点到直线的距离

请问圆锥曲线怎么化成参数方程? 曲线上点到直线的距离的最值怎么列式?

设圆锥曲线方程为x^2/a^2+y^2/b^2=1,这里a,b都是正数,不限制谁大,谁小。也就是说焦点在哪个轴上不知道。因为(cosφ)^2+(sinφ)^2=1,为了把x^2/a^2=(cosφ)^2 y^2/b^2=(sinφ)^2一定是x与cosφ对着,y与sinφ对着两边开方得x=acosφ y=bsina(φ为参数)这就是参数方程的来历。
肖振2023-08-13 09:27:271

点到直线的距离的最小值

d^2=(x-0)^2+(y-1)^2=x^2+y^2-2y+1=y+y^2-2y+1=y^2-y+1=(y-1/2)^2+3/4≥3/4,当 y=1/2 时,所求最小值为 3/4 。
Jm-R2023-05-25 07:24:482

点到直线的距离是什么?

点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。点到线的距离公式的证明过程:根据定义,点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A。则l"的解析式为y-y₀=(B/A)(x-x₀)。把l和l"联立得l与l"的交点Q的坐标为((B^2x₀-ABy₀-AC)/(A^2+B^2), (A^2y₀-ABx₀-BC)/(A^2+B^2))。由两点间距离公式得PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2+[(-ABx₀-B^2y₀-BC)/(A^2+B^2)]^2=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2=A^2(Ax₀+By₀+C)^2/(A^2+B^2)^2+B^2(Ax₀+By₀+C)^2/(A^2+B^2)^2=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2=(Ax₀+By₀+C)^2/(A^2+B^2)所以PQ=|Ax+By+C|/√(A^2+B^2),公式得证。垂线是一条直线,可以向两段无限延伸,没有长度。垂线段是垂线上的一条特殊的线段,是有限的一段,有长度。垂线:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。垂线段:线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离。如何画垂足画垂足就需要画出来两条相交的直线,需要用到直尺和直角三角尺。先过一个点任意画一条直线,把直尺的一条边和已经画好的那条直线重合放好,然后把直角三角尺的其中一个直角边靠在直尺上,保持三角尺的另一个边和直尺垂直的情况。慢慢移动直角三角尺,直到直尺三角尺的顶点和刚刚过某个点画直线的那个点重合,最后沿着直角三角尺的另一条边过直线外的那一点画出来直线,这条直线就是那条已知直线的垂线。在两条直线相交的地方点出来相交的点,用任意字母表示出来,然后画上一横一竖组成正方形的小框框,就表示这个角是直角,这两条直线相互垂直,所以点出来的这个点就是垂足。
北营2023-05-25 07:24:481

点到直线的距离是什么

  点到直线的距离指的是过这一点做目标直线的垂线,由这一点至垂足的距离。设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:│AXo+BYo+C│/√(A²+B²)。考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有d=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)。
CarieVinne 2023-05-25 07:24:481

点到直线的距离怎么求?

直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:公式描述:公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。拓展资料:公式整理一、总公式:设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有s=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)d=√((x1-x0)²+(y1-y0)²+(z1-z0)²-s²)二、引申公式:公式①:设直线l1的方程为 ;直线l2的方程为则 2条平行线之间的间距:公式②:设直线l1的方程为 ;直线l2的方程为则 2条直线的夹角 点到直线距离 百度百科
tt白2023-05-25 07:24:481

点到直线的距离怎么求?

直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:公式描述:公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。扩展资料:证明方法:1、函数法:证:点P到直线上任意一点的距离的最小值就是点P到直线的距离。在上取任意点用两点的距离公式有,为了利用条件上式变形一下,配凑系数处理得:当且仅当时取等号所以最小值就是。2、不等式法:证:点P到直线上任意一点Q的距离的最小值就是点P到直线的距离。由柯西不等式:当且仅当时取等号所以最小值就是。参考资料:百度百科-点到直线距离
kikcik2023-05-25 07:24:481

点到直线的距离是什么?

点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。点到线的距离公式的证明过程:根据定义,点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A。则l"的解析式为y-y₀=(B/A)(x-x₀)。把l和l"联立得l与l"的交点Q的坐标为((B^2x₀-ABy₀-AC)/(A^2+B^2), (A^2y₀-ABx₀-BC)/(A^2+B^2))。由两点间距离公式得:PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2+[(-ABx₀-B^2y₀-BC)/(A^2+B^2)]^2=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2=A^2(Ax₀+By₀+C)^2/(A^2+B^2)^2+B^2(Ax₀+By₀+C)^2/(A^2+B^2)^2=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2=(Ax₀+By₀+C)^2/(A^2+B^2)所以PQ=|Ax+By+C|/√(A^2+B^2),公式得证。点到直线的垂线定义:垂线是一条直线,可以向两段无限延伸,没有长度。垂线段是垂线上的一条特殊的线段,是有限的一段,有长度。垂线:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。垂线段:线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离。
苏州马小云2023-05-25 07:24:481

点到直线的距离怎么求?

设两条直线方程为Ax+By+C1=0Ax+By+C2=0则其距离公式为|C1-C2|/√(A²+B²)推导:两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,则满足Aa+Bb+C1=0,即Ab+Bb=-C1,由点到直线距离公式,P到直线Ax+By+C2=0距离为d=|Aa+Bb+C2|/√(A^2+B^2)=|-C1+C2|/√(A^2+B^2)=|C1-C2|/√(A^2+B^2)
bikbok2023-05-25 07:24:481

点到直线的距离公式

ax+by+c=0 x0,y0 |ax0+by0+c|/√(a^2+b^2)已知一点A(a,b)和一直线l y=k1x+b1,直线m y=k2x+b2设直线过点A且垂直于已知直线l,则k1*k2=-1,把A带入m,求出m,再把l和m联立,求出交点B,求A到l的距离就是点A到点B的距离
再也不做站长了2023-05-25 07:24:481

点到直线的距离是什么

根据你的表达应该是这个意思:点(a,b)到直线Ax+By+C=0的距离为d=|Aa+Bb+C|/√(A^2+B^2)而A=0 ,B=0时,直线Ax+By+C=0没有意义啊。这样的话,你问的就有问题正确的应该是这样的吧:点(a,b)到直线Ax+By+C=0的距离为d=|Aa+Bb+C|/√(A^2+B^2)而a=0,b=0吧,这样就是原点到直线的距离啊,当然也满足上面的公式啊d=|C|/√(A^2+B^2)
ardim2023-05-25 07:24:482

怎么求点到直线的距离?

点到直线的距离公式为:证明方法:根据定义,点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线bai段的长,设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y₀=(B/A)(x-x₀)把l和l"联立得l与l"的交点Q的坐标为((B^2x₀-ABy₀-AC)/(A^2+B^2), (A^2y₀-ABx₀-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2+[(-ABx₀-B^2y₀-BC)/(A^2+B^2)]^2=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2=A^2(Ax₀+By₀+C)^2/(A^2+B^2)^2+B^2(Ax₀+By₀+C)^2/(A^2+B^2)^2=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2=(Ax₀+By₀+C)^2/(A^2+B^2)所以PQ=|Ax+By+C|/√(A^2+B^2),公式得证。扩展资料点到直线的距离:在直线L上取两点A,B,设C为直线外一点,设C到AB的距离为d,CA在直线L上投影的长度为h,那么由勾股定理,h^2 + d^2 = |AC|^2,再把h = |AB*AC|/|AB| 代入即可。点到平面的距离:设平面方程为Ax + By + Cz + D = 0,则法向量n = (A,B,C),设P为平面上的一点,Q为平面外的一点,那么Q到平面的距离就是向量PQ在法向量n方向上的投影,即|n * PQ| / |n|
mlhxueli 2023-05-25 07:24:481

点到直线的距离

点到直线的距离,即过这一点做目标直线的垂线,由这一点至垂足的距离。点到直线的距离:自点向直线做垂线段,这条垂线段的长度叫做点到直线的距离。它实质是两点之间的距离,表示的是这一点到垂足的距离。数学中的距离,包括两点间的距离,点到直线的距离,两平行线间的距离,都可转化为两点间的距离。点到直线的距离公式:距离公式:d=│(Axo+Byo+C)/√(A²+B²)│公式描述:公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。点到直线的距离,即过这一点做目标直线的垂线,由这一点至垂足的距离。“点到直线的距离公式”是解析几何中的重要公式。
黑桃花2023-05-25 07:24:481

点到直线的距离怎么求?

直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:公式描述:公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。扩展资料:公式整理:一、总公式:设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有s=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)d=√((x1-x0)²+(y1-y0)²+(z1-z0)²-s²)二、引申公式:公式①:设直线l1的方程为直线l2的方程为则 2条平行线之间的间距:公式②:设直线l1的方程为直线l2的方程为则 2条直线的夹角证明方法:1、函数法:证:点P到直线上任意一点的距离的最小值就是点P到直线的距离。在上取任意点用两点的距离公式有,为了利用条件上式变形一下,配凑系数处理得:当且仅当时取等号所以最小值就是。2、不等式法:证:点P到直线上任意一点Q的距离的最小值就是点P到直线的距离。由柯西不等式:当且仅当时取等号所以最小值就是。参考资料:百度百科-点到直线的距离
康康map2023-05-25 07:24:481

点到直线的距离是什么?

点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。知识与技能目标:通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识。把两条平行直线的距离关系转化为点到直线距离。数学概念:点是最简单的形状,是几何图形最基本的组成部分。在空间中作为 1 个 零维的对象。在其他领域中,点也作为讨论的对象。在欧氏几何中,点是空间中只有位置,没有大小的图形。点是整个欧氏几何的基础。欧几里得最初含糊地定义点作为"没有部分的东西"。在二维欧氏空间中,1 个点被表示为 1 组有序数对。同样的,在笛卡尔坐标系中,任意 1 个点都可以被精确地定位。
人类地板流精华2023-05-25 07:24:471

点到直线的距离公式

连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:│AXo+BYo+C│/√(A²+B²)。 思路如下:求出直线l的斜率k (我们假设这条直线不是平行于坐标轴的),然后与它垂直的直线斜率是 -1/k,因此可以求出过已知点与直线l垂直的那条直线l2(点斜式),然后求l和l2的交点,交点坐标和已知点的间线段的距离就是点到直线的距离。 直线外一点与直线上各点连接的所有线段中,垂线段最短。点到直线的距离叫做垂线段。点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。目标在于通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识。
大鱼炖火锅2023-05-25 07:24:471

点到直线的距离概念

点到直线的距离是指从一个点到一条直线的最短距离,也就是这个点到这条直线的垂线段的长度。这个距离可以用于解决许多几何问题,例如计算两个点之间的距离,或者确定一个点是否在直线的上方或下方。实质上,点到直线的距离是两点之间的距离,表示的是这一点到垂足的距离公式整理一、总公式:设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(x0,y0),则点 P 到直线 L 的距离就是:同理可知,当P(x0,y0),直线l的解析式为y=kx+b时,则点P到直线L的距离为考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有d=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l2+m2+n2)垂线是一条直线,可以向两段无限延伸,没有长度。垂线段是垂线上的一条特殊的线段,是有限的一段,有长度。垂线:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。垂线段:线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离。
铁血嘟嘟2023-05-25 07:24:471

点到直线的距离有什么公式吗?

点到直线的距离公式空间向量是:平面的法向量a,点为A。找平面上一点B,以下AB为向量。空间向量到平面的距离,就是向量的两个端点到平面的距离,取最短的那一个长度,就是空间向量到一个平面的问题。点到平面向量的距离,先建立空间直角坐标系,x、y、z轴,设该平面为“平面ABC”设该点为P,然后用向量表示向量PA。两直线位置关系直线L1:A1x+B1y+C1=0与直线L2:A2x+B2y+C2=0:1、当A1B2-A2B1≠0时,相交。2、A1/A2=B1/B2≠C1/C2,平行。3、A1/A2=B1/B2=C1/C2,重合。4、A1A2+B1B2=0,垂直。
u投在线2023-05-25 07:24:471

什么叫做点到直线的距离

点到直线的距离是过这个点作这条直线的垂线段的长度。百度知道有.
黑桃花2023-05-25 07:24:472

点到直线的距离公式

点到线的距离公式如下:设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:定义法证明:根据定义,点P(x_,y_)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y_=(B/A)(x-x_)。把l和l"联立得l与l"的交点Q的坐标为((B^2x_-ABy_-AC)/(A^2+B^2),(A^2y_-ABx_-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x_-ABy_-AC)/(A^2+B^2)-x0]^2+[(A^2y_-ABx_-BC)/(A^2+B^2)-y0]^2=[(-A^2x_-ABy_-AC)/(A^2+B^2)]^2
豆豆staR2023-05-25 07:24:473

空间点到直线的距离公式是什么?

点到线的距离公式如下:设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:定义法证明:根据定义,点P(x_,y_)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y_=(B/A)(x-x_)。把l和l"联立得l与l"的交点Q的坐标为((B^2x_-ABy_-AC)/(A^2+B^2),(A^2y_-ABx_-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x_-ABy_-AC)/(A^2+B^2)-x0]^2+[(A^2y_-ABx_-BC)/(A^2+B^2)-y0]^2=[(-A^2x_-ABy_-AC)/(A^2+B^2)]^2
Jm-R2023-05-21 22:10:232

麻烦帮我解解这道题。要过程要讲解的、还有请问这类的题有什么运算方法没有。各个点到直线的距离有什么关

前边三个不用算 你懂得 垂直定理 6 8 10 C到AB的距离是4.8 解:过C点作CD垂直于AB于D点,∵AD⊥AB,AC⊥BC,∠B=∠B,∴△ACB∽△CDB ∴CD∶AC=AC∶AB ∵AC=6 AB=10∴CD=4.8自己划一下 你就懂了
tt白2023-05-18 13:56:155