从初等几何着手,在计算机上证明了一类高难度的定理,同时也发现了一些新定理,进一步探讨了微分几何的定理证明。提出了利用机器证明与发现几何定理的新方法。这项工作为数学研究开辟了一个新的领域,将对数学的革命产生深远的影响。1978年获全国科学大会重大科技成果奖。 中国数学史方面,吴文俊认为中国古代数学的特点是:从实际问题出发,经过分析提高,再抽象出一般的原理、原则和方法,最终达到解决一大类问题的目的。他对中国古代数学在数论、代数、几何等方面的成就也提出了精辟的见解 吴文俊 科技名人 数学家。 上海人。 1940年毕业于上海交通大学。 1949年获法国国家科学研究中心博士学位。 1991年当选为第三世界科学院院士。中国科学院数学与系统科学研究院系统科学研究所研究员、名誉所长,中国数学会名誉理事长。中国数学机械化研究的创始人之一。 50年代在示性类、示嵌类等研究方面取得吴文俊公式、吴文...... 吴文俊(1919~ ) 中国数学家。中国科学院院士。1919年5月12日生于上海。1940年毕业于上海交通大学。1947年赴法国留学,先后在斯特拉斯堡、巴黎、法国科学研究中心进行数学研究,1949年获博士学位。1951年回国。历任北京大学数学系教授,中国科学院数学研究所研究员、副所长,中国科学院系统科学研究所研究员、副所长、名誉所长,数学机械化研究中心主任,中国数学会理事长、名誉理事长,中国科学院数学物理学部常务委员、主任等职。曾任全国政协常务委员。主要从事拓扑学、机器证明学等方面的研究并取得多项突出成果,是中国数学机械化研究的创始人之一。1952年刊印出版的博士论文《球纤维空间示性类理论》是对纤维空间基本问题的重要贡献。50年代在示性类、示嵌类等研究方面取得一系列突出成果,并有许多重要应用,被国际数学界称为“吴文俊公式”、“吴文俊示性类”,已被编入许多名著。这项成果曾获1956年国家自然科学奖一等奖。60年代继续进行示嵌类方面的研究,独创性地发现了新的拓扑不变量,其中关于多面体的嵌入和浸入方面的成果至今仍居世界领先地位。在庞特雅金示性类方面的成果,是拓扑学纤维丛理论和微分流形的几何学的一项基本理论研究,有深刻的理论意义。近年来创立了定理机器证明的吴文俊原理(国际上称为吴方法),实现了初等几何与微分几何定理的机器证明,达到了世界先进水平。这一重要创新改变了自动推理研究的面貌,在定理机器证明领域产生了巨大影响,并有重要的应用价值,它将引起数学研究方式的变革。这方面的研究成果曾获全国科学大会重大成果奖和中国科学院科技进步奖一等奖。在机器发现和创造定理的研究方面也取得了重要成果。 刘 徽 刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 贾 宪 贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。 秦九韶 秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶 李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。 朱世杰 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法). 祖冲之 祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。 祖 暅 祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。 杨辉 杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 赵 爽 赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。 赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。 华罗庚 华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。 1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。 1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。 40年代,解决了高斯完整三角和的估计这 一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈 代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至 今仍是最佳纪录。 代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出 了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉 当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍 德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居 世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之 一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在 调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等 奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作 并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为 “华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多 篇,并有专著和科普性著作数十种。 陈景润 数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学 数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数 学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国 际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王 元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改 进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16 ,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类 生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合 数学》等著作 中国著名数学家 许宝騄 华罗庚 陈省身 林家翘 吴文俊 陈景润 丘成桐 张 衡 刘 徽 祖冲之 杨 辉 姜立夫 陈建功 熊庆来 苏步青 江泽涵 回答者:hqm4721 - 高级经理 七级 4-21 14:20 评价已经被关闭 目前有 4 个人评价 好 100% (4) 不好 0% (0) 对最佳答案的评论 太好了 评论者: 136569769 - 试用期 一级 陈景润 华罗庚 杨辉 祖暅 祖冲之 评论者: 122400 - 魔法学徒 一级 很齐全呢! 评论者: 不二的芥末寿司 - 试用期 一级 其他回答共 1 条 刘徽(生于公元250年左右) 是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产 贾宪 中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。 秦九韶(约1202--1261) 字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶(1192----1279) 原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。 朱世杰(1300前后) 字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法). 祖冲之(公元429~500年) 祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。 祖暅 祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。 杨辉 中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 华罗庚 中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。 1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。 代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专著和科普性著作数十种。 陈景润 数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学 数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16 ,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合 数学》等著作。2023-05-20 19:14:131
(n+1)*(n+2)....(n+n)=2n*1*3*...(2n-1),从k到K+1,左端应增乘代数式为?
(2k+1)(2k+2)/(k+1)=2(2k+1);B2023-05-20 19:14:201