数学

如何用数学语言表示伽马函数γ(x)?

如下:简介Γ(x)称为伽马函数,它是用一个积分式定义的,不是初等函数。伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n! 11。表达式:Γ(a)=∫{0积到无穷大}。[x^(a-1)]*[e^(-x)]dx。
左迁2023-05-24 07:48:511

Γ函数(伽马函数)的数学期望怎么求?

E(X)=∫[c,+∞)x*β^α/Γ(α)*(x-c)^(α-1)*e^[-β(x-c)]*dx (α>0,β>0)=∫[0,+∞)(t/β+c)*β^α/Γ(α)*(t/β)^(α-1)*e^(-t)*1/β*dt=1/Γ(α)*∫[0,+∞){t^[(α+1)-1]/β+ct^(α-1)}e^(-t)dt=1/Γ(α)*[1/β*Γ(α+1)+cΓ(α)]=1/Γ(α)*[α/β*Γ(α)+cΓ(α)]=α/β+c
拌三丝2023-05-24 07:48:471

数学嘎嘛函数是什么?

就是含有参数的函数吧,不难的,多做一点就好了呀,希望你能考个好成绩,加油吧。
善士六合2023-05-24 07:48:472

如何计算超几何分布的数学期望和方差公式

超几何分布的均值和方差公式:E(X)=(n*M)/N[其中x是样本数,n为样本容量,M为样本总数,N为总体中的个体总数],求出均值,这就是超几何分布的数学期望值。方差公式是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2[这里设a为期望值]。超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。相关定义:方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
kikcik2023-05-24 07:48:451

为什么现在数学系普遍不学椭圆函数、超几何函数等特殊函数?

这么说吧,以前中国的教材难度大,把学生都当成可以成名成家的目标培养的!但难度大也有个缺点,学不会造成厌学… 现在一直在降难度,考题也适中,这适合中上水平的学生、适合女生…尖子生自己想办法加课! 所以,奥数等优秀的学生,大学很受欢迎! 其实大学招生,除了看你掌握的知识,更看重的是你学习能力(智商)! 老外查你的学习能力,用的最多的是:除了母语,会几门外语,会什么外语?英语母语国家要求会非印欧语系的外语才算优秀!第二是数学的微积分…!学会最难最废脑的课程才体现你优势 问题挺简单的,直观答案就是数学系也是分方向的。而所有数学系学生都要学的公共课又不会涉及这么深的知识点。 题主问的领域哪怕在数学系也是比较冷门的存在。一些研究代数几何(Algebraic Geometry)的人才会学这些知识。 通常数学系的学生会有3个大的方向:一,统计:包括分析,统计,金融数学。这个是最热门的。二,理论数学,也叫pure maths,包括代数(群论,数论等等),几何(传统几何,解析几何,拓扑学等等)。三,应用数学。这个是以微积分为基础的,常用来解决物理问题,比如流体动力学。 18-19世纪的时候,各种特殊函数是数学系的重要内容。 研究它们不仅是数学上的兴趣,也有物理等等领域的实际用途。 比如椭圆函数就和单摆的精确运动有关,一大类常微分方程的解都能写成超几何函数。20世纪以后,各种特殊函数的材料越积累越多,物理应用领域已经基本能满足需求。 实际上,对于物理应用领域而言,一个精巧的等式往往不如一个近似展开有用。在纯数学角度呢?精巧的等式越来越难找。于此同时,数学本身也不断扩充,更强调抽象化,概况化。 你花时间把椭圆函数、超几何函数的一大堆性质搞熟,能写出一堆别人没见过的等式,解决物理问题不见得比物理系的强,对别的领域也暂时用不上,写论文还很难创新,不如认认真真把抽象代数、泛函分析、拓扑学、微分几何等等理论啃一遍。 数学专业的课程设置也是与时俱进的,不可能一成不变。现在的数学系和几十年前的数学系在课程设置方面差异很大。总的来讲,有广泛应用的热门课程,社会需求强烈的课程,会逐步加进来。比较冷门的一些课程会逐步减弱乃至淘汰。此类课程需要用到的时候,再补起来为时不晚。从总的趋势来看,数学系的课程负担是在加重而不是减轻。这样一来,有些难度较大,而用途较窄的课程就很难保留下来。道理也很简单。因为数学专业也是为社会的发展和进步服务的。过份脱离社会实际,对数学专业的发展和建设是不利的。实际上,有很多研究成果数学系是根本不做任何介绍的。例如,勒让德多项式,它已经有几百年的历史。但始终没有找到它的应用,所以它始终热不起来,数学系的学生不学也很正常,只有少数数学家对它感兴趣。 中国的数学专业,课程设置在世界上不算难度最大。例如俄罗斯的数学专业的课程设置不仅内容比中国多,难度也要大一些。这反映出各国科学教育界对专业设置理解上的差异。 美国的情况也差不多。美国高校数学专业的学生学习的内容比不上俄罗斯。但美国的科学技术,特别是高 科技 却很发达。 数学有著广泛的应用性。每个国家所处的发展阶段不同,国情也不同。都是根据本国的具体情况设置课程的。这其实很正常。本科教育只有四年,面面俱到是不可能的。 我翻看过王竹溪先生的大作《特殊函数概论》,好像还有19世纪英国一本书更如。这本书有这些个东东,太难了,复变函数围道积分处理了很多内容,都极难理解。 大概搞数论和加密算法的人能搞懂吧 1.学时有限。其它非专业课,公修课程,职教实践课,校园文化活动等等,所占学时和课外时间太多,学生真正用到专业课上的时间反而占比很少。 2.本科大部分为数学与应数学专业而非基础数学专业,有更多应用更广的专业课要学。 那不就是复变函数嘛 这其实是最有用的数学,至少在理论物理中应用广泛。数学系真的不学吗? 反正我认为,现在中国主要是培养工科性质的人才,真正搞科研的太少了。像我们搞动力和通信的,应该来说和这些超越函数打交道比较多。但是,除极少数情况下写文章忽悠人以外,基本用处不大。大多数情况下,只需要引用结果就是了。可以说,百分之九十九的工程情况,都不涉及超越函数这些东西。我大学在西交学动力,数学算学得多的了,后来在重大学通信与电磁场打交道,后来工作科研确实很少用到椭圆函数等超越函数,只是别人说的时候,我大概懂。 推行所谓素质教育
再也不做站长了2023-05-24 07:48:431

为什么现在数学系普遍不学椭圆函数、超几何函数等特殊函数?

主要是因为这些知识除了做高等数学研究以外,其他人根本用不到。
善士六合2023-05-24 07:48:433

现在数学系普遍不学椭圆函数、超几何函数等特殊函数,原因是什么?

这是因为学时有限,而且椭圆函数、超几何函数等特殊函数的应用性不强。
余辉2023-05-24 07:48:434

现在数学系都不学椭圆函数、超几何函数了,为什么?

没有实用价值
水元素sl2023-05-24 07:48:4310

高中数学:超几何的分布是两种情况吗?

我都有点忘了,可以问下身边的朋友
西柚不是西游2023-05-24 07:48:424

高中数学三角函数特殊角的数值表

在高中数学中,三角函数属于出题点最多的一类题型了,特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。下面我为大家整理了三角函数特殊角的数值。 什么是三角函数 常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。 三角函数对应数值 α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞ α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2 α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2) a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2 α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2 α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3 α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2) α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2 α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1 α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞ α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1 α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞ 黄金三角对应数值 α=18°(π/10) sinα=(√5-1)/4 cosα=√(10+2√5)/4 tαnα=√(25-10√5)/5 cscα=√5+1 secα=√(50-10√5)/5 cotα=√(5+2√5) α=36°(π/5) sinα=√(10-2√5)/4 cosα=(√5+1)/4 tαnα=√(5-2√5) cscα=√(50+10√5)/5 secα=√5-1 cotα=√(25+10√5)/5 α=54°(3π/10) sinα=(√5+1)/4 cosα=√(10-2√5)/4 tαnα=√(25+10√5)/5 cscα=√5-1 secα=√(50+10√5)/5 cotα=√(5-2√5) α=72°(2π/5) sinα=√(10+2√5)/4 cosα=(√5-1)/4 tαnα=√(5+2√5) cscα=√(50-10√5)/5 secα=√5+1 cotα=√(25-10√5)/5 通过比较可发现与黄金三角形相关的三角函数值有很强的对称性,这些数值的证明可以借助黄金三角形中的比例 两角和与差的三角函数对应数值 sin(a+b)=sin a cos b +cos a sin b cos(a+b)=cos a cos b -sin a sin b sin(a-b)=sin a cos b -cos a sin b cos(a-b)=cos a cos b +sin a sin b tan(a+b)=(tan a +tan b )/(1-tan a tan b ) tan(a-b)=(tan a -tan b )/(1+tan a tan b )
余辉2023-05-24 07:48:401

初中数学特殊三角函数值一览表

特殊三角函数是性质特殊的一类三角函数的总称,主要包括正弦三角函数、余弦三角函数、正切三角函数、余切三角函数等。接下来让我具体的看一下这些特殊三角函数的值。 特殊三角函数值一览表 特殊三角函数之间的函数关系 (一)倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 (二)商的关系 tanα=sinα/cosα cotα=cosα/sinα (三)平方关系 (sinα)^2+(cosα)^2=1 1+(tanα)^2=(secα)^2 1+(cotα)^2=(cscα)^2
陶小凡2023-05-24 07:48:391

初中数学特殊三角函数值

三角函数是一个比较难的部分,下面我就大家整理一下初中数学特殊三角函数值,仅供参考。 特殊三角函数值 cos30度=(根号3)/2 cos45度=(根号2)/2 cos60度=1/2 sin30度=1/2 sin45度= (根号2)/2 sin60度=(根号3)/2 tan30度=(根号3)/3 tan45度=1 tan60度=根3 图片版 锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin):对边比斜边,即sinA=a/c 余弦(cos):邻边比斜边,即cosA=b/c 正切(tan):对边比邻边,即tanA=a/b 余切(cot):邻边比对边,即cotA=b/a 正割(sec):斜边比邻边,即secA=c/b 余割(csc):斜边比对边,即cscA=c/a 三角和的公式 sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 两角和差公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 以上就是我为大家整理的初中数学特殊三角函数值 。
kikcik2023-05-24 07:48:361

请教高手:画出下列函数的函数图象(就是像对数函数那些特殊的函数) 高中数学

高中作如上函数图象,应该是用求导法,得到函数图象的拐点,再结合单调性、奇偶性、极限,曲线凹凸,最后作图的。
Chen2023-05-24 07:48:365

高中数学 特殊函数 有哪些

您好。高中的比较特殊的函数有,绝对值函数,上取整函数 下取整函数,分段函数,分母带有平方的函数。
CarieVinne 2023-05-24 07:48:352

高等数学里面几个特殊的极限函数还有谁记得

第一个:x趋近于0时,sinx/x的极限为1 第二个:n趋近于无穷大时,(1+1/n)的n次方的极限为e
NerveM 2023-05-24 07:48:352

数学,多项乘多项的

这是在不全部展开的情形求出来,全部展开过于麻烦也没有必要
苏州马小云2023-05-24 07:48:343

【高中数学】特殊的函数

周期函数,奇偶函数,指数函数
wpBeta2023-05-24 07:48:348

高中数学,2项式系数,这句话是为什么?

肖振2023-05-24 07:48:332

数学-单项式、多项式、指数、系数是什么.求分类.?

单项式:表示数与数、数与字母、字母与字母的乘积的代数式叫做单项式; 多项式:几个单项式的和叫做多项式; 单项式的指数、单项式的所有字母的指数和叫做这个单项式的指数; 单项式的系数:单项式的字母前面的数字因数叫做这个单项式的系数; 多项式的指数:在多项式中最高项的指数就是这个多项式的指数.,9,由数或字母的积组成的式子叫单项式。单独的一个数或一个字母也是单项式。如-2x,-5,a , 单项式的系数是单项式中的数字因数。 单项式的指数其实是叫次数是单项式中所有的指数的和 几个单项式的和叫多项式 在多项式里每个单项式叫多项式的项 在多项式里次数是最高项的次数 多项式没有系数 只能说几次项系数 如-2x^2这里的-2就是二次项的系数...,1,
此后故乡只2023-05-24 07:48:321

数学中什么是一次项,二次项,项系数,三项次

多项式中,每个单项式叫做多项式的一个项;每一个项的次数中最高的一个,就叫做这个多项式的次数。一个多项式是几次几项,就叫。例如:x^4+x^2-44是四次三项式,就是说这个多项式的最高次数是4次,并且由3个单项式组成。在计算时,要注意,相同次数的除系数外都一样的式子相加,系数相加,次数不变。多项式至少有两个单项式组成。“四次三项式”一般不写成“4次3项式”
NerveM 2023-05-24 07:48:312

数学的2项式定理的,系数。求解答。 15题

真颛2023-05-24 07:48:304

数学的二项式系数和常数项的区别

二次项系数是未知数的各次方前面的那些数,常数项是单项式上不含字母的项,只有单独的一个数。多项式是由若干个单项式的和组成的代数式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。二项式是只有两项的多项式,即两个单项式的和。二项式是仅次于单项式的最简单多项式。
此后故乡只2023-05-24 07:48:292

高二数学二项分布。这是什么意思?

依次是4人的申请分布在同一片区、在两个片区和在三个片区的概率。你是搞不清后边那些表达式的意思吗?
余辉2023-05-24 07:48:281

数学的多项式系数是什麽啊?

0.32a²b-4/3nm³n²+m(六)次(三)项式.有三项,多项式的次数是六.0.32a²b的系数:0.32-4/3nm³n²的系数:-4/3m的系数是:1.
Jm-R2023-05-24 07:48:282

数学二项式中所有项系数之和是多少?二项式系数之和为多少?

所有系数之和就是另x=1得出的值,不用减常数项
北境漫步2023-05-24 07:48:254

数学的二项式系数和常数项的区别

二次项系数是未知数的各次方前面的那些数,常数项是单项式上不含字母的项,只有单独的一个数。多项式是由若干个单项式的和组成的代数式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。二项式是只有两项的多项式,即两个单项式的和。二项式是仅次于单项式的最简单多项式。
余辉2023-05-24 07:48:252

数学中积是什么意思

阶乘【阶乘的计算方法】[编辑本段]阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。【阶乘的表示方法】[编辑本段]在表达阶乘时,就使用“!”来表示。如x的阶乘,就表示为x! 【20以内的数的阶乘】[编辑本段]阶乘一般很难计算,因为积都很大。以下列出1至20的阶乘:1!=1,2!=2, 3!=6, 4!=24, 5!=120, 6!=720, 7!=5040, 8!=40320 9!=362880 10!=362880011!=3991680012!=47900160013!=622702080014!=8717829120015!=130767436800016!=2092278988800017!=35568742809600018!=640237370572800019!=12164510040883200020!=2432902008176640000另外,数学家定义,0!=1,所以0!=1!
此后故乡只2023-05-24 07:48:233

高中数学数列递推公式

将所有等式相加等式左边为A2+.........+A(n-1)+A(n)右边为A1+A2+.........+A(n-1)+f(1)+........+f(n-1)左右两边同时消去A2+.........+A(n-1)就得到A(n)=A1+f(1)+........+f(n-1)
u投在线2023-05-24 07:48:221

用数学归纳法证明斐波那契数列公式

给你点资料,看完自然就会了! 斐波那契数列,“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年.籍贯大概是比萨).他被人称作“比萨的列昂纳多”.1202年,他撰写了《珠算原理》(Liber Abaci)一书.他是第一个研究了印度和 *** 数学理论的欧洲人.他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个 *** 老师的指导下研究数学.他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学. 斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21…… 这个数列从第三项开始,每一项都等于前两项之和.它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】 很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的. 【该数列有很多奇妙的属性】 比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887…… 还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1. 如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到. 如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值. 斐波那契数列的第n项同时也代表了 *** {1,2,...,n}中所有不包含相邻正整数的子集个数. 【斐波那契数列别名】 斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”. 斐波那契数列 一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来.如果所有兔都不死,那么一年以后可以繁殖多少对兔子? 我们不妨拿新出生的一对小兔子分析一下: 第一个月小兔子没有繁殖能力,所以还是一对; 两个月后,生下一对小兔民数共有两对; 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对; ------ 依次类推可以列出下表: 经过月数:0123456789101112 兔子对数:1123581321345589144233 表中数字1,1,2,3,5,8---构成了一个数列.这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项. 这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.) 【斐波那挈数列通项公式的推导】 斐波那契数列:1,1,2,3,5,8,13,21…… 如果设F(n)为该数列的第n项(n∈N+).那么这句话可以写成如下形式: F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 显然这是一个线性递推数列. 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2, X2=(1-√5)/2. 则F(n)=C1*X1^n + C2*X2^n ∵F(1)=F(2)=1 ∴C1*X1 + C2*X2 C1*X1^2 + C2*X2^2 解得C1=1/√5,C2=-1/√5 ∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】 通项公式的推导方法二:普通方法 设常数r,s 使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)] 则r+s=1, -rs=1 n≥3时,有 F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)] F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)] F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)] …… F(3)-r*F(2)=s*[F(2)-r*F(1)] 将以上n-2个式子相乘,得: F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)] ∵s=1-r,F(1)=F(2)=1 上式可化简得: F(n)=s^(n-1)+r*F(n-1) 那么: F(n)=s^(n-1)+r*F(n-1) = s^(n-1) + r*s^(n-2) + r^2*F(n-2) = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3) …… = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1) = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1) (这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和) =[s^(n-1)-r^(n-1)*r/s]/(1-r/s) =(s^n - r^n)/(s-r) r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2 则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} 【C语言程序】 main() { long fib[40] = {1,1}; int i; for(i=2;i
Ntou1232023-05-24 07:48:221

高中数学~由数列递推式求通项

解:a(n+1)=1/[2-an]===>[1/a(n+1)]=2-an.===>[1/a(n+1)]-1=1-an.===>[1-a(n+1)]/a(n+1)=1-an.===>a(n+1)/[1-a(n+1)]=1/(1-an)===>[1/1-a(n+1)]-1/(1-an)=1.===>1/[1-an]=[1/(1-a1)]+(n-1).===>an=[(n-1)(1-a1)+a1]/[n-a1(n-1)]
大鱼炖火锅2023-05-24 07:48:224

高一数学【求数列1 2 4 8 16…的通项公式】

2^(n-1)
韦斯特兰2023-05-24 07:48:215

数学递进的公式?

有无数的公式,不可能列出来。
再也不做站长了2023-05-24 07:48:213

请问数学,积,代表什么意思?

俩数相乘
可桃可挑2023-05-24 07:48:217

高中数学数列递推常用(考)方法,求详细

公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法等等。 类型一归纳—猜想—证明 由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明. 类型二“逐差法”和“积商法” (1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子: a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1), 且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”. (2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即 a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,an/an-1=f(n-1),且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”. 类型三构造法 递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解. 类型四可转化为类型三求通项 (1)“对数法”转化为类型三. 递推式为an+1=qan�k(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为类型三. (2)“倒数法”转化为类型三. 递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb). 若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为类型三. 若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况. 类型五递推式为an+1/an=qn/n+k(q≠0,k∈N) 可先将等式(n+k)an+1=qnan两边同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)�6�1nan,则bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1. 从而bn+1=qbn,因此数列{bn}是公比为q,首项为b1=k(k-1)(k-2)…2�6�11�6�1a1=k!a1的等比数列,进而可求得an. 总之,由数列的递推公式求通项公式的问题比较复杂,不可能一一论及,但只要我们抓住递推数列的递推关系,分析结构特征,善于合理变形,就能找到解决问题的有效途径.类型一�归纳—猜想—证明 由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明. �例1�设数列{an}是首项为1的正项数列,且(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…),则它的通项公式是an=______________.(2000年全国数学卷第15题) 解:将(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…)分解因式得(an+1+an)〔(n+1)an+1-nan〕=0.��由于an>0,故(n+1)an+1=nan,即an+1=n/(n+1)an.��因此a2=(1/2)a1=(1/2),a3=(2/3)a2=(1/3),….猜想an=(1/n),可由数学归纳法证明之,证明过程略. 类型二�“逐差法”和“积商法” (1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子: a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1), 且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”. 例2�已知数列{an}满足a1=1,an=3n-1+an-1(n≥2),证明:an=(3n-1)/2. (2003年全国数学卷文科第19题) 证明:由已知得an-an-1=3n-1,故 an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=3n-1+3��n-2�+…+3+1=3n-1/2. 所以得证. (2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即 a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,a��n�/an-1�=f(n-1)�,�且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”. 例3�(同例1)(2000年全国数学卷第15题) 另解:将(n+1)a2n+1-nan2+an+1an=0(n�=1,2,3,…)化简,得(n+1)an+1=nan,即 an+1/an=n/(n+1).� 故an=an/an-1�6�1an-1/an-2�6�1an-2/an-3�6�1…�6�1a2/a1�=n-1/n�6�1n-2/n-1�6�1n-3/n-2�6�1 … �6�11/2�=1/n. 类型三�构造法 递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解. 例4�(同例2)(2003年全国数学卷文科第19题) 另解:由an=3n-1+an-1得3�6�1an/3n=an-1/3n-1+1. 令bn=an/3n,则有 bn=1/3bn-1+1/3. (*) 设bn+x=1/3(bn-1+x),则bn=1/3bn-1+1/3x-x,与(*)式比较,得x=-1/2,所以bn-1/2=1/3(bn-1-1/2).因此数列{bn-1/2}是首项为b1-1=a1/3=-1/6,公比为1/3的等比数列,所以bn-1/2=-1/6�6�1(1/3)n-1,即an/3n-1/2=-1/6(1/3)n-1.故an=3n〔1/2-1/6(1/3)n-1〕=3n-1/2. 例5�数列{an}中,a1=1,an+1=4an+3n+1,求an.� 解:令an+1+(n+1)x+y=4(an+nx+y),则 an+1=4an+3nx+3y-x,与已知an+1=4an+3n+1比较,得 3x=3, 所以 x=1, 3y-x=1, y=(2/3).故数列{an+n+(2/3)}是首项为a1+1+(2/3)=(8/3),公比为4的等比数列,因此an+n+(2/3)=(8/3)�6�14n-1,即 an=(8/3)�6�14n-1-n-(2/3). 另解:由已知可得当n≥2时,an=4an-1+3(n-1)+1,与已知关系式作差,有an+1-an=4(an-an-1)+3,即an+1-an+1=4(an-an-1+1),因此数列{an+1-an+1}是首项为a2-a1+1=8-1+1=8,公比为4的等比数列,然后可用“逐差法”求得其通项an=(8/3)�6�14n-1-n-(2/3). 类型四�可转化为 类型三求通项 (1)“对数法”转化为 类型三. 递推式为an+1=qan�k(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为 类型三. 例6�已知数列{an}中,a1=2,an+1=an2,求an. 解:由an+1=an2>0,两边取对数得lgan+1=2lgan.令bn=lgan则bn+1=2bn.因此数列{bn}是首项为b1=lga1=lg2,公比为2的等比数列,故bn=2n-1lg2=lg22n-1,即an=22n-1. (2)“倒数法”转化为 类型三. 递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb). 若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为 类型三. 若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况. 例7�在数列{an}中,已知a1=2,an+1=(3an+1)/(an+3),求通项an. 解:设an+1+x=y(an+x)/an+3,则an+1=(y-x)an+(y-3)x/an+3,结合已知递推式得 y-x=3, 所以 x=1, y-3=1, y=4,则有an+1+1=4(an+1)/an+3,令bn=an+1,则bn+1=4bn/bn+2,求倒数得1/bn+1=1/2�6�11/bn+1/4,即1/bn+1-1/2=1/2(1/bn-1/2). 因此数列{1/bn-1/2}是首项为1/b1-1/2=1/a1+1-1/2=-1/6,公比为1/2的等比数列. 故1/bn-1/2=(-1/6)(1/2)n-1,从而可求得an. 类型五�递推式为an+1/an=qn/n+k(q≠0,k∈N) 可先将等式(n+k)an+1=qnan两边同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)�6�1nan,则bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1. 从而bn+1=qbn,因此数列{bn}是公比为q,首项为b1=k(k-1)(k-2)…2�6�11�6�1a1=k!a1的等比数列,进而可求得an. 例8�(同例1)(2000年全国数学卷第15题) 另解:将(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,…),化简得(n+1)an+1=nan,令nan=bn,则bn+1=bn,所以数列{bn}是常数列,由于首项b1=1�6�1a1=1,所以bn=1,即nan=1,故an=1/n. 总之,由数列的递推公式求通项公式的问题比较复杂,不可能一一论及,但只要我们抓住递推数列的递推关系,分析结构特征,善于合理变形,就能找到解决问题的有效途径.
kikcik2023-05-24 07:48:201

证明一道递推数列问题(大学数学)

作为初一学生,这道题实在看不懂,什么是自然对数?
九万里风9 2023-05-24 07:48:202

高中数学,递推数列求范围,要过程,谢谢!

基本都可观察出来(1)首先因为a1>0a2=正数/正数>0,同理所以a3>0,...所以an>0其次,(3+an-2)/(3+an)=1-2/(3+an)<1所以an<3所以0<an<3(2)因为x1=2,x2=2+1/x1>2x3=2+1/x2>2,...所以xn>=2然后因为xn>=2,所以1/xn<=1/2所以xn=2+1/xn-1<=2+1/2=5/2所以2<=xn<=5/2不明白可追问
水元素sl2023-05-24 07:48:201

数学递推公式

 递推公式的概念:可以通过给出数列的第1项(或前若干项),并给出数列的某一项与它的前一项(或前若干项)的关系式来表示数列,这种表示数列的式子叫做这个数列的递推公式。递推公式是数列所特有的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可.  递推公式:  如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式。例如斐波纳契数列的递推公式为an=an-1+an-2
NerveM 2023-05-24 07:48:202

数学家欧拉简介

莱昂哈德·欧拉Leonhard Euler 1707年4月5日~1783年9月18日 是瑞士数学家和物理学家.他被称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯).欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在1694年给出).他是把微积分应用于物理学的先驱者之一.  "欧拉进行计算看起来毫不费劲儿,就像人进行呼吸,像鹰在风中盘旋一样°(阿拉戈语),这封伦纳德.欧拉(1707--1783)无与伦比的数学才能来说并不夸张,他是历史上最多产的数学家.与他同时代的人们称他为"分析的化身".欧拉撰写长篇学术论文就像一个文思敏捷的作家给亲密的朋友写一封信那样容易.甚至在他生命最后17年间的完全失明也未能阻止他的无比多产,如果说视力的丧失有什么影响的话,那倒是提高了他在内心世界进行思维的想像力.   欧拉到底为了多少著作,直至1936年人们也没有确切的了解.但据估计,要出版已经搜集到的欧拉著作,将需用大4开本60至80卷.1909年瑞士自然科学联合会曾着手搜集、出版欧拉散轶的学术论文.这项工作是在全世界许多个人和数学团体的资助之下进行的.这也恰恰显示出,欧拉属于整个文明世界,而不仅仅屈于瑞士.为这项工作仔细编制的预算(1909年的钱币约合80000美元)却又由于在圣彼得堡(列宁格勒)意外地发现大量欧拉手稿而被完全打破了.   欧拉和丹尼尔·伯努利一起,建立了弹性体的力矩定律:作用在弹性细长杆上的力矩正比于物质的弹性和通过质心轴和垂直于两者的截面的惯性动量.   他还直接从牛顿运动定律出发,建立了流体力学里的欧拉方程.这些方程组在形式上等价于粘度为0的纳维-斯托克斯方程.人们对这些方程的主要兴趣在于它们能被用来研究冲击波.   他对微分方程理论作出了重要贡献.他还是欧拉近似法的创始人,这些计算法被用于计算力学中.此中最有名的被称为欧拉方法.   在数论里他引入了欧拉函数.   自然数的欧拉函数被定义为小于并且与互质的自然数的个数.例如,因为有四个自然数1,3,5和7与8互质.   在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的.   在分析领域,是欧拉综合了莱布尼兹的微分与牛顿的流数.   他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声:   :其中是黎曼函数.   欧拉将虚数的幂定义为如下公式:这就是欧拉公式,它成为指数函数的中心.   在初等分析中,从本质上来说,要么是指数函数的变种,要么是多项式,两者必居其一.被理查德·费曼称为“最卓越的数学公"”的则是欧拉公式的一个简单推论(通常被称为欧拉恒等式):   :在1735年,他定义了微分方程中有用的欧拉-马歇罗尼常数:   :他是欧拉-马歇罗尼公式的发现者之一,这一公式在计算难于计算的积分、求和与级数的时候极为有效.   在1739年,欧拉写下了《音乐新理论的尝试(Tentamennovaetheoriaemusicae)》,书中试图把数学和音乐结合起来.   一位传记作家写道:这是一部"为精通数学的音乐家和精通音乐的数学家而写的"著作.   在经济学方面,欧拉证明,如果产品的每个要素正好用于支付它自身的边际产量,在规模报酬不变的情形下,总收入和产出将完全耗尽.   在几何学和代数拓扑学方面,欧拉公式给出了单联通多面体的边、顶点和-(zh-hans:面;zh-hant:面)-之间存在的关系::   其中,F为给定多面体的面数之和,E为边数之和,V为顶点数之和.   这个定理也可用于平面图.对非平面图,欧拉公式可以推广为:如果一个图可以被嵌入一个流形,则::其中χ为此流形的欧拉特征值,在流形的连续变形下是不变量.   单联通流形,例如球面或平面,的欧拉特征值是2.   对任意的平面图,欧拉公式可以推广为:,其中为图中连通分支数.   在1736年,欧拉解决了柯尼斯堡七桥问题,并且发表了论文《关于位置几何问题的解法(Solutioproblematisadgeometriamsituspertinentis)》,对一笔画问题进行了阐述,是最早运用图论和拓扑学的典范.   数独是欧拉发明的拉丁方块的概念,在当时并不流行,直到20世纪由平凡日本上班族锻治真起,带起流行
kikcik2023-05-24 07:48:151

为什么数学家无法找到质数的规律?

质数的规律 什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢? 质数的分布是没有规律的,往往让人莫明其妙。如:101、401、601、701都是质数,但上下面的301和901却是合数。 有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。 被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=14292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=14292967297=641*6700417,并非质数,而是合数。 更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑! 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。 现在,数学家找到的最大的梅森数是一个有378632位的数:2^1257787-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。 头五千万个质数 -------------------------------------------------------------------------------- 【摘要】不按牌理出牌 数学家也拿他没办法 质数怎样分布?古今中外,不论是专业的数学家或业余的嗜好者,都曾被这问题所深深吸引。 质数是个比1大的自然数,除了自身和1以外,没有其他自然数可以除尽他。质数的分布有两个互相矛盾的特点。下面我会列举一些事实,使你永远相信这两个特点。 第一点,尽管质数的定义极为简单,又是自然数的建构砖石(任何自然数都可表为质因数的幂次的连乘积,且表法唯一),它却是数学家研究的对象中最不驯的一种;质数在自然数中,像杂草似地乱长,似乎除了机会律以外,不遵守其他的规律,没人敢说下一个会从那里冒出来。 第二点更令人惊讶,因?T篕P第一点相反,质数表现出惊人的规律性。也就是说,确有规律限制质数的行为,他们像军人一样绝对服从这些规律。 为了支持第一点,我把100以下的质数和合数写出来(除了2以外,不列偶数): 【浏览原件】 再把1千万加减一百以内的质数列出:在9,999,900与10,000,000之间的质数 9,999,901 9,999,907 9,999,929 9,999,931 9,999,937 9,999,943 9,999,971 9,999,973 9,999,991 在10,000,000与10,000,100之间的质数 10,000,019 10,000,079 你看!没有什麼理由可以说这个数是质数,那个数不是质数。当你看到这些数字时,是否联想到宇宙的奥秘,像天边那闪烁的星星一样神秘不可测?甚至数学家都无法揭开此一奥秘,如果他们能够,他们就不会劳神苦思去计算下一个更大的质数是多少了。(没有人会想去找比前一个平方数更大的平方数,或2的幂次数——通常一个好学生只记到210=1024)。 1876年,Lucas证明2127-1为质数,这纪录维持了75年。这也难怪,因为 2127-1 =1701411834604469231731687303715884105727 直到1951年,电子计算机的新纪元,更大的质数陆续发现(见下表历次记录)。目前的记录是6002位的219937-1,不信的话,你可以去查Guiness世界记录。(编者注:根据合众国际社1978年11月15日报导,这记录已被两个18岁的加州大学学生打破。) 【浏览原件】 质数的规律 更有趣的,还是关於质数的规律。前面已提到过100以下的质数,现在用图表示,其中π(x)表示所有不大於x的质数的个数。 【浏览原件】 就这麼简单的一个图,我们已经可以看出,除了一些小的扰动以外,π(x)大致上增加得很有规律。 若把x值从一百增到五万,则此规律性变得更为明显。见下图: 【浏览原件】 当某种规律自然出现时,科学家就得设法去解释它,质数分布的规律性也不例外。关於质数分布,我们不难找到一个良好的经验规律。请看下表:(这表看来平凡无奇,却代表上千小时的艰苦计算。) 【浏览原件】 注意:x每增10倍,x与π(x)的比就增加约2.3。机警的数学家立刻联想到10取自然对数的近似值是2.3。所以x/π(x)~logx,亦即π(x)~x/logx(用log x表示x的自然对数,~表示当x接近无穷大时,π(x)与x/logx的比趋近於1;如果用≈,则表示接近的程度更好。) 质数定理 这个关系叫做质数定理,是高斯1791年发现的,但直到1896年才得到证明。高斯(1777~1855年,关於高斯与质数定理,请参阅凡异出版社,伟大数学家的一生——高斯)14岁那年收到一本对数的书;次年,研究书上所附的质数表,发现了这个定理。终其一生,高斯一直很注意质数分布,并且花了很多功夫去计算。高斯写信给他学生安克(Encke)说他「时常花费零星的片刻计算1000个连续整数(如18001到19000)中有多少质数」,最后他竟能列出三百万以下的所有质数,并且拿来和他的推测公式比较。 质数定理说π(x)是渐近地,即相对误差趋近於0,等於x/logx。但是如果拿x/logx与π(x)的图形加以比较,则可看出,虽然x/logx反映了π(x)行为的本质,却还不足以说明π(x)的平滑性。 【浏览原件】 所以,我们希望找到更佳的近似函数。如果我们再仔细看看前面那个表,会发现x/π(x)差不多恰为logx-1。经过更小心地计算,并和π(x)的更精密数据相较,乐强何(Legendre)在1808年找到特佳的近似。即 π(x)≈x/(log-1.08366) 另有一种π(x)的近似函数也不错,是高斯与质数定理同时提出的。从经验得知,当x很大时,在x附近出现质数的或然率差不多恰为1/logx。因此,π(x)差不多应为 对数和:Ls(x)=1/log2+1/log3+…+1/logx或实值上相同的 对数积分:【浏览原件】 现在再比较Li(x)与π(x)的图形,把座标轴的尺度取到这麼大时,两者完全重合。 没有必要再把乐强何的近似图形列出来给大家看,因为在0到5万之间,他的近似比Li(x)更加接近π(x)。 【浏览原件】 质数的幂次 再提一个π(x)的近似函数。从黎曼(Riemann)研究质数的结果显示,如果我们在计算质数以外,还计算质数的幂次(质数的平方算半个质数,质数的立方算1/3个质数,依此类推),则一个很大的数x为质数的或然率将更接近1/logx。从此导出 【浏览原件】 或 【浏览原件】 第二式右边的函数定名为R(x)以纪念黎曼。从下表可以看出它与π(x)有惊人的吻合。 【浏览原件】 R(x)可以表为 【浏览原件】 在这里要强调一点,高斯和乐强何的近似都是由经验归纳而来的,不是由逻辑证明得到的。甚至黎曼函数也是如此,虽然他的R(x)有理论的解释,他从未证明出质数定理。Hadamard以及de la Vall"eePoussin根据黎曼的工作,继续研究,终於在1896年首度完成证明。 孪生质数 关於质数的规律性,我们再来看一些数值的例子。前面说过,在x附近的一个数其为质数的或然率为1/logx。换句话说,假使取一以x为中心,长度为a的区间,这区间长得足以使统计成为有意义,而与x相较,又足够小时,其中质数的个数,应该约为a/logx。例如,在壹亿至壹亿零壹拾伍万之间,预计有8142个质数,因为 150,000/log(100,000,000)=150,000/18.427… ≈8142 根据同样的想法,在x附近的任意两数同时为质数的或然率应约为1/(logx)2。所以如果有人问在x到x+a之间有多少孪生质数(连续两个奇数都是质数,如11,13或59,61),则我们可以预计有a/(logx)2个。事实上,我们可以预计多些,因为n已是质数,使n+2为质数的可能性稍稍加大。(例如n+2必为奇数)。用一个容易的直观的论点,可以得到在〔x,x+a〕中,孪生质数的对数为C.a/(logx)2,此处C=1.3203236316…。 所以在壹亿至壹亿零壹拾伍万之间应有(1.32…).150,000/(18.427)2≈584对孪生质数。下表列出一些同长区间中质数及孪生质数的预测值及真值。由下表可以看出,理论和实际有极佳的吻合。对於孪生质数而言,这种吻合更令人惊讶。因为孪生质数是否为无穷,这问题直到现在尚无定论,遑论他的分布定律了。 【 浏览原件】 质数的距离 关於质数分布的规律性,最后一个例子就是相邻两质数的距离。若有人去查质数表,会注意到有时距离相当大。例如113和127之间无其他质数。令g(x)表x以下,所有相邻质数的最大距离。则g(200)=127-113=14。当然,g(x)增加得极不规则。但是用一个直觉的论点可以得到下列渐近公式,g(x)~(logx)2。从下图可以看出,像g(x)这样极不规则的函数,其行为和预测能符合的程度。 【 浏览原件】 到现在为止,质数的规律性说得较多,不规律性说得很少。而本文标题「头五千万个质数」,我也只提到前几千个而已。所以现在先列一表,比较π(x),乐强何,高斯,黎曼四函数在x小於一千万范围内的差异。因为这四种函数在图上分辨不出差异,如前面所列π(x)与Li的比较图,所以现在这图只表示这三种函数与π(x)的差。我想从这图足以看出,一个有志研究数论的人可能遇到的麻烦有多大。当x很小时(小於一百万),x/logx-1.08366比Li(x)近似π(x),但是五百万以后,Li(x)变得较近似,而且可以证明当x更增加时,Li(x)总是较近似π(x)。 【 浏览原件】 就算我们讨论到一千万,其中也只有60万多个质数。要达到应许的五千万个质数,x必须为十亿。下图表示十亿以内R(x)-π(x)的图形。R(x)-π(x)的振动变得愈来愈大,但即使到十亿这麼大,振动仍在几百以内。 【 浏览原件】 顺便提另一个π(x)的趣事。从图上可以看出,在一千万以内,Li(x)总是大於π(x),10亿以内仍然如此。见下图(此图以对数尺寸绘出)。 【 浏览原件】 上图给我们一个印象,当x继续增加时,Li(x)-π(x)会稳定地无限增加。但是上述推测错了!事实上,立特伍(Littlewood)可以证明有某x值,而π(x)会大於Li(x)。但到目前为止,并未真正找到一个确数,使此事成立,而且恐怕永远不会找到。但是立特伍的证明不可能有误,而且Skewes更证明在【浏览原件】以内就有一个这样的数。英国名数学家Hardy有一次说,这可能是数学上有确定目的的数字中最大的了。总而言之,此例说明了,在质数理论里,仅仅依赖数据就想要导出结论的作法是多麼不智啊! 〔本文节译自“The First 50 million Prime Numbers”,原文刊登在The New Mathematical Intelligencer, Vol. 0, Aug. 1977,为原作者Don Zagier就任德国波昂大学教授的就任演说稿。〕
wpBeta2023-05-23 22:48:071

数学中的“质数”是什么意思?

质数的规律 什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢? 质数的分布是没有规律的,往往让人莫明其妙。如:101、401、601、701都是质数,但上下面的301和901却是合数。 有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。 被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=14292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=14292967297=641*6700417,并非质数,而是合数。 更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑! 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。 现在,数学家找到的最大的梅森数是一个有378632位的数:2^1257787-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。 头五千万个质数 -------------------------------------------------------------------------------- 【摘要】不按牌理出牌 数学家也拿他没办法 质数怎样分布?古今中外,不论是专业的数学家或业余的嗜好者,都曾被这问题所深深吸引。 质数是个比1大的自然数,除了自身和1以外,没有其他自然数可以除尽他。质数的分布有两个互相矛盾的特点。下面我会列举一些事实,使你永远相信这两个特点。 第一点,尽管质数的定义极为简单,又是自然数的建构砖石(任何自然数都可表为质因数的幂次的连乘积,且表法唯一),它却是数学家研究的对象中最不驯的一种;质数在自然数中,像杂草似地乱长,似乎除了机会律以外,不遵守其他的规律,没人敢说下一个会从那里冒出来。 第二点更令人惊讶,因?T篕P第一点相反,质数表现出惊人的规律性。也就是说,确有规律限制质数的行为,他们像军人一样绝对服从这些规律。 为了支持第一点,我把100以下的质数和合数写出来(除了2以外,不列偶数): 【浏览原件】 再把1千万加减一百以内的质数列出:在9,999,900与10,000,000之间的质数 9,999,901 9,999,907 9,999,929 9,999,931 9,999,937 9,999,943 9,999,971 9,999,973 9,999,991 在10,000,000与10,000,100之间的质数 10,000,019 10,000,079 你看!没有什麼理由可以说这个数是质数,那个数不是质数。当你看到这些数字时,是否联想到宇宙的奥秘,像天边那闪烁的星星一样神秘不可测?甚至数学家都无法揭开此一奥秘,如果他们能够,他们就不会劳神苦思去计算下一个更大的质数是多少了。(没有人会想去找比前一个平方数更大的平方数,或2的幂次数——通常一个好学生只记到210=1024)。 1876年,Lucas证明2127-1为质数,这纪录维持了75年。这也难怪,因为 2127-1 =1701411834604469231731687303715884105727 直到1951年,电子计算机的新纪元,更大的质数陆续发现(见下表历次记录)。目前的记录是6002位的219937-1,不信的话,你可以去查Guiness世界记录。(编者注:根据合众国际社1978年11月15日报导,这记录已被两个18岁的加州大学学生打破。) 【浏览原件】 质数的规律 更有趣的,还是关於质数的规律。前面已提到过100以下的质数,现在用图表示,其中π(x)表示所有不大於x的质数的个数。 【浏览原件】 就这麼简单的一个图,我们已经可以看出,除了一些小的扰动以外,π(x)大致上增加得很有规律。 若把x值从一百增到五万,则此规律性变得更为明显。见下图: 【浏览原件】 当某种规律自然出现时,科学家就得设法去解释它,质数分布的规律性也不例外。关於质数分布,我们不难找到一个良好的经验规律。请看下表:(这表看来平凡无奇,却代表上千小时的艰苦计算。) 【浏览原件】 注意:x每增10倍,x与π(x)的比就增加约2.3。机警的数学家立刻联想到10取自然对数的近似值是2.3。所以x/π(x)~logx,亦即π(x)~x/logx(用log x表示x的自然对数,~表示当x接近无穷大时,π(x)与x/logx的比趋近於1;如果用≈,则表示接近的程度更好。) 质数定理 这个关系叫做质数定理,是高斯1791年发现的,但直到1896年才得到证明。高斯(1777~1855年,关於高斯与质数定理,请参阅凡异出版社,伟大数学家的一生——高斯)14岁那年收到一本对数的书;次年,研究书上所附的质数表,发现了这个定理。终其一生,高斯一直很注意质数分布,并且花了很多功夫去计算。高斯写信给他学生安克(Encke)说他「时常花费零星的片刻计算1000个连续整数(如18001到19000)中有多少质数」,最后他竟能列出三百万以下的所有质数,并且拿来和他的推测公式比较。 质数定理说π(x)是渐近地,即相对误差趋近於0,等於x/logx。但是如果拿x/logx与π(x)的图形加以比较,则可看出,虽然x/logx反映了π(x)行为的本质,却还不足以说明π(x)的平滑性。 【浏览原件】 所以,我们希望找到更佳的近似函数。如果我们再仔细看看前面那个表,会发现x/π(x)差不多恰为logx-1。经过更小心地计算,并和π(x)的更精密数据相较,乐强何(Legendre)在1808年找到特佳的近似。即 π(x)≈x/(log-1.08366) 另有一种π(x)的近似函数也不错,是高斯与质数定理同时提出的。从经验得知,当x很大时,在x附近出现质数的或然率差不多恰为1/logx。因此,π(x)差不多应为 对数和:Ls(x)=1/log2+1/log3+…+1/logx或实值上相同的 对数积分:【浏览原件】 现在再比较Li(x)与π(x)的图形,把座标轴的尺度取到这麼大时,两者完全重合。 没有必要再把乐强何的近似图形列出来给大家看,因为在0到5万之间,他的近似比Li(x)更加接近π(x)。 【浏览原件】 质数的幂次 再提一个π(x)的近似函数。从黎曼(Riemann)研究质数的结果显示,如果我们在计算质数以外,还计算质数的幂次(质数的平方算半个质数,质数的立方算1/3个质数,依此类推),则一个很大的数x为质数的或然率将更接近1/logx。从此导出 【浏览原件】 或 【浏览原件】 第二式右边的函数定名为R(x)以纪念黎曼。从下表可以看出它与π(x)有惊人的吻合。 【浏览原件】 R(x)可以表为 【浏览原件】 在这里要强调一点,高斯和乐强何的近似都是由经验归纳而来的,不是由逻辑证明得到的。甚至黎曼函数也是如此,虽然他的R(x)有理论的解释,他从未证明出质数定理。Hadamard以及de la Vall"eePoussin根据黎曼的工作,继续研究,终於在1896年首度完成证明。 孪生质数 关於质数的规律性,我们再来看一些数值的例子。前面说过,在x附近的一个数其为质数的或然率为1/logx。换句话说,假使取一以x为中心,长度为a的区间,这区间长得足以使统计成为有意义,而与x相较,又足够小时,其中质数的个数,应该约为a/logx。例如,在壹亿至壹亿零壹拾伍万之间,预计有8142个质数,因为 150,000/log(100,000,000)=150,000/18.427… ≈8142 根据同样的想法,在x附近的任意两数同时为质数的或然率应约为1/(logx)2。所以如果有人问在x到x+a之间有多少孪生质数(连续两个奇数都是质数,如11,13或59,61),则我们可以预计有a/(logx)2个。事实上,我们可以预计多些,因为n已是质数,使n+2为质数的可能性稍稍加大。(例如n+2必为奇数)。用一个容易的直观的论点,可以得到在〔x,x+a〕中,孪生质数的对数为C.a/(logx)2,此处C=1.3203236316…。 所以在壹亿至壹亿零壹拾伍万之间应有(1.32…).150,000/(18.427)2≈584对孪生质数。下表列出一些同长区间中质数及孪生质数的预测值及真值。由下表可以看出,理论和实际有极佳的吻合。对於孪生质数而言,这种吻合更令人惊讶。因为孪生质数是否为无穷,这问题直到现在尚无定论,遑论他的分布定律了。 【 浏览原件】 质数的距离 关於质数分布的规律性,最后一个例子就是相邻两质数的距离。若有人去查质数表,会注意到有时距离相当大。例如113和127之间无其他质数。令g(x)表x以下,所有相邻质数的最大距离。则g(200)=127-113=14。当然,g(x)增加得极不规则。但是用一个直觉的论点可以得到下列渐近公式,g(x)~(logx)2。从下图可以看出,像g(x)这样极不规则的函数,其行为和预测能符合的程度。 【 浏览原件】 到现在为止,质数的规律性说得较多,不规律性说得很少。而本文标题「头五千万个质数」,我也只提到前几千个而已。所以现在先列一表,比较π(x),乐强何,高斯,黎曼四函数在x小於一千万范围内的差异。因为这四种函数在图上分辨不出差异,如前面所列π(x)与Li的比较图,所以现在这图只表示这三种函数与π(x)的差。我想从这图足以看出,一个有志研究数论的人可能遇到的麻烦有多大。当x很小时(小於一百万),x/logx-1.08366比Li(x)近似π(x),但是五百万以后,Li(x)变得较近似,而且可以证明当x更增加时,Li(x)总是较近似π(x)。 【 浏览原件】 就算我们讨论到一千万,其中也只有60万多个质数。要达到应许的五千万个质数,x必须为十亿。下图表示十亿以内R(x)-π(x)的图形。R(x)-π(x)的振动变得愈来愈大,但即使到十亿这麼大,振动仍在几百以内。 【 浏览原件】 顺便提另一个π(x)的趣事。从图上可以看出,在一千万以内,Li(x)总是大於π(x),10亿以内仍然如此。见下图(此图以对数尺寸绘出)。 【 浏览原件】 上图给我们一个印象,当x继续增加时,Li(x)-π(x)会稳定地无限增加。但是上述推测错了!事实上,立特伍(Littlewood)可以证明有某x值,而π(x)会大於Li(x)。但到目前为止,并未真正找到一个确数,使此事成立,而且恐怕永远不会找到。但是立特伍的证明不可能有误,而且Skewes更证明在【浏览原件】以内就有一个这样的数。英国名数学家Hardy有一次说,这可能是数学上有确定目的的数字中最大的了。总而言之,此例说明了,在质数理论里,仅仅依赖数据就想要导出结论的作法是多麼不智啊! 〔本文节译自“The First 50 million Prime Numbers”,原文刊登在The New Mathematical Intelligencer, Vol. 0, Aug. 1977,为原作者Don Zagier就任德国波昂大学教授的就任演说稿。〕
善士六合2023-05-23 22:48:071

小学五年级数学什么是质数

你好一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。满意请采纳
Ntou1232023-05-23 22:48:074

数学家欧拉证明的与素数有关的公式有哪些?尤其是与黎曼猜想有关的

自己想去
可桃可挑2023-05-23 22:48:052

素数到底是什么,有哪些和素数有关的数学猜想呢?

 素数也叫质数,指大于1的自然数中,除了1和它本身外不再有其他因数的自然数,比如2、3、5、7、11、13……。和素数有关的数学猜想有哥德巴赫猜想 、孪生素数猜想 。
西柚不是西游2023-05-23 22:48:014

数学中,素数是什么意思

素数即质数,就是除1和它本身没有其他因数的数
左迁2023-05-23 22:48:009

数学中,什么是素数?

分类: 教育/学业/考试 >> 自考 解析: 素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。 有的数,如果单凭印象去捉摸,是无法确定它到底是不是素数的。有些数则可以马上说出它不是素数。一个数,不管它有多大,只要它的个位数是2、4、5、6、8或0,就不可能是素数。此外,一个数的各位数字之和要是可以被3整除的话,它也不可能是素数。但如果它的个位数是1、3、7或9,而且它的各位数字之和不能被3整除,那么,它就可能是素数(但也可能不是素数)。没有任何现成的公式可以告诉你一个数到底是不是素数。你只能试试看能不能将这个数表示为两个比它小的数的乘积。 找素数的一种方法是从2开始用“是则留下,不是则去掉”的方法把所有的数列出来(一直列到你不想再往下列为止,比方说,一直列到10,000)。 第一个数是2,它是一个素数,所以应当把它留下来,然后继续往下数,每隔一个数删去一个数,这样就能把所有能被2整除、因而不是素数的数都去掉。在留 下的最小的数当中,排在2后面的是3,这是第二个素数,因此应该把它留下,然后从它开始往后数,每隔两个数删去一个,这样就能把所有能被3整除的数全 都去掉。下一个未去掉的数是5,然后往后每隔4个数删去一个,以除去所有能被5整除的数。再下一个数是7,往后每隔6个数删去一个;再下一个数是11 ,往后每隔10个数删一个;再下一个是13,往后每隔12个数删一个。……就这样依法做下去。 你也许会认为,照这样删下去,随着删去的数越来越多,最后将会出现这样的情况;某一个数后面的数会统统被删去崮此在某一个最大的素数后面,再也不 会有素数了。但是实际上,这样的情况是不会出现的。不管你取的数是多大,百万也好,万万也好,总还会有没有被删去的、比它大的素数。 事实上,早在公元前300年,希腊数学家欧几里得就已证明过,不论你取的数是多大,肯定还会有比它大的素数,假设你取出前6个素数,并把它们乘在 一起:2*3*5*7*11*13=30030,然后再加上1,得30031。这个数不能被2、3、5、7、11、13整除,因为除的结果,每次都会余1。如果30031除了自己以外不能被任何数整除,它就是素数。如果能被其它数整除,那么30031所分解成的几个数,一定都大于13。事实上,3 0031=59*509。 对于前一百个、前一亿个或前任意多个素数,都可以这样做。如果算出了它们的乘积后再加上1,那么,所得的数或者是一个素数,或者是比所列出的素数还要大的几个素数的乘积。不论所取的数有多大,总有比它大的素数,因此,素数的数目是无限的。 随着数的增大,我们会一次又一次地遇到两个都是素数的相邻奇数对,如5,7;11,13;17,19;29,31;41,43;等等。就数学家所能及的数来说,它们总是能找到这样的素数对。这样的素数对到底是不是有无限 个呢?谁也不知道。数学家认为是无限的,但他们从来没能证明它。这就是数学家为什么对素数感兴趣的原因。素数为数学家提供了一些看起来很容易、但事实 却非常难以解决的问题,他们目前还没能对付这个挑战哩。 这个问题到底有什么用处呢?它除了似乎可以增添一些趣味以外,什么用处也没有。
真颛2023-05-23 22:47:591

数学中,素数是什么意思?

1、3、5、7……质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。合数是由若干个质数相乘而得到的。所以,质数是合数的基础,没有质数就没有合数。这也说明了前面所提到的质数在数论中有着重要地位。历史上曾将1也包含在质数之内,但后来为了算术基本定理,最终1被数学家排除在质数之外,而从高等代数的角度来看,1是乘法单位元,也不能算在质数之内,并且,所有的合数都可由若干个质数相乘而得到。
瑞瑞爱吃桃2023-05-23 22:47:563

数学中什么叫素数

除了1和本身之外不能被其他数整除的
豆豆staR2023-05-23 22:47:558

在数学里素数是什么意思

2.3.5.7.11.13.17.19.23.29.31.37.41.43.47.53.59.61.67.71.73.79.83.89.97.
善士六合2023-05-23 22:47:556

excel中常用数学函数,减法怎么算

在保证数据类型一致的前提下,直接输入减号例:=B1-B2=date(2013,03,25)-date(2013,03,24) 将返回1=24-20 将返回4特别注意日期是可以和数值相减的,例:="2013-03-25"-10 将返回41348,其实把这个数值转换为日期,这是2013-03-15文本和数值是不能减的:="度娘"-10 将返回错误
阿啵呲嘚2023-05-23 22:47:533

黎曼在数学上有什么成就?

1854年6月10日,为了取得哥廷根大学的讲师职位,德国数学家黎曼(1826~1866)以“关于构成几何基础的假设”论文作了就职演讲,受到了与会数学家们的认可和好评。黎曼的这篇论文被人们认为是19世纪数学史上的杰作之一。事实上,当初为了确定论文的选题,黎曼向高斯提交了3个题目,让高斯从中选定一个。其中第3个题目是涉及几何基础的,这个题目高斯已经考虑了6年之久,黎曼当时并没有太多准备,因此他从心底里不希望高斯选中它,但高斯却偏偏指定了第3个题目。在演讲中,黎曼提到他的思想受到两方面的影响:一是高斯关于曲面的研究,一是赫尔巴特的哲学思想。全文分三个部分,第一部分是维流形的观念,第二部分是维流形的测度关系,第三部分是对空间的应用。黎曼的这篇演讲稿发展了高斯关于曲面的微分几何研究,建立起黎曼几何学的基础,他的工作很快由继承人进一步发展,成为后来广义相对论的数学基础。黎曼一生著述不多,但几平他的每一篇论文都是数学某一领域的开创性工作。有数学家评论说:“黎曼是一个富有想像的天才,他的想法即使没有证明,也鼓舞了一个世纪的数学家。”黎曼是对现代数学影响最大的数学家之一。遗憾的是,这位伟大的数学家正值创造高峰时却英年早逝,去世时还不到40岁。
左迁2023-05-23 22:47:471

伟大的数学家黎曼-侍奉基督比数学更重要

    近日传言黎曼猜想得到了证明,证明过程的正确性的验证还需待时日。现在让我们来了解伟大的数学家黎曼的信仰。     著名数学家黎曼影响了几何学、复分析、偏微分方程。爱因斯坦从黎曼的几何学发展了广义相对论。霍金说:“如果没有黎曼的几何思想,爱因斯坦就不可能完成相对论。”     黎曼是一位虔诚献身的基督徒, 牧师的儿子,他将数学家的生活看为侍奉神的一种方式。在他的一生中, 他紧紧守住他的基督徒信仰, 并认为这是他生命中最重要的事。一位传记作者评论说,黎曼在教学讲坛外面服事基督,就像他父亲在教堂讲坛上服侍基督一样。     在他将离世与主同在的时候, 他和妻子一起背诵主祷文,在祷告还未结束之前就被主接走了。黎曼的墓志铭上引用的是罗马书 8:28:我们晓得万有都互相效力,叫爱神的人得益处,就是按他旨意被召的人:     附墓志铭全文:“     这里有安息在神里的,     Georg Friedrich Bernhard Riemann,     哥廷根大学教授     出生于德国Breselenz,1826.9.17     逝世于意大利Selasca,1866.7.20     万有都互相效力,叫爱神的人得益处。”    部分信息译自 1. https://godandmath.com/2012/04/24/christian-mathematici   ans-riemann/ 2. https://en.wikipedia.org/wiki/Bernhard_Riemann
ardim2023-05-23 22:47:471

黎曼在数学上有什么成就?

1854年6月10日,为了取得哥廷根大学的讲师职位,德国数学家黎曼(1826~1866)以“关于构成几何基础的假设”论文作了就职演讲,受到了与会数学家们的认可和好评。黎曼的这篇论文被人们认为是19世纪数学史上的杰作之一。事实上,当初为了确定论文的选题,黎曼向高斯提交了3个题目,让高斯从中选定一个。其中第3个题目是涉及几何基础的,这个题目高斯已经考虑了6年之久,黎曼当时并没有太多准备,因此他从心底里不希望高斯选中它,但高斯却偏偏指定了第3个题目。在演讲中,黎曼提到他的思想受到两方面的影响:一是高斯关于曲面的研究,一是赫尔巴特的哲学思想。全文分三个部分,第一部分是维流形的观念,第二部分是维流形的测度关系,第三部分是对空间的应用。黎曼的这篇演讲稿发展了高斯关于曲面的微分几何研究,建立起黎曼几何学的基础,他的工作很快由继承人进一步发展,成为后来广义相对论的数学基础。黎曼一生著述不多,但几平他的每一篇论文都是数学某一领域的开创性工作。有数学家评论说:“黎曼是一个富有想像的天才,他的想法即使没有证明,也鼓舞了一个世纪的数学家。”黎曼是对现代数学影响最大的数学家之一。遗憾的是,这位伟大的数学家正值创造高峰时却英年早逝,去世时还不到40岁。
左迁2023-05-23 22:47:471

高等数学中求极限的洛必达法则是什么 ?

他们说得对
人类地板流精华2023-05-23 22:47:455

高等数学中的洛必达法则是什么

这里指的两个基本点指的是对每一位同学解题备战至关重要的两大要素――核心题型及易错题型。核心题型包括近年考试常考的题目类型,如高等数学中的洛必达法则、复合函数等等……
苏萦2023-05-23 22:47:445

数学大题第二问导数极大值和极小值写反了,数值是对的。10分能给多少分?

会扣2~3分
拌三丝2023-05-23 22:47:411

数学中如何求极大极小值和极值点呢?

1、求极大极小值步骤:求导数f"(x);求方程f"(x)=0的根;检查f"(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。f"(x)无意义的点也要讨论。即可先求出f"(x)=0的根和f"(x)无意义的点,再按定义去判别。2、求极值点步骤:求出f"(x)=0,f"(x)≠0的x值;用极值的定义(半径无限小的邻域f(x)值比该点都小或都大的点为极值点),讨论f(x)的间断点。上述所有点的集合即为极值点集合。扩展资料:定义:若函数f(x)在x₀的一个邻域D有定义,且对D中除x₀的所有点,都有f(x)<f(x₀),则称f(x₀)是函数f(x)的一个极大值。同理,若对D的所有点,都有f(x)>f(x₀),则称f(x₀)是函数f(x)的一个极小值。极值的概念来自数学应用中的最大最小值问题。根据极值定律,定义在一个有界闭区域上的每一个连续函数都必定达到它的最大值和最小值,问题在于要确定它在哪些点处达到最大值或最小值。如果极值点不是边界点,就一定是内点。因此,这里的首要任务是求得一个内点成为一个极值点的必要条件。参考资料:百度百科--极值
北营2023-05-23 22:47:391

用高等数学的方法,求函数的极值

求二阶导数,就是楼上解的,给点财富值,哥
苏萦2023-05-23 19:25:224

为什么数学概念中,将凸起的函数称为凹函数

就是二阶导的问题,图形是(向上)凹的,或图形是(向上)凸的设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有[1]f(λx1+(1-λ)x2)="就是凸函数。类似也有严格凸函数。[1]设f(x)在区间D上连续,如果对D上任意两点a、b恒有f((a+b)/2)(f(a)+f(b))/2那么称f(x)在D上的图形是(向上)凸的(或凸弧)这个定义从几何上看就是:在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。[1]直观上看,凸函数就是图象向上突出来的。比如如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凹函数的充要条件是f""(x)>=0;f(x)在区间I上是凸函数的充要条件是f""(x)=λf(x1)+(1-λ)f(x2),即A型,为“凹向原点”,或“上凸”(下凹),(同样有的简称凹有的简称凸)凸/凹向原点这种说法一目了然。上下凸的说法也没有歧义[2]在二维环境下,就是通常所说的平面直角坐标系中,可以通过画图直观地看出一条二维曲线是凸还是凹,当然它也对应一个解析表示形式,就是那个不等式。但是,在多维情况下,图形是画不出来的,这就没法从直观上理解“凹”和“凸“的含义了,只能通过表达式,当然n维的表达式比二维的肯定要复杂,但是,不管是从图形上直观理解还是从表达式上理解,都是描述的同一个客观事实。而且,按照函数图形来定义的凹凸和按照函数来定义的凹凸正好相反。琴生(Jensen)不等式(也称为詹森不等式):(注意前提、等号成立条件)设f(x)为凸函数,则f[(x1+x2+……+xn)/n]≤[f(x1)+f(x2)+……+f(xn)]/n(下凸);设f(x)为凹函数,f[(x1+x2+……+xn)/n]≥[f(x1)+f(x2)+……+f(xn)]/n(上凸),称为琴生不等式。加权形式为:f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);f[(a1*x1+a2*x2+……+an*xn)]≥a1f(x1)+a2f(x2)+……+anf(xn)(上凸),其中ai≥0(i=1,2,……,n),且a1+a2+……+an=1.
LuckySXyd2023-05-23 19:25:181

为什么数学概念中,将凸起的函数称为凹函数

先回答另一个问题,就是为什么凹下去的函数叫做凸函数.凹下去的函数(如y=x²),连接函数图像上任意两点(a,f(a))和(b,f(b))所成的线段一定在这条曲线的上方,也就是说这条线段位于由直线x=a,x=b以及f(x)的上方所围成的区域内.由直线x=a,x=b以及f(x)的上方所围成的区域内的所有点构成一个点集S,S具有的性质就是,S内连接任意两点所成的线段上的点,全部都是S中的点,这样的点集我们叫做"凸集".因为凹下去的函数,它图像的上方所构成的点集是凸集,所以凹下去的函数就被称为凸函数.既然凹下去的函数被称为凸函数,所以凸起来的函数就被称为凹函数了
NerveM 2023-05-23 19:25:171

高一数学证明凹函数

如果一个可微函数f它的导数f"在某区间是单调下跌的,f就是凹的。求导后就显而易见了吧~
kikcik2023-05-23 19:25:163

高等数学,函数的凹凸性与单调性 凹函数一定递增吗?

不是
u投在线2023-05-23 19:25:165

为什么数学概念中,将凸起的函数称为凹函数

凸和凹,你要看是往哪个方向看。比方说y=x²这个函数,往下的方向来说,是向下凸的往上是方向来说,是上凹的。不少书是以往上的方向来说凸凹。即向上凸的就是凸函数向下凸的就是凹函数。
meira2023-05-23 19:25:151

数学里上凹,下凹,上凸,下凸分别是什么 4种情况求解释

那部分知识的上凹,下凹,上凸,下凸函数?几何?还是……?
此后故乡只2023-05-23 19:25:154

高中数学 导数 凸函数

(f(x1)-f(x))/(x1-x)= (f(x)-f(x1))/(x-x1),又有x1<x<x2故可构造g(x)= (f(b)-f(a))/(b-a)其几何意义为a,b间的割线又由于f(x)的导数递增且f(x)递增(这个好像叫凹函数吧)所以g(x)为增函数又有x1<x<x2故(f(x)-f(x1))/(x-x1)≤ (f(x2)-f(x))/(x2-x)即 (f(x1)-f(x))/(x1-x) ≤ (f(x2)-f(x))/(x2-x)
bikbok2023-05-23 19:25:122

什么是拐点,数学中有什么特别意义?

凹凸性改变的那个点
九万里风9 2023-05-23 19:25:095

简单的数学.什么是凸函数

凸函数:图象向上(或者斜向上)凸起的函数,就是凸函数。凸函数的二阶导数小于0;凹函数:图象向上(或者斜向上)凹进的函数,就是凹函数。凹函数的二阶导数大于0。
肖振2023-05-23 19:25:091

高中数学:什么是凸函数?

楼上说的不对 应该是F(x)=-x^2,你学了求导没有,求两次导数之后是负的就是上突函数希望对你能有所帮助。
kikcik2023-05-23 19:25:092

数学分析凸函数

注意,实轴上的单点集也是闭区间,{a}=[a,a],以此作为定义域好像还谈不上可微,因为可微至少要求在一个局部有定义。如果是非退化的区间诸如[a,b]或(a,b),那么结论是对的。首先用定义证明凸函数在区间内部的每一点上都有右导数(利用单调有界性),并且右导数是递增的。然后利用单调函数最多仅有可列个不连续点得到右导数相应的连续性质。同理对左导数也有相关结论。接下来把左右导数不连续的点放到一起记成T,那么T最多可列,在(a,b)T上就可以得到左导数和右导数都分别连续,最后用凸性验证此时两个单侧导数相等,即可微性。
拌三丝2023-05-23 19:25:091

数学的拐点是什么意思?

拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:⑴求f""(x);⑵令f""(x)=0,解出此方程在区间I内的实根,并求出在区间I内f""(x)不存在的点;⑶对于⑵中求出的每一个实根或二阶导数不存在的点x,检查f""(x)在这个点x左右两侧邻近的符号,那么当两侧的符号相反时,这个点(x,f(x))是拐点,当两侧的符号相同时,(x,f(x))不是拐点。扩展资料:类似术语:驻点相关对于二维函数的图像,驻点的切平面平行于xy平面。值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况);反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值。
人类地板流精华2023-05-23 19:25:081

在数学中什么是拐点,什么是驻点

函数的一阶导数为0的点称为函数的驻点,驻点可以划分函数的单调区间。(驻点也称为稳定点,临界点。拐点在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。若该曲线图形的函数在拐点有二次导数,则二次导数必为零或不存在。扩展资料:拐点是导数符号发生变化的点。拐点点可以是相对最大值或相对最小值(也称为局部最小值和最大值)。如果函数是可微分的,那么拐点是一个固定点。然而并不是所有的固定点都是拐点。如果函数是两次可微分的,则不转动点的固定点是水平拐点。例如,函数 x3在x = 0处有一个固定点,也是拐点,但不是转折点。在驻点处的单调性可能改变,在拐点处单调性也可能改变,凹凸性一定改变。参考资料:百度百科——驻点参考资料:百度百科——拐点
mlhxueli 2023-05-23 19:25:081

什么是拐点数学中有什么特别意义

拐点:又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点即曲线的凹凸分界点。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号或不存在。在生活中借指事物的发展趋势开始改变的地方。 特别意义:在数学领域是指,凸曲线与凹曲线的连接点。当函数图像上的某点使函数的二阶导数为零,且三阶导数不为零时,这点即为函数的拐点。
北营2023-05-23 19:25:071

我想问一下什么是拐点,这其实是数学的范畴?

1、拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。2、对于二维函数的图像,驻点的切平面平行于xy平面。值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况)。3、反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值。更多关于什么是拐点,这其实是数学的范畴,进入:https://m.abcgonglue.com/ask/d4e7361615840373.html?zd查看更多内容
mlhxueli 2023-05-23 19:25:071

什么是拐点,数学中有什么特别意义?

赞 !! 拐点是令二阶导数等于零的点 几何意义为就是函数有上凸变下凹或下凹变上凸的点
康康map2023-05-23 19:25:061

什么是拐点,数学中有什么特别意义

二阶导数为0的点
大鱼炖火锅2023-05-23 19:25:064

什么是拐点 这其实是数学的范畴

  1、拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。   2、对于二维函数的图像,驻点的切平面平行于xy平面。值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况)。   3、反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值。
meira2023-05-23 19:25:061

在数学中什么是拐点,什么是驻点

在数学中什么是拐点,什么是驻点?在甲地一吨是拐点,在定位的一吨是驻点。
黑桃花2023-05-23 19:25:054

请问什么是拐点,这其实是数学的范畴?

1、拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。2、对于二维函数的图像,驻点的切平面平行于xy平面。值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况)。3、反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值。更多关于什么是拐点,这其实是数学的范畴,进入:https://m.abcgonglue.com/ask/d4e7361615840373.html?zd查看更多内容
瑞瑞爱吃桃2023-05-23 19:25:051

高中数学均值不等式部分的公式

a^2+b^2≥2ab√(ab)≤(a+b)/2≤(a^2+b^2)/2a^2+b^2+c^2≥(a+b+c)^2/3≥ab+bc+aca+b+c≥3×三次根号abc均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。扩展资料:特例⑴对实数a,b,有 (当且仅当a=b时取“=”号), (当且仅当a=-b时取“=”号)⑵对非负实数a,b,有 ,即 ⑶对非负实数a,b,有 ⑷对非负实数a,b,a≥b,有 ⑸对非负实数a,b,有 ⑹对实数a,b,有 ⑺对实数a,b,c,有 ⑻对非负数a,b,有 ⑼对非负数a,b,c,有 ;在几个特例中,最著名的当属算术—几何均值不等式(AM-GM不等式):当n=2时,上式即:;当且仅当 时,等号成立。根据均值不等式的简化,有一个简单结论,即 。
北境漫步2023-05-23 19:25:031

高中数学 均值不等式

1、log(1/2)y=1/log(1/2)x=log(1/2)(1/2)/log(1/2)x=log(1/2)[(1/2)-x]即y=(1/2)-x即x+y=1/2xy≤[(x+y)/2]^2=1/16填:大1/162、因为a>b>c>d所以差值最大的是a-d左式≥3√{[1/(a-b)][1/(b-c)][1/(c-d)]}下面全换最大变最小,此时n=33、1=x^2+y^2-xy≥2xy-xy=xy即xy≤1则x^2+y^2=1+xy≤2为最大值设x=acost,y=asint左式x^2-xy+y^2=a^2-(a^2/2)sin2t=1右式=a^2a^2=2/(2-sin2t),sin2t取-1时最小值为2/34、a√(2+b^2)≤[(a^2+b^2)/2]+1又2a^+3b^2=2(a^2+b^2)+b^2=1得a^2+b^2=(1-b^2)/2代入第一式得[(1-b^2)/4]+1因b^2≥0所以原式≥5/45、因为x,y都是正数,所以乘除根号都可以,由4x+y≥mxy两边除xy可得4/y+1/x≥m再有x+y=4两边除4得x/4+y/4=14/y+1/x=(4/y+1/x)(x/4+y/4)=x/y+y/4x+5/4≥9/4m最大为9/4
康康map2023-05-23 19:25:001

谁可以讲讲,高一数学“均值不等式”啊?

设a1,a2,a3,...,an是n个正实数,则(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an),当且仅当a1=a2=…=an时,均值不等式左右两边取等号.我好像是高二才学的,叫基本不等式,也就是对非负实数a,b,有a+b≥2√(a*b)≥0,即(a+b)/2≥√(a*b)≥0“一正二定三相等”也就是两个都要是正数,两数相乘的积是一个常数,当两数相等时取等号高中我们只掌握基本不等式就够了。下面的变形记下也无妨均值不等式的变形(1)对实数a,b,有a^2+b^2≥2ab(当且仅当a=b时取“=”号),a^2+b^2>0>-2ab(2)对非负实数a,b,有a+b≥2√(a*b)≥0,即(a+b)/2≥√(a*b)≥0(3)对负实数a,b,有a+b<0<2√(a*b)(4)对实数a,b,有a(a-b)≥b(a-b)(5)对非负数a,b,有a^2+b^2≥2ab≥0(6)对非负数a,b,有a^2+b^2≥1/2*(a+b)^2≥ab(7)对非负数a,b,c,有a^2+b^2+c^2≥1/3*(a+b+c)^2(8)对非负数a,b,c,有a^2+b^2+c^2≥ab+bc+ac(9)对非负数a,b,有a^2+ab+b^2≥3/4*(a+b)^2
hi投2023-05-23 19:25:001
 首页 上一页  82 83 84 85 86 87 88 89 90 91 92  下一页  尾页