古代数学

有哪些古代数学故事(越多越好)例如田忌赛马

《狄多圈地》田忌赛马曹冲称象丁谓施工中国古代有一个丁谓施工的故事,也蕴含着运筹学的思想。 传说宋真宗在位时,皇宫曾起火。一夜之间,大片的宫室楼台殿阁亭榭变成了废墟。为了修复这些宫殿,宋真宗派当时的晋国公丁谓主持修缮工程。当时,要完成这项重大的建筑工程,面临着三个大问题:第一,需要把大量的废墟垃圾清理掉;第二,要运来大批木材和石料;第三,要运来大量新土。不论是运走垃圾还是运来建筑材料和新土,都涉及到大量的运输问题。如果安排不当,施工现场会杂乱无章,正常的交通和生活秩序都会受到严重影响。 丁谓研究了工程之后,制订了这样的施工方案:首先,从施工现场向外挖了若干条大深沟,把挖出来的土作为施工需要的新土备用,于是就解决了新土问题。第二步,从城外把汴水引入所挖的大沟中,于是就可以利用木排及船只运送木材石料,解决了木材石料的运输问题。最后,等到材料运输任务完成之后,再把沟中的水排掉,把工地上的垃圾填入沟内,使沟重新变为平地。 简单归纳起来,就是这样一个过程:挖沟(取土)→引水入沟(水道运输)→填沟(处理垃圾)。 按照这个施工方案,不仅节约了许多时间和经费,而且使工地秩序井然,使城内的交通和生活秩序不受施工太大的影响,因而确实是很科学的施工方案。
水元素sl2023-08-02 10:32:461

有哪些古代数学故事(越多越好)例如田忌赛马

《狄多圈地》田忌赛马曹冲称象丁谓施工中国古代有一个丁谓施工的故事,也蕴含着运筹学的思想。 传说宋真宗在位时,皇宫曾起火。一夜之间,大片的宫室楼台殿阁亭榭变成了废墟。为了修复这些宫殿,宋真宗派当时的晋国公丁谓主持修缮工程。当时,要完成这项重大的建筑工程,面临着三个大问题:第一,需要把大量的废墟垃圾清理掉;第二,要运来大批木材和石料;第三,要运来大量新土。不论是运走垃圾还是运来建筑材料和新土,都涉及到大量的运输问题。如果安排不当,施工现场会杂乱无章,正常的交通和生活秩序都会受到严重影响。 丁谓研究了工程之后,制订了这样的施工方案:首先,从施工现场向外挖了若干条大深沟,把挖出来的土作为施工需要的新土备用,于是就解决了新土问题。第二步,从城外把汴水引入所挖的大沟中,于是就可以利用木排及船只运送木材石料,解决了木材石料的运输问题。最后,等到材料运输任务完成之后,再把沟中的水排掉,把工地上的垃圾填入沟内,使沟重新变为平地。 简单归纳起来,就是这样一个过程:挖沟(取土)→引水入沟(水道运输)→填沟(处理垃圾)。 按照这个施工方案,不仅节约了许多时间和经费,而且使工地秩序井然,使城内的交通和生活秩序不受施工太大的影响,因而确实是很科学的施工方案。
九万里风9 2023-08-02 10:32:431

有哪些古代数学故事(越多越好)例如田忌赛马

高斯念小学的时候,有一次在老师教完加法后,老师想要休息,便出了一道题目要同学们算算看,题目是:1+2+3+..+97+98+99+100=?老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!原来高斯已经算出来了,高斯告诉大家他是如何算出的:把1加至100与100加至1排成两排相加,1+2+3+4+..+96+97+98+99+100100+99+98+97+96+..+4+3+2+1=101+101+101+..+101+101+101+101共有一百个101相加,但算式重复了两次,所以把10100除以2便得到答案等于从此以后高斯小学的学习过程超越了其它的同学,更让他成为了数学天才!
北营2023-08-02 10:32:361

求中国古代数学成就?具体详细点!

  (一)《周髀算经》简介  在中国古代算书中,《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《孙丘建算经》、《海岛算经》、《五经算术》、《缀术》、《缉古算机》等10部算书,被称为“算经十书”。其中阐明“盖天说”的《周髀算经》,被人们认为是流传下来的中国最古老的既谈天体又谈数学的天文历算著作。它大约产生于公元前2世纪,但它所包含的史料,却有比这更早的。其中提到的大禹治水时所应用的数学知识,成为现存文献中提到最早使用勾股定理的例子。  (二)勾股定理  现在流传的《周髀算经》,都不是原来的著作,都经后人修改和补充过。《周髀算经》的本文,是周公与商高的问答部分;接下去的荣方与陈子问答部分,是《周髀算经》的续文。  据《周髀算经》记载:“故折矩以为句广三,股 四,径隅五。既方其外,半之一矩,环而共盘,得三、四、五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所 由生也。”  这段话的意思是:将矩的两直角边加以折算成一定的比例,  短直角边长(句)3,长直角边长(股)4,弦就等于5,  得成3、4、5(如右图)。句(即勾)、股平方之和为25,这称为积矩。大禹所用的治天下(指治水)的方法,就是从这些数学知识发展出来的。  在世界数学史上,一般把勾股定理归功于公元前5世纪左右发现它的古希腊数学家毕达哥拉斯,因为他提出了定理的一般形式的叙述和证明,我国则稍晚。但实际上,商高关于勾股定理的认识,要比毕达哥拉斯早得多。《周髀算经》成书于公元前2世纪左右,所记载的周公与商高问答的事是在公元前11世纪左右。这个事实证明我国古代数学家独立地发现并应用了勾股定理的一般情形,要比外国早得多。  (三)(测高、深、远的方法)测量太阳高度  陈子是周代的天文算学家,荣方是当时天文算学家的爱好者。在陈子教给荣方的各种数据计算的具体方法中,我们可以发现在二千六七百年前,我国对勾股定理的应用已达到十分熟练的程度。  陈子测量太阳高度的方法可叙述为:当夏至太阳直射北回归线时,  在北方立一8尺高的标竿,观其影长为6尺。然后,测量者向难移动标  竿,每移动1000里,标竿的影长就减少1寸。据此可设想,当标竿的  日影减少六尺,则标竿就向南移动了60000里,而此时标竿恰在太阳的  正下方。据勾股定理和相似形原理可算得:测量者与太阳的距离为10万里。  据记载,古希腊第一个自然哲学家泰勒斯也曾利用日影测出金字塔的高。他的方法是由一根立竿的影长和同时测得的金字塔的影长算出了金字塔的高度。泰勒斯被称为西方的“测量之祖”。泰勒斯的这一工作与陈子的工作大致在相同的时期,然而陈子的方法要比泰勒斯的方法水平高得多,泰勒斯只利用到相似三角形的知识,而陈子除了能利用相似三角形的性质外,还能熟练地运用勾股定理。  数学在中国历史久矣。在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;据说《易经》还包含组合数学与二进制思想。2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相似。  算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算。中国古代数学的最大特点是建立在筹算基础之上,这与西方及阿拉伯数学是明显不同的。  但是,真正意义上的中国古代数学体系形成于自西汉至南北朝的三、四百年期间。《算数书》成书于西汉初年,是传世的中国最早的数学专著,它是1984年由考古学家在湖北江陵张家山出土的汉代竹简中发现的。《周髀算经》编纂于西汉末年,它虽然是一本关于“盖天说”的天文学著作,但是包括两项数学成就——(1)勾股定理的特例或普遍形式(“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日。”——这是中国最早关于勾股定理的书面记载);(2)测太阳高或远的“陈子测日法”。《九章算术》在中国古代数学发展过程中占有非常重要的地位。它经过许多人整理而成,大约成书于东汉时期。全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。  九章算术》标志以筹算为基础的中国古代数学体系的正式形成。  中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物。  赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释。在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法。用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献。三国时期魏人刘徽则注释了《九章算术》,其著作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造。其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250(3.1416)”。他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础。在研究多面体体积过程中,刘徽运用极限方法证明了“阳马术”。另外,《海岛算经》也是刘徽编撰的一部数学论著  南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。  祖冲之、祖暅父子的工作在这一时期最具代表性。他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步。根据史料记载,其著作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值;欧洲直到16世纪德国人鄂图(Otto)和荷兰人安托尼兹(Anthonisz)才得出同样结果。②祖暅在刘徽工作的基础上推导出球体体积公式,并提出二立体等高处截面积相等则二体体积相等(“幂势既同则积不容异”)定理;欧洲17世纪意大利数学家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同时在天文学上也有一定贡献。  隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关。在当时的算学馆《算经十书》成为专用教材对学生讲授。《算经十书》收集了《周髀算经》、《九章算术》、《海岛算经》等10部数学著作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。  公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。  从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学著作。中国古代数学以宋、元数学为最高境界。在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的。  贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。  秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。  李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。  公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。  公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式。  14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。  明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作。但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。  由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作。邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作。
瑞瑞爱吃桃2023-07-20 09:23:411

在我国古代数学著作《九章算术》有这样一个问题:上等谷3束中等谷2束下等谷1束共39斗;

关于中国古代的一次方程组关于中国古代的一次方程组关于中国古代的一次方程组关于中国古代的一次方程组 我国古代很早就开始对一次方程组进行研究,其中不少成果被收入古代数学著作《九章算术》(在本书上册里曾介绍过)中.《九章算术》有一章是“方程”,专门讲有关一次方程组的内容.这一章的第一个问题译成现代汉语是这样的:上等谷3束、中等谷2束、下等谷1束,共是39斗(过去农村常用的容积即体积单位);上等谷2束、中等谷3束、下等谷1束,共是34斗;上等谷1束、中等谷2束、下等谷3束,共是26斗.求上、中、下三等谷每束各是几斗. 书中列出如下图的方程组. 我国古代是用算筹(见本书前面的彩页)来列方程组的.上面的问题用现代数学语言来表述,就相当于,设上等谷每束x斗,中等谷每束y斗,下等谷每束z斗,根据题意,得三元一次方程组前页图中所示,实际上是这个方程组各个方程的系数与相应的常数项.古代解方程组时,也是用算筹做计算工具,具体解法相当于我们现在学的加减消元法. 在代数第一册(上)的教科书中,我们曾介绍过中国古代很早就使用了负数,而负数出现的一个典型实例就是在《九章算术》的“方程”章中.在列方程组时,明确指出,“卖”是正,“买”是负;“余钱”是正,“不足钱”是负;等等.在解方程组时,使用了加减法,可能会出现不够减的问题,我们的祖先就运用“正负术”来解,这也就相当于我们学过的正负数加减法的运算法则(运用正负数及“正负术”的实例可参阅本章复习题五B组第4题). 我们祖先掌握的上述一次方程组的解法,比起欧洲来,要早一千多年,可以说,这是我国古代数学的一个光辉成就.
Jm-R2023-07-18 14:10:221

中国古代数学名著《九章算术》中出现的数学问题有哪些

  《九章算术》收有246个数学问题,分为九章。它们的主要内容分别是:第一章“方田”,研究田亩面积计算;第二章“粟米”,研究谷物粮食的按比例折换;第三章“衰分”,研究比例分配问题;第四章“少广”,已知面积、体积、求其一边长和径长等;第五章“商功”,研究土石工程、体积计算;第六章“均输”,研究合理摊派赋税;第七章“盈不足”,即双设法问题;第八章“方程”,研究一次方程组问题;第九章“勾股”,利用勾股定理求解。
人类地板流精华2023-07-18 14:10:141

在我国古代数学著作《九章算术》有这样一个问题:上等谷3束中等谷2束下等谷1束共39斗;

设上等谷每束x斗,中等谷每束y斗,下等谷每束z斗,则由题得:3x+2y+z=392x+3y+z=34x+2y+3z=26x=9.25y=4.25z=2.75答:上等谷每束9.25斗,中等谷每束4.25斗,下等谷每束2.75斗。
u投在线2023-07-18 14:10:144

古代数学问题,要分析要解,有背景什么的最好

  1.这个其实是数列题,出自清朝人李汝珍的小说《镜花缘》原文如下:  宝云指桌上一套金杯道:“此杯大小九个,我且金一百二十六两打的,姐姐能算大  小各重多少么?”兰芬道:“此是‘差分法"。法当用九个加一个是十个,九与十相乘,  共是九十个,折半四十五个,作四十五分算;用‘四归五除"除一百二十六两,得二两  八钱,此第九小杯,其重如此。”因从丫环带的小算袋内取出二、八两筹摆下,用笔开  出,大杯重二十五两二钱、次重二十二两四钱、三重十九两六钱、四重十六两八钱、五  重十四两、六重十一两二钱、七重八两四钱、八重五两六钱。  宝云看那两筹,只见写著:  宝云道:“据这二筹,自然是一二如二,至二九一十八;那八筹是一八如八,至八  九七十二了。但姐姐何以一望就知各杯轻重呢?”兰芬道:“刚才我用四归五除,得了  小杯二两八钱数目,所以将二、八两筹一看就知了。你看第一行‘二八"两字,岂非末  尾小杯厅重么?第九行‘二五二"就是头一个大杯。其余七杯计重若干,都明明白白写  在上面。”宝云道:“第九行是‘一八七二",怎么说是‘二五二"呢?”兰芬道:  “凡两半圈上下相合,仍算一圈,即如第九行中间‘八七"二字,凑起来是‘一五"之  数,把‘一"归在上面一圈,岂非‘二五二"么。”宝云点头道:“我见算书中差分法,  有递减,倍减、三七、四六等名,纷纷不一,何能及得这个明白了当。筹算之精,即此  可见。”  2.这个应该也算吧,可以算是一道方程题  大江东去浪淘尽,千古风流人物。  而立之年督东吴,早逝英年两位数。  十位恰小于个位,个位平方与寿符。  哪为学子算得快,多少年华属周瑜?  解答:设十位为a,个位为b。  由“十位恰小于个位,个位平方与寿符。”10a+b=b^2  a<b  只有两组解a=2,b=5或a=3,b=6  又“而立之年督东吴”说明大于30岁,故取a=3,b=6,即周瑜36岁逝世。
Ntou1232023-07-17 08:33:091

元首挂帅(打一字)【 】 爷爷当先锋(打一中国古代数学家名

师祖冲之关羽辛弃疾
此后故乡只2023-07-12 08:41:271

中国古代数学题有哪些

中国古代数学体系的形成   秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。   《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。   《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。   这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。   《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。   中国古代数学的发展   魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。   赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。   刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 3927/1250。   刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。   东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。   据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久;   祖冲之之子祖(日恒)总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。   隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。   唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。   算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。   唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。
善士六合2023-07-08 10:18:541

古代数学的历史起源

黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家──夏朝。其后有商、殷两代(约1500B.C-1027B.C)、及周朝(1027B.C-221B.C)。历史上又称公元前八世纪至秦王朝的建立(221B.C)为春秋战国时期。据《易。系辞》记载:“上古结绳而治,后世圣人易之以书契”。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进位制的记数法,出现最大的数字为三万。算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。用算筹记数,有纵、横两种方式:123456789纵式横式表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间(法则是:一纵十横,百立千僵,千、十相望,万、百相当),并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。在几何学方面《史记。夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理(西方称毕氏定理)的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:“圆,一中同长也”、“平,同高也”等等。墨家还给出有穷和无穷的定义。 《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”等。这些许多几何概念的定义、极限思想和其他数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。 这一时期包括从秦汉到隋唐1000多年间的数学发展,所经历的朝代依次为秦、汉、魏、晋、南北朝、隋、唐。秦汉是中国古代数学体系的形成时期。为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。西汉末年(公元前一世纪)编纂的天文学著作《周髀算经》在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术的先驱。此外,还有较复杂的开方问题和分数运算等。《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年(公元一世纪)。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。魏晋时期中国数学在理论上有了较大的发展。其中赵爽和刘徽的工作被认为是中国古代数学理论体系的开端。赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释。刘徽注释《九章算术》,不仅对原书的方法、公式和定理进行一般的解释和推导,且在论述过程中多有创新,更撰写《海岛算经》,应用重差术解决有关测量的问题。刘徽其中一项重要的工作是创立割圆术,为圆周率的研究工作奠定理论基础和提供了科学的算法。南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。 《孙子算经》 、 《夏侯阳算经》 、 《张丘建算经》就是这个时期的作品。《孙子算经》给出“物不知数”问题,导致求解一次同余组问题;《张丘建算经》的“百鸡问题”引出三个未知数的不定方程组问题。祖冲之、祖日桓父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。他们同时在天文学上也有突出的贡献。其著作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113;(2)得到祖日桓定理(幂势既同,则积不容异)并得到球体积公式;(3)发展了二次方程与三次方程的解法。隋朝大兴土木,客观上促进了数学的发展。唐初王孝通撰《缉古算经》,主要是讨论土木工程中计算土方、工程的分工与验收以及仓库和地窖的计算问题。唐朝在数学教育方面有长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》 (包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》),作为算学馆学生用的课本。对保存古代数学经典起了重要的作用。此外,隋唐时期由于历法需要,创立出二次内插法,为宋元时期的高次内插法奠定了基础。而唐朝后期的计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。 唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪(宋、元两代),筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》(11世纪中叶),刘益的《议古根源》(12世纪中叶),秦九韶的《数书九章》(1247),李冶的《测圆海镜》(1248)和《益古演段》(1259),杨辉的《详解九章算法》(1261)、《日用算法》(1262)和《杨辉算法》(1274-1275),朱世杰的《算学启蒙》(1299)和《四元玉鉴》(1303)等等。宋元数学在很多领域都达到了中国古代数学,甚至是当时世界数学的巅峰。其中主要的工作有:高次方程数值解法;天元术与四元术,即高次方程的立法与解法,是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题;大衍求一术,即一次同余式组的解法,现在称为中国剩余定理;招差术和垛积术,即高次内插法和高阶等差级数求和。另外,其他成就包括勾股形解法新的发展、解球面直角三角形的研究、纵横图(幻方)的研究、小数(十进分数)具体的应用、珠算的出现等等。这一时期民间数学教育也有一定的发展,以及中国和伊斯兰国家之间的数学知识的交流也得到了发展。 这一时期从十四世纪中叶明王朝建立到二十世纪清代结束共500多年。数学除珠算外出现全面衰弱的局面,当中涉及到珠算的局限、十三世纪的考试制度中已删减数学内容、明代大兴八段考试制度等复杂的问题,不少中外数学史家仍探讨当中涉及的原因。十六世纪末,西方初等数学开始传入中国,使中国数学研究出现了一个中西融合贯通的局面。鸦片战争后,近代高等数学开始传入中国,中国数学转入一个以学习西方数学为主的时期。直到十九世纪末,中国的近代数学研究才真正开始。明代最大的成就是珠算的普及,出现了许多珠算读本,及至程大位的《直指算法统宗》 (1592)问世,珠算理论已成系统,标志着从筹算到珠算转变的完成。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。隋及唐初,印度数学和天文学知识曾传入中国,但影响较细。到了十六世纪末,西方传教士开始到中国活动,和中国学者合译了许多西方数学专著。其中第一部且有重大影响的是意大利传教士利马窦和徐光启合译的《几何原本》前6卷(1607),其严谨的逻辑体系和演译方法深受徐光启推崇。徐光启本人撰写的《测量异同》和《勾股义》便应用了《几何原本》的逻辑推理方法论证中国的勾股测望术。此外,《几何原本》课本中绝大部分的名词都是首创,且沿用至今。在输入的西方数学中仅次于几何的是三角学。在此之前,三角学只有零星的知识,而此后获得迅速发展。介绍西方三角学的著作有邓玉函编译的《大测》(2卷,1631)、《割圆八线表》(6卷)和罗雅谷的《测量全义》(10卷,1631)。在徐光启主持编译的《崇祯历书》(137卷,1629-1633)中,介绍了有关圆椎曲线的数学知识。入清以后,会通中西数学的杰出代表是梅文鼎,他坚信中国传统数学“必有精理”,对古代名著做了深入的研究,同时又能正确对待西方数学,使之在中国扎根,对清代中期数学研究的高潮是有积极影响的。与他同时代的数学家还有王锡阐和年希尧等人。徐光启等清康熙帝爱好科学研究,他“御定”的《数理精蕴》(53卷,1723),是一部比较全面的初等数学书,对当时的数学研究有一定影响。乾嘉年间形成一个以考据学为主的乾嘉学派,编成《四库全书》,其中数学著作有《算经十书》和宋元时期的著作,为保存濒于湮没的数学典籍做出重要贡献。在研究传统数学时,许多数学家还有发明创造,例如有“谈天三友”之称的焦循、汪莱及李锐作出不少重要的工作。李善兰在《垛积比类》(约1859)中得到三角自乘垛求和公式,现在称之为“李善兰恒等式”。这些工作较宋元时期的数学进了一步。阮元、李锐等人编写了一部天文学家和数学家传记《畴人传》46卷(1795-1810),开数学史研究之先河。1840年鸦片战争后,闭关锁国政策被迫中止。同文馆内添设“算学”,上海江南制造局内添设翻译馆,由此开始第二次翻译引进的高潮。主要译者和著作有:李善兰与英国传教士伟烈亚力合译的《几何原本》后9卷(1857),使中国有了完整的《几何原本》中译本;《代数学》13卷(1859);《代微积拾级》18卷(1859)。李善兰与英国传教士艾约瑟合译《圆锥曲线说》3卷,华蘅芳与英国传教士傅兰雅合译《代数术》25卷(1872),《微积溯源》8卷(1874),《决疑数学》10卷(1880)等。在这些译著中,创造了许多数学名词和术语,至今仍在应用。1898年建立京师大学堂,同文馆并入。1905年废除科举,建立西方式学校教育,使用的课本也与西方其他各国相仿。 这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。中国近现代数学开始于清末民初的留学活动。较早出国学习数学的有1903年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来(1915年转留法),1919年留日的苏步青等人。他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学(今南京大学)和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵(1927)、陈省身(1934)、华罗庚(1936)、许宝 (1936)等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素(1920),美国的伯克霍夫(1934)、奥斯古德(1934)、维纳(1935),法国的阿达马(1936)等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年《中国数学会学报》和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。
九万里风9 2023-06-30 08:49:151

试述中国古代数学的特点

3 中国古代数学思想特点(1). (实用性)《九章算术》收集的每个问题都是与生产实践有联系的应用题,以解决问题为目的.从《九章算术》开始,中国古典数学著作的内容,几乎都与当时社会生活的实际需要有着密切的联系.这不仅表现在中国的算学经典基本上都遵从问题集解的体例编纂而成,而且它所涉及的内容反映了当时社会政治、经济、军事、文化等方面的某些实际情况和需要,以致史学家们常常把古代数学典籍作为研究中国古代社会经济生活、典章制度(特别是度量衡制度),以及工程技术(例如土木建筑、地图测绘)等方面的珍贵史料.而明代中期以后兴起的珠算著作,所论则更是直接应用于商业等方面的计算技术.中国古代数学典籍具有浓厚的应用数学色彩,在中国古代数学发展的漫长历史中,应用始终是数学的主题,而且中国古代数学的应用领域十分广泛,著名的十大算经清楚地表明了这一点,同时也表明“实用性”又是中国古代数学合理性的衡量标准.这与古代希腊数学追求纯粹“理性”形成强烈的对照.其实,中国古代数学一开始就同天文历法结下了不解之缘.中算史上许多具有世界意义的杰出成就就是来自历法推算的.例如,举世闻名的“大衍求一术”(一次同余式组解法)产于历法上元积年的推算,由于推算日、月、五星行度的需要中算家创立了“招差术”(高次内插法);而由于调整历法数据的要求,历算家发展了分数近似法.所以,实用性是中国传统数学的特点之一.(2).(算法程序化)中国传统数学的实用性,决定了他以解决实际问题和提高计算技术为其主要目标.不管是解决问题的方式还是具体的算法,中国数学都具有程序性的特点.中国古代的计算工具是算筹,筹算是以算筹为计算工具来记数,列式和进行各种演算的方法.有人曾经将中国传统数学与今天的计算技术对比,认为算筹相应于电子计算机可以看作“硬件”,那么中国古代的“算术”可以比做电子计算机计算的程序设计,是一种软件的思想.这种看法是很有道理的.中国的筹算不用运算符号,无须保留运算的中间过程,只要求通过筹式的逐步变换而最终获得问题的解答.因此,中国古代数学著作中的“术”,都是用一套一套的“程序语言”所描写的程序化算法.各种不同的筹法都有其基本的变换法则和固定的演算程序.中算家善于运用演算的对称性、循环性等特点,将演算程序设计得十分简捷而巧妙.如果说古希腊的数学家以发现数学的定理为目标,那么中算家则以创造精致的算法为已任.这种设计等式、算法之风气在中算史上长盛不衰,清代李锐所设计的“调日法术”和“求强弱术”等都可以说是我国古代传统的遗风. 古代数学大体可以分为两种不同的类型:一种是长于逻辑推理,一种是发展计算方法.这也大致代表了西方数学和东方数学的不同特色.虽然以算为主的某些特点也为东方的古代印度数学和中世纪的阿拉伯数学所具有,但是,中国传统数学在这方面更具有典型性.中算对于算具的依赖性和形成一整套程序化的特点尤为突出.例如,印度和阿拉伯在历史上虽然也使用过土盘等算具,但都是辅助性的,主要还是使用笔算,与中国长期使用的算筹和珠算的情形大不相同,自然也没有形成像中国这样一贯的与“硬件”相对应的整套“软件”.(3).(模型化)“数学模型”是针对或参照某种事物系统的特征或数量关系,采用形式话数学语言,概括的近似地表达出来的一种数学结构.古代的数学模型当然没有这样严格,但如果不要求“形式化的数学语言”,对“数学结构”也作简单化的解释,则仍然可以应用这个定义.按此定义,数学模型与现实世界的事物有着不可分割的关系,与之有关的现实事物叫做现实原形,是为解释原型的问题才建立应用数学模型的.《九章算术》中大多数问题都具有一般性解法,是一类问题的模型,同类问题可以按同种方法解出.其实,以问题为中心、以算法为基础,主要依靠归纳思维建立数学模型,强调基本法则及其推广,是中国传统数学思想的精髓之一.中国传统数学的实用性,要求数学研究的结果能对各种实际问题进行分类,对每类问题给出统一的解法;以归纳为主的思维方式和以问题为中心的研究方式,倾向于建立基本问题的结构与解题模式,一般问题则被化归、分解为基本问题解决.由于中国传统数学未能建立起一套抽象的数学符号系统,对一般原理、法则的叙述一方面是借助文辞,一方面是通过具体问题的解题过程加以演示,使具体问题成为相应的数学模型.这种模型虽然和现代的数学模型有一定的区别,但二者在本质上是一样的.(4).(寓理于算)由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次上而无理论建树.其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等. 中国古代数学的特点虽然在一定的程度上促进了其自身的发展,但正是因为这其中的某些特点,中国古代数学走向了低谷.4 中国古代数学由兴转衰的原因分析(1).独尊儒术,蔑视逻辑.汉武帝时,“罢黜百家,独尊儒术”使得当时注重形式逻辑的墨子思想未能得到继承和发展.儒家思想讲究简约,而忽视了逻辑思维的过程.这一点从中国古代的典籍中能找到最准确的说明.《周髀算经》中虽然给出了勾股定理,但却没给出证明.《九章算术》同样只在给出题目的同时,给出一个结果和计算的程式,对其中的逻辑思维却没有去说明.中国古代数学这种只注重计算形式(即古代数学家所谓的“术”)与过程,不注重逻辑思维的做法,在很长一段时间里禁锢了中国古代数学发展.这种情况的出现当然也有其原因,中国古代传统数学主要是在算筹的基础上发展起来的,后来发展到以算盘为工具的计算时代,但是这些工具的使用在另一方面为中国人提供了一种程式化的求解方法,从而忽视了其中的逻辑思维过程.此外,中国传统数学讲究“寓理于算”.即使高度发达的宋元数学也是如此.数学书是由一系列的数学问题组成的.你也可以称它们为“习题解集”.数学理论以‘术”的形式出现.早期的“术”只有一个过程,后人就纷纷为它们作注,而这些注释也很简约.实际上就是举例“说明”,至于说明了什么,条件变一下怎么办,就要读者自已去总结了,从来不会给你一套系统的理论.这是一种相对原始的做法.但随着数学的发展,这种做法的局限性就表现出来了,它极不利于知识的总结.如果只有很少一点数学知识,那么,问题还不严重,但随着数学知识的增长,每个知识点都用一个题目来包装,而不把它们总结出来就难以从整体上去把握这些知识.这无论对学习数学还是研究,发展数学都是不利的.(2). 崇尚玄学,迷信数术,歪曲数学思想.魏晋时期,儒学虽然受到一定的冲击,但其统治地位并未受到动摇.老庄学说和儒家学说相反相成便形成了玄学.玄学原本探究的是有关人生的哲学,但后来与数学混在了一起.古人曾就常常以玄术来解释数学问题,使得数学概念和方法遭到歪曲.张衡是我国著名科学家.当时他虽然已经知道圆周率“周一径三”不准确,但由于他始终相信“周一径三”来源于“参天两地”的说法,一直没深入探究,因而未能将圆周率推算到更精确的地步,这不能不说是一大遗憾.当玄术和数术充塞数学时,数学已经明显存有落后的隐患.(3). 故步自封,墨守成规,拒绝数学符号.中国古代数学是以汉语描述的,历来不重视汉字以外的数学符号,给逻辑思维带来很大的困难,使我国长期不能形成演绎推理的传统,严重影响了我国数学的发展.从明朝开始,中国就走上了闭关锁国的道路.这种行为与小农思想相适应,早在秦代就已经出现端倪,建一条长城将自己围起来,对外面的东西不闻不问.相比之下,西方在度过了中世纪的黑暗时期后,进入了文艺复兴时期.欧洲的扩张、航海技术开阔了西方人的眼界,同时也大大推动了数学的发展.在18世纪的改革和动荡中,新出现的资产阶级推翻了英、法的君主政治.封建的政治、社会和经济思想被经典的自由主义哲学所取代,这种哲学促进了19世纪的工业革命.社会生产力的提高成了西方数学发展的源源不断的动力.最终,近代的数学在西方被建立起来,而曾是数学大国之一的中国,在其中却无所作为. (4). 此外,中国长期处于封建社会,迟迟未能进入资本主义阶段,也是导致中国古代数学发展停顿的直接原因.从整体上看,数学是与所处的社会生产力相适应的.中国社会长期处于封闭的小农经济环境,生产力低下,不仅没有工业,商业也不发达.整个社会对数学没有太高的要求, 自然研究数学的人也就少了. 恩格斯说,天文学和力学是推动数学发展的动力,而在当时的中国这种动力已趋近枯竭.
黑桃花2023-06-30 08:49:151

中国古代数学中的算法有哪些?

“四元术”(多元高次方程列式与消元解法),“垛积术”(高阶等差数列求和),“招差术”(高次内插法)我只知道这些了
豆豆staR2023-05-21 08:46:191

中国古代数学成就

中国古代没有数学
墨然殇2023-05-21 08:46:193

古代数学家有哪些人?他们有何成就

数学可以说是在生活中比较无用的东西,虽然在你平常的生活中你用不到函数高数圆周率。不过当你掌握了这些东西之后,你自然可以选择更好的生活去度过,创造这些的人也是历史上的名人。 那么,本期古代六艺解析古代数学家有哪些人。 张丘建: 张邱建,北魏清河(今邢台市清河县)人,约公元5世纪,着名的大数学家。他从小聪明好学,酷爱算术。一生从事数学研究,造诣很深。“百鸡问题”是中古时期,关于不定方程整数的典型问题,邱建对此有精湛和独到的见解。 着有《张邱建算经》3卷。后世学者北周甄鸾、唐李淳风相继为该书作了注释。刘孝孙为算经撰了细草。算经的体例为问答式,条理精密,文词古雅,是中国古代数学史上的杰作,也是世界数学资料库中的一份遗产。 朱世杰: 朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。 此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。主要着作是《算学启蒙》与《四元玉鉴》。 贾宪: 贾宪,北宋人,约于1050年左右完成《黄帝九章算经细草》,原书佚失,但其主要内容被杨辉(约13世纪中)着作所抄录,因能传世。杨辉《详解九章算法》(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是着名的“贾宪三角”,或称“杨辉三角”。《详解九章算法》同时录有贾宪进行高次幂开方的“增乘开方法”。 秦九韶: 秦九韶(1208年-1261年),字道古,汉族,生于普州安岳(今四川省安岳县)。南宋官员、数学家,与李冶、杨辉、朱世杰并称宋元数学四大家。精研星象、音律、算术、诗词、弓剑、营造之学,历任琼州知府、司农丞,后遭贬,卒于梅州任所,1247年完成着作《数书九章》。 其中的大衍求一术(一次同余方程组问题的解法,也就是现在所称的中国剩余定理)、三斜求积术和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献,表述了一种求解一元高次多项式方程的数值解的算法——正负开方术。
阿啵呲嘚2023-05-21 08:45:371

我国古代数学家有哪些?

中国古代著名数学家及其主要贡献   刘徽(生于公元250年左右)   刘徽刘徽(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东邹平人。终生未做官。他在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.   《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.   《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.   刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.   刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.    祖冲之(公元429年─公元500年)  祖冲之(公元429年─公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于未文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。其主要贡献在数学、天文历法和机械三方面。在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式。在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等。此外,对音乐也研究。他是历史上少有的博学多才的人物。   祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/113为密率,其中355/113取六位小数是3.141592,它是分子分母在16604以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接12288边形,这需要花费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".   祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.   祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".   中国古代其他著名数学家及其主要贡献  ▲张丘建--<张丘建算经>   《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。   ▲朱世杰:《四元玉鉴》   朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)   ▲贾宪:〈〈黄帝九章算经细草〉〉   中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。   贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。   ▲秦九韶:〈〈数书九章〉〉   秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。   ▲李冶:《测圆海镜》——开元术   随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。   李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。
kikcik2023-05-21 08:45:371

中国古代数学家求数列和的方法

“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用a_表示。著名的数列有斐波那契数列,三角函数,卡特兰数,杨辉三角等。
陶小凡2023-05-21 08:45:351

中国古代数学有哪些成就?

最牛的当然是《九章算术》了刘 徽 刘徽(生于公元250年左右),南北朝时期数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 贾 宪 贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。 秦九韶 秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶 李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。 朱世杰 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法). 祖冲之 祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。 祖 暅 祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。 杨辉 杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 赵 爽 赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。 赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
Ntou1232023-05-21 08:45:341

朱世杰和他的著作对我国古代数学有怎样的贡献?

《四元玉鉴》是一部成就辉煌的数学名著,受到近代数学史研究者的高度评价。美国科学史家萨顿称赞说道:《四元玉鉴》是中国数学著作中最重要的一部,同时也是中世纪的杰出数学著作之一。朱世杰是他所生存时代的,同时也是贯穿古今的一位最杰出的数学家。如此之高的评价,朱世杰和他的著作都是当之无愧的。朱世杰不仅是一位杰出的数学家,他还是一位数学教育家,曾周游四方各地,教授生徒20余年。并亲自编著数学入门书《算学启蒙》。在《算学启蒙》卷下中,朱世杰提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。朱世杰身处于我国传统数学发展的鼎盛时期,当时社会上“尊崇算学,科目渐兴”,数学著作广为传播。总之,朱世杰在数学科学上,全面地继承了秦九韶、李冶、杨辉的数学成就,并给予创造性的发展,写出了《算学启蒙》、《四元玉鉴》等著名作品,把我国古代数学推向了更高的境界,形成宋元时期我国数学的最高峰。
韦斯特兰2023-05-21 08:45:341

中国古代数学的发展历史的论文

浅谈中国古代数学作为一个炎黄子孙,龙的传人,我们可以很骄傲的说我们的祖先有很多优秀的,好的东西留给了我们同时也留给了世界,四大发明,影响着整个世界,改变了整个世界。另外就是今天我们要说的数学,中国古人对数学的研究以及对世界作出的贡献。 在中国明代中叶以前我国的数学一直处于世界的领先地位,这是我们的骄傲,我国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。比如,现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。最早由于没有印刷术的出现,我们的古人都是用手抄写的方式,把这些数学知识传给下一代的,古代的数学家给已有的算数作出自己的注解,同时提出自己的心得 观点和看法。 大家最熟悉的数学著作就是《九章算术》了,《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足” (也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。然而,直到今天我们都不知道这本著作的具体作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书?艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。然而,《九章算术》亦有其不容忽视的缺点:没有任何数学概念的定义,也没有给出任何推导和证明。直到我国古代的数学家刘徽给《九章算术》作注,才大大弥补了这个缺陷。刘徽可是咱们山东邹平人哟,刘徽定义了若干数学概念,全面论证了《九章算术》的公式解法,提出了许多重要的思想、方法和命题,他在数学理论方面成绩斐然。《海岛算经》,就是刘徽所著,这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法,他还首次把极限概念应用于解决数学问题。中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年); 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。另外,大家都知道《算经十书》,它是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。另外,还有就是在出现计算器前,我们使用的算盘,对,就是珠算。说道珠算,我们还有必要提一下筹算。筹算在我国古代用了大约两千年,在生产和科学技术以至人民生活中,发挥了重大的作用。但是它的缺点也是十分明显的:首先,在室外拿着一大把算筹进行计算就很不方便;其次,计算数字的位数越多,所需要的面积越大,受环境和条件的限制;此外,当计算速度加快的时候,很容易由于算筹摆弄不正而造成错误。随着社会的发展,计算技术要求越来越高,筹算需要改革,这是势在必行的。这个改革从中唐以后的商业实用算术开始,经宋元出现大量的计算歌诀,到元末明初珠算的普遍应用,历时七百多年。《新唐书》和《宋史•艺文志》记载了这个时期出现的大量著作。由于封建统治阶级对民间数学十分轻视,以致这些著作的绝大部分已经失传。从遗留下来的著作中可以看出,筹算的改革是从筹算的简化开始而不是从工具改革开始的,这个改革最后导致珠算的出现。珠算是由筹算演变而来的,这是十分清楚的。筹算数字中,上面一根筹当五,下面一根筹当一,珠算盘中的上一珠也是当五,下一珠也是当一;由于筹算在乘、除法中出现某位数字等于十或多于十的情形(例如26532÷8,第一步就是“八二下加四”,就变成),所以珠算盘采用上二珠下五珠的形式。其次,我们可以证明,从杨辉、朱世杰开始到元末丁巨、何平子、贾亨止起除“起一”法外的全部现今通用的珠算歌诀,是为筹算而设的。 杨辉的《乘除通变本末》(公元1274年)和朱世杰的《算学启蒙》(公元1299年)已经有相当完备的歌诀,但是杨辉在《乘除通变本末》中说:“下算不出‘横"‘直"”,其中“横”“直”显然是指算筹的纵横排列,朱世杰在《算学启蒙》中提到“知算纵横数目真”,也是这个意思。《丁巨算法》(公元1355年)、何平子的《详明算法》(公元1373年)、贾亨的《算法全能》(约公元1373年)也有相当完备的归除歌诀,但是都没有提到珠算,而《详明算法》还有许多筹算算草。歌诀出现后,筹算原来存在的缺点就更突出了,歌诀的快捷和摆弄算筹的迟缓存在矛盾。为了得心应手,劳动人民便创造出更加先进的计算工具——珠算盘。 现存文献中最早提到珠算盘的是明初的《对相四言》。明代中期公元十五世纪中叶《鲁班木经》中有制造珠算盘的规格:“算盘式:一尺二寸长,四寸二分大。框六分厚,九分大,……线上二子,一一寸一分;线下五子,三寸一分。长短大小,看子而做。”把上二子和下五子隔开的不是木制的横梁,而是一条线。比较详细地说明珠算用法的现存著作有徐心鲁的《盘珠算法》(公元1573年)、柯尚_迁的《数学通轨》(公元1578年)、朱载堉(1536—1611)的《算学新说》(公元1584年)、程大位的《直指算法统宗》(公元1592年)等,以程大位的著作流传最广。 值得指出的是,在元代中叶和元末的文学、戏剧作品中有提到珠算的。例如元世祖至元十六年(公元1279年)刘因在他的《静修先生文集》中有一首关于算盘的五言绝诗;陶宗仪在他的《辍耕录》中把婢仆贬作算盘珠,要拨才动;《元曲选》“庞居上误放来生债”提到“去那算盘里拨了我的岁数”,等等。文学、戏剧中用算盘珠作比喻,说明珠算盘已经比较流行,也说明它是比较时新的东西。因此可以认为,珠算出现在元代中叶,元末明初已经普遍应用了。 有的外国学者认为我国的珠算出现在汉代,他们的根据是汉徐岳著、北周甄蛮注的《数术记遗》已经明确提到珠算。我国数学家、数学史家钱宝琮(1892—1974)曾经考证过,《数术记遗》是甄鸾依托伪造而自己注释的书。在北周时,乘、除运算都在上、中、下三层进行,又没有简化乘、除法的歌诀,因此甄鸾注释的珠算,充其量不过是一种记数工具或者只能作加减法的简单算盘,和后来出现的珠算是完全不同的。 珠算还传到朝鲜、日本等国,对这些国家的计算技术的发展曾经起过一定的作用。日本人在十七世纪中叶,在中国算盘的基础上,改成梁上一珠、珠作棱形的日本算盘有次可以看出,我们的祖先不仅在数学领域对世界作出了贡献,同时也把算盘这种便于计算的工具推向了世界。希望我们现在的一代还可以继承祖先的优良传统,在世界的数学之林再次贡献自己的知识,力量,让世界重新认识我们中国。
wpBeta2023-05-21 08:45:282

古代数学7怎么写

可桃可挑2023-05-21 08:45:284

古代数学著作《详解九章算法》作者是谁

《周髀算经》是中国现存最早的一部数学典籍,成书时间大约在两汉之间 (纪元之后).也有史家认为它的出现更早,是孕于周而成于西汉,甚至更有人说它出现在纪元前1000年. 《九章算术》约成书于公元纪元前后,它系统地总结了我国从先秦到西汉中期的数学成就.该书作者已无从查考,只知道西汉著名数学家张苍、耿寿昌等人曾经对它进行过增订删补.全书分做九章,一共搜集了246个数学问题,按解题的方法和应用的范围分为九大类,每一大类作为一章. 南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世. 》、《海岛算经》等10部数学著作.所以当时的数学教育制度对继承古代数学经典是有积极意义的. 公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式. 贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的.遗憾的是贾宪的《黄帝九章算法细草》书稿已佚. 秦九韶是南宋时期杰出的数学家.1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程).16世纪意大利人菲尔洛才提出三次方程的解法.另外,秦九韶还对一次同余式理论进行过研究. 李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义.尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论. 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和.公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法.公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式.郭守敬还运用几何方法求出相当于现在球面三角的两个公式. 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法.朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式. 14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势. 明代珠算开始普及于中国.1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作.但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一. 由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国.数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成).徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作.邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作
LuckySXyd2023-05-21 08:45:272

简述中国数学发展史上三个高峰时期,并谈谈中国古代数学的特色与局限。数学史

中国数学发展的高峰唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪﹝宋、元两代﹞,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》﹝11世纪中叶﹞,刘益的《议古根源》﹝12世纪中叶﹞,秦九韶的《数书九章》﹝1247﹞,李冶的《测圆海镜》﹝1248﹞和《益古演段》﹝1259﹞,杨辉的《详解九章算法》﹝1261﹞、《日用算法》﹝1262﹞和《杨辉算法》﹝1274-1275﹞,朱世杰的《算学启蒙》﹝1299﹞和《四元玉鉴》﹝1303﹞等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有:公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚)公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。中国数学的特点与局限(1)以算法为中心,属于应用数学。中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。(2)具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。(3)寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等。中国数学对世界的影响数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展。中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展。
u投在线2023-05-21 08:45:272

古代数学著作《详解九章算法》作者是谁

凡尘2023-05-21 08:45:254

简述中国数学发展史上三个高峰时期,并谈谈中国古代数学的特色与局限.

中国数学发展的高峰 唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进.从公元十一世纪到十四世纪﹝宋、元两代﹞,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期.这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》﹝11世纪中叶﹞,刘益的《议古根源》﹝12世纪中叶﹞,秦九韶的《数书九章》﹝1247﹞,李冶的《测圆海镜》﹝1248﹞和《益古演段》﹝1259﹞,杨辉的《详解九章算法》﹝1261﹞、《日用算法》﹝1262﹞和《杨辉算法》﹝1274-1275﹞,朱世杰的《算学启蒙》﹝1299﹞和《四元玉鉴》﹝1303﹞等等.宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰.其中主要的工作有: 公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法.贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”.(《黄帝九章算法细草》已佚) 公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式.沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式.他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题. 公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程.欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法.秦九韶还系统地研究了一次同余式理论. 公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果.在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论. 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和.公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法.公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式.郭守敬还运用几何方法求出相当于现在球面三角的两个公式. 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法.朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式. 公元十四世纪我国人民已使用珠算盘.在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具. 中国数学的特点与局限 (1)以算法为中心,属于应用数学.中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的. (2)具有较强的社会性.中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起.同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质. (3)寓理于算,理论高度概括.由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树.其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等. 中国数学对世界的影响 数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统.在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展. 中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方.而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展.
LuckySXyd2023-05-21 08:45:251

"杨辉三角"出现在下列哪部古代数学著作中

杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。具体的用杨辉三角的简史:北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,南宋数学家杨辉在《详解九章算法》(1961年)记载并保存了“贾宪三角”,故称杨辉三角。元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。满意请采纳
NerveM 2023-05-21 08:45:241

古代数学著作《详解九章算法》作者是谁

《详解九章算法》作者杨辉,他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决
大鱼炖火锅2023-05-21 08:45:231

我国古代数学著作详解九章算法是谁所著

解答:1261年,中国宋朝的杨辉著《详解九章算法》作者简介:杨辉,字谦光,汉族,钱塘(今杭州)人,南宋杰出的数学家和数学教育家,生平履历不详。由现存文献可推知,杨辉担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带,他署名的数学书共五种二十一卷。他在总结民间乘除捷算法、"垛积术"、纵横图以及数学教育方面,均做出了重大的贡献。他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。著有《详解九章算法》、《日用算法》、《乘除通变本末》、《田亩比类乘除捷法》、《续古摘奇算法》。与秦九韶、李冶、朱世杰并称"宋元数学四大家"。杨辉一生留下了大量的著述,他著名的数学书共五种二十一卷,它们是:《详解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通变本末》3卷(1274年,第3卷与他人合编),《田亩比类乘除捷法》2卷(1275年),《续古摘奇算法》2卷(1275年,与他人合编),其中后三种为杨辉后期所著,一般称之为《杨辉算法》。他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。
无尘剑 2023-05-21 08:45:231

数学教育家杨辉对中国古代数学做了什么贡献?

杨辉是南宋时期杰出的数学家。他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。除此成就之外,还有一项重大贡献,就是“杨辉三角”。与秦九韶、李冶、朱世杰并称为“宋元数学四大家”。杨辉也是数学教育家。他非常重视数学教育的普及和发展,在《算法通变本末》中,他为初学者制订的“习算纲目”,是我国古代数学教育史上的重要文献。详解九章算法
可桃可挑2023-05-21 08:45:201

杨辉对我国古代数学做出了哪些贡献?

1261年,南宋杨辉在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。此外,杨辉还著有《日用算法》、《杨辉算法》等。杨辉的著作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法。这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件。
此后故乡只2023-05-21 08:45:181

古代数学著作还有哪些,除了《九章算数》

《算经十书》(包括《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》)现《缀术》已经失传,《夏侯阳算经》也为找到...
NerveM 2023-05-21 08:45:091

古代数学著作《详解九章算法》作者是谁

杨辉,宋代的
Jm-R2023-05-21 08:45:083

关于古代数学的资料

《缀术》《四元玉鉴》《测圆海镜》《数书九章》《几何原本》《周髀算经》《九章算术》《海岛算经》《孙子算经》《缉古算经》《五曹算经》《五经算术》《九章重差图》《张丘建算经》《夏侯阳算经》《黄帝九章算经细草》
CarieVinne 2023-05-21 08:45:081

中国 古代数学

看对你有没有启发http://zhidao.baidu.com/question/28778992.html?si=1
瑞瑞爱吃桃2023-05-21 08:45:082

中国古代数学

国古代数学,和天文学以及其他许多科学技术一样,也取得了极其辉煌的成就。可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位。中国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。 例如现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。 开始,人们是用抄写的方法进行学习并且把数学知识传给下一代的。直到北宋,随着印刷术的发展,开始出现印刷本的数学书籍,这恐怕是世界上印刷本数学著作的最早出现。现在收藏于北京图书馆、上海图书馆、北京大学图书馆的传世南宋本《周髀算经》、《九章算术》等五种数学书籍,更是值得珍重的宝贵文物。 从汉唐时期到宋元时期,历代都有著名算书出现:或是用中国传统的方法给已有的算书作注解,在注解过程中提出自己新的算法;或是另写新书,创新说,立新意。在这些流传下来的古算书中凝聚着历代数学家的劳动成果,它们是历代数学家共同留下来的宝贵遗产。 《算经十书》 《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。 对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部。它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330—前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的。在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。 《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书?艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。 从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法。书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题。《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方程(首项系数不是负)的数值解法。还有整整一章是讲述联立一次方程解法的,这种解法实质上和现在中学里所讲的方法是一致的。这要比欧洲同类算法早出一千五百多年。在同一章中,还在世界数学史上第一次记载了负数概念和正负数的加减法运算法则。 《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足” (也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。 《算经十书》中的第三部是《海岛算经》,它是三国时期刘徽(约225—约295)所作。这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法(参见本书第98页),他还首次把极限概念应用于解决数学问题。 《算经十书》的其余几部书也记载有一些具有世界意义的成就。例如《孙子算经》中的“物不知数”问题(一次同余式解法,参见本书第106页),《张丘建算经》中的“百鸡问题”(不定方程问题)等等都比较著名。而《缉古算经》中的三次方程解法,特别是其中所讲述的用几何方法列三次方程的方法,也是很具特色的。 《缀术》是南北朝时期著名数学家祖冲之的著作。很可惜,这部书在唐宋之际公元十世纪前后失传了。宋人刊刻《算经十书》的时候就用当时找到的另一部算书《数术记遗》来充数。祖冲之的著名工作——关于圆周率的计算(精确到第六位小数),记载在《隋书?律历志》中(参见本书第101页)。 《算经十书》中用过的数学名词,如分子、分母、开平方、开立方、正、负、方程等等,都一直沿用到今天,有的已有近两千年的历史了。 宋元算书 中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年); 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。 《数书九章》主要讲述了两项重要成就:高次方程数值解法和一次同余式解法(分别参见本书第119页和第110页)。书中有的问题要求解十次方程,有的问题答案竟有一百八十条之多。《测圆海镜》和《益古演段》讲述了宋元数学的另一项成就:天元术(用代数方法列方程,参见本书第121页);也还讲述了直角三角形和内接圆所造成的各线段间的关系,这是中国古代数学中别具一格的几何学。杨辉的著作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法。这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件。朱世杰的《算学启蒙》不愧是当时的一部启蒙教科书,由浅入深,循序渐进,直到当时数学比较高深的内容。《四元玉鉴》记载了宋元数学的另两项成就:四元术(求解高次方程组问题,参见本书第123页)和高阶等差级数、高次招差法(参见本书第131页)。 宋元算书中的这些成就,和西方同类成果相比:高次方程数值解法比霍纳(1786—1837)方法早出五百多年,四元术要比贝佐(1730—1783)①早出四百多年,高次招差法比牛顿(1642—1727)等人早出近四百年。 宋元算书中所记载的辉煌成就再次证明:直到明代中叶之前,中国科学技术的许多方面,是处在遥遥领先地位的。 宋元以后,明清时期也有很多算书。例如明代就有著名的算书《算法统宗》。这是一部风行一时的讲珠算盘的书。入清之后,虽然也有不少算书
Jm-R2023-05-21 08:45:081

我国古代数学有哪些成就?

圆周率
bikbok2023-05-21 08:45:0714

大约1500年以前,我国古代数学家张丘建在他编写的《张丘建算经》里,曾经提出并解决了“百钱买百鸡”这个

设公鸡有x只,母鸡有y只,小鸡有z只,根据题意,得 5x+3y+ 1 3 z=100 x+y+z=100 ,整理得:7x+4y=100.x= 100-4y 7 ∵x≥0,y≥0,且都是自然数,∴ 100-4y 7 ≥0,∴y≤25,100-4y是7的倍数,∴100-4y=0,7,14,21,28,35,42,49,56,63,70,77,84,91,98经讨论可以得出,共有4种情况:①公鸡0只,母鸡25只,小鸡75只;②公鸡4只,母鸡18只,小鸡78只;③公鸡8只,母鸡11只,小鸡81只;④公鸡12只,母鸡4只,小鸡84只.
韦斯特兰2023-05-21 08:45:061

我国古代数学著名孙子算经中记载这样一个问题今有物不知其数三三数之剩255数

这个方法比较巧,但还是有一定道理的 由题"三三数之剩二,七七数之剩二" 可见都剩二 因此用3×7=21, 因为剩二 21+2=23 初步认为这个数字是23 检验,23÷5 商4余3 符合题意 因此此数为23 望采纳!
Chen2023-05-21 08:45:051

孙子算经 在中国古代数学著作《孙子算经》中有这样一个问题:今有物不知其数,三三数剩二,五五数剩三,七

问题没说完吧?!
FinCloud2023-05-21 08:45:043

我国古代数学名著《孙子算经》的作者跟孙膑的关系

应该没有关系,因为他们不是同一时代的著作,只是姓氏相同吧
再也不做站长了2023-05-20 22:10:085

我国古代数学名著《孙子算经》上有这样一道题;今有鸡兔同笼,上有35头,下有94足,问鸡兔个几头?【用方程】

鸡有23,兔有12
瑞瑞爱吃桃2023-05-20 22:10:082

我国古代数学名著《孙子算经》的作者跟孙膑的关系

应该没有关系,因为他们不是同一时代的著作,只是姓氏相同吧
wpBeta2023-05-20 22:10:065

中国古代数学的历史

春秋前中国数学的萌芽我们的先民在从野蛮走向文明的漫长历程中,逐渐认识了数与形的概念。出土的新石器时期的陶器大多为圆形或其他规则形状,陶器上有各种几何图案,通常还有三个着地点,都是几何知识的萌芽。先秦典籍中有“隶首作数”、“结绳记事”、“刻木记事”的记载,说明人们从辨别事物的多寡中逐渐认识了数,并创造了记数的符号。殷商甲骨文(公元前14—前11世纪)中已有13个记数单字,最大的数是“三万”,最小的是“一”。一、十、百、千、万,各有专名。其中已经蕴含有十进位置值制萌芽。传说伏羲创造了画圆的“规”、画方的“矩”,也传说黄帝臣子倕[chui垂]是“规矩”和“准绳”的创始人。早在大禹治水时,禹便“左准绳”(左手拿着准绳),“右规矩”(右手拿着规矩)(《史记·禹本纪》)。因此,我们可以说,“规”、“矩”、“准”、“绳”是我们祖先最早使用的数学工具。人们丈量土地面积,测算山高谷深,计算产量多少,粟米交换,制定历法,都需要数学知识。《周髀〔bi婢〕算经》载商高答周公问,提到用矩测望高深广远。相传西周初年周公(公元前11世纪)制礼,数学成为贵族子弟教育中六门必修课程——六艺之一。不过当时学在官府,数学的发展是相当缓慢的。春秋时期,随着铁器的出现,生产力的提高,中国开始了由奴隶制向封建制的过渡。新的生产关系促进了科学技术的发展与进步。此时王权衰微,畴人四散,私学开始出现。最晚在春秋末年人们已经掌握了完备的十进位置值制记数法,普遍使用了算筹这种先进的计算工具。人们已谙熟九九乘法表、整数四则运算,并使用了分数。战国至两汉中国数学框架的确立战国时期,各诸侯国相继完成了向封建制度的过渡。思想界、学术界诸子林立,百家争鸣,异常活跃,为数学和科学技术的发展创造了良好的条件。尽管没有一部先秦的数学著作留传到后世,但是,人们通过田地及国土面积的测量,粟米的交换,收获及战利品的分配,城池的修建,水利工程的设计,赋税的合理负担,产量的计算,以及测高望远等生产生活实践,积累了大量的数学知识。据东汉初郑众记载,当时的数学知识分成了方田、粟米、差分、少广、商功、均输、方程、赢不足、旁要九个部分,称为“九数”。九数确立了《九章算术》的基本框架。秦始皇结束了列国纷争,首次建立了中央集权的封建帝国,本应有利于数学的发展。但他的专制政策窒息了百家争鸣的学术空气。秦朝的残暴统治,尤其是焚书坑儒,给中国文化事业造成空前的浩劫。不久,刘邦利用推翻暴秦的农民起义,统一了中国,建立了汉朝,史称西汉。西汉政府与民生息,社会生产力得到恢复、发展,给数学和科学技术的发展带来新的活力,人们提出了若干算术难题,并创造了解勾股形、重差等新的数学方法。同时,人们注重先秦文化典籍的收集、整理。作为数学新发展及先秦典籍的抢救工作的结晶,便是《九章算术》的成书。《九章算术》(省称《九章》)是中国最重要的数学经典,它之于中国和东方数学,大体相当于《几何原本》之于希腊和欧洲数学。在世界古代数学史上,《九章》与《原本》像两颗璀灿的明珠,东西辉映。《九章》之前还有一部《周髀算经》,它本是一部以数学方法阐述盖天说的天文著作,一般认为于公元前1世纪成书。卷上记载了商高答周公问,陈子答荣方问。前者有勾股定理的特例32+42=52,后者有用勾股定理及比例算法测太阳高远及直径的内容。近年湖北省张家山出土的竹简《算数书》正在整理,其少广一问与《九章》少广章第1问基本相同,两者的关系有待于研究。《九章》集先秦到西汉数学知识之大成。据东汉末大学者郑玄(公元127—200年)引东汉初郑众(?—公元83年)说,西汉在先秦九数基础上又发展出勾股、重差两类数学方法。魏刘徽说:《九章》是由九数发展而来的,由于秦朝焚书而散坏。西汉张苍(?—公元前152年)、耿寿昌(公元前1世纪)收集秦火遗残,加以整理删补,便成为《九章算术》。方田章提出了完整的分数运算法则,各种多边形、圆、弓形等的面积公式;粟米章提出了比例算法;衰[cui崔]分①章提出了比例分配法则;少广章给出了完整的开平方、开立方程序;商功章讨论各种立体体积公式及工程分配方法;均输章解决赋役中的合理负担,也是比例分配问题,还有若干结合西汉社会实际的算术杂题;盈不足章解决盈亏问题及可以用盈不足术解决的一般算术问题;方程章是线性方程组解法,并给出了正负数加减法则;勾股章由旁要发展而成,提出了勾股定理、解勾股形及若干测望问题的方法。全书以计算为中心,有90余条抽象性算法、公式,246道例题及其解法,基本上采取算法统率应用问题的形式。它的许多成就居世界领先地位,奠定了此后中国数学居世界前列千余年的基础。《九章》分类不甚合理,没有任何定义和推导,少数公式不准确,个别公式有错误,则是不容讳言的缺点。《九章》的框架、形式、风格和特点深刻影响了中国和东方的数学。《九章算术》成书后,注家蜂起。《汉书·艺文志》所载《许商算术》、《杜忠算术》(公元前1世纪)估计为研究《九章》的作品。东汉马续、张衡、刘洪、郑玄、徐岳、王粲等通晓《九章算术》,或为之作注。这些著作都未传世,从后来刘徽(今山东邹平人,生卒不详)《九章算术注》所反映的信息看,这些研究基本上停留在归纳验证《九章算术》的正确性方面,理论上未能在《九章》基础上作出长足进步。魏晋至唐初中国数学理论体系的建立《九章算术》之后,中国的数学著述基本上采取两种方式:一是为《九章算术》作注;二是以《九章算术》为楷模编纂新的著作。经过两汉社会经济和科学技术的大发展,到魏晋,中国封建社会进入一个新的阶段,庄园农奴制和门阀士族占据了经济政治舞台的中心。思想文化领域中,儒家的统治地位被削弱,谶纬迷信和繁琐的经学退出历史舞台,代之以谈三玄——《周易》、《老子》、《庄子》为主的辩难之风。学者们通过析理,探讨思维规律,思想界出现了战国的百家争鸣以来所未有过的生动局面。与此相适应,数学家重视理论研究,力图把自先秦到两汉积累起来的数学知识建立在必然的可靠的基础之上。刘徽和他的《九章算术注》便是这个时代造就的最伟大的数学家和最杰出的数学著作。大约与刘徽同时或稍前,有赵爽(又名婴,字君卿,生卒不详,估计是三国吴人)的《周髀算经注》,其可观者为“勾股圆方图”,用600余字概括了两汉以来勾股算术的成果。刘徽《九章算术注》作于魏景元四年(公元263年),原十卷。前九卷全面论证了《九章》的公式、解法,发展了出入相补原理、截面积原理、齐同原理和率的概念,在圆面积公式和锥体体积公式的证明中引入了无穷小分割和极限思想,首创了求圆周率的正确方法,指出并纠正了《九章》的某些不精确的或错误的公式,探索出解决球体积的正确途径,创造了解线性方程组的互乘相消法与方程新术,用十进分数逼近无理根的近似值等,使用了大量类比、归纳推理及演绎推理,并且以后者为主。第十卷原名重差,为刘徽自撰自注,发展完善了重差理论,此卷后来单行,因第一问为测望一海岛的高远,名之曰《海岛算经》。他还著有《九章重差图》一卷,已佚。刘徽生活在辩难之风兴起而尚未流入清谈的魏晋之交,受思想界“析理”的影响,对《九章算术》“析理以辞,解体用图”(《九章算术注·序》),并对各种算法进行总结分析,认为数学像一株枝条虽分而同本干的大树,发自一端,形成了一个完整的理论体系。刘徽博览群书,谙熟诸子百家,他不迷信古人,敢于创新,实事求是。对他未能解决的牟合方盖,坦诚直书,表示“以俟能言者”(《九章算术·少广章注》),表现了一位伟大学者寄希望于后学的坦荡胸怀。《孙子算经》三卷,常被误认为春秋军事家孙武所著,实际上是公元400年前后的作品,作者不详。这是一部数学入门读物,给出了筹算记数制度及乘除法则等预备知识,其河上荡杯、鸡兔同笼等问题后来在民间广泛流传,“物不知数”题则开一次同余式解法之先河。张丘建(今山东人,生平不详)著的《张丘建算经》三卷,成书于北魏(5世纪下半叶)。此书补充了等差级数的若干公式,其百鸡问题是著名的不定方程问题,后世十分重视。《缀术》包含了祖冲之(公元429—500年)和儿子祖暅〔geng 更〕之(一作祖暅,生平不详)的数学贡献。由于其内容深奥,隋唐算学馆学官(相当于今天大学数学系教授)读不懂,遂失传。据认为,将圆周率精确到八位有效数字、球体积的解决及含有负系数的二次、三次方程皆是其中的内容。祖冲之,字文远,祖籍范阳逎(今河北省涞源县)人。刘宋大明六年(公元462年)造大明历,使用岁差,改革闰制。他的改革遭到守旧派官僚戴法兴的反对,祖冲之不畏权势,据理驳斥,坚持了反对谶纬迷信,不虚推古人,实事求是的科学精神。他对机械深有研究,制造过水碓、水磨、指南车、千里船、漏壶等,并著《安边论》、《述异记》等。祖暅之,字景烁。从小爱好数学,巧思入神,极其精微。专心致志之时,雷霆不能入。有一次走路时思考问题,仆射徐勉迎面而来竟然没有发现,头撞到徐勉身上,徐勉唤他,他才知道撞了人。其父的《大明历》经他的努力在梁朝颁行。北周甄鸾(今河北无极人,生卒不详)有三部数学著作传世,即《五曹算经》、《五经算术》、《数术记遗》。前二部内容浅近,无足道者。《数术记遗》一卷,传本题(东)汉徐岳撰、北周甄鸾注,近人多以为系甄鸾自撰自注,假托徐岳。书中记载了三种大数进位制及14种算法,其中珠算虽不同于元明的珠算盘,然开后者之先河,似无可疑。隋唐是中国封建社会经济政治文化的鼎盛时期,然而数学上除天文历法研究中刘焯(公元544—610年)创造等间距内插公式(7世纪初)和僧一行(公元683—727年)创造不等间距内插公式(8世纪)外,几无创造,数学成就及理论水平远远低于魏晋南北朝。唐初王孝通(生卒不详)撰《缉古算经》一卷,解决了若干复杂的土方工程及勾股问题,且都用三次或四次方程解决,是为现存记载三次、四次方程的最早著作。然而,《缉古算经》未必是高于《缀术》的著作。王孝通是历算博士,曾任太史丞,在天文历法方面是保守的。他在《上〈缉古算经〉表》中指责《缀术》全错不通,于理未尽,大约他与当时别的数学家一样读不懂《缀术》。他自诩他的《缉古算经》千金不能排其一字,他一旦瞑目,其方法后人莫晓。科学家不必作谦谦君子,但如此狂妄,也是不足取的。隋唐统治者在国子监设算学馆,置算学博士、助教指导学生学习。唐李淳风等奉敕于显庆元年(公元656年)为《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《夏侯阳算经》、《缀术》、《张丘建算经》、《五曹算经》、《五经算术》、《缉古算经》等十部算经作注,作为算学馆教材,这就是著名的《算经十书》,该书是中国古代数学奠基时期的总结。李淳风等注释保存了许多宝贵资料,但注释水平并不高。由于种种原因,算学馆实际未培养出像样的数学家。唐中叶至宋元中国数学的高潮经过盛唐的大发展,唐中叶之后,生产关系和社会各方面逐渐产生新的实质性变革,到10世纪下半叶,赵匡胤建立宋朝,统一中国,中国封建社会进入了另一个新的阶段,土地所有制以国有为主变为私有为主,租佃农民取代了魏唐的具有农奴身份的部曲、徒附。农业、手工业、商业和科学技术得到更大发展。中国古代四大发明,有三项——印刷术之广泛应用及活字印刷,火药用于战争,指南针用于航海——完成于唐中叶至北宋。宋秘书省于元丰七年(公元1084年)首次刊刻了《九章算术》等十部算经(时《夏侯阳算经》、《缀术》已失传,因8世纪下半叶一部韩延《算术》开头有“夏侯阳曰”云云而误认为是前者而刻入,后者只好付之阙如),是世界上首次出现的印刷本数学著作。后来南宋数学家鲍澣之翻刻了这些刻本,有《九章算术》(半部)、《周髀算经》、《孙子算经》、《五曹算经》、《张丘建算经》五种及《数术记遗》等孤本流传到现在,是目前世界上传世最早的印刷本数学著作。宋元数学家贾宪、李冶、杨辉、朱世杰的著作,大都在成书后不久即刊刻。数学著作借助印刷术得以空前广泛的流传,对传播普及数学知识,其意义尤为深远。宋元数学高潮早在唐中叶已见端倪。随着商业贸易的蓬勃发展,人们改进筹算乘除法,新、旧《唐书》记载了大量这类书籍,可惜绝大多数失传,只有韩延(生平不详)《算术》(8世纪)以《夏侯阳算经》的名义流传下来,该书提出了若干化乘除为加减的捷算法,并在运算中使用了十进小数,极可宝贵。11世纪上半叶贾宪(生平不详)撰《黄帝九章算经细草》,是为北宋最重要的数学著作。贾宪曾任左班殿直(低级武官),是当时著名天文学家、数学家楚衍的学生。还著有《算法
hi投2023-05-20 22:10:051

中国古代数学形成学科出现在哪个朝代?他比世界上其他国家早出现多少年?

秦汉、魏晋、南北朝,共400年间的数学发展历史。而西方古希腊时期就形成了以毕达哥拉斯、欧几里得、阿基米德、阿波罗尼奥斯为主的数学几何学,所以从形成理论来说,中国要晚500年至1000年。一、中国数学的起源与早期发展 据《易·系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间﹝法则是:一纵十横,百立千僵,千、十相望,万、百相当﹞,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。 在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理﹝西方称勾股定理﹞的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。 战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:「圆,一中同长也」、「平,同高也」等等。墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如「至大无外谓之大一,至小无内谓之小一」、「一尺之棰,日取其半,万世不竭」等。这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的186年(应该在此前)。 西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有较复杂的开方问题和分数运算等。 《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年﹝公元前一世纪﹞。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。 魏晋时期中国数学在理论上有了较大的发展。其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。赵爽还提出了用几何方法求解二次方程的新方法。263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰著《海岛算经》,发扬了古代勾股测量术----重差术。 南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。约于公元四-五世纪成书的《孙子算经》给出「物不知数」问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题。  公元五世纪,祖冲之、祖暅父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。他们同时在天文学上也有突出的贡献。其著作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到3.1415926 <π< 3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值,欧洲直到十六世纪德国人鄂图(valentinus otto)和荷兰人安托尼兹(a.anthonisz)才得出同样结果;(2)祖暅在刘徽工作的基础上推导出球体体积的正确公式,并提出"幂势既同则积不容异"的体积原理,即二立体等高处截面积均相等则二体体积相等的定理。欧洲十七世纪意大利数学家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)发展了二次与三次方程的解法。 同时代的天文历学家何承天创调日法,以有理分数逼近实数,发展了古代的不定分析与数值逼近算法。  三、中国数学教育制度的建立 隋朝大兴土木,客观上促进了数学的发展。唐初王孝通撰《缉古算经》,主要是通过土木工程中计算土方、工程的分工与验收以及仓库和地窖计算等实际问题,讨论如何以几何方式建立三次多项式方程,发展了《九章算术》中的少广、勾股章中开方理论。 隋唐时期是中国封建官僚制度建立时期,随着科举制度与国子监制度的确立,数学教育有了长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》(包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》﹞,作为算学馆学生用的课本。对保存古代数学经典起了重要的作用。 由于南北朝时期的一些重大天文发现在隋唐之交开始落实到历法编算中,使唐代历法中出现一些重要的数学成果。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式,这在数学史上是一项杰出的创造,唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。 唐朝后期,计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。 四、中国数学发展的高峰 唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪﹝宋、元两代﹞,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》﹝11世纪中叶﹞,刘益的《议古根源》﹝12世纪中叶﹞,秦九韶的《数书九章》﹝1247﹞,李冶的《测圆海镜》﹝1248﹞和《益古演段》﹝1259﹞,杨辉的《详解九章算法》﹝1261﹞、《日用算法》﹝1262﹞和《杨辉算法》﹝1274-1275﹞,朱世杰的《算学启蒙》﹝1299﹞和《四元玉鉴》﹝1303﹞等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有: 公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。 (《黄帝九章算法细草》已佚)公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。 公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。 公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。 公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。 五、中国数学的衰落与日用数学的发展 这一时期指十四世纪中叶明王朝建立到明末的1582年。数学除珠算外出现全面衰弱的局面,当中涉及到中算的局限、十三世纪的考试制度中已删减数学内容、明代大兴八段考试制度等复杂的问题,不少中外数学史家仍探讨当中涉及的原因。 明代最大的成就是珠算的普及,出现了许多珠算读本,及至程大位的《直指算法统宗》﹝1592﹞问世,珠算理论已成系统,标志着从筹算到珠算转变的完成。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。 六、西方初等数学的传入与中西合璧 十六世纪末开始,西方传教士开始到中国活动,由于明清王朝制定天文历法的需要,传教士开始将与天文历算有关的西方初等数学知识传入中国,中国数学家在“西学中源”思想支配下,数学研究出现了一个中西融合贯通的局面。 十六世纪末,西方传教士和中国学者合译了许多西方数学专着。其中第一部且有重大影响的是意大利传教士利马窦和徐光启合译的《几何原本》前6卷﹝1607﹞,其严谨的逻辑体系和演译方法深受徐光启推崇。徐光启本人撰写的《测量异同》和《勾股义》便应用了《几何原本》的逻辑推理方法论证中国的勾股测望术。此外,《几何原本》课本中绝大部份的名词都是首创,且沿用至今。在输入的西方数学中仅次于几何的是三角学。在此之前,三角学只有零星的知识,而此后获得迅速发展。介绍西方三角学的著作有邓玉函编译的《大测》﹝2卷,1631﹞、《割圆八线表》﹝6卷﹞和罗雅谷的《测量全义》﹝10卷,1631﹞。在徐光启主持编译的《崇祯历书》﹝137卷,1629-1633﹞中,介绍了有关圆椎曲线的数学知识。入清以后,会通中西数学的杰出代表是梅文鼎,他坚信中国传统数学「必有精理」,对古代名著做了深入的研究,同时又能正确对待西方数学,使之在中国扎根,对清代中期数学研究的高潮是有积极影响的。与他同时代的数学家还有王锡阐和年希尧等人。 清康熙帝爱好科学研究,他「御定」的《数理精蕴》﹝53卷,1723﹞,是一部比较全面的初等数学书,对当时的数学研究有一定影响。 七、传统数学的整理与复兴 乾嘉年间形成一个以考据学为主的干嘉学派,编成《四库全书》,其中数学著作有《算经十书》和宋元时期的著作,为保存濒于湮没的数学典籍做出重要贡献。 在研究传统数学时,许多数学家还有发明创造,例如有「谈天三友」之称的焦循、汪莱及李锐作出不少重要的工作。李善兰在《垛积比类》﹝约1859﹞中得到三角自乘垛求和公式,现在称之为「李善兰恒等式」。这些工作较宋元时期的数学进了一步。阮元、李锐等人编写了一部天文学家和数学家传记《畴人传》46卷﹝1795-1810﹞,开数学史研究之先河。  八、西方数学再次东进 1840年鸦战争后,闭关锁国政策被迫中止。同文馆内添设「算学」,上海江南制造局内添设翻译馆,由此开始第二次翻译引进的高潮。 主要译者和著作有:李善兰与英国传教士伟烈亚力合译的《几何原本》后9卷﹝1857﹞,使数学的还有江泽涵﹝1927﹞、陈省身﹝1934﹞、华罗庚﹝1936﹞、许宝騤﹝1936﹞等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素﹝1920﹞,美国的伯克霍夫﹝1934﹞、奥斯古德﹝1934﹞、维纳﹝1935﹞,法国的阿达马﹝1936﹞等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年〈中国数学会学报〉和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝騤在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。 1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊﹝1952年改为《数学学报》﹞,1951年10月《中国数学杂志》复刊﹝1953年改为《数学通报》﹞。1951年8月中国数学会召开建国后第一次国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。 建国后的数学研究取得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》﹝1953﹞、苏步青的《射影曲线概论》﹝1954﹞、陈建功的《直角函数级数的和》﹝1954﹞和李俨的《中算史论丛》5集﹝1954-1955﹞等专着,到1966年,共发表各种数学论文约2万余篇。 除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论着达到世界先进水平,同时培养和成长起一大批优秀数学家。 60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。 1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。 1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专着的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。 十、中国数学的特点 (1)以算法为中心,属于应用数学。中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。 (2)具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。 (3)寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等。 十一、中国数学对世界的影响 数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展。 中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展。
苏州马小云2023-05-20 22:10:041

古代数学著作

古代数学著作有:《九章算术》、《周髀算经》、《海岛算经》等。1、《九章算术》,为《算经》十书中重要的一部,是一本综合性历史著作,也是当时世界上最简练有效的应用数学巨著。2、《周髀算经》,是《算经》的十书之一,为中国最古老的天文学和数学著作,主要阐明了当时的盖天说和四分历法。3、《海岛算经》,是中国最早一部测量数学著作,为地图学提供了数学基础,由魏晋时期刘徽编撰,被称为实用三角法的启蒙著作。数学名著,狭义上是指在数学上具有经典意义、被人们广泛认可的优秀数学著作。
苏州马小云2023-05-20 22:10:041

中国古代数学的十大瑰宝——《算经十书》讲的是什么?

我国古代千余年间陆续出现了10部数学著作,被称为中国古代数学的十大瑰宝。它们是(1)《周髀算经》:这是一部我国流传至今最早的数学著作,也是一部天文学著作。在数学方面主要讲了学习数学的方法。(2)《九章算术》:是算经十书中最重要的一种。(3)《孙子算经》:较系统地叙述了算筹记数法和算筹的乘、除、开方以及分数等计算的步骤和法则。(4)《五曹算经》:北周甄鸾所著,全书共收集了67个问题。所谓“五曹”是指五类官员,即“田曹”、“兵曹”、“集曹”、“仓曹”、“金曹”五大类问题。(5)《夏侯阳算经》:全书共3卷,收有83个数学问题,内容与《孙子算经》类似。(6)《张丘建算经》:南北朝时期的著作,除《九章算术》的内容外,还有等级数问题、二次方程问题、不定方程问题。(7)《海岛算经》:魏晋时期刘徽著,以测海岛的高、远而得名。(8)《五经算术》:北周甄鸾著,对《易经》、《诗经》、《周礼》、《礼记》、《论语》、《左传》等儒家经典中与数学有关的地方加以注释。(9)《缀术》。(10)《缉古算经》。以上10部书统称为《算经十书》。
ardim2023-05-20 22:10:041

古代数学书周什么算经

问题一:中国古代数学著作有哪些?要作者和书名。比如《周脾算经》 中国古代数学,和天文学以及其他许多科学技术一样,也取得了极其辉煌的成就。可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位。中国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。 例如现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。 开始,人们是用抄写的方法进行学习并且把数学知识传给下一代的。直到北宋,随着印刷术的发展,开始出现印刷本的数学书籍,这恐怕是世界上印刷本数学著作的最早出现。现在收藏于北京图书馆、上海图书馆、北京大学图书馆的传世南宋本《周髀算经》、《九章算术》等五种数学书籍,更是值得珍重的宝贵文物。 从汉唐时期到宋元时期,历代都有著名算书出现:或是用中国传统的方法给已有的算书作注解,在注解过程中提出自己新的算法;或是另写新书,创新说,立新意。在这些流传下来的古算书中凝聚着历代数学家的劳动成果,它们是历代数学家共同留下来的宝贵遗产。 《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说――“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。 对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部。它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330―前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的。在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。 《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201―前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书・艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者耽含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。 从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法。书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题。《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方......>> 问题二:古代著名的数学书 《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书.十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》. 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪).《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说――“盖天说”的天文著作.就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算.当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的 问题三:我国古代数学家张丘建在《算经》一书中提出了“百鸡问题”:鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一. 设公鸡有x只,母鸡有y只,小鸡有z只,根据题意,得5x+3y+z3=100x+y+z=100,整理得:7x+4y=100.x=100?4y7;因为x≥0,y≥0,且都是自然数,所以100?4y7≥0,所以y≤25,100-4y是7的倍数,且三种鸡都有买,所以100-4y=7,14,21,所以共有3种情况:①公鸡4只,母鸡18只,小鸡78只;②公鸡8只,母鸡11只,小鸡81只;③公鸡12只,母鸡4只,小鸡84只. 问题四:<<算经十书>>的作者分别是谁? 《周髀算经》的作者不详。从它的成书时间来看,它并非一人一时之作,而是对先秦数学成就的总结,是集体智慧的结晶。 西汉早期的著名数学家张苍(前201―前152)、耿寿昌等人都曾经对它进行过增订删补 《孙子算经》的作者与编纂年代史书没有确实的记载.大约在公元四,五世纪,成书于祖冲之以前 《五曹算经》北周甄鸾 《夏侯阳算经》作者夏侯阳,史家大多同意其为晋朝人 《张丘建算经》张丘建 >由唐代王孝通所撰 (我是一个一个找的,好困难啊!!!!) 问题五:我国古代名著孙子算经中记载的三大数学趣题指的是什么? 《算经十书》是指汉、唐一千多年间的十部著名的数学著作,他们曾经是隋唐时代国子监算学科的教科书。十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《辑古算经》、《缀术》、《五曹算经》、《孙子算经》。《算经十书》标志着中国古代数学的高峰。 问题六:c语言我国古代数学家张丘健在算经一书中提出了百鸡问题,鸡翁一值钱五 设公鸡有x只,母鸡有y只,小鸡有z只,根据题意,得5x+3y+z3=100x+y+z=100,整理得:7x+4y=100.x=100?4y7;因为x≥0,y≥0,且都是自然数,所以100?4y7≥0,所以y≤25,100-4y是7的倍数,且三种鸡都有买,所以100-4y=7,14,21,所以共有3种情况:①公鸡4只,母鸡18只,小鸡78只;②公鸡8只,母鸡11只,小鸡81只;③公鸡12只,母鸡4只,小鸡84只.
西柚不是西游2023-05-20 22:10:031

我国古代数学以什么为代表作

我国古代数学主要是《九章算术》、《周髀算经》、《海岛算经》、《张丘建算经》和《缉古算经》等五部。《九章算术》,为《算经》十书中重要的一部,是一本综合性历史著作,也是当时世界上最简练有效的应用数学,作者不祥,约成书于公元前一世纪。《周髀算经》,原名《周髀》,是《算经》的十书之一,为中国最古老的天文学和数学著作,约成书于公元前一世纪,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名为《周髀算经》。《海岛算经》,是中国学者编撰的最早一部测量数学著作,为地图学提供了数学基础。该书,本为《九章算术注》之第十卷,题为《重差》,由刘徽于三国魏景元四年(公元263年)编撰。它被称为实用三角法的启蒙著作,只是未涉及三角学中的正余弦概念。《张丘建算经》,是中国古代数学著作,约成书于公元五世纪,现传本有九十二问。该书突出的成就,是最大公约数与最小公倍数的计算,各种等差数列问题的解决,及某些不定方程问题求解等。《缉古算经》,原名《缉古算术》,是中国古代数学著作之一,为中国现存最早解决三次方程的著作,由唐代初期数学家王孝通编撰。
FinCloud2023-05-20 22:10:031

古代数学家刘微的故事

  说到中国古代的数学,就不能不提起《九章算术》这本书,它大约写成于公元一世纪,原作者是谁不清楚,但人们常常把后来为它作注释的刘徽与它相提并论。下面是我整理的古代数学家刘微的故事,欢迎查看。   数学家刘徽的故事   13刘徽是魏晋时期有名的数学家,他在数学上有着极大的成就,在数学界中占据着极其重要的位置。他在十分简陋的环境中,冥思苦想,提出了一个又一个令人振奋的理论。接下来,让我们来看一看与刘徽有关的故事吧。   刘徽是中国古代历史上,乃至世界知名的数学家,他通过自己不断地研究,在十分简陋的环境下,提出了“割圆术”,进而得出了更精确地圆周率。这在当时是一个十分伟大的发现,也使中国对圆周率的计算在世界上一直处于领先的地位。   刘徽在他的著作中,提出了割圆术的理论,可以利用它来计算圆周率。《九章算术》中提到“周三径一”,这句话的意思就是说圆周率的近似值为三。但是,刘徽认为这个数字太笼统,不够准确,所以指出这个数字不能作为圆周率。后来,在一次偶然的事件中,刘徽发现圆内接多边形的边数增加得越多,那么多边形的周长就与圆的周长越来越接近,这也就是割圆术的由来了。利用割圆术,刘徽从圆内接正六边形开始切割,然后就是十二边形等一直计算下去,直到计算到九十六边形为止,能够得出的圆周率的近似值是3。14。然而刘徽对此并不满意,他后来又继续深入计算,得出了当时世界上最精确的圆周率为3。1416。   刘徽是一个伟大的数学家,他在数学上的成就对后世数学的发展,形成了十分深远的影响。    拓展:刘徽在海岛算经   刘徽是实至名归的世界数学界的泰斗,他利用了各种优秀的理念,使传统数学得到了转变,数学研究也步上了一个新的台阶。他留下的数学著作对数学界来说是珍宝一般的存在,《海岛算经》就是其中的一部。   263年,刘徽著作了《九章算术注》,而《海岛算经》就是其中的"第十卷。直到唐朝时,《海岛算经》才开始单独作为一部著作出现。这部书是中国最早的一部测量学著作,测量的都是与高和距离的问题。因此,有人说它是三角法的起源,但这其中并未涉及相关的理论和知识点。这部书一共有九个关于测量计算高远深广的问题,且都是采用表尺从不同的位置测望,然后取得这些测望值的差距,通过这些差距再来计算山高等距离问题。而在这些计算中,所运用的方法是筹算。因为这些问题中的第一个问题与海盗有关,所以这部书被取名为《海岛算经》。   这部书,在唐初时单独成册,后来又被收录进了一部百科全书式的文献集中。幸运的是,经历了千年的颠簸,这部书没有消逝在时间的长河里,如今被妥善的保管着。遗憾的是,虽然这部书没有失传,但是却没能留存于国内,而是被保存于英国剑桥大学图书馆。   有人曾指出,《海岛算经》让中国的测量学达到了巅峰,其测量术比欧洲早了整整一千四百年左右,可见古代中国测量学的先进。
九万里风9 2023-05-20 22:10:021

中国古代数学的十大瑰宝——《算经十书》讲的是什么呢?

我国古代千余年间陆续出现了10部数学著作,被称为中国古代数学的十大瑰宝。它们是(1)《周髀算经》:这是一部我国流传至今最早的数学著作,也是一部天文学著作。在数学方面主要讲了学习数学的方法。(2)《九章算术》:是算经十书中最重要的一种。(3)《孙子算经》:较系统地叙述了算筹记数法和算筹的乘、除、开方以及分数等计算的步骤和法则。(4)《五曹算经》:北周甄鸾所著,全书共收集了67个问题。所谓“五曹”是指五类官员,即“田曹”、“兵曹”、“集曹”、“仓曹”、“金曹”五大类问题。(5)《夏侯阳算经》:全书共3卷,收有83个数学问题,内容与《孙子算经》类似。(6)《张丘建算经》:南北朝时期的著作,除《九章算术》的内容外,还有等级数问题、二次方程问题、不定方程问题。(7)《海岛算经》:魏晋时期刘徽著,以测海岛的高、远而得名。(8)《五经算术》:北周甄鸾著,对《易经》、《诗经》、《周礼》、《礼记》、《论语》、《左传》等儒家经典中与数学有关的地方加以注释。(9)《缀术》。(10)《缉古算经》。以上10部书统称为《算经十书》。
阿啵呲嘚2023-05-20 22:10:021

我国古代数学家赵爽的勾股圆方园大正方形,13,1

首先说明一下 a平方我打不出来所以a2就代表a平方了 由图得a2+b2=13 (b-a)2=1 即b2+a2-2ab=1 所以2ab=12,ab=6 所以(a+b)2=25 因为a、b均为正数 所以a+b=5 因为(b-a)2=1 所以b-a=1 成立方程组并解得 b=3,a=2
人类地板流精华2023-05-20 22:10:011

古代数学家赵爽名言

他详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之,为弦实。开方除之,即弦。”
u投在线2023-05-20 22:10:001

我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形

13-2=11 11/4=2.75 2.75的因数末尾只能是“5”所以,2.75/5=0.55 (0.55+5)*(0.55+5)=30.8025 答案是30.8025相信你一定会懂的!
苏州马小云2023-05-20 22:10:002

中国古代数学家(越多越快越好),标清年代和成就

刘徽 ——(东汉)杨辉 ——(南宋)赵爽 ——(东汉)沈括 ——(北宋)汪莱 ——(清朝)朱世杰 ——(元朝)秦九韶 ——(南宋)徐光启 ——(明朝)祖冲之 ——(南北朝)
bikbok2023-05-20 22:09:583

古代数学著作周髀算经中髀是指什么

算筹
豆豆staR2023-05-20 22:09:504

古代数学著作周髀算经中髀是指什么

[单选]我国古代著作《周髀算经》中的“髀”是指().A.太阳影子B.竖立的表或杆子C.直角尺D.算筹参考答案:B
ardim2023-05-20 22:09:462

中国古代数学都是用什么符号表示的?

fsdgb
Jm-R2023-05-20 22:09:346

中国古代数学的辉煌史

杨辉三角
西柚不是西游2023-05-20 22:09:333

中国古代数学有多牛,仅留下的书籍就将近1500万字,中国古代有哪些数学成就?

中国古代的数学其实成就是很高的。我国是世界上最早使用十进制计数的国家之一,商代甲骨文中已有十进制计数。在人类历史上,曾出现过五进制、十二进制、十六进制、二十进制、六十进制等,但除了计时和角度仍保留着六十进制外,其他进制都被十进制所取代了。数字写法有“顺序”,从左到右,或从右到左,或从上到下,于是同一个计数符号写在不同位置上,其数值大小也不相同,这就是位值制。《孙子算经》记载:凡算之法,先识其位,一从十横,百立千僵,千十相望,万百相当。中国古代用算筹记数,进行加减乘除的运算,唐代末年,算筹的乘除法被改进,到宋代产生算筹的乘除法歌诀。中国人还首创了世界上第一个数学专科学校,这就是国子监所辖的六学之一的算学,长安与洛阳各置一所,专门培养数学人才。算学招收学生,置有算学博士等学官,负责学生的教学工作。
康康map2023-05-20 22:09:332

中国古代数学辉煌史

还记得3.1415926吗?
北有云溪2023-05-20 22:09:338

中国古代数学家简介

这次的搜索这次的搜索很满意
苏萦2023-05-20 22:09:3213

中国古代数学家有哪些成就

祖冲之 圆周率
豆豆staR2023-05-20 22:09:314

我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代

⑴ ⑵能,证明见解析 解:(1)       ……………………1分  ;   ………………3分又   ,     ……………………4分∴   .  …………6分⑵ …8分      …………10分      …………………………11分∴    ……12分(说明:若在整个推导过程中,始终带根号运算当然也正确。)(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘 ,保持等式不变,构成完全平方公式,再进行计算.
凡尘2023-05-20 22:09:271

我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口

如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸.因为积水深9寸,所以水面半径为 1 2 (14+6)=10 寸.则盆中水的体积为 1 3 π×9( 6 2 +1 0 2 +6×10)=588π (立方寸).所以则平地降雨量等于 588π π×1 4 2 =3 (寸).故答案为3.
左迁2023-05-20 22:09:261

我国古代数学家秦九韶在《九章算术》中记述了“三斜求积术”,怎么推导出海伦公式

由三斜求积直接推导出海伦公式,不过需要两个公式的代换
阿啵呲嘚2023-05-20 22:09:256

中国古代数学著作有哪些?要作者和书名。比如《周脾算经》

中国古代数学,和天文学以及其他许多科学技术一样,也取得了极其辉煌的成就。可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位。中国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。 例如现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。 开始,人们是用抄写的方法进行学习并且把数学知识传给下一代的。直到北宋,随着印刷术的发展,开始出现印刷本的数学书籍,这恐怕是世界上印刷本数学著作的最早出现。现在收藏于北京图书馆、上海图书馆、北京大学图书馆的传世南宋本《周髀算经》、《九章算术》等五种数学书籍,更是值得珍重的宝贵文物。 从汉唐时期到宋元时期,历代都有著名算书出现:或是用中国传统的方法给已有的算书作注解,在注解过程中提出自己新的算法;或是另写新书,创新说,立新意。在这些流传下来的古算书中凝聚着历代数学家的劳动成果,它们是历代数学家共同留下来的宝贵遗产。 《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。 对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部。它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330—前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的。在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。 《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书·艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。 从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法。书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题。《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方程(首项系数不是负)的数值解法。还有整整一章是讲述联立一次方程解法的,这种解法实质上和现在中学里所讲的方法是一致的。这要比欧洲同类算法早出一千五百多年。在同一章中,还在世界数学史上第一次记载了负数概念和正负数的加减法运算法则。 《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足”(也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。 《算经十书》中的第三部是《海岛算经》,它是三国时期刘徽(约225—约295)所作。这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法(参见本书第98页),他还首次把极限概念应用于解决数学问题。 《算经十书》的其余几部书也记载有一些具有世界意义的成就。例如《孙子算经》中的“物不知数”问题(一次同余式解法,参见本书第106页),《张丘建算经》中的“百鸡问题”(不定方程问题)等等都比较著名。而《缉古算经》中的三次方程解法,特别是其中所讲述的用几何方法列三次方程的方法,也是很具特色的。 《缀术》是南北朝时期著名数学家祖冲之的著作。很可惜,这部书在唐宋之际公元十世纪前后失传了。宋人刊刻《算经十书》的时候就用当时找到的另一部算书《数术记遗》来充数。祖冲之的著名工作——关于圆周率的计算(精确到第六位小数),记载在《隋书·律历志》中(参见本书第101页)。 《算经十书》中用过的数学名词,如分子、分母、开平方、开立方、正、负、方程等等,都一直沿用到今天,有的已有近两千年的历史了。 中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年), 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。 《数书九章》主要讲述了两项重要成就:高次方程数值解法和一次同余式解法(分别参见本书第119页和第110页)。书中有的问题要求解十次方程,有的问题答案竟有一百八十条之多。《测圆海镜》和《益古演段》讲述了宋元数学的另一项成就:天元术(用代数方法列方程,参见本书第121页);也还讲述了直角三角形和内接圆所造成的各线段间的关系,这是中国古代数学中别具一格的几何学。杨辉的著作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法。这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件。朱世杰的《算学启蒙》不愧是当时的一部启蒙教科书,由浅入深,循序渐进,直到当时数学比较高深的内容。《四元玉鉴》记载了宋元数学的另两项成就:四元术(求解高次方程组问题,参见本书第123页)和高阶等差级数、高次招差法(参见本书第131页)。 宋元算书中的这些成就,和西方同类成果相比:高次方程数值解法比霍纳(1786—1837)方法早出五百多年,四元术要比贝佐(1730—1783)①早出四百多年,高次招差法比牛顿(1642—1727)等人早出近四百年。 宋元算书中所记载的辉煌成就再次证明:直到明代中叶之前,中国科学技术的许多方面,是处在遥遥领先地位的。 宋元以后,明清时期也有很多算书。例如明代就有著名的算书《算法统宗》。这是一部风行一时的讲珠算盘的书。入清之后,虽然也有不少算书,但是像《算经十书》、宋元算书所包含的那样重大的成就便不多见了。特别是在明末清初以后的许多算书中,有 不少是介绍西方数学的。这反映了在西方资本主义发展进入近代科学时期以后我国科学技术逐渐落后的情况,同时也反映了中国数学逐渐融合到世界数学发展总的潮流中去的一个过程。   中国数学发展的历史表明:中国数学曾经为世界数学的发展作出过卓越的贡献,只是在近代才逐渐落后了。我们深信,经过努力,中国数学一定能迎头赶上世界
u投在线2023-05-20 22:09:251

我国古代数学家九韶在《数书九章》中记述了三斜求积术的推理过程

我国著名的数学家九韶在《数书九章》提出了“三斜求积术”。  秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。
Chen2023-05-20 22:09:231

我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.

c22是什么东东
tt白2023-05-20 22:09:233

中国古代数学的成就

最早发现勾股定理魏晋数学家刘徽运用极限理论提出计算圆周率的正确方法祖冲之最早把圆周率推算到小数点后七位,比外国早一千年。世界上最早的十进位值制记数法,勾股定理与陈子测日,九九歌的故事,《墨经》几何学,《周易》、《庄子》和孙膑的数学成就等。《算经十书》与汉唐数学,科举考试与《算经十书》,中国古代数学的代表作《九章算术》,《海岛算经》与重差术,有趣的"韩信暗点兵"问题,《缉古算经》与一元三次方程等。
NerveM 2023-05-20 22:09:233

中国古代数学家1000字以上简介急.........

祖冲之小的时候祖父经常给讲一些科学家的故事,其中张衡发明地动仪的故事深深打动了祖冲之幼小的心灵。祖冲之常随祖父去建筑工地,晚上,在那里他常同农村小孩们一起乘凉、玩耍。天上星星闪烁,在祖冲之看来,这些星星很杂乱地散布着,而农村孩子们却能叫出星星的名称,如牛郎、织女以及北斗星等,此时,祖冲之觉得自己实在知道得很少。祖冲之不喜欢读古书。5岁时,父亲教他学枟论语枠,两个月他也只能背诵十几句。气得父亲又打又骂。可是他喜欢数学和天文。一天晚上,祖冲之躺在床上想白天老师说的“圆周是直径的3倍”这话似乎不对。第二天早,他就拿了一段妈妈绱鞋子的绳子,跑到村头的路旁,等待过往的车辆。一会儿,来了一辆马车,祖冲之叫住马车,对驾车的老人说:“让我用绳子量量您的车轮,行吗?”老人点点头。祖冲之用绳子把车轮量了一下,又把绳子折成同样大小的3段,再去量车轮的直径。量来量去,他总觉得车轮的直径没有1/3的圆周长。祖冲之站在路旁,一连量了好几辆马车车轮的直径和周长,得出的结论是一样的。这究竟是为什么?这个问题一直在他的脑海里萦绕。他决心要解开这个谜。 经过多年的努力学习,祖冲之研究了刘徽的“割圆术”。所谓“割圆术”就是在圆内画个正6边形,其边长正好等于半径,再分12边形,用勾股定理求出每边的长,然后再分24、48边形,一直分下去,所得多边形各边长之和就是圆的周长。祖冲之非常佩服刘徽这个科学方法,但刘徽的圆周率只得到96边,得出3 . 14的结果后就没有再算下去,祖冲之决心按刘徽开创的路子继续走下去,一步一步地计算出192边形、384边形 ⋯⋯ 以求得更精确的结果。当时,数字运算还没利用纸、笔和数码进行演算,而是通过纵横相间地罗列小竹棍,然后按类似珠算的方法进行计算。祖冲之在房间地板上画了个直径为1丈的大圆,又在里边做了个正6边形,然后摆开他自己做的许多小木棍开始计算起来。此时,祖冲之的儿子祖恒已13岁了,他也帮着父亲一起工作,两人废寝忘食地计算了十几天才算到96边,结果比刘徽的少0 . 000002丈。祖恒对父亲说:“我们计算得很仔细,一定没错,可能是刘徽错了。”祖冲之却摇摇头说:“要推翻他一定要有科学根据。”于是,父子俩又花了十几天的时间重新计算了一遍,证明刘徽是对的。祖冲之为避免再出误差,以后每一步都至少重复计算两遍,直到结果完全相同才罢休。祖冲之从12288边形,算到24567边形,两者相差仅0 . 0000001。祖冲之知道从理论上讲,还可以继续算下去,但实际上无法计算了,只好就此停止,从而得出圆周率必然大于3 . 1415926,而小于3 . 1415927。 很多朋友知道了祖冲之计算的成绩,纷纷登门向他求教。之后,祖冲之又进一步得出圆周率的密率是355/113,约率是22/7。直到1000多年后,德国数学家鄂图才得出相同的结果。
Ntou1232023-05-20 22:09:232

跪求汉书《九章算术》中的所有古代数学问题`!!!

九章算术——勾股〔一〕今有句三尺,股四尺,问为弦几何?  荅曰:五尺。〔二〕今有弦五尺,句三尺,问为股几何?  荅曰:四尺。〔三〕今有股四尺,弦五尺,问为句几何?  荅曰:三尺。  句股术曰:句股各自乘,并,而开方除之,即弦。  又股自乘,以减弦自乘,其余开方除之,即句。  又句自乘,以减弦自乘,其余开方除之,即股。〔四〕今有圆材径二尺五寸,欲为方版,令厚七寸。问广几何?  荅曰:二尺四寸。  术曰:令径二尺五寸自乘,以七寸自乘减之,其余开方除之,即广。  〔五〕今有木长二丈,围之三尺。葛生其下,缠木七周,上与木齐。问葛长几何?  荅曰:二丈九尺。  术曰:以七周乘三尺为股,木长为句,为之求弦。弦者,葛之长。〔六〕今有池方一丈,葭生其中央,出水一尺。引葭赴岸,适与岸齐。问水深、葭长各几何?  荅曰:  水深一丈二尺;  葭长一丈三尺。  术曰:半池方自乘,以出水一尺自乘,减之,余,倍出水除之,即得水深。加出水数,得葭长。〔七〕今有立木,系索其末,委地三尺。引索却行,去本八尺而索尽。问索长几何?  荅曰:一丈二尺、六分尺之一。  术曰:以去本自乘,令如委数而一,所得,加委地数而半之,即索长〔八〕今有垣高一丈。倚木于垣,上与垣齐。引木却行一尺,其木至地。问木几何?  荅曰:五丈五寸。  术曰:以垣高十尺自乘,如却行尺数而一,所得,以加却行尺数而半之,即木长数。〔九〕今有圆材,埋在壁中,不知大小。以鐻鐻之,深一寸,鐻道长一尺。问径几何?  荅曰:材径二尺六寸。  术曰:半鐻道自乘,如深寸而一,以深寸增之,即材径。〔一0〕今有开门去阃一尺,不合二寸。问门广几何?  荅曰:一丈一寸。  术曰:以去阃一尺自乘,所得,以不合二寸半之而一,所得,增不合之半,即得门广。〔一一〕今有户高多于广六尺八寸,两隅相去适一丈。问户高、广各几何?  荅曰:  广二尺八寸;  高九尺六寸。  术曰:令一丈自乘为实。半相多,令自乘,倍之,减实,半其余。以开方除之,所得,减相多之半,即户广。加相多之半,即户高。〔一二〕今有户不知高广,竿不知长短。横之不出四尺,从之不出二尺,邪之适出。问户高、广、袤各几何?  荅曰:  广六尺,  高八尺,  袤一丈。  术曰:从、横不出相乘,倍,而开方除之。所得加从不出即户广,加横不出即户高,两不出加之,得户袤。〔一三〕今有竹高一丈,末折抵地,去本三尺。问折者高几何?  荅曰:四尺、二十分尺之十一。  术曰:以去本自乘,令如高而一,所得,以减竹高而半其余,即折者之高也。〔一四〕今有二人同所立。甲行率七,乙行率三。乙东行。甲南行十步而邪东北与乙会。问甲乙行各几何?  荅曰:  乙东行一十步半;  甲邪行一十四步半及之。  术曰:令七自乘,三亦自乘,并而半之,以为甲邪行率。邪行率减于七自乘,余为南行率。以三乘七为乙东行率。置南行十步,以甲邪行率乘之,副置十步,以乙东行率乘之,各自为实。实如南行率而一,各得行数。〔一五〕今有句五步,股十二步。问句中容方几何?  荅曰:方三步、十七分步之九。  术曰:并句、股为法,句股相乘为实,实如法而一,得方一步。〔一六〕今有句八步,股十五步。问句中容圆,径几何?  荅曰:六步。  术曰:八步为句,十五步为股,为之求弦。三位并之为法,以句乘股,倍之为实。实如法得径一步。〔一七〕今有邑方二百步,各中开门。出东门十五步有木。问出南门几何步而见木?  荅曰:六百六十六步、太半步。  术曰:出东门步数为法,半邑方自乘为实,实如法得一步。〔一八〕今有邑,东西七里,南北九里,各中开门。出东门十五里有木。问出南门几何步而见木?  荅曰:三百一十五步。  术曰:东门南至隅步数,以乘南门东至隅步数为实。以木去门步数为法。实如法而一。〔一九〕今有邑方不知大小,各中开门。出北门三十步有木,出西门七百五十步见木。问邑方几何?  荅曰:一里。  术曰:令两出门步数相乘,因而四之,为实。开方除之,即得邑方。〔二0〕今有邑方不知大小,各中开门。出北门二十步有木。出南门十四步,折而西行一千七百七十五步见木。问邑方几何?  荅曰:二百五十步。  术曰:以出北门步数乘西行步数,倍之,为实。并出南门步数为从法,开方除之,即邑方。〔二一〕今有邑方十里,各中开门。甲乙俱从邑中央而出。乙东出;甲南出,出门不知步数,邪向东北磨邑,适与乙会。率甲行五,乙行三。问甲、乙行各几何?  荅曰:  甲出南门八百步,邪东北行四千八百八十七步半,及乙。  乙东行四千三百一十二步半。  术曰:令五自乘,三亦自乘,并而半之,为邪行率。邪行率减于五自乘者,余,为南行率。以三乘五,为乙东行率。置邑方半之,以南行率乘之,如东行率而一,即得出南门步数。以增邑方半,即南行。置南行步求弦者,以邪行率乘之,求东者以东行率乘之,各自为实。实如南行率得一步。〔二二〕有木去人不知远近。立四表,相去各一丈,令左两表与所望参相直。从后右表望之,入前右表三寸。问木去人几何?  荅曰:三十三丈三尺三寸、少半寸。  术曰:令一丈自乘为实,以三寸为法,实如法而一。〔二三〕有山居木西,不知其高。山去木五十三里,木高九丈五尺。人立木东三里,望木末适与山峰斜平。人目高七尺。问山高几何?  荅曰:一百六十四丈九尺六寸、太半寸。  术曰:置木高减人目高七尺,余,以乘五十三里为实。以人去木三里为法。实如法而一,所得,加木高即山高。〔二四〕今有井径五尺,不知其深。立五尺木于井上,从木末望水岸,入径四寸。问井深几何?  荅曰:五丈七尺五寸。  术曰:置井径五尺,以入径四寸减之,余,以乘立木五尺为实。以入径四寸为法。实如法得一寸。【 以上“句股”中的“句”字系繁体字 (liaowj加注) 】
左迁2023-05-20 17:39:111

《九章算术》对我国古代数学有哪些影响?

春秋时期,筹算已得到普遍的应用,筹算记数法已普遍使用十进位值制,这种记数法对世界数学的发展具有划时代的意义。这个时期的测量数学在生产上有了广泛应用,在数学上也有相应的提高。战国时期,随着铁器的出现,生产力的提高,我国开始了由奴隶制向封建制的过渡。新的生产关系促进了科学技术的发展与进步。此时私学已经开始出现了。昀晚在春秋末期时,人们已经掌握了完备的十进位值制记数法,普遍使用了算筹这种先进的计算工具。秦汉时期,社会生产力得到恢复和发展,给数学和科学技术的发展带来新的活力,人们提出了若干算术难题,并创造了解勾股形、重差等新的数学方法。同时,人们注重先秦文化典籍的收集、整理。作为数学新发展及先秦典籍的抢救工作的结晶,便是《九章算术》的成书。它是西汉丞相张苍、天文学家耿寿昌收集秦火遗残,加以整理删补而成的。《九章算术》是由国家组织力量编纂的一部官方性数学教科书,集先秦至西汉数学知识之大成,是我国古代昀重要的数学经典,对两汉时期以及后来数学的发展产生了很大的影响。《九章算术》成书后,注家蜂起。《汉书·艺文志》所载《许商算术》、《杜忠算术》就是研究《九章算术》的作品。东汉时期马续、张衡、刘洪、郑玄、徐岳、王粲等通晓《九章算术》,也为之作注。这些著作的问世,推动了稍后的数学理论体系的建立。《九章算术》的出现,奠定了我国古代数学的基础,它的框架、形式、风格和特点深刻影响了我国和东方的数学。数学理论体系的建立《九章算术》问世之后,我国的数学著述基本上采取两种方式:一是为《九章算术》作注;二是以《九章算术》为楷模编纂新的著作。其中刘徽的《九章算术注》被认为是我国古代数学理论体系的开端。
小菜G的建站之路2023-05-20 17:39:091

中国古代数学如何记数的?

古时候人们计数的方法有结绳记数,筹码记数和算盘记数。筹码计数:每一筹码代表1,或10,或100等,以此类推.  商码计数  【释义】我国旧时表示数目的符号,也叫草码,商码.  此外,零还是0.  【商码字符】〡 〢 〣 〤 〥 〦 〧 〨 〩 十  【对应数字】  商码:〡 〢 〣 〤 〥 〦 〧 〨 〩 十  汉字:一 二 三 四 五 六 七 八 九 十  大写:壹 贰 叁 肆 伍 陆 柒 捌 玖 拾  阿拉伯:1 2 3 4 5 6 7 8 9 10【书写】  1,就写一个竖;  2,两个竖:〢  3, 三个竖:〣  4,是个交叉:〤  5,写成〥,其实只是 5 字写得草和快  6,写成一点加一横,其中的一点,代表了5: 〦  7,写成一点加两横:〧  8,一点加三横:〨  9,写成“久”的草体:〩
mlhxueli 2023-05-20 17:39:041

在我国古代数学著作《九章算术》中记载了一道有趣的问题

看吧,全部答案,所以书的答案我都有
左迁2023-05-19 20:17:374

中国古代数学著作有哪些?要作者和书名。比如《周脾算经》

《周髀算经》是中国现存最早的一部数学典籍,成书时间大约在两汉之间 (纪元之后)。也有史家认为它的出现更早,是孕于周而成于西汉,甚至更有人说它出现在纪元前1000年。 《九章算术》约成书于公元纪元前后,它系统地总结了我国从先秦到西汉中期的数学成就。该书作者已无从查考,只知道西汉著名数学家张苍、耿寿昌等人曾经对它进行过增订删补。全书分做九章,一共搜集了246个数学问题,按解题的方法和应用的范围分为九大类,每一大类作为一章。南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。 》、《海岛算经》等10部数学著作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。 公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。 贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。 秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式。14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。 明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作。但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作。邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作。
西柚不是西游2023-05-18 13:55:543

古代数学名人有哪些?

张丘建:《张丘建算经》 《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。 朱世杰:《四元玉鉴》 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法) 。贾宪:《黄帝九章算经细草》 中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成《黄帝九章算经细草》,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉《详解九章算法》(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。《详解九章算法》同时录有贾宪进行高次幂开方的“增乘开方法”。 贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。 秦九韶:《数书九章》 秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶:《测圆海镜》——开元术 随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。 李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。 刘徽: 《海岛算经》、《九章算术注》、《九章重差图》 263年左右,六会发现当圆内接正多边形的变数无限增加时,多边形的面积则可无限逼近圆面积,即所谓“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”刘徽采用了以直代曲、无限趋近、“内外夹逼”的思想,创立了“割圆术”《重差》原为《九章算术注》的第十卷,即后来的《海岛算经》,内容是测量目标物的高和远的计算方法。重差法是测量数学中的重要方法。
左迁2023-05-18 13:55:531

查找相关资料,说一下中国古代数学辉煌史。如:祖冲之的圆周率......

  中国古代数学辉煌史  中国古代数学的萌芽  原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的  陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。  西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址  的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具  。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。  商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用  十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴  、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。  公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、  股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记  数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。  春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发  展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。  战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家  认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(  无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,  万世不竭”等命题。  而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、  方、平、直、次(相切)、端(点)等等。  墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限  分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。  名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果  。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。  中国古代数学体系的形成  秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,  它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。  《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是  世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、  盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(  特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发  展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。  《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来  的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。  这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固  封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战  国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合  的数学问题及其解法,这与当时社会的发展情况是完全一致的。  《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十  进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的  发展。  中国古代数学的发展  魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析  义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注  ,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代  数学体系奠定了理论基础。  赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充  的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图  证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式  ,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。  刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的  数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他  的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程  中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率  为 157/50和 3927/1250。  刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问  题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。  东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数  学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他  们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖(日恒)原理;提出二次与三次  方程的解法等。  据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这  个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在  圆周率计算方面,比西方领先约一千年之久;  祖冲之之子祖(日恒)总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其  任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理  ,解决了刘徽尚未解决的球体积公式。  隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木  工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不  用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础  。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。  唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李  淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂  的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经  》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算  学家创立了二次函数的内插法,丰富了中国古代数学的内容。  算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹  速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和  珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优  点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横  列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。  唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书  书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运  算,它既适用于筹算,也适用于珠算。  中国古代数学的繁荣  960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术  突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第  一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。  从11~14世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪的《黄帝九章算法细草》,  刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章  算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学  的高峰,其中一些成就也是当时世界数学的高峰。  从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九  章算法纂类》中载有贾宪“增乘开平方法”、“增乘开立方法”;在《详解九章算法》中载有贾宪的“开  方作法本源”图、“增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发  现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的  帕斯卡三角形早提出600多年。  把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中“田亩比类  乘除捷法”卷,介绍了原书中22个二次方程和 1个四次方程,后者是用增乘开方法解三次以上的高次方程  的最早例子。  秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次  数为10)的问题。为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种  类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母  ,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二  位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多  年。  元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在“缀术推星”  题、朱世杰在《四元玉鉴》“如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的  内插公式。  用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号  ,并用符号运算来解决建立高次方程的问题。现存最早的天元术著作是李冶的《测圆海镜》。  从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今  ,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。  朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各  次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,  其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然  后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这  是线性方法组解法的重大发展,比西方同类方法早400多年。  勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形  的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个  容圆公式,大大丰富了中国古代几何学的内容。  已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解  球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、  沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个  推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。  中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算  术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已  出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元  代。  宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外,  数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义  。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,“通神明”的数学是不存在的,只有“经世务  类万物”的数学;莫若在《四元玉鉴》序文中提出的“用假象真,以虚问实”则代表了高度抽象思维的思  想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑  是促进数学发展的重要因素。  中西方数学的融合  中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考  试制度。在这种情况下,除珠算外,数学发展逐渐衰落。  16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战  争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初  ,近代数学研究才真正开始。  从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言  杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭  必需用品列入一般的木器家具手册中。  随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀  ;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱  载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大  位的著作在国内外流传很广,影响很大。  1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《  测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在  他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学  说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同  时介绍进来。  在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译著作,绝大部分  数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它“不必疑”、“不必改”,“举世无一人不  当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。  其次应用最广的是三角学,介绍西方三角学的著作有《大测》《割圆八线表》和《测量全义》。《大  测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方  法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有  这些,在当时历法工作中都是随译随用的。  1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤  柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对  数表》《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。  后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中  通所著《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。  清初学者研究中西数学有心得而著书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书  辑要》(其中数学著作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中  的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现  了生机。年希尧的《视学》是中国第一部介绍西方****学的著作。  清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些著作。  1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。  1721年完成《律历渊源》100卷,以康熙“御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负  责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文著作;下编包括算术、代数、平面  几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等  数学百科全书,并有康熙“御定”的名义,因此对当时数学研究有一定影响。  综上述可以看到,清代数学家对西方数学做了大量的会通工作,并取得许多独创性的成果。这些成果  ,如和传统数学比较,是有进步的,但和同时代的西方比较则明显落后了。  雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不  能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主  的乾嘉学派。  随着《算经十书》与宋元数学著作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有  框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝  而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独  立得到的。  与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记—《畴人传》,收集了从  黄帝时期到嘉庆四年已故的天文学家和数学家270余人(其中有数学著作传世的不足50人),和明末以来介绍  西方天文数学的传教士41人。这部著作全由“掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一  手的原始资料,在学术界颇有影响。  1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学  。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展“洋务运动”,也主张介绍和学习西方数学,组织  翻译了一批近代数学著作。  其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《  代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》;  谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。  《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所著的符号代数学译  本;《决疑数学》是第一部概率论译本。在这些译著中,创造了许多数学名词和术语,至今还在应用,但  所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些著作便成为主要教科书。  在翻译西方数学著作的同时,中国学者也进行一些研究,写出一些著作,较重要的有李善兰的《《尖  锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思  想的研究成果。  由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下  ,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的  研究才真正开始。
阿啵呲嘚2023-05-18 13:55:531

中国古代数学专著有哪些

周髀算经》是中国现存最早的一部数学典籍,成书时间大约在两汉之间 (纪元之后).也有史家认为它的出现更早,是孕于周而成于西汉,甚至更有人说它出现在纪元前1000年. 《九章算术》约成书于公元纪元前后,它系统地总结了我国从先秦到西汉中期的数学成就.该书作者已无从查考,只知道西汉著名数学家张苍、耿寿昌等人曾经对它进行过增订删补.全书分做九章,一共搜集了246个数学问题,按解题的方法和应用的范围分为九大类,每一大类作为一章.南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世. 》、《海岛算经》等10部数学著作.所以当时的数学教育制度对继承古代数学经典是有积极意义的. 公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式. 贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的.遗憾的是贾宪的《黄帝九章算法细草》书稿已佚. 秦九韶是南宋时期杰出的数学家.1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程).16世纪意大利人菲尔洛才提出三次方程的解法.另外,秦九韶还对一次同余式理论进行过研究. 李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义.尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论. 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和.公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法.公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式.郭守敬还运用几何方法求出相当于现在球面三角的两个公式. 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法.朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式. 14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势. 明代珠算开始普及于中国.1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作.但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一. 由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国.数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成).徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作.邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作
tt白2023-05-18 13:55:533

古代数学经典有哪些?

九章算数 和圆周率
wpBeta2023-05-18 13:55:533

关于中国古代数学的著作

关于一个三角形,有个什么“沟三、股四、玄五”的理论著作。
水元素sl2023-05-18 13:55:534
 1 2  下一页  尾页