微分方程问题。解中一定是由两个齐次的解与一个非齐次的解构成的吗为什么?
无尘剑 2023-05-25 18:52:422
二阶非线性变系数常微分方程求解,高手进组
缺条件LuckySXyd2023-05-25 18:52:421
常微分方程的欧拉方程是什么意思??
欧拉方程是特殊的变系数方程,通过变量代换可化为常系数微分方程。欧拉方程的概念:对无粘性流体微团应用牛顿第二定律得到的运动微分方程。欧拉方程是无粘性流体动力学中最重要的基本方程。应用十分广泛。1755年,瑞士数学家L.欧拉在《流体运动的一般原理》一书中首先提出这个方程。在研究一些物理问题,如热的传导、圆膜的振动、电磁波的传播等问题时,常常碰到如下形式的方程:欧拉ax²D²y+bxDy+cy=f(x),其中a、b、c是常数,这是一个二阶变系数线性微分方程。它的系数具有一定的规律:二阶导数D²y的系数是二次函数ax²,一阶导数Dy的系数是一次函数bx,y的系数是常数。这样的方程称为欧拉方程。例如:(x²D²-xD+1)y=0,(x²D²-2xD+2)y=2x³-x等都是欧拉方程。西柚不是西游2023-05-25 18:52:421
常微分方程的常见题型与解法
由于题型种类与解题方法的多样性,此处的分类比较混乱。部分按方程的类型分类(如线性、非线性,齐次、非齐次),部分按解法分类(如可分离变量,可降阶),还有按其特定命名分类(如伯努利方程和欧拉方程)。 因此,需要特别说明的是,同一分支下的不同类别并不是严格互斥的。比如说:齐次方程,线性微分方程以及非线性微分方程处于同一级分支。但这并不意味着齐次方程既不是线性微分方程,也不是非线性微分方程。 如果我们依照阶数、常系数与变系数、齐次与非齐次、线性与非线性来进行分类。确实会让分类更为严谨,判断题型类别时候更加得心应手,但这有时候并不会让你更快的想到解题方法。比如说: 方程 ,按方程类型分类,应为 一阶变系数非齐次非线性方程 。这样描述你可能并不知道应该怎么求解,但是如果说它是可分离变量的微分方程,你马上就知道应该怎么做了。 可分离变量的微分方程 是指可化为 形式的微分方程,两边同时积分便可以求得结果。 如果一阶微分方程可化为 的形式,那么就称为 齐次方程 。 齐次方程的一个重要特征是,每一项关于x、y的次数和是相等的。如 、 、 都是二次项, 、 、 都可以看做一次项。因此,方程 可以用求解齐次方程的方法进行求解。值得注意的是 与 一个没有负号,一个有负号。高阶微分方程 是指二阶及二阶以上的微分方程。容易注意到,可降阶的微分方程中缺少了部分元素。 型微分方程缺少了 、 、 、 。 型的微分方程缺少了 。 型的微分方程缺少了 。也因此。后两种类型的微分方程在令 后,一个继续求对 的导数,另一个则变为了求对 的导数。 形如 ,同时 均为常数的方程叫 常系数齐次线性微分方程 。形如 ,同时 均为常数的方程叫 常系数非齐次线性微分方程 。当 为一般类型的时候,可以使用常数变易法对其进行求解。如 便可以使用常数变易法对其求解。注意,对于常系数线性微分方程组的一般题型,使用微分算子结合行列式解题比较容易。 对于常规的题型来说,先判断其方程形式,然后按部就班的使用相应的解法即可得到结果。因此,需要对各个类型的求解方式了然于胸,没有什么捷径可走。bikbok2023-05-25 18:52:421
关于一阶线性微分方程解题方程(dy/dx) + p(x)y = q(x)
一阶线性微分方程中,若想要交换x和y必须使x和y处于等价的地位本题中,要求:dx/dy有意义 并且,p(y)和q(y)能满足相关条件。如果是从选择题的角度,个人认为不能确定成立至于解决问题,那就要看变系数的复杂程度了小白2023-05-25 18:52:421
二阶非线性微分方程解的稳定性
二阶微分方程为例(高阶的以此类推):经过化简,可以变形为这种形式的称为线性微分方程:P(x)y"+Q(x)y"+R(x)y=S(x) (其中,P(x),Q(x),R(x),S(x)都是已知的x的函数式)无论如何怎么化简,方程中都带有y或者y的导数的非一次方的微分方程就是非线性微分方程。例如y"y=y²,虽然y不是一次方,但是我通过等价变形可以变成y(y"-y)=0,即y=0或者y"-y=0,因为y和y"都是一次方,因此他们是线性微分方程。而他们的系数都是常数,所以可以称之为常系数微分方程。再如(sinx)y"-y=0,因为y"和y的次数都是1(含有x的函数项不算),所以是线性微分方程。而y"的系数是sinx,因此是变系数常微分方程。再如y"y=1,无论如何化简(例如把y除过去),都不能变成y"和y次数都是1的形式,因此该方程为非线性微分方程。再加一句:线性微分方程都有解析解,就是可以写成函数解析式y=f(x)的形式。但是非线性微分方程就很难说了。一般来说,部分一阶非线性微分方程有解析解。但是二阶或二阶以上的非线性微分方程很难有解析解。无尘剑 2023-05-25 18:52:421
数学如何学好微分方程?
下雨天,在雨里面等待好几个小时,整个人都被淋湿了,但是仍然特别高兴。首先,从离散的数列开始入手,定义数列极限,是收敛还是发散,收敛数列的性质,收敛准则等等。有未知量的等式就是方程了,数学最先发展于计数,而关于数和未知数之间通过加、减、乘、除和幂等运算组合,形成代数方程:一元一次方程,一元二次方程、二元一次方程等等。然而,随着函数概念的出现,以及基于函数的微分、积分运算的引入,使得方程的范畴更广泛,未知量可以是函数、向量等数学对象,运算也不再局限于加减乘除。再讨论函数的极限,从定义入手,迁移了数列极限的思路,讨论了函数极限的性质等,数列与函数通过海涅原则得到连接;相关的性质定理等知识点可以类比数列学习,毕竟数列是离散量(数列可以理解成自变量是自然数的函数),函数主要是连续量。自从数学从常量数学转变为变量数学,方程的内容也随之丰富,因为数学引入了更多的概念,更多的运算,从而形成了更多的方程。其他自然科学,尤其物理学的发展也直接提出了方程解决的需求,提供了大量的研究课题。由于连续函数的定义域是实数集,而数列可看成是定义在正整数集上的函数,由此差别,函数引入了通过极限来定义的连续和一致连续,然后给出了连续函数的有界、零点或介值、最值的性质定理。微分方程指的是:含有未知函数及其导数的方程。该类方程的未知量是函数,不同于函数方程的是,对未知函数有求导运算,且可以是高阶导数。然而,如果方程中的未知函数只含有一个自变量,那么微分方程就是常微分方程了。为进一步研究函数的性质,继续通过极限定义了函数的导数和微分,并引入了求导法则和微分中值定理,用于讨论函数的单调性、极值或最值、凹凸性等问题,还讨论了函数可导与连续的关系。善士六合2023-05-25 18:52:412
如何判断一个微分方程是线性,还是非线性微分方程?!
先把类似于P(x)、Q(x)之类的系数函数理解为系数,那么y和y的导数就形成一个方程,如果它们之间只有数乘和加和运算(不包括类似于yy"这种运算),那么这个微分方程是线性的,反之则是非线性的。u投在线2023-05-25 18:52:4110
怎样判断微分方程的线性与非线性
所谓的线性微分方程是指微分变量(y)和微分算子(dy/dx)的幂都是1次的微分方程。它的通解满足线性叠加原理。简单的例子:y"""+y""+y"+y=0是线性的,但y"""+y""+(y")^2+y=0,或者y"""+y""+y"+y^2=0都不是线性的,因为有2次元素的存在。此后故乡只2023-05-25 18:52:417
二阶变系数常微分方程解法
无一般解法,特殊情况除外(线性常系数微分方程,可化为线性常系数微分方程的方程欧拉方程,某些方程可有幂级数解法).瑞瑞爱吃桃2023-05-25 18:52:411
如何根据微分方程判断系统的线性与线性,定常与时变???具体些
主要是分析变量kikcik2023-05-25 18:52:412
线性常微分方程的正文
微分方程中出现的未知函数和该函数各阶导数都是一次的,称为线性常微分方程。它的理论是常微分方程理论中基本上完整、在实际问题中应用很广的一部份。 线性一阶常微分方程 在初等常微分方程中已经知道方程y┡+p(x)y=Q(x) (1)及其对应的齐次线性方程y┡+p(x)y=0 (2)的解法,得到(2)的通解和满足初始条件y(x0)=y0的特解分别为:(3)(1)的通解和满足初始条件y(x0)=y0的特解分别为:, (4)方程(1)、(2)及其解有以下的重要的性质。 ①y(x)呏0是(2)的解,称为明显解。如果p(x)在x0连续,则满足零初始条件y(x0)=0的解必为明显解。②方程(2)的任意两个解y1与y2的线性组合C1y1+C2y2也是(2)的解,C1,C2是任意常数。③y*(x)是(2)的满足条件y(x0)=1的特解。④(2)的解的全体构成一维线性空间,明显解是零元素。⑤ 方程(1)的通解(4)等于(1)的一个特解加上(2)的通解。⑥Y(x)是(1)的满足零初始条件y(x0)的特解。⑦若Q(x)=Q1(x)+Q2(x),又已知yi(x)是y┡+p(x)y=Qj(x),(i=1,2)的解,则y1(x)+y2(x)是方程(1)的解(叠加原理)。 易见,线性代数方程组的解也具有类似的性质。线性常微分方程组和线性高阶常微分方程的解也有同样的性质。 线性一阶常微分方程组 这种方程组可写成如下形式(6)若其中αij(x),?i(x)在x的区间(α,b)上为连续,则方程(6)的满足的解(y1(x),y2(x),…,yn(x))在区间(α,b)上存在而且惟一。 为方便计,(6)可写为向量方程(7)式中而对应的齐次方程是(8)仿照线性代数中那样,对于任意m个n元向量函数y1(x),y2(x),…,ym(x),可以定义它们在区间(α,b)上的线性相关与线性独立。当这些函数都是同一个方程(8)的解时,它们的线性相关性或独立性可由其在(α,b)中的任一点x0为线性相关或独立来决定。特别,当m=n时成立等式(9)其中后一行列式称为y1,y2,…,yn的朗斯基行列式。由它在(α,b)中任一点的值等于零或不等于零,可判定y1,y2,…yn在(α,b)中是(8)的线性相关解或线性独立解。由此,方程(8)必存在n个线性独立解,而任何n+1个解都是线性相关的。 对应于方程(1)与(2)的前述7条性质,方程(7)与(8)也有如下的性质。①y(x)呏0是(8)的明显解。若A(x)在x0连续,则满足条件y(x0)=0的解必为明显解。②方程(8)的任意几个解的线性组合也是(8)的解。(8)的通解可表为,其中C1,C2,…,Cn为n个任意常数,y1(x),y2(x),…,yn(x)是(8)的任何n个线性独立解,称之为(8)的一个基本解组,由它们的n2个分量构成的方阵称为基解方阵。③若y壜(x),(i=1,2,…,n)是(8)的基本解组,使对应的基解方阵Y*(x)满足初值条件Y*(x0)=E(E为单位方阵),则(8)的任一解y(x)可表示为y(x)=Y*(x)y(x0)。但仅当与A(t)为可交换时(即B(t)A(t)=A(t)B(t)),Y*(x)才能写成的形式。④(8)的解的全体构成n维线性空间,任何一个基本解组都可作为此空间的基底,明显解是零元素。⑤方程(7)的通解等于它的一个特解加上(8)的通解,且可表示为:(10)式中y0=y(x0)。⑥(10)式右边第二项是方程(7)的满足零初始条件y(x0)=0的特解。⑦若?(x)=?1(x)+?2(x),又已知yi(x)是的解,则y1(x)+y2(x)是(7)的解。 线性高阶常微分方程 这种方程可写为如下形式。 (11)此方程可借助于引进新的未知函数化为一阶方程组。令y1=y,y2=y┡,y3=y″,…,yn=y(n-1),则(11)化为若改记(12)为向量方程,则这时式(9)中的,而朗斯基行列式成为式中y1,y2,…,yn表示(11)所对应的齐次方程的任意n个解,而(11)的通解是对应的(12)的通解(10)的第一个分量。 由于黎卡提方程y┡=p(x)y2+Q(x)y+R(x)可借代换化为u的线性二阶方程或线性方程组。所以即使是只含两个未知函数的线性方程组(或是二阶线性方程)也未必能用初等方法求出通解。但可证明:如果已知(8)或(11)所对应的齐次方程的k个线性独立解,则该齐次方程即可被降为只含n-k个未知函数的线性方程组或线性n-k阶方程。由此可得重要结论:当n=2时,如果方程y+p1(x)y┡+p2(x)y=0 (13)的一个非零特解y1为已知,则可求出它的通解,且具有如下形式:,对n=2时的方程(8)也成立类似的结论。但对y+p1(x)y┡+p2(x)y=q(x), (14)仅当已知它的两个特解时才能求出其通解;对于n=2时的方程组(7),也是如此。 方程(13)在应用数学中颇为重要,对它还有幂级数解法、广义幂级数解法、定积分解法以及解的定性讨论等内容。 伴随微分方程 以A*(x)记方程(8)中A(x)(可能为复方阵函数)的共轭转置方阵,则称(15)为(8)的伴随微分方程。不难证明:(8)的任一基解方阵φ(x)与(15)的任一基解方阵Ψ(x)必满足恒等式Ψ*(x)φ(x)=C,C是(复的)常数方阵。 借助于(12),易证线性齐次高阶方程Lny=y(n)+p1(x)y(n-1)+…+pny=0 (16)的伴随方程是 对于(16)和(17)成立拉格朗日恒等式:设pi(x)在区间(α,b)上为n-i次连续可微,u(x)与v(x)在(α,b)上为n次连续可微,则有, (18)式中。把(18)在(α,b)的任一子区间(x1,x2)上积分,即得格林公式:(19)这两个公式对讨论边值问题很有用处。此外,由(18)还可看出:如果υ(x)是(17)的非零解,则尌(x)是(16)的积分因子。 常系数线性方程组与常系数线性高阶方程 对于常系数一阶线性非齐次方程组(20)及其对应的齐次方程组。 (21)按照前述线性一阶常微分方程组的理论和矩阵函数的知识可得(21)的通解为。 (22)(20)的通解为。 (23)为了实用上的需要,还须知道eAx的具体表达式。 称λ的n次代数方程│A-λE│=0为(21)的特征方程,它的根为(21)的特征根。可以证明:若λi是特征根,Γi是对应的特征向量,则eΓi是(21)的解;又若λi≠λj都是特征根,则eΓi与eΓj是(21)的两个线性独立解。因此,如果(21)有n个不同的特征根λ1,λ2,…,λn,则它的通解是。一般,当特征方程可能有重根时,可借助于线性代数中化矩阵为若尔当法式的理论来求(21)的通解。设非奇异方阵p使p-1Ap=B具若尔当法式,则线性变换y=pz可以化(21)为, (24)其中Bj为nj阶若尔当块,n1+n2+…+nr=n。若记Bj=λjEj+Nj则有而(24)的通解为(21)的通解是(25)由此可见у的各个分量都具有(26)的形式,pkj(x)是x的次数不大于(nj-1)的多项式,系数是C1,C2,…,Cn的齐次线性组合。 若(20)与(21)是由线性常系数高阶方程y(n)+p1y(n-1)+…+pny=q(x) (27)与y(n)+p1y(n-1)+…+pny=0 (28)化来,则特征方程是λn+p1λ(n-1)+…+pn-1λ+pn=0, (29)而(26)中的y1即(28)的通解。这时A的右上角有一个n-1阶子行列式之值为1,故(29)的每一i重根λ*只对应于一个i阶若尔当块,而y1中前面的多项式必为i-1次。又若(27)为实系数而有复特征根,则必成对出现。实用上常以 eαxcosβx与eαxsinβx这两实解代替两个共轭复解。 虽然从理论上说,(20)或(27)的特解可按公式(23)右边的第二项来求,其中eAtt=peBttp-1。但在具体计算时是相当麻烦的。当q(x)或?(x)的各分量为多项式、正弦余弦函数、指数函数、或三者的乘积之和时,不难得知对应的特解所应具有的形式,然后可用待定系数法来求特解。此外,也可采用符号方法或拉普拉斯变换法求特解。拉氏变换法是把常系数线性微分方程的求解问题化为线性代数方程或方程组的求解问题,求解时把初始条件一起考虑在内,不必先求通解再求特解,在工程技术中有广泛的应用。此外,还有用留数理论求方程(20)或(21)解的方法。 欧拉方程和周期系数线性方程 这是两种可化为常系数的变系数线性方程。二者有本质的不同,前者是切实可行的,后者只有理论上的价值。欧拉方程是形如xny(n)+α1x(n-1)y(n-1)+…+αn-1xy┡+αny=?(x) (30)的方程,经自变量的代换x=et就可化为常系数,这时有,不难写出所对应的、以t为自变量的常系数线性方程。对比(30)更一般的方程(αx+β)ny(n)+α1(αx+β)(n-1)y(n-1)+…+αny=?(x)可作代换αx+β=et。又对方程组(7),只要αij(x)=αijφ(x)对一切i,j,则用代换总可把(7)化为常系数。 若(8)中的A(x)对x有周期ω,而Y(x)是一基解方阵,则Y(x+ω)也是,故Y(x+ω)=Y(x)C,C为非奇异方阵。由线性代数知有方阵B使C=eωB,令p(x)=Y(x)e-Bx,则p(x)也有周期ω。若在(8)中作变换y=p(x)z,则z将满足常系数方程。 (31)C的特征根ρi与B的特征根λi之间存在关系,ρi与λi分别称为周期系数方程(8)的特征乘数和特征指数。由(31)易见这时(8)的任意解的每一分量是形如e·φi(x)的函数的线性组合,其中φi(x)为x的多项式,系数是x的周期为ω的周期函数。但即使对于极简单的马蒂厄方程y+(λ+μcosx)y=0, (32)对应的一阶方程组的变换方阵C也写不出来,而只知有ρ1ρ2=1这个关系式。为研究 (32)的解的性质,只能在(λ,μ)平面中画出无数条曲线(它们的方程只能近似地确定),分此平面为无数个属于两种类型的区域,然后说明在两类区域中或位于曲线上的点(λ,μ),其所对应的方程(32)的解会具有一些什么样的性质。关于方程(32)以及比它更广的很有实用价值的希尔方程y+φ(x)y=0,φ(x+π)=φ(x)都有专著。 参考书目 叶彦谦编:《常微分方程讲义》,第2版,人民教育出版社,北京,1982。 R.贝尔曼著,张燮译:《常微分方程的解的稳定性理论》,科学出版社,北京,1957。(R.Bellman,StαbilityTheory of Differentiαl Equαtions , McGraw-Hill,New York, 1953.) E.L.Ince,Ordinαry Differentiαl Equαtions , Dover, New York, 1944.LuckySXyd2023-05-25 18:52:411
二阶常系数非齐次线性微分方程为什么会有两种形式?
形式多种多样,只是现在一般非数学专业的大学教材或者考研大纲里面,只要求变系数的这两种形式掌握,甚至推导过程都不需要掌握只要记住结论就可以了,数学题目和研究领域众多,这两种也只是比较典型的考试需求,从整体来看还是冰山一角。mlhxueli 2023-05-25 18:52:411
什么是变系数微分方程?
变系数微分方程也被称为偏微分方程,是指微分方程的自变量有两个或以上 ,且方程式中有未知数对自变量的偏微分。偏微分方程的阶数定义类似常微分方程,但更细分为椭圆型、双曲线型及抛物线型的偏微分方程,尤其在二阶偏微分方程中上述的分类更是重要。有些偏微分方程在整个自变量的值域中无法归类在上述任何一种型式中,这种偏微分方程则称为混合型。扩展资料微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。参考资料来源:百度百科-微分方程meira2023-05-25 18:52:411
什么叫变系数微分方程?
变系数微分方程也被称为偏微分方程,是指微分方程的自变量有两个或以上 ,且方程式中有未知数对自变量的偏微分。偏微分方程的阶数定义类似常微分方程,但更细分为椭圆型、双曲线型及抛物线型的偏微分方程,尤其在二阶偏微分方程中上述的分类更是重要。有些偏微分方程在整个自变量的值域中无法归类在上述任何一种型式中,这种偏微分方程则称为混合型。扩展资料微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。参考资料来源:百度百科-微分方程mlhxueli 2023-05-25 18:52:411
什么是线性微分方程?
以二阶微分方程为例(高阶的以此类推):经过化简,可以变形为这种形式的称为线性微分方程:P(x)y"+Q(x)y"+R(x)y=S(x) (其中,P(x),Q(x),R(x),S(x)都是已知的x的函数式)无论如何怎么化简,方程中都带有y或者y的导数的非一次方的微分方程就是非线性微分方程。例如y"y=y²,虽然y不是一次方,但是我通过等价变形可以变成y(y"-y)=0,即y=0或者y"-y=0,因为y和y"都是一次方,因此他们是线性微分方程。而他们的系数都是常数,所以可以称之为常系数微分方程。再如(sinx)y"-y=0,因为y"和y的次数都是1(含有x的函数项不算),所以是线性微分方程。而y"的系数是sinx,因此是变系数线性常微分方程。再如y"y=1,无论如何化简(例如把y除过去),都不能变成y"和y次数都是1的形式,因此该方程为非线性微分方程。再加一句:线性微分方程都有解析解,就是可以写成函数解析式y=f(x)的形式。但是非线性微分方程就很难说了。一般来说,部分一阶非线性微分方程有解析解。但是二阶或二阶以上的非线性微分方程很难有解析解。FinCloud2023-05-25 18:52:411
如何证明二阶变系数微分方程式是线性系统
你好!答案如图所示: 通解是y = 2/3*C1*x³ + C1*x + C2*(1+x²)^(3/2) 这类微分方程是有名堂的,叫“Sturm - Liouville”类型的微分方程 通常可表达为d/dx[ P(x)*y" ] - Q(x)*y = 0的形式 这类型的方程非常难解,办法就是不断凑微分吧 。人类地板流精华2023-05-25 18:52:411
微分方程怎么解?
以二阶微分方程为例(高阶的以此类推):经过化简,可以变形为这种形式的称为线性微分方程:P(x)y"+Q(x)y"+R(x)y=S(x)(其中,P(x),Q(x),R(x),S(x)都是已知的x的函数式)无论如何怎么化简,方程中都带有y或者y的导数的非一次方的微分方程就是非线性微分方程。例如y"y=y²,虽然y不是一次方,但是我通过等价变形可以变成y(y"-y)=0,即y=0或者y"-y=0,因为y和y"都是一次方,因此他们是线性微分方程。而他们的系数都是常数,所以可以称之为常系数微分方程。再如(sinx)y"-y=0,因为y"和y的次数都是1(含有x的函数项不算),所以是线性微分方程。而y"的系数是sinx,因此是变系数线性常微分方程。再如y"y=1,无论如何化简(例如把y除过去),都不能变成y"和y次数都是1的形式,因此该方程为非线性微分方程。再加一句:线性微分方程都有解析解,就是可以写成函数解析式y=f(x)的形式。但是非线性微分方程就很难说了。一般来说,部分一阶非线性微分方程有解析解。但是二阶或二阶以上的非线性微分方程很难有解析解。gitcloud2023-05-25 18:52:411
微分方程怎样化简成一阶线性方程?
以二阶微分方程为例(高阶的以此类推):经过化简,可以变形为这种形式的称为线性微分方程:P(x)y"+Q(x)y"+R(x)y=S(x) (其中,P(x),Q(x),R(x),S(x)都是已知的x的函数式)无论如何怎么化简,方程中都带有y或者y的导数的非一次方的微分方程就是非线性微分方程。例如y"y=y²,虽然y不是一次方,但是我通过等价变形可以变成y(y"-y)=0,即y=0或者y"-y=0,因为y和y"都是一次方,因此他们是线性微分方程。而他们的系数都是常数,所以可以称之为常系数微分方程。再如(sinx)y"-y=0,因为y"和y的次数都是1(含有x的函数项不算),所以是线性微分方程。而y"的系数是sinx,因此是变系数线性常微分方程。再如y"y=1,无论如何化简(例如把y除过去),都不能变成y"和y次数都是1的形式,因此该方程为非线性微分方程。再加一句:线性微分方程都有解析解,就是可以写成函数解析式y=f(x)的形式。但是非线性微分方程就很难说了。一般来说,部分一阶非线性微分方程有解析解。但是二阶或二阶以上的非线性微分方程很难有解析解。康康map2023-05-25 18:52:411
如何化简一阶微分方程?
以二阶微分方程为例(高阶的以此类推):经过化简,可以变形为这种形式的称为线性微分方程:P(x)y"+Q(x)y"+R(x)y=S(x)(其中,P(x),Q(x),R(x),S(x)都是已知的x的函数式)无论如何怎么化简,方程中都带有y或者y的导数的非一次方的微分方程就是非线性微分方程。例如y"y=y²,虽然y不是一次方,但是我通过等价变形可以变成y(y"-y)=0,即y=0或者y"-y=0,因为y和y"都是一次方,因此他们是线性微分方程。而他们的系数都是常数,所以可以称之为常系数微分方程。再如(sinx)y"-y=0,因为y"和y的次数都是1(含有x的函数项不算),所以是线性微分方程。而y"的系数是sinx,因此是变系数线性常微分方程。再如y"y=1,无论如何化简(例如把y除过去),都不能变成y"和y次数都是1的形式,因此该方程为非线性微分方程。再加一句:线性微分方程都有解析解,就是可以写成函数解析式y=f(x)的形式。但是非线性微分方程就很难说了。一般来说,部分一阶非线性微分方程有解析解。但是二阶或二阶以上的非线性微分方程很难有解析解。bikbok2023-05-25 18:52:411
matlab里怎么求解变系数微分方程,比如*D4y=0,求y
这样:syms y(t)y=dsolve(diff(y,4)==0)结果:y =(C5*t^3)/6 + (C6*t^2)/2 + C7*t + C8瑞瑞爱吃桃2023-05-25 18:52:411
二阶变系数齐次非线性微分方程怎么解
湖南工程学院张学元教授提出特征方程组的解法。参见“新二阶非线性方程的求解定理”论文。Ntou1232023-05-25 18:52:411
变系数二阶常微分方程考研考吗
考研数学一考二阶线性微分方程,因为考研数一大纲里有高阶常系数线性微分方程求解的内容,所以,出题的机率还是比较大的。查看更多水元素sl2023-05-25 18:52:403
一类五阶可变系数线性微分方程解的存在性。。。求帮忙证明
已发送,注意查收!望及时采纳。ardim2023-05-25 18:52:401
二阶线性微分方程辅助方程怎么写
1、二阶变系数线性微分方程的一些解法或22dtxd+mλdtdx+mkx=m)t(F这就是物体运动的数学模型——振动方程。为方便起见,记mλ=2β(β>0),mk=ω2f(ω>0),m)t(F=f(t)。2、二阶线性微分方程是指未知函数及其一阶、二阶导数都是一次方的二阶方程,简单称为二阶线性方程。二阶线性微分方程的求解方式分为两类,一是二阶线性齐次微分方程,二是线性非齐次微分方程。陶小凡2023-05-25 18:52:401
考研考不考二阶变系数线性齐次微分方程通解
你如果考研考理论物理之类的估计是要的,解薛定谔方程嘛西柚不是西游2023-05-25 18:52:403
龙格库塔的方法解 弹性动力学线性变系数二阶微分方程组求解,急求。。。非常感谢。。
如果你知道龙格库塔法,你就会先将其转化为一次微分方程组而后就是算法的问题。FinCloud2023-05-25 18:52:401
求解二阶变系数微分方程
这两个题在形式上虽然是二阶变系数微分方程,但难度并不大。第三题:根据线性微分方程解的结构,只要通过验证,再找出一个对应齐次方程的特解即可。而对应齐次方程为 xy""+y"=0 y=C显然是它的解。故选A第四题:这是个二阶微分方程,通解应含且只含两个任意常数。故选DLuckySXyd2023-05-25 18:52:401
变系数二阶常微分方程~
变系数二阶常微分方程无一般解法,求解非一般的困难可参考一下这篇论文:http://wenku.baidu.com/view/862d5d0f52ea551810a68731.html以及这篇文章:http://wenku.baidu.com/view/d1d7244c2e3f5727a5e962e4.htmlmeira2023-05-25 18:52:402
特征方程求通解是不是只适用于二阶常系数线性微分方程,变系数的不能用? 请高手解答
特征方程适用于任何阶的常系数微分方程。变系数不能用。墨然殇2023-05-25 18:52:402
用欧拉方程解此线性微分方程
在研究一些物理问题,如热的传导、圆膜的振动、电磁波的传播等问题时,常常碰到如下形式的方程:欧拉ax²D²y+bxDy+cy=f(x),其中a、b、c是常数,这是一个二阶变系数线性微分方程。它的系数具有一定的规律:二阶导数D²y的系数是二次函数ax²,一阶导数Dy的系数是一次函数bx,y的系数是常数。这样的方程称为欧拉方程。例如:(x²D²-xD+1)y=0,(x²D²-2xD+2)y=2x³-x等都是欧拉方程。化学中足球烯即C-60和此方程有关gitcloud2023-05-25 18:52:402
什么是线性微分方程?
以二阶微分方程为例(高阶的以此类推):经过化简,可以变形为这种形式的称为线性微分方程:P(x)y"+Q(x)y"+R(x)y=S(x) (其中,P(x),Q(x),R(x),S(x)都是已知的x的函数式)无论如何怎么化简,方程中都带有y或者y的导数的非一次方的微分方程就是非线性微分方程。例如y"y=y²,虽然y不是一次方,但是我通过等价变形可以变成y(y"-y)=0,即y=0或者y"-y=0,因为y和y"都是一次方,因此他们是线性微分方程。而他们的系数都是常数,所以可以称之为常系数微分方程。再如(sinx)y"-y=0,因为y"和y的次数都是1(含有x的函数项不算),所以是线性微分方程。而y"的系数是sinx,因此是变系数线性常微分方程。再如y"y=1,无论如何化简(例如把y除过去),都不能变成y"和y次数都是1的形式,因此该方程为非线性微分方程。再加一句:线性微分方程都有解析解,就是可以写成函数解析式y=f(x)的形式。但是非线性微分方程就很难说了。一般来说,部分一阶非线性微分方程有解析解。但是二阶或二阶以上的非线性微分方程很难有解析解。康康map2023-05-25 18:52:391
什么是变系数微分方程?我同时除以最高次项的有关X的系数 不就成了常系数微分方程吗?这两个有什么区别
变系数微分方程的意思是方程的系数是x的函数举例如下:x【d^2x/dt^2】+dx/dt+t=0这里的第一个x作为系数是x的函数,所以就是变系数的。这不能化成常系数的。瑞瑞爱吃桃2023-05-25 18:52:391
求解一道 二阶变系数线性微分方程 x(x-1)y"+(3x-2)yˊ+y=2x
用MatLab解出来的通解是y = 1/x*log(x-1)*C1+1/x*C2+1/2*(x^2+2*x+2*log(x-1))/x北营2023-05-25 18:52:392
二阶变系数常微分方程解法
二阶变系数常微分方程解法 无一般解法,特殊情况除外(线性常系数微分方程,可化为线性常系数微分方程的方程尤拉方程,某些方程可有幂级数解法). 变系数二阶常微分方程~ x(x-1)y""+(3x-2)y"+y=2x 等价于 [x(x-1)y" + (x-1)y]" =2x x(x-1)y" + (x-1)y = x^2 +C0 化为一阶线性微分方程 y" +(1/x)y = (x^2 +C0)/[x(x-1)] 套用公式 e^(∫1/xdx) =x y = (1/x)∫(x^2 +C0)/[x(x-1)]*x dx = (1/x)∫(x^2 +C0)/(x-1) dx 其中(x^2 +C0)/(x-1) = (x+1) + (C0+1)/(x-1) =(x+1) + C1/(x-1) y= (1/x)[(x+1)^2/2 +C1*ln(x-1) +C2] MATLAB 二阶常微分方程 clear all clc f=@(t,x)([x(2);-x(2)+100*x(1)+1+200*cos(2.5*t)]); [t,X]=ode45(f,[0 1],[1 42.510604]); plot(X(:,1),X(:,2)) 画出来的不是周期图,检查一下方程 matlab 中二阶常微分方程的数值解法 odefun=@(t,x)[x(2);3*x(2)-2*x(1)+1]; [t,y]=ode45(odefun,[0:0.01:2],[1 0]); plot(t,y) [t y] 结果 y(0.5000)=0.7896 y= dsolve("D2y-3*Dy+2*y=1","Dy(0)=0","y(0)=1"); >> y y = exp(t) - exp(2*t)/2 + 1/2 >> feval(@(t)exp(t) - exp(2*t)/2 + 1/2,0.5) ans = 0.7896 一类二阶常微分方程的几种解法 1、引言常微分方程有着深刻而生动的实际背景,它从生产实践与科学技术中产生,而又称为现代科学技术中分析问题与解决问题的一个强有力的工具。人们对二阶及以上微分方程(包括线性、常系数、隐性)的研究,产生了许多理论成果。如胡爱莲[1],屈英[2],汪涛[3]等。对于变系数的常微分方程尤其是高阶常微分方程,一般没有确定的解法,通常的方法就是“降阶法”,即通过变换将高阶常微分方程的求解问题转换为较低阶的常微分方程来求解(见文献[4-5])。本文通过一个具体的例子,说明一类二阶可降阶的常微分方程的几种解法。2、特殊的二阶常微分方程的解法即:(18)解法三:根据高等数学在数学软体Matlab中的应用[6],从而得到启发,应用Matlab来求解此类方程。故在开启的命令视窗输入下述命令:>>symsty;>>y=dsolve("D2y=1+Dy^2")y=1/2*log(1+tan(t+C1)^2)+C2上述结果只要作如下的变形就与解法一、解法二的结果是一致的。 matlab求解二阶常微分方程 用dsolve()函式,就可以解决。 dsolve("3*D2x+500*Dx+2000*x","Dx(0)=2.5","x(0)=0.1") ans = (565^(1/2)*exp(t*((10*565^(1/2))/3 - 250/3))*(2*565^(1/2) + 65))/22600 + (565^(1/2)*(2*565^(1/2) - 65))/(22600*exp(t*((10*565^(1/2))/3 + 250/3))) %x(t) 二阶常微分方程问题 将x = u(t+s)代入得到等式: u"(t+s) = F(u(t+s),u"(t+s),t). 换元t = T-s得: u"(T) = F(u(T),u"(T),T-s). 上式是恒等式, 也即: u"(t) = F(u(t),u"(t),t-s). 而将x = u(t)代入方程得到: u"(t) = F(u(t),u"(t),t). 于是有F(u(t),u"(t),t-s) = F(u(t),u"(t),t), 对任意实数t, s与方程的任意解u成立. 当F连续, 对任意实数X, Y, 方程存在满足u(0) = X, u"(0) = Y的解. 代入得F(X,Y,-s) = F(X,Y,0)对任意实数s成立. 因此X, Y给定时, F(X,Y,-s)是与s无关的常数, F与第三个分量无关. 另外如果条件只是存在一个解x = u(t)使x = u(t+s)也是该方程的解, 则结论不能成立. 例如x" = xt, 有解x = 0. 一阶常微分方程的解法 用三要素法试试,屡试不爽的呵 二元二阶非线性常微分方程matlab解法 matlab里面常使用龙格库塔方法求解常微分方程组,命令是ode45,还有其他一些函式,但是最常用的是ode45,lz可以help一下,很简单的,另外给你一个文件,讲的还是比较详细,希望可以帮到你 :wenku.baidu./view/922e6feae009581b6bd9eb6c. 常微分方程解 ∵x""+x=0的特征方程是r^2+1=0,则r=±i(复数根) ∴此方程的通解是x=C1cost+C2sint (C1,C2是常数)。u投在线2023-05-25 18:52:391
二阶变系数线性微分方程,没有一阶导和常数项,y'+q(x)y=0,解是什么?谢谢。
若q(x)非常数,其通解一般表为贝赛尔(Bessel)函数;一个特例是,若q(x)=x,通解为AIry函数。若q(x)为常数,则表为三角函数(谐运动)。Chen2023-05-25 18:52:391
线性偏微分方程
线性偏微分方程是一类重要的偏微分方程,关于所有未知函数及其偏导数都是线性的偏微分方程称为线性偏微分方程。例如,拉普拉斯方程、热传导方程及波动方程都是线性偏微分方程。定义:如果偏微分方程中,未知函数及它的所有偏导数都是线性的,且方程中的系数都仅依赖于自变量(或者是常数),那么这样的偏微分方程就称为线性偏微分方程,特别的,如果方程中的系数都是常数,则称为常系数偏微分方程。显然,如果方程中的系数是自变量的函数,则称为变系数偏微分方程。方程中出现未知函数及偏导数不是线性的,则称为非线性偏微分方程。偏微分方程:未知函数具有多个自变量,含有这种未知函数的一个或多个偏导数的微分方程称为偏微分方程。如自变量只有一个就成为常微分方程。如方程不止一个,就称为偏微分方程组。 就是一个典型的偏微分方程。 就是一个典型的常微分方程。gitcloud2023-05-25 18:52:391
微分方程的特征方程怎么求的?
微分方程的特征方程怎么求微分方程的?求证,你可以把你的联系方式告诉我,我联系诶,我解出来了告诉你。CarieVinne 2023-05-25 18:52:394
二阶常系数线性微分方程
解:∵齐次方程y""+3y"+2y=0的特征方程是r²+3r+2=0,则r1=-1,r2=-2 ∴此齐次方程的通解是y=C1e^(-x)+C2e^(-2x) (C1,C2是积分常数) 设原方程的特解是y=x(Ax²+Bx+C)e^(-x) ∵y"=(3Ax²+2Bx+C)e^(-x)-y y""=(6Ax+2B)e^(-x)-(3Ax²+2Bx+C)e^(-x)-y" 代入原方程得(6Ax+2B)e^(-x)+(3Ax²+2Bx+C)e^(-x)=3x²e^(-x) 比较两端同次幂系数,得3A=3,6A+2B=0,2B+C=0 ==>A=1,B=-3,C=6 ∴原方程的特解是y=x(x²-3x+6)e^(-x) 故原方程的通解是y=C1e^(-x)+C2e^(-2x)+x(x²-3x+6)e^(-x) (C1,C2是积分常数)可桃可挑2023-05-25 18:52:391
求解二阶线性常系数微分方程
MX""+KX=Fsinwt, 这里意思就是求特解:因为缺X‘项,故设特解X=Asinwt, X"‘= -Aw²sinwt, 代入MX""+KX=Fsinwt:M(-Aw²sinwt)+KAsinwt=Fsinwt解得:A=F/(K-Mw²)于是X=[F/(K-Mw²)]sinwt九万里风9 2023-05-25 18:52:391
常系数非齐次线性微分方程是什么?
常系数非齐次线性微分方程是:被称为n阶常系数非齐次线性微分方程。解该方程的做法是求处它所对应的齐次线性微分方程的通解Y(x)(即令f(x)=0的式子的解,解法点击这里),再求出原式子所对应的一个特解,有时f(x)可能有多个部分组成,可以利用定理:如果y1(x)和y2(x)分别为等式左边取f1(x)和f2(x)的特解,那么y1(x)+y2(x)为等式左边取f1(x)+f2(x)的特解。这是一类具有非齐次项的线性微分方程,其中一阶非齐次线性微分方程的表达式为y"+p(x)y=Q(x);二阶常系数非齐次线性微分方程的表达式为y""+py"+qy=f(x)。研究非齐次线性微分方程其实就是研究其解的问题,它的通解是由其对应的齐次方程的通解加上其一个特解组成。豆豆staR2023-05-25 18:52:391
常系数齐次线性微分方程组
常系数线性微分方程组的求解问题,看下面的举例。hi投2023-05-25 18:52:391
线性常系数微分方程一定能够解出来吗
方程L(y)=f(x)中的f(x)为多项式、指数函数、三角函数的和或积时是一定有解析解的,其它情况就不太好归纳了。无尘剑 2023-05-25 18:52:392
什么是变系数微分方程
很简间,就是微分方程式中,系数还不是常数,是变量,如 d^2y/dx^2+x^2dy/dx+y=0瑞瑞爱吃桃2023-05-25 18:52:393
二阶变系数线性常微分方程的求解
对于 形式的微分方程,主要求解步骤为:猜根;刘维尔公式;常数变易。 得到一个特解后,使用刘维尔公式 ,或者另一形式的刘维尔公式 (以上 ),即可求得另一特解。 于是便得到了对应齐次方程的通解。 假如通过以上步骤得到齐次方程的通解为 ,常数变易法令非齐次的通解为 。所以有 简写做, 于是便可以解得 ,积分得到 后,代入即可得到非齐次方程的通解。康康map2023-05-25 18:52:391
解二阶变系数线性微分方程
注意(tanx)"=1/cos²x所以(y *tanx)"=y" tanx + y/cos²x那么原方程可以化为y" +(y *tanx)"=0那么积分得到y" + y *tanx =A所以cosx *y" + y *sinx =Acosx即(cosx *y" + y *sinx)/ cos²x = A/cosx而注意 (y/cosx)"= (cosx *y" +y *sinx) / cos²x所以(y/cosx)"=A/cosx故积分得到y/cosx=A*ln|secx +tanx| +B,所以微分方程的解为y=Acosx *ln|secx +tanx| + Bcosx,A和B为常数九万里风9 2023-05-25 18:52:391
什么是变系数微分方程?具体指的哪一项的系数在变?以下这两个是么?为什么
这两个都是变系数方程,因为y, y", y"项前面的系数是x的函数,而不是常数。比如I) 中,y前面的系数为(1-2x)/x²。小菜G的建站之路2023-05-25 18:52:391
二阶变系数线性微分方程问题,求大神
设t=cosx则dy/dx=-sinxdy/dtd^2y/dx^2=(sinx)^2d^2y/dt^2-cosxdy/dtd^2y/dx^2-cotxdy/dx+(sinx)^2y=(sinx)^2d^2y/dt^2-cosxdy/dt+cosxdy/dt+(sinx)^2y=0d^2y/dt^2+y=0y=Asint+Bcost=Asin(cosx)+Bcos(cosx)九万里风9 2023-05-25 18:52:391
常系数非齐次线性微分方程的特解是什么?
常系数非齐次线性微分方程特解如下:二阶常系数非齐次线性微分方程的表达式为y""+py"+qy=f(x),其特解y*设法分为:1、如果f(x)=P(x),Pn(x)为n阶多项式。2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。简介求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。瑞瑞爱吃桃2023-05-25 18:52:381
二阶常系数非齐次线性微分方程特解是什么?
二阶常系数非齐次线性微分方程的表达式为y""+py"+qy=f(x),其特解y设法分为: 1、如果f(x)=P(x) ,Pn (x)为n阶多项式;2、如果f(x)=P(x) e"a x,Pn (x)为n阶多项式。相关如下一阶线性微分方程可分两类,一类是齐次形式的,它可以表示为y"+p(x)y=0,另一类就是非齐次形式的,它可以表示为y"+p(x)y=Q(x)。齐次线性方程与非齐次方程比较一下对理解齐次与非齐次微分方程是有利的。对于非齐次微分方程的解来讲,类似于线性方程解的结构结论还是成立的。就是:非齐次微分方程的通解可以表示为齐次微分方程的通解加上一个非齐次方程的特解。左迁2023-05-25 18:52:381
二阶常系数线性微分方程的y可以是几次方吗
什么是二阶常系数线性微分方程?二阶常系数线性微分方程是形如y""+py"+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y""+py"+qy=0时,称为二阶常系数齐次线性微分方程。若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:r²+pr+q=0,然后根据特征方程根的情况对方程求解。什么是特征方程?特征方程是为研究相应的数学对象而引入的一些等式,它因数学对象不同而不同,包括数列特征方程、矩阵特征方程、微分方程特征方程、积分方程特征方程等等。例如y""+3y"+2y=0的特征方程就是r²+3r+2=0余辉2023-05-25 18:52:382
常系数齐次线性微分方程?
简单计算一下即可,答案如图所示gitcloud2023-05-25 18:52:381
一阶线性常系数齐次微分方程?
线性微分方程:未知函数(y)及其各阶导数(只要存在)的次数都是一次齐次微分方程:微分方程中不含未知函数(y)及其各阶导数的项为零形如y""^k+p(x)y"^m+q(x)y^n=f(x)的方程若f(x)≠0称为"非齐次微分方程”若f(x)=0称为"齐次微分方程”若k、m、n都等于1,即y""+p(x)y"+q(x)y=f(x) 未知函数y及其各阶导数(y"、y"")的次数都是1,称为"线性微分方程”y""+p(x)y"+q(x)y=0 二阶线性齐次 y""+p(x)y"=0 二阶线性齐次 y""+p(x)y"+q(x)y=f(x) 二阶线性非齐次y""+q(x)y=f(x) 二阶线性非齐次y""^2+p(x)y"+q(x)y=f(x) 二阶非线性非齐次常系数:未知函数(y)及其各阶导数的系数为常数y""+3y"+4y=f(x) 二阶常系数线性非齐次凡尘2023-05-25 18:52:381
常微分方程有那些特解?
二阶常系数非齐次线性微分方程特解如下:二阶常系数非齐次线性微分方程的表达式为y""+py"+qy=f(x),其特解y*设法分为:1、如果f(x)=P(x),Pn(x)为n阶多项式。2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。特解y*设法1、如果f(x)=P(x),Pn(x)为n阶多项式。若0不是特征值,在令特解y*=x^k*Qm(x)*e^λx中,k=0,λ=0;因为Qm(x)与Pn(x)为同次的多项式,所以Qm(x)设法要根据Pn(x)的情况而定。比如如果Pn(x)=a(a为常数),则设Qm(x)=A(A为另一个未知常数);如果Pn(x)=x,则设Qm(x)=ax+b;如果Pn(x)=x^2,则设Qm(x)=ax^2+bx+c。若0是特征方程的单根,在令特解y*=x^k*Qm(x)*e^λx中,k=1,λ=0,即y*=x*Qm(x)。若0是特征方程的重根,在令特解y*=x^k*Qm(x)*e^λx中,k=2,λ=0,即y*=x^2*Qm(x)。2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。若α不是特征值,在令特解y*=x^k*Qm(x)*e^αx中,k=0,即y*=Qm(x)*e^αx,Qm(x)设法要根据Pn(x)的情况而定。若α是特征方程的单根,在令特解y*=x^k*Qm(x)*e^αx中,k=1,即y*=x*Qm(x)*e^αx。若α是特征方程的重根,在令特解y*=x^k*Qm(x)*e^λx中,k=2,即y*=x^2*Qm(x)*e^αx。3、如果f(x)=e^αx,Pl(x)为l阶多项式,Pn(x)为n阶多项式。若α±iβ不是特征值,在令特解y*=x^k*e^αx中,k=0,m=max{l,n},Rm1(x)与Rm2(x)设法要根据Pl(x)或Pn(x)的情况而定(同Qm(x)设法要根据Pn(x)的情况而定的原理一样)。即y*=e^αx若α±iβ不是特征值,在令特解y*=x^k*e^αx中,k=1,即y*=x*e^αx。北有云溪2023-05-25 18:52:381
常微分方程的通解是什么意思?
二阶非齐次线性微分方程的通解如下:y1,y2,y3是二阶微分方程的三个解,则:y2-y1,y3-y1为该方程的两个线性无关解,因此通解为:y=y1+C1(y2-y1)+C2(y3-y1)。方程通解为:y=1+C1(x-1)+C2(x^2-1)。二阶常系数线性微分方程是形如y""+py"+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y""+py"+qy=0时,称为二阶常系数齐次线性微分方程。若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。常微分方程在高等数学中已有悠久的历史,由于它扎根于各种各样的实际问题中,所以继续保持着前进的动力。二阶常系数常微分方程在常微分方程理论中占有重要地位,在工程技术及力学和物理学中都有十分广泛的应用。比较常用的求解方法是待定系数法、多项式法、常数变易法和微分算子法等。善士六合2023-05-25 18:52:381
如何解线性常系数齐次微分方程组?
常系数线性齐次微分方程y"+y=0的通解为:y=(C1+C2 x)ex故 r1=r2=1为其特征方程的重根,且其特征方程为 (r-1)2=r2-2r+1故 a=-2,b=1对于非齐次微分方程为y″-2y′+y=x设其特解为 y*=Ax+B代入y″-2y′+y=x 可得,0-2A+(Ax+B)=x整理可得(A-1)x+(B-2A)=0所以 A=1,B=2所以特解为 y*=x+2通解为 y=(C1+C2 x)ex +x+2将y(0)=2,y(0)=0 代入可得C1=0,C2=-1。故所求特解为 y=-xex+x+2故答案为-xex+x+2扩展资料:形如y"+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y"的指数为1。一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。Chen2023-05-25 18:52:381
数学 求解常系数线性微分方程。第15小题
特征方程为r²-4r+4=0, 得r=2为二重根即齐次方程通解x1=(C1+C2t)e^(2t)设特解为x*=ae^t+bt²e^(2t)+c则x*"=ae^t+b(2t²+2t)e^(2t)x*"=ae^t+b(4t²+8t+2)e^2t代入原方程得:ae^t+b(4t²+8t+2)e^2t-4ae^t-4b(2t²+2t)e^2t+4ae^t+4bt²e^2t+4c=e^t+e^2t+1ae^t+2be^2t+4c=e^t+e^2t+1对比得:a=1, b=1/2, c=1/4所以原方程的通解x=x1+x*=(C1+C2t)e^(2t)+e^t+(t²/2)e^(2t)+1/4mlhxueli 2023-05-25 18:52:381
二阶常系数线性微分方程求解
如图北营2023-05-25 18:52:381
n阶常系数线性微分方程:
韦斯特兰2023-05-25 18:52:381
常系数非齐次线性微分方程
由等式,f(0)=1e^x+x^2-f(x)=x∫(0,x)f(t)dt+∫(0,x)(1-t)f(t)dt,两边求导得:e^x+2x-f‘(x)=∫(0,x)f(t)dt+xf(x)+(1-x)f(x)=∫(0,x)f(t)dt+1,令x=0得:f"(0)=0两边再求导得:e^x+2-f‘‘(x)=f(x)或:f""(x)+f(x)=e^x+2通解为:f(x)=C1cosx+C2sinx+(1/2)e^x+2最后把f(0)=1,f"(0)=0代入可求出C1,C2,自己做吧黑桃花2023-05-25 18:52:383
怎么判断这种二阶常系数线性微分方程是不是线性相关的?
首先你要明白什么叫线性,线性是两个函数成比例的2号是。 望采纳,谢谢北有云溪2023-05-25 18:52:382
二阶常系数非齐次线性微分方程特解是什么?
二阶常系数非齐次线性微分方程的表达式为y""+py"+qy=f(x),其特解y设法分为: 1、如果f(x)=P(x) ,Pn (x)为n阶多项式;2、如果f(x)=P(x) e"a x,Pn (x)为n阶多项式。扩展资料:一阶线性微分方程可分两类,一类是齐次形式的,它可以表示为y"+p(x)y=0,另一类就是非齐次形式的,它可以表示为y"+p(x)y=Q(x)。齐次线性方程与非齐次方程比较一下对理解齐次与非齐次微分方程是有利的。对于非齐次微分方程的解来讲,类似于线性方程解的结构结论还是成立的。就是:非齐次微分方程的通解可以表示为齐次微分方程的通解加上一个非齐次方程的特解。大鱼炖火锅2023-05-25 18:52:381
常微分方程的特解有哪些形式?
较常用的几个:1、Ay""+By"+Cy=e^mx 特解 y=C(x)e^mx2、Ay""+By"+Cy=a sinx + bcosx 特解 y=msinx+nsinx3、Ay""+By"+Cy= mx+n 特解 y=ax通解1、两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)2、两根相等的实根:y=(C1+C2x)e^(r1x)3、一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)扩展资料:标准形式 y""+p(x)y"+q(x)y=f(x)解法通解=非齐次方程特解+齐次方程通解对二阶常系数线性非齐次微分方程形式ay""+by"+cy=p(x) 的特解y*具有形式y*= 其中Q(x)是与p(x)同次的多项式,k按α不是特征根、是单特征根或二重特征根(上文有提),依次取0,1或2.将y*代入方程,比较方程两边x的同次幂的系数(待定系数法),就可确定出Q(x)的系数而得特解y*。多项式法:设常系数线性微分方程y""+py"+qy =pm (x)e^(λx),其中p,q,λ是常数,pm(x)是x的m次多项式,令y=ze^(λz) 。则方程可化为:F″(λ)/2!z″+F′(λ)/1!z′+F(λ)z=pm(x) ,这里F(λ)=λ^2+pλ+q为方程对应齐次方程的特征多项式。升阶法:设y""+p(x)y"+q(x)y=f(x),当f(x)为多项式时,设f(x)=a0x^n+a1x^(n-1)+…+a(n-1)x+an,此时,方程两边同时对x求导n次,得y"""+p(x)y""+q(x)y"=a0x^n+a1x^(n-1)+…+a(n-1)x+an……y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)!y^(n+2)+py^(n+1)+qy^(n)=a0n!令y^n=a0n!/q(q≠0),此时,y^(n+2)=y^(n+1)=0。参考资料:百度百科——二阶常系数线性微分方程西柚不是西游2023-05-25 18:52:371
可降阶的二阶微分方程和二阶常系数线性微分方程的区别
常系数齐次线性微分方程当然也是y""=f(y,y")型的,但解,y""=f(y,y")型的微分方程需要积两次分,比较麻烦,而常系数齐次线性微分方程由于其方程的特殊性,可以通过特殊方法,不用积分,而转化成解一元二次的代数方程,这比作变量代换y"=P(y)再。Chen2023-05-25 18:52:371
常系数非齐次线性微分方程是什么?
二阶常系数非齐次线性微分方程的表达式为y""+py"+qy=f(x),其特解y设法分为: 1、如果f(x)=P(x) ,Pn (x)为n阶多项式;2、如果f(x)=P(x) e"a x,Pn (x)为n阶多项式。一阶线性微分方程可分两类,一类是齐次形式的,它可以表示为y"+p(x)y=0,另一类就是非齐次形式的,它可以表示为y"+p(x)y=Q(x)。齐次线性方程与非齐次方程比较一下对理解齐次与非齐次微分方程是有利的。对于非齐次微分方程的解来讲,类似于线性方程解的结构结论还是成立的。就是:非齐次微分方程的通解可以表示为齐次微分方程的通解加上一个非齐次方程的特解。Chen2023-05-25 18:52:371
求常系数非齐次线性微分方程的特解形式是什么意思?怎么做
特解形式需要写出解的形式,不需要求出对应的系数值(常数)FinCloud2023-05-25 18:52:373
二阶常系数非齐次线性微分方程特解是什么?
二阶常系数非齐次线性微分方程的表达式为y""+py"+qy=f(x),其特解y设法分为:1、如果f(x)=P(x) ,Pn (x)为n阶多项式。2、如果f(x)=P(x) e"a x,Pn (x)为n阶多项式。二阶常系数非齐次线性微分方程常用的几个:1、Ay""+By"+Cy=e^mx 特解 y=C(x)e^mx2、Ay""+By"+Cy=a sinx + bcosx 特解 y=msinx+nsinx3、Ay""+By"+Cy= mx+n 特解 y=ax二阶常系数线性微分方程是形如y""+py"+qy=f(x)的微分方程,其中p,q是实常数,自由项f(x)为定义在区间I上的连续函数,即y""+py"+qy=0时,称为二阶常系数齐次线性微分方程。若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的,特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。西柚不是西游2023-05-25 18:52:371
二阶常系数非齐次线性微分方程题
对于n阶齐次线性微分方程,注意,不一定是常系数,也不一定是二阶,但一定是齐次。因为右边是0,所以如果y1,y2,……yn是方程的解,c1y1+c2y2+……cnyn也是方程的解。自己去证明。对于你说的二阶常系数齐次线性微分方程,delta<0时,有y1=(e^alphax)*(cosbetax+i*sinbetax)y2=(e^alphax)*(cosbetax-i*sinbetax),当然有y1=1/2*y1+1/2*y2是方程的解,y2=1/2i*y1+(-1/2i)y2也是方程解。y1和y2非线性相关,可得通解。打字不易,记得给分啊。凡尘2023-05-25 18:52:371
常系数线性微分方程问题
y=5/2x^2+2x+1,看到方程右边卫常数,那么y不可能为e^x型或三角函数型,自然要想到多项式,有二阶导而没有x,那就是二次方程。这道题用书上给的思路做不出来吧。大鱼炖火锅2023-05-25 18:52:372
常系数线性微分方程若有三个重根的通解
如果方程特征根为p,则x=C1e^pt+C2te^pt+C3t^2e^pt可以这样理解当方程有两个不同的特征根p,p"时,C1e^pt+C2e^p"t也是方程的解,令C1=-C2=1/(p-p")当p"趋于p时得te^pt也是方程的解.这是二重根的处理,三重根是同样的道理瑞瑞爱吃桃2023-05-25 18:52:371
求常系数线性微分方程组的通解
你这里的具体题目是什么?对于常系数的线性微分方程那就列出特征方程解出其特征值λ然后按照实数根写成e^ax,复数根写成sinbx+cosbx还要看看根的重数,再添加常数即可tt白2023-05-25 18:52:371
二阶常系数非齐次线性微分方程特解怎么设
(1)y”+3y"+2y=xe^-x特解y*=ax+b(这是错的,最起码得有个e^-x吧?)(2)y”+3y"+2y=(x²+1)e^-x特解y*=x(ax²+bx+c)e^-x-------------------------------1、xe^-x前的多项式为x,所以设qm(x)是qm(x)=ax+b,由于-1是特征方程的单根,所以特解为y*=x(ax+b)e^(-x)2、(x²+1)e^-x前的多项式为二次,所以设qm(x)是qm(x)=ax²+bx+c,由于-1是特征方程的单根,所以特解为y*=x(ax²+bx+c)e^-x把特解带入原微分方程,待定系数法求出参数a、b、c。wpBeta2023-05-25 18:52:372
常系数非齐次线性微分方程特解是什么意思啊?
常系数非齐次线性微分方程特解如下:二阶常系数非齐次线性微分方程的表达式为y""+py"+qy=f(x),其特解y*设法分为:1、如果f(x)=P(x),Pn(x)为n阶多项式。2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。简介求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。西柚不是西游2023-05-25 18:52:371
二阶常系数非齐次线性微分方程的特解
二阶常系数非齐次线性微分方程特解如下:二阶常系数非齐次线性微分方程的表达式为y""+py"+qy=f(x),其特解y*设法分为:1、如果f(x)=P(x),Pn(x)为n阶多项式。2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。特解y*设法1、如果f(x)=P(x),Pn(x)为n阶多项式。若0不是特征值,在令特解y*=x^k*Qm(x)*e^λx中,k=0,λ=0;因为Qm(x)与Pn(x)为同次的多项式,所以Qm(x)设法要根据Pn(x)的情况而定。比如如果Pn(x)=a(a为常数),则设Qm(x)=A(A为另一个未知常数);如果Pn(x)=x,则设Qm(x)=ax+b;如果Pn(x)=x^2,则设Qm(x)=ax^2+bx+c。若0是特征方程的单根,在令特解y*=x^k*Qm(x)*e^λx中,k=1,λ=0,即y*=x*Qm(x)。若0是特征方程的重根,在令特解y*=x^k*Qm(x)*e^λx中,k=2,λ=0,即y*=x^2*Qm(x)。2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。若α不是特征值,在令特解y*=x^k*Qm(x)*e^αx中,k=0,即y*=Qm(x)*e^αx,Qm(x)设法要根据Pn(x)的情况而定。若α是特征方程的单根,在令特解y*=x^k*Qm(x)*e^αx中,k=1,即y*=x*Qm(x)*e^αx。若α是特征方程的重根,在令特解y*=x^k*Qm(x)*e^λx中,k=2,即y*=x^2*Qm(x)*e^αx。3、如果f(x)=e^αx,Pl(x)为l阶多项式,Pn(x)为n阶多项式。若α±iβ不是特征值,在令特解y*=x^k*e^αx中,k=0,m=max{l,n},Rm1(x)与Rm2(x)设法要根据Pl(x)或Pn(x)的情况而定(同Qm(x)设法要根据Pn(x)的情况而定的原理一样)。即y*=e^αx若α±iβ不是特征值,在令特解y*=x^k*e^αx中,k=1,即y*=x*e^αx。可桃可挑2023-05-25 18:52:371
如何求二阶常系数非齐次线性微分方程的特解?
二阶常系数非齐次线性微分方程的表达式为y""+py"+qy=f(x),其特解y设法分为:1、如果f(x)=P(x) ,Pn (x)为n阶多项式。2、如果f(x)=P(x) e"a x,Pn (x)为n阶多项式。二阶常系数非齐次线性微分方程常用的几个:1、Ay""+By"+Cy=e^mx 特解 y=C(x)e^mx2、Ay""+By"+Cy=a sinx + bcosx 特解 y=msinx+nsinx3、Ay""+By"+Cy= mx+n 特解 y=ax二阶常系数线性微分方程是形如y""+py"+qy=f(x)的微分方程,其中p,q是实常数,自由项f(x)为定义在区间I上的连续函数,即y""+py"+qy=0时,称为二阶常系数齐次线性微分方程。若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的,特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。凡尘2023-05-25 18:52:371
二阶常系数非齐次线性微分方程特解是什么
二阶常系数非齐次线性微分方程的表达式为y""+py"+qy=f(x),其特解y设法分为: 1、如果f(x)=P(x) ,Pn (x)为n阶多项式。2、如果f(x)=P(x) e"a x,Pn (x)为n阶多项式。二阶常系数线性微分方程是形如y""+py"+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y""+py"+qy=0时,称为二阶常系数齐次线性微分方程。若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。阿啵呲嘚2023-05-25 18:52:371
二阶常系数非齐次线性微分方程的题目怎么做
特征方程为t^2-4t+3=0(t-1)(t-3)=0t=1,3因此齐次方程通解为c1e^x+c2e^3x设特解为y*=ax+b,代入原方程得:-4a+3ax+3b=x对比系数得:3a=1,3b-4a=0得a=1/3,b=4/9因此原方程的解为y=c1e^x+c2e^3x+x+x/3+4/9性非齐次微分方程的通解=对应齐次微分方程的通解+特解求解过程大致分以下两步进行:1、求对应齐次微分方程y""-y=0...(1)的通解,方程(1)的特征方程为r^2-1=0,则r=1,-1从而方程(1)的通解就是y=ce^x+de^(-x),c、d为待求量,这里还需用到两个边界条件,不知有没有,就是f(0)=a,f‘(0)=b,a、b均为已知,用于带入通解以确定待求量c、d,否则就无法求了。2、假设第一步中所需条件已知,现在就可以求特解了,构造一个带参数的特解(待定系数法),带入原方程,根据同类项对比就能解出系数,这里就构造如下待定特解:y=a0+a1*x+a2*x^2,带入原方程,可解得a0,a1,a2,这样就求出了特解真颛2023-05-25 18:52:371
常系数线性微分方程的通解是什么?
常系数线性微分方程:y″′-2y″+y′-2y=0,①①对应的特征方程为:λ3-2λ2+λ-2=0,②将②化简得:(λ2+1)(λ-2)=0,求得方程②的特征根分别为:λ1=2,λ2=±i,于是方程①的基本解组为:e2x,cosx,sinx,从而方程①的通解为:y(x)=C1e2x+C2cosx+C3sinx,其中C1,C2,C3为任意常量。扩展资料:二阶常系数齐次线性微分方程解法:特征根法是解常系数齐次线性微分方程的一种通用方法。(1+y)dx-(1-x)dy=0==>dx-dy+(ydx+xdy)=0==>∫dx-∫dy+∫(ydx+xdy)=0==>x-y+xy=C (C是常数)此方程的通解是x-y+xy=C。参考资料来源:百度百科-通解 (微分方程术语)阿啵呲嘚2023-05-25 18:52:361
什么叫线性常系数微分方程
线性”是指函数y及其n阶导数的幂都为1;“常系数”是指函数y及其n阶导数前的系数都为常数;“微分方程”即以自变量x,函数y及其n阶导数组成的方程;组合一下就是线性常系数微分方程了.西柚不是西游2023-05-25 18:52:361
什么是常系数线性微分方程的通解?
常系数线性微分方程:y″′-2y″+y′-2y=0,①①对应的特征方程为:λ3-2λ2+λ-2=0,②将②化简得:(λ2+1)(λ-2)=0,求得方程②的特征根分别为:λ1=2,λ2=±i,于是方程①的基本解组为:e2x,cosx,sinx,从而方程①的通解为:y(x)=C1e2x+C2cosx+C3sinx,其中C1,C2,C3为任意常量。扩展资料:二阶常系数齐次线性微分方程解法:特征根法是解常系数齐次线性微分方程的一种通用方法。(1+y)dx-(1-x)dy=0==>dx-dy+(ydx+xdy)=0==>∫dx-∫dy+∫(ydx+xdy)=0==>x-y+xy=C (C是常数)此方程的通解是x-y+xy=C。参考资料来源:百度百科-通解 (微分方程术语)meira2023-05-25 18:52:361