用数学归纳法证明平均值不等式
数学归纳法适用于证明可列(也称可数:即问题和1,2,3,4……相对应)类问题,平均值不等式不是这类问题,所以不适宜用数学归纳法来证明。苏州马小云2023-05-23 19:24:591
高中数学均值不等式
西柚不是西游2023-05-23 19:24:592
高等数学 范德蒙德恒等式问题(二者区别何在?)
后者是前者的推广,没有本质的区别。另外需要指出的是组合学中的组合数是可以推广到负数的(可以参考一下组合学课本中组合数的定义)。因此在下面的范德蒙德恒等式中k是可以取任意整数的。另外在组合学中忘记是否可以推广到任意实数了,你可以查看一下。貌似应该也是可以的。北有云溪2023-05-23 19:24:571
组合数学公式 急
有。我给一个组合解释:问在m+n个各不相同的小球中取k个有多少种情况?计算方法1:将m+n个小球分为m,n两份,则总数S=∑C(上标为k1,下标为m)C(上标为k-k1,下标为n)计算方法2:直接用组合公式S=C(上标为k,下标为m+n) 故∑C(上标为k1,下标为m)C(上标为k-k1,下标为n)=C(上标为k,下标为m+n)wpBeta2023-05-23 19:24:571
数学专业英语翻译和术语
有很多哦~怎么给你?估计这里贴不下。先给你看b开头的吧b measurability b可测性b measurable function 波莱尔可测函数babylonian numerals 巴比伦数字back substitution 逆计算backward difference 后向差分backward difference operator 后向差分算子backward difference quotient 后向差商backward solution 后向解法baire function 贝利函数baire measure 贝利测度baire set 贝利集baire space 贝利空间baire theorem 贝利定理balance 平衡balanced category 平衡范畴balanced functor 平衡函子balanced hypergraph 平衡超图balanced neighborhood 平衡邻域balanced sample 平衡样本balanced set 平衡集balancing method 平衡法balayage 扫除ball 球ballistic curve 弹道banach algebra 巴拿赫代数banach lie group 巴拿赫 李群banach space 巴拿赫空间band 带band chart 带状图band matrix 带状矩阵bar construction 棒构成bar diagram 条线图bar graph 条线图barrel 桶集barrel shape 桶型barrelled space 桶型空间barrier 闸barycenter 重心barycenter of a simplex 单形的重心barycentric 重心的barycentric complex 重心复形barycentric coordinates 重心坐标barycentric mapping 重心映射barycentric subdivision 重心重分base 底base angle 底角base line 底线base number 底数base of logarithms 对数的底base point 基点base register 基址寄存器变址寄存器base space 底空间base vector 基向量basic 基础的basic block 基本块basic field 基域basic form 基本形式basic point 基础点basic representation 基本表示basic ring 基环basic solution 基本解basic symbol 基本符号basic variable 基本变量basis 基basis for cohomology 上同爹basis for homology 同爹basis of linear space 线性空间的基basis of vector space 向量空间的基basis replacement procedure 基替换过程basis theorem of hilbert 希耳伯特基定理basis vector 基本向量batch processing 成批处理bayes decision function 贝叶斯判定函数bayes formula 贝叶斯公式bayes postulate 贝叶斯公设bayes solution 贝叶斯解behavior 行为behavior strategy 行为策略bellman principle 贝尔曼原理beltrami equation 贝尔特拉米方程bending point 转向点bergman metric 伯格曼度量bernoulli equation 伯努利方程bernoulli inequality 伯努利不等式bernoulli method 伯努利法bernoulli number 伯努利数bernoulli polynomial 伯努利多项式bernoulli trials 伯努利试验bernoullian polynomial 伯努利多项式bernstein inequality 伯思斯坦不等式bernstein polynomial 伯思斯坦多项式bertrand curves 柏特龙曲线bertrand paradox 柏特龙悖论bessel equation 贝塞耳方程bessel function 贝塞耳函数bessel function of the second kind 第二类贝塞耳函数bessel function of the third kind 第三类贝塞耳函数bessel inequality 贝塞耳不等式bessel integral 贝塞耳积分best approximation 最佳逼近best estimator 最佳估计量best test 最佳检验best uniform approximation 最佳一致逼近beta distribution 分布beta function 函数betti group 贝蒂群betti number 贝蒂数between group variance 群间方差biadditive 双加法的biangular 双角的bias 偏倚biased estimator 有偏估计量biased sample 有偏样本biased statistics 有偏统计量biased test 有偏检验biaxial 双轴的biaxial spherical harmonic function 双轴球面低函数bicartesian square 双笛卡儿方bicharacteristic 双特征bicompact 紧bicompact set 紧集bicompact space 列紧空间bicompact transformation group 列紧变换群bicompactification 紧化bicomplex 二重复形bicomplex function 二重复形函数biconcave 两面凹的biconditional 等价biconnected space 双连通空间bicontinuous function 双连续函数bicontinuously differentiable 双连续可微bicylinder 双圆柱bidimensional 二维的bidimensionality 二维性bidual banach space 双对偶巴拿赫空间bifunctor 二变项函子bifurcation point 歧点bifurcation theory 分歧理论bigraded group 双重分次群bigraded module 双重分次模biharmonic 双低的biharmonic equation 双低方程biharmonic function 双低函数biholomorphic 双全纯的biholomorphic function 双正则函数biholomorphic mapping 双正则映射bihomomorphism 双同态bijection 双射bijective mapping 双射bijectivity 双射性bilateral 两面的bilateral derivative 双侧导数bilateral laplace transform 双侧拉普拉斯变换bilaterally bounded sequence 双侧有界序列bilinear 双线性的bilinear form 双线性形式bilinear functional 双线性泛函bilinear integral form 双线性积分型bilinear mapping 双线性映射bilinear programming 双线性规划bilinear relation 双线性关系bilinear system 双线性系bilinear transformation 双线性变换bilinearity 双线性bimatrix game 双矩阵对策bimodal distribution 双峰分布bimodule 双模binary 二元的binary arithmetic 二进制算术binary code 二进制吗binary coded decimal notation 二进制编码的十进记数法binary coded decimal system 二进制编码的十进制binary coding 二进制编码binary digit 二进制数字binary digital computer 二进制数字计算机binary element 双态元件binary number 二进制数binary number system 二进制数系binary operation 二元运算binary point 二进制小数点binary relation 二元关系binary system 二进制的binary translation 二进制变换bind 连结binomial 二项式binomial coefficient 二项式系数binomial differential 二项式微分binomial differential equation 二项微分方程binomial distribution 二项分布binomial equation 二项方程binomial expansion 二项展开式binomial integral 二项式积分binomial probability paper 二项式概率纸binomial series 二项级数binomial surd 二项不尽根binomial test 二项检验binomial theorem 二项式定理binormal 副法线binormal space 副法线空间binormal vector 副法线向量biodemography 生物人口统计学biomathematic 生物数学的biomathematics 生物数学biomechanics 生物力学biometrics 生物统计学biometrika 生物统计学biophysics 生物物理学biorthogonal system 双正交系biorthonormal expansion 双标准正交展开biorthonormalization 双标准正交化bipartite cubic 双枝三次曲线bipartite graph 偶图bipolar 双极的bipolar coordinates 双极坐标bipolar theorem 双极定理biprism 双棱柱biquadrate 四次方biquadratic equation 双二次方程biquadratic residue 双二次剩余biquaternion 复四元数biquinary code 二元五元码birational 双有理的birational invariant 双有理不变量birational map 双有理映射birational transformation 双有理变换birectangular 两直角的biregular 双正则的biregular isomorphism 双正则同构birth process 出生过程birth rate 出生率bisect 平分bisecting point 平分点bisection 平分bisector 平分线bisector of angle 角的平分线bispherical 双球面的bispinor 双旋量bistable 双稳定的bisymmetry 双对称bit 比特bitangent 双切线biunique 一对一的bivalent 二价的bivariate distribution 二维分布bivariate distribution function 二元分布函数bivariate frequency function 二元频率函数bivariate normal distribution 二元正态分布bivariate population 二元总体bivector 二重向量block 块block design 区组设计block relaxation 块松弛block tridiagonal matrix 块三对角阵blockdiagram 立体图bochner integral 博赫纳积分body 体body of revolution 旋转体boltzmann constant 玻耳兹曼常数boltzmann equation 玻耳兹曼方程boltzmann statistics 玻耳兹曼统计bolzano weierstrass theorem 波尔察诺 维尔斯特拉斯定理boole function 布尔函数boolean algebra 布尔代数boolean function 布尔函数boolean operation 布尔运算boolean optimization 布尔最优化boolean ring 布尔环boolean vector 布尔向量border 边缘border element 边缘元素border of the domain 域的边缘border set 边缘集bordered matrix 加边矩阵borel exceptional value 波莱尔例外值borel field 波莱尔域borel group 波莱尔群borel lebesgue covering theorem 波莱尔 勒贝格覆盖定理borel measurable function 波莱尔可测函数borel measure 波莱尔测度borel set 波莱尔集borel subgroup 波莱尔子群borel summable series 波莱尔可和级数born approximation 波饵似法bornological dual 有界型对偶bornological set 有界型集bornological space 有界型空间bornological topology 有界型拓扑学bornology 有界型性bott periodicity theorem 博特周期性定理bound 界bound decision variable 约束决策变量bound term 约束项bound variable 约束变词boundary 边界;边缘boundary cell 边界胞腔boundary collocation 边界配置boundary condition 边界条件boundary correspondence 边界对应boundary curve 边界曲线boundary element method 边界元法boundary form 边缘形式boundary homomorphism 边缘同态boundary interval 边界区间boundary layer 边界层boundary line 界线boundary method 边界法boundary operator 边缘算子boundary point 边界点boundary simplex 边界单形boundary strip 边界带boundary surface 带边界曲面boundary value 边界值boundary value problem 边值问题bounded 有界的bounded above 上有界的bounded above sequence 上有界序列bounded below 下有界的bounded below sequence 下有界序列bounded chain 有界链bounded closed set 有界闭集bounded domain 有界域bounded existential quantifier 有界存在量词bounded function 有界函数bounded matrix 有界矩阵bounded minimization 有界最小化bounded operator 有界算子bounded point sequence 有界点序列bounded quantification 有界量词限制bounded quantifier 有界量词bounded sequence 有界序列bounded set 有界集合bounded to the downwards 下有界的bounded to the upwards 上有界的bounded variation 有界变分boundedly convergent series 有界收敛级数boundedness 有界性bounding manifold 边界廖bounding surface 边界曲面boundless 无限的box 框brace 大括号brachistochrone 最速降线brachistochrone problem 最速降线问题bracket 括号bracket operation 括号运算bragg curve 布喇格曲线braid 辫braid group 辫群branch 分支branch and bound method 分支限界法branch curve 分枝曲线branch cut 分支切割branch divisor 分歧除子branch instruction 分枝指令branch line 分枝线branch of a curve 曲线的分枝branch of function 函数的分枝branch point 分枝点branching 分枝branching process 分枝过程brauer group 布劳韦尔群breadth 幅break point 断点;分割点break point instruction 断点指令breaking stress 破坏应力bridge 分离棱briggs" logarithm 常用对数briggsian logarithm 常用对数broken diagonal 折对角线broken line 折线broken number 分数brouwer fixed point theorem 布劳丰尔不动点定理brownian motion 布朗运动brownian movement 布朗运动bruhat decomposition 布鲁阿分解buckling 弯曲budget 顸算buffer 缓冲器bundle 束bundle map 丛映射bundle of coefficients 系数丛bundle of lines 线把bundle of p vectors 向量丛bundle of planes 平面把bundle of rays 线把bundle of spheres 球把bundle space 丛空间bundle structure theorem 丛结构定理bus 母线byte 字节肖振2023-05-23 19:24:551
离散数学是学什么的
第l章 基础:逻辑、集合和函数 1.1 逻辑 1.1.1 引言 1.1.2 命题 1.1.3 翻译语言的句子 1.1.4 布尔检索 l. 1.5 逻辑运算和位运算练习 1.2 命题等价 1. 2.1 引言 1.2.2 逻辑等价练习 1.3 谓词和量词 1.3.1 引言 1.3.2 量词 1.3.3 翻译语句为逻辑表达式 1.3.4 选自Lewis Carroll的例子(选读) 1.3.5 绑定变量 1.3.6 否定练习 1.4 集合 1.4.1 引言 1.4.2 幂集合 1.4.3 笛卡儿积练习 1.5 集合运算 1.5.1 引言 1.5.2 集合相等 1.5.3 扩展的并集和交集 1.5.4 集合的计算机表示练习 1.6 函数 1.6.1 引言 1.6.2 一对一函数和映上函数 1.6.3 反函数和函数组合 1.6.4 函数的图像 1.6.5 几个重要的函数练习 1.7 序列与求和 1.7.1 引言 1.7.2 序列 1.7.3 特殊的整数序列 1.7.4 求和 1.7.5 基数(选读)练习 1.8 函数增长 1.8.1 引言 1.8.2 大O符号 1.8.3 函数组合的增长 1.8.4 大Ω和大Ξ符号 练习 关键术语和结果 复习题 补充练习 计算机题目 计算和研究 写作题目 第2章 基础:算法、整数和矩阵 2.1 算法 2.1.1 引言 2.1.2 搜索算法练习 2.2 算法的复杂性 2.2.1 引言练习 2.3 整数和除法 2.3.1 引言 2.3.2 除法 2.3.3 素数 2.3.4 除法算法 2.3.5 最大公约数和最小公倍数 2.3.6 模运算 2. 3.7 同余应用 2.3.8 密码学练习 2.4 整数和算法 2.4.1 引言 2.4.2 欧几里德算法 2.4.3 整数表示 2.4.4 整数运算算法练习 2.5 数论应用 2.5.1 引言 2.5.2 若干有用的结果 2.5.3 线性同余 2.5.4 中国余数定理 2.5. 5 大整数的计算机算术运算 2.5.6 伪素数 2.5.7 公钥密码学 2.5.8 RSA加密 2.5.9 RSA解密 2.5.10 用RSA作公钥系统练习 2.6 矩阵 2.6.1 引言 2.6.2 矩阵运算 2.6.3 矩阵乘法运算 2.6.4 矩阵的转置和幂 2.6.5 0-1矩阵练习 关键术语和结果 复习题 补充练习 计算机题目 计算和研究 写作题目 第3章 数学推理 3.1 证明方法 3.1.1 引言 3.1.2 推理规则 3.1.3 谬误 3.1.4 带量词命题的推理规则 3.1.5 证明定理的方法 3.1.6 定理与量词 3.1.7 停机问题 3.1.8 关于证明的一些评注练习 3.2 数学归纳法 3.2.1 引言 3.2.2 良序性 3.2.3 数学归纳法 3.2.4 数学归纳法证明的例子 3.2.5 数学归纳法的第二原理练习 3.3 递归定义 3.3.1 引言 3.3.2 递归地定义函数 3.3.3 递归地定义集合练习 3.4 递归算法 3.4.1 引言 3.4.2 递归与迭代练习 3.5 程序正确性 3.5.1 引言 3.5.2 程序验证 3.5.3 推理规则 3.5.4 条件语句 3.5.5 循环不变量 练习 关键术语和结果 复习题 补充练习 计算机题目 计算和研究 写作题目 第4章 计数 4.1 计数的基础 4.1.1 引言 4.1.2 基本的计数原则 4.1.3 容斥原理 4.1.4 树图练习 4.2 鸽巢原理 4.2.1 引言 4.2.2 推广的鸽巢原理 4.2.3 巧妙使用鸽巢原理练习 4.3 排列与组合 4.3.1 引言 4.3.2 排列 4.3.3 组合 4.3.4 二项式系数 4.3.5 二项式定理练习 4.4 离散概率 4.4.1 引言 4.4.2 有限概率 4.4.3 事件组合的概率 4.4.4 概率的推理练习 4.5 概率论 4.5.1 引言 4.5.2 概率赋值 4.5.3 事件的组合 4.5.4 条件概率 4.5.5 独立性 4.5.6 伯努利实验与二项式分布 4.5.7 随机变量 4.5.8 期望值 4.5.9 独立随机变量 4.5.10 方差 4.5.11 切比雪夫不等式 4.5.12 平均状态下的计算复杂性练习 4.6 一般性的排列和组合 4.6.1 引言 4.6.2 有重复的排列 4.6.3 有重复的组合 4.6.4 具有不可区别物体的集合的排列 4.6.5 把物体放入盒子练习 4. 7 生成排列和组合 4.7.1 引言 4.7.2 生成排列 4.7.3 生成组合 练习 关键术语和结果 复习题 补充练习 计算机题目 计算和研究 写作题目 第5章 高级计数技术 5.1 递推关系 5.1.1 引言 5.1.2 递推关系 5.1.3 用递推关系构造模型练习 5.2 求解递推关系 5.2.1 引言 5.2.2 求解常系数线性齐次递推关系 5.2.3 常系数线性非齐次的递推关系练习 5.3 分而治之关系 5.3.1 引言 5.3.2 分而治之关系练习 5.4 生成函数 5.4.1 引言 5.4.2 关于幂级数的有用的事实 5.4.3 计数问题与生成函数 5.4.4 使用生成函数求解递推关系 5.4.5 使用生成函数证明恒等式练习 5.5 容斥 5.5.1 引言 5.5.2 容斥原理练习 5.6 容斥原理的应用 5.6.1 引言 5.6.2 容斥原理的另一种形式 5.6.3 伊拉脱森筛 5.6.4 映上函数的个数 5.6.5 错位排列 练习 关键术语和结果 复习题 补充练习 计算机题目 计算和研究 写作题目 第6章 关系 6.1 关系及其性质 6.1.1 引言 6.1.2 函数作为关系 6.1.3 集合上的关系 6.1.4 关系的性质 6.1.5 关系的组合练习 6.2 n元关系及其应用 6.2.1 引言 6. 2.2 n元关系 6.2.3 数据库和关系练习 6.3 关系的表示 6.3.1 引言 6.3.2 用矩阵表示关系 6.3.3 用图表示关系练习 6.4 关系的闭包 6.4.1 引言 6.4.2 闭包 6.4.3 有向图的路径 6.4.4 传递闭包 6.4.5 沃舍尔算法练习 6.5 等价关系 6.5.1 引言 6.5.2 等价关系 6.5.3 等价类 6.5.4 等价类与划分练习 6.6 偏序 6.6.1 引言 6.6.2 字典顺序 6.6.3 哈斯图 6. 6.4 极大元素与极小元素 6.6.5 格 6.6.6 拓扑排序 练习 关键术语和结果 复习题 补充练习 计算机题目 计算和研究 写作题目 第7章 图 7.1 图的介绍 7.1.1 图的种类 7.1.2 图模型练习 7.2 图的术语 7.2.1 引言 7.2.2 基本术语 7.2.3 一些特殊的简单图 7.2.4 偶图 7.2.5 特殊类型的图的一些应用 7.2.6 从旧图到新图练习 7.3 图的表示和图的同构 7.3.1 引言 7.3.2 图的表示 7.3.3 相邻矩阵 7.3.4 关联矩阵 7.3.5 图的同构练习 7. 4 连通性 7.4.1 引言 7.4.2 通路 7.4.3 无向图连通性 7.4.4 有向图中的连通性 7.4.5 通路与同构 7.4.6 统计顶点之间的通路练习 7.5 欧拉通路与哈密顿通路 7.5.1 引言 7.5.2 欧拉回路和欧拉通路的充要条件 7.5.3 哈密顿通路和回路练习 7.6 最短通路问题 7.6.1 引言 7.6.2 一个最短通路算法 7.6.3 旅行推销员问题练习 7.7 平面性图 7.7.1 引言 7.7.2 欧拉公式 7.7.3 库拉图斯基定理练习 7.8 图着色 7.8.1 引言 7.8.2 图着色的应用 练习 关键术语和结果 复习题 补充练习 计算机题目 计算和研究 写作题目 第8章 树 8.1 介绍树 8.1.1 树作为模型 8.1.2 树的性质练习 8.2 树的应用 8.2.1 引言 8.2.2 二叉搜索树 8.2.3 决策树 8.2.4 前缀码练习 8.3 树的遍历 8.3.1 引言 8.3.2 通用地址系统 8.3.3 遍历算法 8.3.4 中缀、前缀和后缀记法练习 8.4 树与排序 8.4.1 引言 8.4.2 排序的复杂性 8.4.3 冒泡排序 8.4.4 归并排序练习 8.5 生成树 8.5.1 引言 8.5.2 一些构造生成树的算法 8.5.3 回溯练习 8.6 最小生成树 8.6.1 引言 8.6.2 最小生成树算法 练习 关键术语和结果 复习题 补充练习 计算机题目 计算和研究 写作题目 第9章 布尔代数 9.1 布尔函数 9.1.1 引言 9.1.2 布尔表达式和布尔函数 9.1.3 布尔代数中的恒等式 9.1.4 对偶性 9.1.5 布尔代数的抽象定义练习 9.2 布尔函数的表示 9.2.1 积之和展开式 9.2.2 函数完备性练习 9.3 逻辑门电路 9.3.1 引言 9.3. 2 门的组合 9.3.3 电路的例子 9.3.4 加法器练习 9.4 电路的极小化 9.4.1 引言 9.4.2 卡诺图 9.4.3 无需在意条件 9.4.4 奎因-莫可拉斯基方法 练习 关键术语和结果 复习题 补充练习 计算机题目 计算和研究 写作题目 第10章 计算模型 10.1 语言和文法 10.1.1 引言 10.1.2 短语结构文法 10.1.3 短语结构文法的类型 10.1.4 派生树 10.1.5 巴科斯-诺尔范式练习 10.2 带输出的有限状态机 10.2.1 引言 10.2.2 带输出的有限状态机练习 10.3 不带输出的有限状态机 10.3.1 引言 10.3.2 串的集合 10.3.3 有限状态自动机练习 10.4 语言的识别 10.4.1 引言 10.4.2 正则集合 10.4.3 克莱因定理 10.4.4 正则集合和正则文法 10.4.5 一个不能由有限状态自动机识别语言 10.4.6 一些更强大的机器练习 10.5 图灵机 10.5.1 引言 10.5.2 图灵机的定义 10.5.3 用图灵机识别集合 10.5.4 用图灵机计算函数 10.5.5 不同类型的图灵机 10. 5.6 丘奇-图灵论题 练习 关键术语和结果 复习题 补充练习 计算机题目 计算和研究 写作题目 附录A 指数函数和对数函数 附录B 伪代码 奇数练习题答案 推荐读物 如果想成为真正的程序员,学好离散数学是很重要的,但刚学时也有点难度。此后故乡只2023-05-23 19:24:541
中国小伙保送北大,留美读博,破解了困惑科学界近30年的数学难题,是谁?
华人数学家黄浩,破解了多年的数学难题,为数学界提供了很大的贡献,以他的能力,他的路还很长。瑞瑞爱吃桃2023-05-23 19:24:534
AI数学基础26-卷积(Convolution)
卷积(Convolution)是一个应用非常广泛的函数间的数学运算,类似加、减、乘、除。之所以很多同学听到卷积二字就头皮发麻,是因为不熟悉,而且在日常生活中用的少。加、减、乘、除从小就学习,天天在使用,所以觉得简单、容易,亲切。 加、减、乘、除 用符号 +,-,×,÷,表示;同样,卷积用符号:* 表示。 如上所述,卷积是两个函数之间的数学运算,假设有两个函数f(t), g(t),其卷积运算的结果也是函数,我们记做c(t),则: c(t) = f(t)*g(t) = (f*g)(t) 注意:f(t)*g(t)和(f*g)(t)这两种写法,都是表示卷积运算,大家在学习一个数学运算的时候, 首先是要学习并熟悉其标记的含义 ,这跟学习加、减、乘、除一样。 卷积具体的计算是如何定义的呢? 两个函数f(t), g(t)是定义在实数范围内可积的函数,其卷积记作:f*g,是其中一个函数翻转并平移后与另一个函数的乘积的积分,如下图所示:咋一看,有点儿懂了,也有点儿没懂,不着急,接下来我们一步一步图解卷积运算的过程。 首先 ,已知两函数f(t)和g(t),如下图所示然后 ,根据上述的卷积运算定义,把两个函数f(t)和g(t)自变量由t换为τ,并把其中一个函数,比如g(τ),向右移动t个单位,得到g(τ-t)。 接着 ,把右移t个单位的函数,以纵轴为中心,180°翻转(Flip),得到g(-(τ-t)),即g(t-τ),如下图所示:这样,经过平移和翻转,我们得到了积分表达式中的f(τ)和g(t-τ)。 接下来 ,τ是自变量,对整个定义域,我们对f(τ)和g(t-τ)积分,如下图所示:最后 ,完成f(τ)和g(t-τ)的积分运算后,就完成了两个函数f(t)和g(t)的卷积运算。 通过上述演示过程,大家可以把两个函数的卷积运算,简单记住为:“ 卷积就是平移翻转再积分 ”,其过程如下图所示:若把g(t-τ)看作为是一个加权函数的话,卷积可以认为是对f(τ)取加权值的过程。 跟加、减、乘、除有交换律,结合律相似,卷积也有如下性质 卷积定理 指出,函数卷积的 傅里叶变换 是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如 时域 中的卷积就对应于 频域 中的乘积。这一定理对 拉普拉斯变换 、 双边拉普拉斯变换 、 Z变换 、 Mellin变换 和 Hartley变换 (参见 Mellin inversion theorem )等各种傅里叶变换的变体同样成立。利用卷积定理可以简化卷积的运算量。对于长度为 n 的序列,按照卷积的定义进行计算,需要做 2n-1 组对位乘法,其 计算复杂度 为O(n²);而利用 傅里叶变换 将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的 快速算法 之后,总的计算复杂度为O(n·log(n))。卷积定理简化运算在工程实现中,经常使用。 卷积在科学、工程和数学上都有很多应用 : 代数 中,整数乘法和多项式乘法都是卷积。 图像处理 中,用作图像模糊、锐化、 边缘检测 。 统计学 中,加权的滑动平均是一种卷积。 概率论 中,两个统计独立变量X与Y的和的 概率密度函数 是X与Y的概率密度函数的卷积。 声学 中, 回声 可以用源声与一个反映各种反射效应的函数的卷积表示。 电子工程 与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的 冲激响应 )做卷积获得。 物理学 中,任何一个线性系统(符合 叠加原理 )都存在卷积。 下一节将继续介绍《 AI数学基础27-离散卷积(Discrete convolution) 》康康map2023-05-23 19:24:401
考研 数学 常考泰勒和傅里叶么?
泰勒一般考的频率都不会太高的,傅里叶级数可能会考大题的黑桃花2023-05-23 19:24:365
请问卷积和傅里叶函数是属于哪个数学分支?
傅里叶变换和傅里叶级数,在高等数学和工程数学里都有。可以参考同济大学编写的《高等数学》(推荐第五版或第六版)和华中科技大学的出版的《复变函数与积分变换》。这两本书都比较有代表性。拌三丝2023-05-23 19:24:344
如何不看任何数学公式理解傅里叶分析
傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。发现一篇文章不错,给你参考下http://www.openhw.org/module/forum/thread-595745-1-1.html铁血嘟嘟2023-05-23 19:24:341
数学傅里叶级数证明中a0什么意思?
这个我也不知道是什么意思,你可以去搜寻一下别人。北有云溪2023-05-23 19:24:333
描述周期信号的数学工具
傅氏变换在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。傅里叶定律傅立叶定律是法国著名科学家傅立叶在1822年提出的一条热力学定律。该定律指在导热过程中,单位时间内通过给定截面的导热量,正比于垂直于该截面方向上的温度变化率和截面面积,而热量传递的方向则与温度升高的方向相反。傅里叶反演公式傅里叶反演公式是经典傅里叶公式的推广。在数学中,傅里叶反演定理说,对于许多类型的函数,可以从其傅里叶变换中得到原函数。 直观地,它可以被视为,如果我们知道关于波的所有频率和相位信息,那么我们可以精确地重建原始波。傅里叶分析傅里叶分析Fourier analysis 分析学中18世纪逐渐形成的一个重要分支,主要研究函数的傅里叶变换及其性质。又称调和分析。在经历了近2个世纪的发展之后,研究领域已从直线群、圆周群扩展到一般的抽象群。关于后者的研究又成为群上的傅里叶分析。傅里叶分析作为数学的一个分支,无论在概念或方法上都广泛地影响着数学其它分支的发展。数学中很多重要思想的形成,都与傅里叶分析的发展过程密切相关。gitcloud2023-05-23 19:24:321
高等数学,积分变换,自动控制原理,离散系统,傅里叶变换拉,拉普拉斯变换
离散信号对应的“拉普拉斯变换”我们成为z变换1.e(kT)=1-e^(-akT)对应连续信号e(t)=1-e^(-at) 1对应z变换为z/z-1 e^(-at)对应z变换为z/z-e^-(aT) 则:e(kT)=1-e^(-akT)对应z变换为z/z-1 -z/z-e^-(aT)2.e(kT)=e^(-akT)*cos(bkT)对应连续信号e(t)=e^(-at)*cos(bt)这个怎么变换我也不会,其实考试不会考这样的,一般来说你只要把常规z变换记住就行了,不需要会推导人类地板流精华2023-05-23 19:24:302
傅立叶级数的数学原理
法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出。从而极大地推动了偏微分方程理论的发展。在中国,程民德最早系统研究多元三角级数与多元傅里叶级数。他首先证明多元三角级数球形和的唯一性定理,并揭示了多元傅里叶级数的里斯- 博赫纳球形平均的许多特性。傅里叶级数曾极大地推动了偏微分方程理论的发展。在数学物理以及工程中都具有重要的应用Chen2023-05-23 19:24:261
傅里叶级数有哪两种数学形式
一.傅里叶级数的三角函数形式设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f,ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量。A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等。基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波。式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加。上式有可改写为如下形式,即当A0,An,ψn求得后,代入式(10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式。把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析。工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用。从式(10-2-3)中看出,将n换成(-n)后即可证明有a-n=anb-n=-bnA-n=Anψ-n=-ψn即an和An是离散变量n的偶函数,bn和ψn是n的奇函数。二.傅里叶级数的复指数形式将式(10-2-2)改写为可见与互为共轭复数。代入式(10-2-4)有上式即为傅里叶级数的复指数形式。下面对和上式的物理意义予以说明:由式(10-2-5)得的模和辐角分别为可见的模与幅角即分别为傅里叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅。的求法如下:将式(10-2-3a,b)代入式(10-2-5)有上式即为从已知的f(t)求的公式。这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数。在(10-2-7)中,由于离散变量n是从(-∞)取值,从而出现了负频率(-nω1)。但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量。即引入傅立叶级数复指数形式的好处有二:(1)复数振幅同时描述了第n次谐波的振幅An和初相角ψn;(2)为研究信号的频谱提供了途径和方便。真颛2023-05-23 19:24:251
矩阵特征值分解的两种方法:jacobi分解方法和QR分解方法的各自优点、缺点是什么,请计算数学专业高手解答
粗略一点讲,Jacobi算法相对慢一些,但精度高一些;QR算法相对快一些,但精度低一些。九万里风9 2023-05-23 19:24:092
数学,高等数学。什么孤立点???请画图示意。
设有点集E,内点:①属于E②存在一个邻域全含于E。外点:①不属于E②存在一个邻域全含于E的补集,即存在一个邻域∩E=∅边界点:全部邻域同时有属于E、不属于E的点全部邻域都有E的无穷多点孤立点:①属于E②不是聚点,即存在一个邻域∩E={该点}内点,聚点,孤立点之间关系:内点一定是聚点,聚点可能是内点可能是边界点孤立点一定是边界点,边界点可能是孤立点可能是聚点黑桃花2023-05-23 12:58:521
同济大学《高等数学》第一张图中(1)内点的定义,那里的包含于符号和第二张图中的包含于符号有什么区别呢?
只有一数之差而已。多一横的包含前面的数字,少一横的不包含前面的数字。肖振2023-05-23 12:58:511
数学规划问题求解的特性分为哪几类
数学规划的类型回答于2021-10-06数学规划是运筹学中的一个大的体系,包括线性规划、非线性规划、整数规划、多目标规划、组合规划、随机规划、动态规划等。建立数学规划后,可以再根据变量特征、目标函数的数量和形式、约束条件的形式等判定规划问题的类型,然后利用相应的算法或软件求解。(1)存在多个目标,即目标函数 f ( x )取一个向量值函数,称为多目标规划(Multi-Objective Programming或Goal Programming)。(2)如果所有决策变量取整数,称为整数规划(Integer Programming);一部分变量取整数,另一部分变量取实数,为混合整数规划(Mixed Integer Programming,MIP);决策变量仅取值0或1的一类特殊的整数规划是0-1规划。(3)从一个连通无限集合(可行域)中寻找最优解,称为连续优化(Continuous Optimization)问题;从一个有限的集合或者离散的集合中寻找最优解,称为离散优化(Discrete Optimization)也叫组合优化(Combinatorial Optimization)或组合规划。(4)目标函数和约束函数都是线性的规划问题称为线性规划(Linear Programming,LP);否则为非线性规划(Nonlinear Programming,NLP)。(5)最优化目标函数和约束中出现的参数是完全确定的,称为确定型优化(Deterministic Optimization)问题;否则称为非确定型优化(Uncertain Optimization)问题,包括了随机规划(Stochastic Programming)、模糊规划(Fuzzy Programming)等特殊情形。(6)实际的决策过程是随时间而变化,分析中将决策变量分阶段并需要包含时间参量集为动态规划(Dynamic Programming);否则为静态规划(Static Programming)。以上分类依据的标准不同,所以可能会形成不同分类方法交叉形成的混合问题,如非线性整数规划、多目标随机规划等。当然,分类特征越多,问题也会越复杂。豆豆staR2023-05-23 12:58:491
什么是整数规划?并写出其数学模型
整数规划是指一类要求问题中的全部或一部分变量为整数的数学规划。是近三十年来发展起来的、规划论的一个分支. 整数规划问题是要求决策变量取整数值的线性规划或非线性规划问题。 一般认为非线性的整数规划可分成线性部分和整数部分,因此常常把整数规划作为线性规划的特殊部分。在线性规划问题中,有些最优解可能是分数或小数,但对于某些具体问题,常要求解答必须是整数。例如,所求解是机器的台数,工作的人数或装货的车数等。为了满足整数的要求,初看起来似乎只要把已得的非整数解舍入化整就可以了。实际上化整后的数不见得是可行解和最优解,所以应该有特殊的方法来求解整数规划。在整数规划中,如果所有变量都限制为整数,则称为纯整数规划;如果仅一部分变量限制为整数,则称为混合整数规划。整数规划的一种特殊情形是01规划,它的变数仅限于0或1。 整数规划是从1958年由R.E.戈莫里提出割平面法之后形成独立分支的 ,30多年来发展出很多方法解决各种问题。解整数规划最典型的做法是逐步生成一个相关的问题,称它是原问题的衍生问题。对每个衍生问题又伴随一个比它更易于求解的松弛问题(衍生问题称为松弛问题的源问题)。通过松弛问题的解来确定它的源问题的归宿,即源问题应被舍弃,还是再生成一个或多个它本身的衍生问题来替代它。随即 ,再选择一个尚未被舍弃的或替代的原问题的衍生问题,重复以上步骤直至不再剩有未解决的衍生问题为止。目前比较成功又流行的方法是分枝定界法和割平面法,它们都是在上述框架下形成的。 0—1规划在整数规划中占有重要地位,一方面因为许多实际问题,例如指派问题、选地问题、送货问题都可归结为此类规划,另一方面任何有界变量的整数规划都与0—1规划等价,用0—1规划方法还可以把多种非线性规划问题表示成整数规划问题,所以不少人致力于这个方向的研究。求解0—1规划的常用方法是分枝定界法,对各种特殊问题还有一些特殊方法,例如求解指派问题用匈牙利方法就比较方便。[编辑]整数规划与组合最优化的关系 整数规划与组合最优化从广泛的意义上说,两者的领域是一致的,都是在有限个可供选择的方案中,寻找满足一定标准的最好方案。有许多典型的问题反映整数规划的广泛背景。例如,背袋(或装载)问题、固定费用问题、和睦探险队问题(组合学的对集问题)、有效探险队问题(组合学的覆盖问题)、送货问题等。因此整数规划的应用范围也是极其广泛的。它不仅在工业和工程设计和科学研究方面有许多应用,而且在计算机设计、系统可靠性、编码和经济分析等方面也有新的应用。[编辑]整数规划的种类 整数规划又分为: 1、纯整数规划:所有决策变量均要求为整数的整数规划 2、混合整数规划:部分决策变量均要求为整数的整数规划 3、纯0-1整数规划:所有决策变量均要求为0-1的整数规划 4、混合0-1规划:部分决策变量均要求为0-1的整数规划 整数规划与线性规划不同这处只在于增加了整数约束。不考虑整数约束所得到的线性规划称为整数规划的线性松弛模型。[编辑]整数规划模型 在现实生活中,决策变量代表产品的件数、个数、台数、箱数、艘数、辆数等等,则变量就只能取整数值. 如截料模型实际上就是一个整数规划模型,该例的决策变量代表所截钢管的根数,显然只能取整数值。因而整数规划模型也有着广泛的应用领域,从 以下的几个例子中更可以窥其一斑。 求解整数规划的一种自然的想法是,能否用整数规划的线性松弛模型的最优解经过四舍五入得到整数规划的最优解呢?回答是否定的,因为这样四舍五入的结果甚至不是可行解。 整数规划比通常的线性规划更加难以求解,迄今求解整数规划其基本求解思路都是按一定的搜索规则,在整数规划的线性松弛模型的可行域内寻找出整数最优解(或确认无整数最优解),因此求整数规划的解需要更多的时间,现通用的解法,主要有分支定界法、割平面法和穷举法等。铁血嘟嘟2023-05-23 12:58:471
数学中求解整数规划在matlab中怎么使用
数学中求解整数规划在matlab中怎么使用f矩阵是目标函数的矩阵,就是z;intcon矩阵是为整数的x的下标;A矩阵是约束矩阵,b注意是一个n*1的矩阵大鱼炖火锅2023-05-23 12:58:471
美籍匈牙利数学家冯?诺依曼对计算机科学发展所做出的贡献包括
约翰·冯·诺依曼1903年12月28日,在布达佩斯诞生了一位神童,这不仅给这个家庭带来了巨大的喜悦,也值得整个计算机界去纪念。正是他,开创了现代计算机理论,其体系结构沿用至今,而且他早在40年代就已预见到计算机建模和仿真技术对当代计算机将产生的意义深远的影响。他,就是约翰·冯·诺依曼(John Von Neumann)。主要贡献 冯·诺伊曼是二十世纪最重要的数学家之一,在纯粹数学和应用数学方面都有杰出的贡献。他的工作大致可以分为两个时期:1940年以前,主要是纯粹数学的研究:在数理逻辑方面提出简单而明确的序数理论,并对集合论进行新的公理化,其中明确区别集合与类;其后,他研究希尔伯特空间上线性自伴算子谱理论,从而为量子力学打下数学基础;1930年起,他证明平均遍历定理开拓了遍历理论的新领域;1933年,他运用紧致群解决了希尔伯特第五问题;此外,他还在测度论、格论和连续几何学方面也有开创性的贡献;从1936~1943年,他和默里合作,创造了算子环理论,即现在所谓的冯·诺伊曼代数。1940年以后,冯·诺伊曼转向应用数学。如果说他的纯粹数学成就属于数学界,那么他在力学、经济学、数值分析和电子计算机方面的工作则属于全人类。第二次世界大战开始,冯·诺伊曼因战事的需要研究可压缩气体运动,建立冲击波理论和湍流理论,发展了流体力学;从1942年起,他同莫根施特恩合作,写作《博弈论和经济行为》一书,这是博弈论(又称对策论)中的经典著作,使他成为数理经济学的奠基人之一。冯·诺伊曼对世界上第一台电子计算机ENIAC(电子数字积分计算机)的设计提出过建议,1945年3月他在共同讨论的基础上起草EDVAC(电子离散变量自动计算机)设计报告初稿,这对后来计算机的设计有决定性的影响,特别是确定计算机的结构,采用存储程序以及二进制编码等,至今仍为电子计算机设计者所遵循。1946年,冯·诺依曼开始研究程序编制问题,他是现代数值分析——计算数学的缔造者之一,他首先研究线性代数和算术的数值计算,后来着重研究非线性微分方程的离散化以及稳定问题,并给出误差的估计。他协助发展了一些算法,特别是蒙特卡罗方法。40年代末,他开始研究自动机理论,研究一般逻辑理论以及自复制系统。在生命的最后时刻他深入比较天然自动机与人工自动机。他逝世后其未完成的手稿在1958年以《计算机与人脑》为名出版。冯·诺伊曼的主要著作收集在《冯·诺伊曼全集》(6卷,1961)中。无论在纯粹数学还是在应用数学研究方面,冯·诺依曼都显示了卓越的才能,取得了众多影响深远的重大成果。不断变换研究主题,常常在几种学科交叉渗透中获得成就是他的特色。最简单的来说,他的精髓贡献是2点:2进制思想与程序内存思想。回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".而在经济学方面,他也有突破性成就,被誉为“博弈论之父”。在物理领域,冯·诺依曼在30年代撰写的《量子力学的数学基础》已经被证明对原子物理学的发展有极其重要的价值。在化学方面也有相当的造诣,曾获苏黎世高等技术学院化学系大学学位。与同为犹太人的哈耶克一样,他无愧是上世纪最伟大的全才之一。 约翰·冯·诺依曼 冯·诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献.在第二次世界大战前,他主要从事算子理论、集合论等方面的研究.1923年关于集合论中超限序数的论文,显示了冯·诺依曼处理集合论问题所特有的方式和风格.他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础.他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等.特别在1925年的一篇论文中,冯·诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题.1933年,冯·诺依曼解决了希尔伯特第5问题,即证明了局部欧几里得紧群是李群.1934年他又把紧群理论与波尔的殆周期函数理论统一起来.他还对一般拓扑群的结构有深刻的认识,弄清了它的代数结构和拓扑结构与实数是一致的. 他对算子代数进行了开创性工作,并奠定了它的理论基础,从而建立了算子代数这门新的数学分支.这个分支在当代的有关数学文献中均称为冯·诺依曼代数.这是有限维空间中矩阵代数的自然推广. 冯·诺依曼还创立了博弈论这一现代数学的又一重要分支. 1944年发表了奠基性的重要论文《博弈论与经济行为》.论文中包含博弈论的纯粹数学形式的阐述以及对于实际博弈应用的详细说明.文中还包含了诸如统计理论等教学思想.冯·诺依曼在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都作过重要的工作.冯·诺依曼对人类的最大贡献是对计算机科学、计算机技术、数值分析和经济学中的博弈论的开拓性工作.现在一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行.其实由汤米、费劳尔斯等英国科学家研制的"科洛萨斯"计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行.ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接几天,计算速度也就被这一工作抵消了.ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进。1944年,诺伊曼参加原子弹的研制工作,该工作涉及到极为困难的计算。在对原子核反应过程的研究中,要对一个反应的传播做出“是”或“否”的回答。解决这一问题通常需要通过几十亿次的数学运算和逻辑指令,尽管最终的数据并不要求十分精确,但所有的中间运算过程均不可缺少,且要尽可能保持准确。他所在的洛·斯阿拉莫斯实验室为此聘用了一百多名女计算员,利用台式计算机从早到晚计算,还是远远不能满足需要。无穷无尽的数字和逻辑指令如同沙漠一样把人的智慧和精力吸尽。被计算机所困扰的诺伊曼在一次极为偶然的机会中知道了ENIAC计算机的研制计划,从此他投身到计算机研制这一宏伟的事业中,建立了一生中最大的丰功伟绩。1944年夏的一天,正在火车站候车的诺伊曼巧遇戈尔斯坦,并同他进行了短暂的交谈。当时,戈尔斯坦是美国弹道实验室的军方负责人,他正参与ENIAC计算机的研制工作。在交谈中,戈尔斯坦告诉了诺伊曼有关ENIAC的研制情况。具有远见卓识的诺伊曼为这一研制计划所吸引,他意识到了这项工作的深远意义。冯·诺依曼由ENIAC机研制组的戈尔德斯廷中尉介绍参加ENIAC机研制小组后,便带领这批富有创新精神的年轻科技人员,向着更高的目标进军.1945年,他们在共同讨论的基础上,发表了一个全新的"存储程序通用电子计算机方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的缩写).在这过程中,冯·诺依曼显示出他雄厚的数理基础知识,充分发挥了他的顾问作用及探索问题和综合分析的能力。诺伊曼以“关于EDVAC的报告草案”为题,起草了长达101页的总结报告。报告广泛而具体地介绍了制造电子计算机和程序设计的新思想。这份报告是计算机发展史上一个划时代的文献,它向世界宣告:电子计算机的时代开始了。EDVAC方案明确奠定了新机器由五个部分组成,包括:运算器、逻辑控制装置、存储器、输入和输出设备,并描述了这五部分的职能和相互关系.报告中,诺伊曼对EDVAC中的两大设计思想作了进一步的论证,为计算机的设计树立了一座里程碑。设计思想之一是二进制,他根据电子元件双稳工作的特点,建议在电子计算机中采用二进制。报告提到了二进制的优点,并预言,二进制的采用将大简化机器的逻辑线路。现在使用的计算机,其基本工作原理是存储程序和程序控制,它是由世界著名数学家冯·诺依曼提出的。美籍匈牙利数学家冯·诺依曼被称为“计算机之父”。 实践证明了诺伊曼预言的正确性。如今,逻辑代数的应用已成为设计电子计算机的重要手段,在EDVAC中采用的主要逻辑线路也一直沿用着,只是对实现逻辑线路的工程方法和逻辑电路的分析方法作了改进。苏萦2023-05-23 12:58:403
离散数学教程的图书信息
书名:离散数学教程 - - 高等院校计算机专业及专业基础课系列教材ISBN:730105366作者:耿素云/屈婉玲/王捍贫出版社:北京大学出版社定价:49页数:636出版日期:1900-1-1版次:1开本:大16开包装:平装简介:本书共分五编。第一编为集合论,其中包括集合的基本概念、二元关系、函数、自然数、基数、序数。第二编为图论,其中包括图的基本概念、图的连通性、欧拉图与哈密顿图、树、平面图、图的着色、图的矩阵表示、覆盖集、独立集、匹配、带权图及其实用。第三编为代数结构,其中包括代数系统的基本概念、几个重要的代数系统:半群、群、环、域、格与布尔代数。第四编为组合灵敏学,其中包括组合存在性、组合计数、级合设计与编码以及组合最优化。第五编为数理逻辑,其中包括命题逻辑、一阶谓词逻辑、Her-brand定理和直觉逻辑。本书体系严谨、内容丰富、配有大量的例题和习题,并与计算机科学的理论与实践密切结合。本书不仅适用于计算机及相关专业的本科生或研究生,也可供计算机专业的科技人员使用或参考。目录:第一编??集合论第一章??集合1.?1??预备知识1.?2??集合的概念及集合之间的关系1.?3??集合的运算1.?4??基本的集合恒等式1.?5??集合列的极限习题一第二章??二元关系2.?1??有序对与卡氏积2.?2??二元关系2.?3??关系矩阵和关系图2.?4??关系的性质2.?5??二元关系的幂运算2.?6??关系的闭包2.?7??等价关系和划分2.?8??序关系习题二第三章??函数3.?1??函数的基本概念3.?2??函数的性质3.?3??函数的合成3.?4??反函数习题三第四章??自然数4.?1??自然数的定义4.?2??传递集合4.?3??自然数的运算4.?4??N上的序关系习题四第五章??基数(势)5.?1??集合的等势5.?2??有穷集合与无穷集合5.?3??基数5.?4??基数的比较5.?5??基数运算习题五*第六章??序数6.?1??关于序关系的进一步讨论6.?2??超限递归定理6.?3??序数6.?4??关于基数的进一步讨论习题六第二编??图论第七章??图7.?1??图的基本概念7.?2??通路与回路7.?3??无向图的连通性7.?4??无向图的连通度7.?5??有向图的连通性习题七第八章??欧拉图与哈密顿图8.?1??欧拉图8.?2??哈密顿图习题八第九章??树9.?1??无向树的定义及性质9.?2??生成树9.?3??环路空间9.?4??断集空间9.?5??根树习题九第十章??图的矩阵表示10.?1??关联矩阵10.?2??邻接矩阵与相邻矩阵习题十第十一章??平面图11.?1??平面图的基本概念11.?2??欧拉公式11.?3??平面图的判断11.?4??平面图的对偶图11.?5??外平面图11.?6??平面图与哈密顿图习题十一第十二章??图的着色12.?1??点着色12.?2??色多项式12.?3??地图的着色与平面图的点着色12.?4??边着色习题十二第十三章??支配集.?覆盖集.?独立集与匹配13.?1??支配集.?点覆盖集.?点独立集13.?2??边覆盖集与匹配13.?3??二部图中的匹配习题十三第十四章??带权图及其应用14.?1??最短路径问题14.?2??关键路径问题14.?3??中国邮递员问题14.?4??最小生成树14.?5??最优树14.?6??货郎担问题习题十四第三编??代数结构第十五章??代数系统15.?1??二元运算及其性质15.?2??代数系统.?子代数和积代数15.?3??代数系统的同态与同构15.?4??同余关系和商代数15.?5代数习题十五第十六章??半群与独异点16.?1??半群与独异点16.?2??有穷自动机习题十六第十七章??群17.?1??群的定义和性质17.?2??子群17.?3??循环群17.?4??变换群和置换群17,?5??群的分解17.?6??正规子群和商群17.?7??群的同态与同构17.?8??群的直积习题十七第十八章??环与域18.?1??环的定义和性质18.?2??子环.?理想.?商环和环同态18.?3??有限域上的多项式环习题十八第十九章??格与布尔代数19.?1??格的定义和性质19.?2??子格.?格同态和格的直积19.?3??模格.?分配格和有补格19.?4??布尔代数习题十九第四编??组合数学第二十章??组合存在性定理20.?1??鸽巢原理和Ramsey定理20.?2??相异代表系习题二十第二十一章??基本的计数公式21.?1??两个计数原则21.?2??排列和组合21.?3??二项式定理与组合恒等式21.?4??多项式定理习题二十一第二十二章??组合计数方法22.?1??递推方程的公式解法22.?2??递推方程的其他解法22.?3??生成函数的定义和性质22.?4??生成函数与组合计数22.?5??指数生成函数与多重集的排列问题22.?6??Catalan数与Stirling数习题二十二第二十三章??组合计数定理23.?1??包含排斥原理23.?2??对称筛公式及应用23.?3??Burnside引理23.?4??Polya定理习题二十三第二十四章??组合设计与编码24.?1??拉丁方24.?2??t-设计24.?3??编码24.?4??编码与设计习题二十四第二十五章??组合最优化问题25.?1??组合优化问题的一般概念25.?2??网络的最大流问题习题二十五第五编??数理逻辑第二十六章??命题逻辑26.?1??形式系统26.?2??命题和联结词26.?3??命题形式和真值表26.?4??联结词的完全集26.?5??推理形式26.?6??命题演算的自然推理形式系统N26.?7??命题演算形式系统户26.?8??N与尸的等价性26.?9??赋值26.?10??可靠性.?和谐性与完备性习题二十六第二十七章??一阶谓词演算27.?1??一阶谓词演算的符号化27.?2??一阶语言27.?3??一阶谓词演算的自然推演形式系统N27.?4??一阶谓词演算的形式系统K27.?5??N?与K?的等价性27.?6??K?的解释与赋值27.?7??K??的可靠性与和谐性27.?8??K??的完全性习题二十七第二十八章??消解原理28.?1??命题公式的消解28.?2??Herbrand定理28.?3??代换与合一代换28.?4??一阶谓词公式的消解习题二十八第二十九章??直觉主义逻辑29.?1??直觉主义逻辑的直观介绍29.?2??直觉主义的一阶谓词演算的自然推演形式系统29.?3??直觉主义一阶谓词演算形式系统IK29.?4??直觉主义逻辑的克里普克(Kripke)语义29.?5??直觉主义逻辑的完备性习题二十九附录1??第一编与第二编符号注释与术语索引附录2??第三编与第四编符号注释与术语索引附录3??第五编符号注释与术语索引参考书目和文献北境漫步2023-05-23 12:58:301
离散数学如何学好
1、不堆砌公式 培养兴趣为先 提到离散数学,大量的公式概念和数理逻辑总是让人头疼, 但是作为计算机专业的基础学科,这些知识又是必须要学好记牢的。 公备老师就有这般魔法, 让同学们轻松地接受这庞大而复杂的知识体系,并将这些内容牢牢记在脑海里。 在离散数学的绪论课上,同学们按惯例以为老师会先将本学期的课堂要求和一些枯燥无味的离散定义展示在课件上。 但公备老师却首先给同学们引入了一些现实中有趣的应用实例, 如 “哥德斯堡 7 桥问题”、 “密码学”、 “五色定理” 等, 让同学们倍感意外和新奇, 学习兴趣一下子被带入到了离散数学的课堂中。 公备老师每次开始上课时都不会先将一大堆公式摆放在课件里,而是讲几个有趣的小故事,让同学们在哈哈一笑中对问题有了思考。他会将 “理发师到底要不要给自己理发的问题” 在学习的过程中反复拿出来进行分析,使用不同阶段学习的知识进行思考和判断,让同学们在这些接近于生活的小例子中体会数理分析的逻辑,也慢慢地发现用这一逻辑去分析事情还是真是那么一回事。 在离散数学的课堂上,不会只是讲书本上的内容,有的时候公备老师会将话题发散到 “十二维度空间” 或者是 “世界是否为编码造成的” 等问题上,并且总能把同学们说得目瞪口呆,但这也确实让同学们在这些与计算机相关的问题上产生了兴趣和思考,不少同学都在课下自己搜集十二维度的视频进行研究与讨论。不得不说在他的课堂上,同学们总能够大开眼界。 公备老师能够巧妙地将身边的大小事件融入进离散数学的课堂, 时不时还会有“高达”等同学们喜爱的游戏元素出现在例题中,让大家感受到学习数学的乐趣。 同学们在活跃的氛围中吸收了拗口的定义,理解记熟了公式,同时也在不知不觉中用数学思维分析了自己感兴趣的问题。将兴趣融入进离散数学,将数学学习变为一个兴趣,这便是公老师课堂的魅力所在。 2、化繁为简 传递精华为主 图论部分作为离散数学课非常重要也是占比非常大的一部分,其主要的难点在于概念多而相似,“完全图 ”、“竞赛图 ”、“通路”、“回路”、“欧拉图”、“哈密顿图” 等让人眼花缭乱,这些易混淆的定义经常把同学们绕得一头雾水。这个时候, 公备老师会巧妙地将大段定义转换为幻灯片上的动画演示,没有了冗长的文字描述,取而代之的是一只可爱的 “小狐狸”。 伴随着有些搞怪的背景音效,这个卡通形象就在放映屏幕上 “悠哉悠哉 ”的移动着, 它的行动轨迹就生成了我们需要学习的 “图”。 公备老师的课件上经常只有少量的"文字,让同学们对重点内容一目了然。他会将繁杂的理论归纳为一张对比图表、一个动画或是几道例题,直观有趣地让同学们理解吸收这些知识,而不是为具有冲击感的拗口文字伤脑筋。 在这个过程中, 公备老师其实也将很多学习数学的方法灌输给了同学们,让大家在吸收课程内容的同时,也在慢慢体悟 “数学” 这门学问。 他总是说, 离散数学如果真的想为难大家,可以把题目出的很难, 即使记熟了公式也不一定能够做出来,但是对于学生们来说并没有什么必要。因为学习离散数学的根本目的是要在解决实际问题中应用到它,而不是仅仅为了记住那些公式而学习它。公备老师对离散数学有深入的研究和自己独到的见解,他不会将离散数学的知识堆砌起来,一股脑地扔给同学们,让学生们自己在课下耗费大量时间慢慢消化,而是确确实实为同学们指出哪些是离散数学的精华,哪些是在未来实际能够应用到的,将知识提炼出最核心 、 最有帮助的内容更好被学生们接纳吸收。 离散数学课的知识经常会涉及其他课程的内容,公备老师会将同学们的思路发散到课外知识上,合着其他学科的知识讲解离散数学的内容 。这让同学们不仅在学习其他课程中能够使用更加高效科学的数学思维解决问题 ,也能够在研究相关学科时, 复习和应用离散数学的知识 。公备老师将这一类相关学科巧 妙地组织起来,让学生们的学习更加简单高效。 3、心灵交流 真诚感染学生 不得不说的是,公备老师有一计神功 “刷脸大法”, 其实准确地说就是记性好,凡是在他课堂上露过一两次面的同学,他都能记得八九不离十。他在第一节课说: “如果班里同学不少于三分之二,那么我就不点名 。” 但渐渐地 ,大家才发现他上课看似不点名,却用这招 “刷脸大法” 遏制住了同学们内心想要翘课的小愿望, 因为他早早就把没有按时到课的名单记在了心里。 还记得在临近期末的一堂课上,公备老师说要久违地点一次名,但这也着实让同学们见识到了他的 “神力 ”。因为他不仅能够记住大部分同学的名字,而且还能够评价出每位同学在这一学期的上课状态。对于上课经常和他互动的同学,他会点点头表示肯定,而对于那些上课经常迟到的同学,他会无奈地对他们发发小牢骚。即使是因为害羞而坐在后排, 但时常跟老师进行眼神交流的同学们,他也会牢记于心,给予鼓励。 同学们都能够感受到 ,公备老师的“刷脸大法 ”不仅仅是因为他过人的记忆力,更多的是因为他用心关注课堂上的每一位同学。课下他会主动找在课堂上表现出疑惑的同学们讨论问题,也会与经常和他互动的同学们聊聊天,考试前夕主动邀请同学们找他答疑。他会毫不吝啬地为每一位有需求的同学们拷贝他所有的课件,他还会在对自己的课件进行校对之后,给那些拷贝过课件的同学们更新内容。他会在学校的路上认出他的学生,还会在同学们没有回过神的时候主动和学生们打招呼,让同学们愿意与这个 “大男孩” 成为朋友。 同学们会将这种亲切感从生活带入到课堂中,可以与这位 “大朋友” 毫无隔阂地探讨问题,主动将困住自己思路的疑惑说出来,他也会耐心地将问题一一解答 。公备老师用真诚感染着每一位同学,筑建起心灵的桥梁,为同学们提供了能够敞开胸怀解决数学问题的渠道。在与他交流的过程中,同学们不仅结识了一位 “学霸朋友”,而且离散数学的学习也自然不在话下。 对于一门课程,最重要的是授课老师,是老师将课程的精华部分传递给同学们 。讲台上一位出色的老师,将课堂的气氛带得火热,课堂下又是一位聊得来的朋友,和同学们打成一片。“离散数学”这门课程是一门历时 16 周的计算机专业基础课,课程终有结束时,但和“欧拉图”、“哈密顿图”一起留在学生们脑海里的还有公备老师教会的快乐学习的 “门道”。苏州马小云2023-05-23 12:58:301
离散数学r的—1怎么算
R1,R2={(1,3),(2,2),(3,1)},R2。R1={(2,4),(3,3),(4,2)}。只与<b,c>合成。<b,c>分别与<c,d>,<c,a>合成,得<b,d>,<b,a>。<c,d>没有可以合成的关系。<c,a>与合成,得<c,a>。所得所有关系中没有自反关系,最终结果是{,<b,d>,<b,a>,<c,a>}。学科内容1、集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数。2、图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用。3、代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数。4、组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理。Ntou1232023-05-23 12:58:291
离散数学怎么读
discrete mathematics无尘剑 2023-05-23 12:58:2911
contributions to discrete mathematics是怎么样的数学sci期刊
Discrete mathematics: 离散数学, 是研究离散量的结构及其相互关系的数学学科, 包括:1.集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数2.图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用3.代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数4.组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理5.数理逻辑部分:命题逻辑、一阶谓词演算、消解原理hi投2023-05-23 12:58:291
离散数学汉密尔顿图
(P∨Q)→(P∧¬R) ⇔ ¬(P∨Q)∨(P∧¬R) 变 合取析取 ⇔ (¬P∧¬Q)∨(P∧¬R) 德摩根定律 ⇔(¬P∨(P∧¬R))∧(¬Q∨(P∧¬R)) 配律 ⇔(¬P∨¬R)∧(¬Q∨P)∧(¬Q∨¬R) 配律 ⇔(¬P∨(¬Q∧Q)∨¬R)∧(¬Q∨P∨(¬R∧R))∧((¬P∧P)∨¬Q∨¬R) 补项 ⇔(¬P∨¬Q∨¬R)∧(¬P∨Q∨¬R)∧(P∨¬Q∨¬R)∧(P∨¬Q∨R)∧(¬P∨¬Q∨¬R)∧(P∨¬Q∨¬R) 配律 ⇔(¬P∨¬Q∨¬R)∧(¬P∨Q∨¬R)∧(P∨¬Q∨¬R)∧(P∨¬Q∨R) 等幂律 主合取范Jm-R2023-05-23 12:58:291
倒a是什么数学符号
倒A是离散数学里的符号。倒A表示Any,任意。全称量词(任意量词)。离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。 离散数学的学科内容1.集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数。 2.图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用。 3.代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数。 4.组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理。 5.数理逻辑部分:命题逻辑、一阶谓词演算、消解原理。FinCloud2023-05-23 12:58:281
离散数学中a|b是什么意思?
通常在数学上用a|b表示a整除b,等价于存在c使得b=ac,这里a,b,c均是整数,应该是a=b当且仅当2|(a-b)。即等价于a,b关于模2同余,或a,b用2除余数相同或2整除a,b之差.西柚不是西游2023-05-23 12:58:282
离散数学中的等价类是什么意思?
在离散数学中,等价关系是指定义在集合A上的关系,满足自反的、对称的和传递的等性质。设R是定义在集合A上的等价关系,与A中一个元素a有关系的所有元素的集合叫做a的等价类。等价类应用十分广泛,如在编程语言中,我们使用等价类来判定标识符是不是表示同一个事物。学科内容1.集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数。2.图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用。3.代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数。4.组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理。5.数理逻辑部分:命题逻辑、一阶谓词演算、消解原理。离散数学被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。教学方式以课堂讲授为主,课后有书面作业、通过学校网络教学平台发布课件并进行师生交流。人类地板流精华2023-05-23 12:58:281
离散数学与复变函数哪个重要
你什么专业的,在我看来这两个都挺重要,不过对于搞计算机的离散数学用到的更多吧苏州马小云2023-05-23 12:58:284
离散数学哈密顿图题目
C为哈密顿图1-10顺序走通过图中每个结点一次,且仅一次的通路,符合哈密顿图条件FinCloud2023-05-23 12:58:271
离散数学,汉密尔顿图问题
去掉6个点,剩下7个连通分支,所以不是汉密尔顿图wpBeta2023-05-23 12:58:273
请问离散数学,哈密顿图中p(g-v1)
g中删去v1后得到的图的连通分支FinCloud2023-05-23 12:58:271
高等数学 哈密顿算符 拉普拉斯算符 正交曲面坐标系 球坐标系 拉梅系数 为什么两个不等?请解释
同学,第一个你把拉普拉斯算子(二姐微分算子)定义理解错了△f=▽▽f再算一遍吧。大鱼炖火锅2023-05-23 12:58:261
离散数学 第六章 图论
历史:1736年 19世纪 应用:计算机科学、化学、运筹学、经济学、语言学等 内容:图的基本概念、包括 路径和环,欧拉回路,哈密尔顿回路/货郎担问题,图同构、平面图等。 ①定义中的结点对可以是有序的,也可以是无序的,若边e所对应的结点对e i =<v i1 ,v i2 >是有序的,则称e i 是有向边,若边e所对应的结点e i =<v i1 ,v i2 >,i=1,2,…,n是无序的,则称e i 是无向边。 ②有向边简称弧,v i1 称为弧e i 的始点, v i2 ,称为弧e i 的终点,统称为e i 的端点.无向边简称棱。 ① 有限图: V,E 均为有限集。 ② n 阶图: IVl=n.其中,IVI指的是结点集合V的结点的个数。 ③ 零图: E=∅.即图中没有边,只有孤立点。 ④ 平凡图: E=∅且IVI=1.即只有一个孤立点构成的图。 ⑤ 多重图: 含平行边的图。 ⑥ 简单图: 既不含平行边也不含环的图。 ⑦ 完全图: 1、无向图结点的度数 设G=<V,E>为无向图,与顶点,关联的边的条数称为v的度,记作 deg(v)。 约定:每个环算两条边,则环的度数为2。 最大度:△(G)max{d(v)lv∈V} 最小度,δ(G) min{d(v)lv∈V}。 由定义可知零图中各点度数为0,完全图k n 各点的度数为n-1。 定理1 设图G是具有n个结点、m条边的无向图,具中结点集合为V={v 1 ,v 2 ,…,v n },则 即顶点度数之和等于边数之和的两倍 定理1是显然的,因为在计算各点的度数时,每条边都计算两次,于是图G中全部顶点的度数之和就是边数的2倍. 定理2 在任何无向图中,度数为奇数的结点必定是偶数个。 2、有向图结点的度数 设D=<V,E>为有向图,以顶点v为起始结点的弧的条数称为结点v的出度,记作 deg + (v).以顶点v为终止结点的弧的条数称为v的入度,记作 deg - (v).入度和出度之和称为顶点v的度,记作deg(v).显然有 定理3 在任何有向图中,所有节点的入度之和等于所有节点的出度之和,即 3、度数序列 设V={v 1 ,v 2 ,…,v n }为图G的顶点集,称{d(v 1 ),d(v 2 ),…d(v n )}为G的度数序列。 习题:P261 1,4,7,10,20,30 在有向图中,从顶点v 0 到顶点v n 的一条路径是图中的边的序列,其中每一条边的终点是下一条边的起点。 如果V(H)⊆V(G)且E(H)⊆E(G),则称H是G的子图,记作H⊆G。 若H是G的子图且V(H)=V(G),则称H是G的支撑子图(或生成子图) 设图H=<V",E">是图G=<V,E>的子图。若对任意结点u∈V",v∈V",如果(u,v)∈E,有(u,v)∈E",则H由V"唯一地确定,并称H是结点集合V"的点诱导子图,记作G(V");如果H无孤立结点,且由E"所唯一确定,则称H是边集E"的边诱导子图,记作G(E")。 例: 图7.9中,图(b)与(c)均为(a)的子图,(c)为(a)的支撑子图,(b)为(a)的点诱导子图也是(a)的边诱导子图。 例:图7.10中,(a)--(f)都是(a)的子图,其中(a)--(d)为(a)的支撑子图,(e)为(a)的点诱导子图,(f)为(a)的边诱导子图。 1、无向图中两顶点的连通 在一个无向图G中,若从顶点u到v存在通路,则称u与v连通。 规定:u到自身总是连通的。 2、有向图中两顶点的可达 在一个有向图D中,若存在从顶点u到v有向通路,则称u可达v。 规定:u到自身总是可达的。 有向通路是有方向性的,所以在有向图中,若u可达v,但反之不成立 。 3、无向图的连通性 在无向图中,若从顶点v 1 到顶点v 2 有路径,则称顶点v 1 与v 2 是连通的。如果图中任意一对顶点都是连通的,则称此图是连通图,否则称G是非连通图。 4、有向图的连通性 一个有向图D=(V,E),将有向图的所有的有向边替换为无向边,所得到的图称为原图的基图.如果一个有向图的基图是连通图,则有向图D是弱连通的,否则称D为非连通的.若D中任意两点u,v都有从u可达v,或从v可达u,则称D是单向连通的;若D中每点u均可达其他任一点v,则称D是强连通的. 经过图G的每条边一次且仅一次,而且走遍每个结点的通类,称为欧拉通路。 经过图G的每条边一次且仅一次的回路,称为欧拉回路,具有欧拉回路的图称为欧拉图。 注:①欧拉回路要求边不能重复,结点可以重复.笔不离开纸,个里及地疋元所有的边且走过所有结点,就是所谓的一笔画.。 ②凡是一笔画中出现的交点处,线一出一进总应该通过偶数条(偶度点),只有作为起点和终点的两点才有可能通过奇数条(奇度点). 习题:P271,1,4,13,21,22,34 定义 :经过图中每个顶点一次且仅一次的通路(回路),称为哈密尔顿通路(哈密尔顿回路).存在哈密尔顿回路的图叫哈密尔顿图. 注意:欧拉图与哈密尔顿图研究目的不同,前者要遍历图的所有边,后者要遍历图的所有点。 虽然都是遍历问题,两者的困难程度却大不相同.欧拉图问题,欧拉已经解决了,而哈密尔顿问题却是一个至今仍未解决的难题,在大多数情况下,人们还是采用尝试求解方法来解决。 哈密尔顿图的判定定理1 设G是n(n≥3)阶无向简单图. ①若G中任何一对不相邻的顶点的度数之和都大于等于n-1,则G中存在哈密尔顿通路; ②若G中任何一对不相邻的顶点的度数之和都大于等于n,则G是哈密尔顿图. 哈密尔顿图的判定定理2 在n(n≥2)阶有向图D=<V,E>中,如果所有有向边均用无向边代替,所得无向图中含生成子图K。,则有向图D中存在哈密尔顿通路. 推论n(n≥3)阶有向完全图是哈密尔顿图. 欧拉:每条边一次 哈密尔顿(H回路):每个节点一次可能有哈密尔顿回路,没有欧拉回路 哈密尔顿回路还没找到简单的判别条件 20节tt白2023-05-23 12:58:251
离散数学,第一二道题,能否一笔画,哈密顿回路
依据判断1包含顶点图, 任意两顶点度数都于n-1(即于等于n-1), 则存哈密尔顿通路2包含顶点图, 任意两顶点度数都于n(即于等于n), 则存哈密尔顿路存哈密尔顿路存哈密尔顿路通路(连通)路(任意顶点发都该顶点)韦斯特兰2023-05-23 12:58:231
离散数学问题,哈密顿图求解问题,求解,谢谢!
以7个人a,b,c,d,e,f,g作为图的顶点,如果两个人说同一种语言,则对应两个顶点之间有边。如此得到无向图G,寻找G的一条哈密顿回路,这个很简单,从任意一个顶点出发,确定回路。比如abdfgeca,按照这个顺序排座,每个人都能和他身边的人交谈。北营2023-05-23 12:58:231
离散数学,判断哈密顿通路的问题
设G是n阶无向简单图,若对于G中任意不相邻的顶点u、v,均有d(u)+d(v)>=n-1则G中存在哈密顿通路这个没错,但请注意:这个条件只是充分条件不是必要条件也就是说满足该条件一定存在哈密顿通路但不满足该条件不一定不存在哈密顿通路ardim2023-05-23 12:58:231
【离散数学】图论(四)哈密顿回路(Hamiltonian cycle)
在一个回路中,除了经过初始结点两次以外,恰好经过每个结点 一次 ,则称此回路为哈密顿回路,哈密顿回路中每个结点都为偶结点 通过上述几点,可得出上图中不存在哈密顿回路 这个问题是基于寻找哈密顿回路的基础上,只不过所对应的图是加权无向图,在接下来。 这一篇的内容就到此为止了,接下来会有一篇文章专门介绍旅行推销员问题问题,谢谢大家!ardim2023-05-23 12:58:221
如何判定哈密顿回路 离散数学中 谢谢
答:没有什么更好的办法。有一个必要条件,可用它判断哪个图没有哈密顿回路。若图G=<V,E>中具有一条哈密顿回路,则对于结点集V的每个非空子集S均有W(G-S)£ |S|成立,其中W(G-S)是(G-S)中连通分支数。hi投2023-05-23 12:58:222
【离散数学】证明在 K 9 中存在4条边不重的哈密尔顿回路
用“去哈密顿圈”的方法肯定是不行的。你可以这样想:即使4-正则图行了,那么2-正则图也不行。举个最简单的2-正则图的反例:9个点,其中4个点构成一个圈,另外5个点构成一个圈,这就是个2-正则图,但没有哈密顿圈,因为2个圈之间是独立的,根本不连通。证明方法如下。证明方法是经过仔细设计的4个哈密顿圈,最简单的方法就是把4个哈密顿圈画出来。经典的方法中,4个哈密顿圈如下图:上图是1个哈密顿圈。9个点,左边8个,右边1个。左边8个点用红线连接,然后再将首尾与第9个点用绿线连接。另外3个哈密顿圈就是把左边8个点的子图分别转45度、90度、135度,然后再与右边的点连接。BTW:用这种构造方法,可以证明:对任意 2m+1 个点的完全图,都有 m 个“边不重”的哈密顿圈。LuckySXyd2023-05-23 12:58:221
(离散数学)欧拉通路(回路)和哈密顿通路(回路)有什么区别?
从它们的定义可看出区别:欧拉通路指的是通过每一条边一次……,而哈密顿通路是通过每一个顶点一次……无尘剑 2023-05-23 12:58:221
数学家欧拉是怎样解决"七桥问题"的拜托各位了 3Q
七桥问题Seven Bridges Problem 18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。 有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。 当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。 Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。 後来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最後回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成. 欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。 接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案! 1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。 七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。 此题被人教版小学数学第十二册书收录.在95页。 此题也被人教版初中第一册收录.在一百二十一页. 一笔划:■⒈凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。 ■⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。画时必须把一个奇点为起点,另一个奇点终点。 ■⒊其他情况的图都不能一笔画出。(奇点数除以二便可算出此图需几笔画成。)Jm-R2023-05-23 12:58:201
数学家欧拉是怎样解决"七桥问题"的
七桥问题Seven Bridges Problem 18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。 有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。 当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。 Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。 後来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最後回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成. 欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。 接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案! 1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。 七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。 此题被人教版小学数学第十二册书收录.在95页。 此题也被人教版初中第一册收录.在一百二十一页. 一笔划:■⒈凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。 ■⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。画时必须把一个奇点为起点,另一个奇点终点。 ■⒊其他情况的图都不能一笔画出。(奇点数除以二便可算出此图需几笔画成。)再也不做站长了2023-05-23 12:58:191
离散数学 若图G是一个欧拉图,则图G中存在欧拉路
这一题是错误的,存在欧拉路的充要条件是有2个奇点但欧拉图中,是有欧拉回路,没有奇点九万里风9 2023-05-23 12:58:182
离散数学欧拉路径和欧拉回路问题
欧拉路径包括欧拉路(不形成回路)和欧拉回路两种情况。 连通无向图,当有零个奇数度节点,即没有奇数度节点,此时所有节点度数都是偶数,一定有欧拉回路。具有欧拉回路的图称为欧拉图。 连通无向图,当只有两个奇数度节点,其他节点度数都为偶数时,一定有欧拉路。tt白2023-05-23 12:58:171
求大神回答,用C语言实现离散数学中的Fleury算法,最后结果要求1、判断是否为欧拉图;2、输出欧拉回路?
#include "SqStack.h" //堆栈的常见操作#include "Queue.h"//队列的常见操作typedef int Graph[200][200];int v,e;void DFS(Graph &G,SqStack &S,int x,int t){int k=0,i,m,a;Push(S,x);for(i=t;i<v;i++)if(G[i][x]>0){k=1;G[i][x]=0; //删除此边G[x][i]=0;DFS(G,S,i,0);break;}//if,forif(k==0){Pop(S);GetTop(S,m);G[x][m]=1;G[m][x]=1;a=x+1;if(StackLength(S)!=e){Pop(S);DFS(G,S,m,a);}//ifelsePush(S,x);}//if}//DFSint BFSTest(Graph G){int a[200],x,i,k=0;LinkQueue Q;InitQueue(Q);EnQueue(Q,0);for(i=0;i<v;i++)a[i]=0;a[0]=1;while(!QueueEmpty(Q)){DeQueue(Q,x);for(i=0;i<v;i++)if(G[x][i]>0)if(a[i]!=1){a[i]=1;EnQueue(Q,i);}//if}//whilefor(i=0;i<v;i++)if(a[i]==0){k=1;break;}if(k==1)return 0;elsereturn 1;}void Euler(Graph &G,int x){int m;SqStack S;InitStack(S);DFS(G,S,x,0);printf("该图的一个欧拉回路为:");while(!StackEmpty(S)){GetTop(S,m);printf("->v%d",m);Pop(S);}//while}void InputM1(Graph &G){int h,z;printf("Please input顶点数和边数 ");scanf("%d",&v);scanf("%d",&e);for(int i=0;i<v;i++)for(int j=0;j<v;j++)G[i][j]=0;printf("please int the邻接矩阵的值(起点(数字)终点(数字)): ");for(int i=0;i<e;i++){scanf("%d",&h);scanf("%d",&z);G[h-1][z-1]=1;G[z-1][h-1]=1;}//for}//InputM1int main(){int i,j,sum,k=0;Graph G;InputM1(G);if(BFSTest(G)==0){printf("该图不是连通图! ");exit(0);}//iffor(i=0;i<v;i++){sum=0;for(j=0;j<v;j++)sum+=G[i][j];if(sum%2==1){k=1;break;}//if}//forif(k==1) printf("该图不存在欧拉回路! ");elseEuler(G,0);return 1;}水元素sl2023-05-23 12:58:161
离散数学题关于有桥的图不是欧拉图的证明
这不是显然的么?豆豆staR2023-05-23 12:58:163
离散数学题目 无向图G存在欧拉回路,当且仅当G连通且 .
无向图G存在欧拉回路,当且仅当G连通且该图所有顶点度数都是偶数。真颛2023-05-23 12:58:161
【离散数学】图论(三)欧拉回路 (Euler Cycle)
第一眼看见,比划一下,就知道,在所有桥都只能走一遍的前提下,不能把这个地方所有的桥都走遍。 也就是说,如果遍历这个图,必须要重复经过某些边。 为了纪念欧拉,在一个图G中包含G的所有结点和边的 回路 称为 欧拉回路 ,包含G的所有结点和边的 路径 称为 欧拉路径 也就是说,如果欧拉路径闭合,就成了欧拉回路 注意 回路 的概念:从v i 到v i 的、长度非0的、不存在 重复边 的路径 所以上文所说的科尼斯堡七桥并不是欧拉回路。 在图G中存在欧拉回路的前提条件为: 关于一个图中是否存在欧拉回路,需要先说明两个概念: 由于欧拉回路的性质:只能经过每条边一次,所以,对于每一个结点,至少需要有 2n 条边连接该结点(n = 0,1,2,...n),n = 0时,G中只含有一个结点v,则称路径(v)是G的欧拉回路。 也就是说,图G中存在欧拉回路的充要条件是G中每个结点都是偶结点。 设图G存在欧拉回路,则回路的起点和终点是同一结点,含有一条出边和一条入边,所以该结点为偶结点,以此类推,每个结点都连接有 2n (n = 0,1,2,...n) 条边。 图G中存在欧拉路径的充要条件和G中存在欧拉回路的充要条件有些相似: 若奇结点的个数为0,则图G中存在欧拉回路,欧拉回路也是欧拉路径的一种。 将两个奇结点相连,可知这是欧拉回路 (v 1 ,v 2 ,v 3 ,v 4 ,v 5 ,v 6 ,v 3 ,v 1 ) 欧拉路径(v 1 ,v 2 ,v 3 ,v 4 ,v 5 ,v 6 ,v 3 ),起点和终点分别是两个奇结点 关于欧拉回路和欧拉路径的介绍就到此了,谢谢大家!ardim2023-05-23 12:58:151
离散数学欧拉路径和欧拉回路问题
欧拉路径包括欧拉路(不形成回路)和欧拉回路两种情况。连通无向图,当有零个奇数度节点,即没有奇数度节点,此时所有节点度数都是偶数,一定有欧拉回路。具有欧拉回路的图称为欧拉图。连通无向图,当只有两个奇数度节点,其他节点度数都为偶数时,一定有欧拉路。可桃可挑2023-05-23 12:58:151
离散数学中如何判断一个数列是不是无向简单图的度数列
首先要求所有数(度)之和是偶数,其次判断是否为简单图,方法:依次删去度最大的点,递归下去,最后可确定是否是简单图。肖振2023-05-23 12:58:143
离散数学,无向完全图,补图问题,想问下这个(9)和(17)为什么互补?
恒等关系:R={<x,x>|x∈A},记为IA或EA如:A={a,b,c,d},则IA={<a,a>,<b,b>,<c,c>,<d,d>}自反关系对于A中的任意元素x,<x,x>都在R中。即(∀x)(x∈A→xRx)比如:A={1,2,3}上的如下关系具有自反性吗?R={<1,1>,<2,2>} 无S={<1,1>,<2,2>,<3,3>} 有T={<1,1>,<2,1>,<2,2>,<3,1>,<3,3>} 有Jm-R2023-05-23 12:58:142
离散数学中画出非同构的无向树是什么意思?主要是非同构不理解,求举例
同构,书上是有定义的看不懂吗?大概意思就是拓扑不变把一棵树拓扑变形得到另一棵树就叫同构例如逆波兰表达式:ab+c*和cba+*是同构的把ab+c*做垂直翻转就得到cba+*此后故乡只2023-05-23 12:58:131
离散数学:无向图中一个环算几条边
不管是无向图还是有向图,环都算一条边FinCloud2023-05-23 12:58:134
离散数学:若有向图是G是个欧拉图
关于欧拉图的定理 1.无向连通图G是欧拉图,当且仅当G不含奇数度结点(G的所有结点度数为偶数); 2.无向连通图G含有欧拉通路,当且仅当G有零个或两个奇数度的结点; 3.有向连通图D是欧拉图,当且仅当D中每个结点的入度=出度 4.有向连通图D含有欧拉通路,当且仅当D中除两个结点外,其余每个结点的入度=出度,且此两点满足deg-(u)-deg+(v)=±1。(起始点s的入读=出度+1,结束点t的出度=入度+1 或两个点的入读=出度)北有云溪2023-05-23 12:58:101
离散数学,可达矩阵表示有向图
先写出图的邻接矩阵a求出a^2,a^3,a^4,a^5(1)初级回路:a,a^2,a^3,a^4中主对角线上元素的和(2)a^4中第1行第2列的元素a^5中第1行第1列的元素(3)v1,v3,v4(4)a+a^2+a^3+a^4然后将所有非0元素改为1就是可达矩阵肖振2023-05-23 12:58:101
离散数学中的有向图中含有孤立点吗
可以含有孤立点,也可以没有一个有向图就是一个二元组V是顶点集E是边集孤立点就是无边关联的点有向图里可以存在一个不关联边的点。即孤立点望采纳大鱼炖火锅2023-05-23 12:58:081
离散数学中求邻接矩阵A的方幂怎么计算
其实就是矩阵的乘法乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和Jm-R2023-05-23 12:58:061
离散数学中 请问关系矩阵与邻接矩阵有什么异同?
好难……阿啵呲嘚2023-05-23 12:58:044
求解离散数学中关于邻接矩阵的问题。
长度为3的通路数:先求邻接矩阵A^3A^3中的元素a34即为结点v3到结点v4长度为3的通路数2. 先求邻接矩阵A^4A^4中的元素a22即为结点v2长度为4的回路数u投在线2023-05-23 12:58:041
集合论 关系 微积分 数论 图论 组合数学 谓词逻辑 推理系统 群论 拓扑学 分形学 图形学 矩阵
都学最好,因为我计算机专业,这些课程都学过了u投在线2023-05-23 12:58:023
离散数学中的有向图中含有孤立点吗
可以含有孤立点,也可以没有一个有向图就是一个二元组<V,E>V是顶点集 E是边集孤立点就是无边关联的点有向图里可以存在一个不关联边的点。即孤立点望采纳余辉2023-05-23 12:58:001
什么叫交替行走有向图数学
通路叫交替行走有向图数学。根据查询相关公开信息通路图论中的概念。一个图中(无向图或有向图),点与边交替连接成为通路,一条通路有它的起点和终点叫交替行走。阿啵呲嘚2023-05-23 12:58:001
概率密度的数学期望和方差是多少啊?
概率密度:f(x)=(1/2√π) exp{-(x-3)²/2*2} 根据题中正态概率密度函数表达式就可以立马得到随机变量的数学期望和方差:数学期望:μ = 3方差: σ²= 2连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。扩展资料:随机数据的概率密度函数表示瞬时幅值落在某指定范围内的概率。因此是幅值的函数。它随所取范围的幅值而变化。概率密度函数f(x) 具有下列性质:(1)f(x)≧0;(2)∫f(x)d(x)=1;(3) P(a<X≦b)=∫f(x)dx.bikbok2023-05-23 12:57:571
高中数学基础10:二项分布与二项式定理
1)每次试验是在同样条件下进行 2)每次试验都是只有两种结果:发生与不发生 3)各次试验中的事件是相互独立的 4)每次试验,某事件发生的概率是相同的 伯努利试验(Bernoulli experiment)是在同样的条件下重复地、相互独立地进行的一种随机试验,其特点是该随机试验只有两种可能结果:发生或者不发生。我们假设该项试验独立重复地进行了n次,那么就称这一系列重复独立的随机试验为n重伯努利试验,或称为伯努利概型。单个伯努利试验是没有多大意义的,然而,当我们反复进行伯努利试验,去观察这些试验有多少是成功的,多少是失败的,事情就变得有意义了,这些累计记录包含了很多潜在的非常有用的信息。 几何分布 (Geometric distribution)是离散型概率分布。其中一种定义为:在n次 伯努利试验 中,试验k次才得到第一次成功的机率。详细的说,是: 前k-1次皆失败,第k次成功的概率 记作X ~ G (p) 概率为p的事件A,以X记A首次发生所进行的试验次数,则X的分布列: 举例:每次投篮命中率0.7,问投篮20第1次命中(第一次命中一次就停止投篮)的概率 P(X = k) = p(1 − p)[图片上传失败...(image-a5250d-1520948688562)] 则k=1,2,3,……19,,20 k=1(表示第一次就命中的概率)P(X = 1)=0.7[图片上传失败...(image-760a66-1520948688562)] =0.7 k=2(表示第一次失败,第二次成功的概率) …… k=20(表示前次19次均失败,第20次成功的概率) 是统计学上一种离散概率分布。它描述了由有限个物件中抽出n个物件, 成功抽出指定种类的物件的次数(不归还 )。 在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k,则 参考资料 https://www.zhihu.com/question/38191693可桃可挑2023-05-23 12:57:541
高等数学问题,条件概率(急)要用条件概率的方法算
设甲第一次不能击落乙的事件a,则p(a)=0.8;乙击落甲的事件为bp(b|a)表示在a发生的情况下b发生的概率,p(a|b)=0.3根据p(ab)=p(b|a)×p(a)=0.24第二问,设甲第一次击落乙的事件为c,乙击落甲的事件为d,甲第二次击落乙的事件为f则乙被击落有两种可能:1,第一次被甲击落,p(第一次被甲击落)=p(c)=0.2p(第二次被甲击落)=(1-p(c))×(1-p(d))×p(f)=0.224p(乙被击落)=p(第一次被甲击落)+p(第二次被甲击落)=0.424mlhxueli 2023-05-23 12:57:541
几何分布的数学期望
这不就是(0,1)分布嘛,北境漫步2023-05-23 12:57:503
数学的分类?
参看百度百科,网上肯定有的!墨然殇2023-05-23 12:57:446
计算机知识中“离散数学”是怎么一回事?
离散数学是随着计算机科学的发展和计算机应用的日趋广泛而逐渐形成的一门学科, 是 20 世纪 70 年代初期形成的新兴学科, 是近代数学的一个分支 , 主要研究有限个或可数无限个离散量的结构和相互关系, 离散数量关系和离散结构数学结构模型 。由于计算机科学的迅速发展,与其有关的领域中,提出了许多有关离散量的理论问题,需要用某些数学的工具做出描述和深化。离散数学把计算机科学中所涉及到的研究离散量的数学综合在一起,进行较系统的、全面的论述,为研究计算机科学的相关问题提供了有力的工具。 离散数学的许多概念及问题自然地出现在数学的许多分支中,并且也在其它学科中发现了它的应用。这些包括在信息论和电子工程中的应用,在统计物理,在化学及在分子生物学。例如,像 Ramsey 理论、组合集合论、拟阵理论、极值图论、组合几何及相差论的组合论等论题。还包括在计算机学科的应用,如计算机科学中的数据结构、操作系统、编译理论、算法分析、逻辑设计、系统结构、容错诊断、机器定理证明等理论都是与数学和科学世界的大部分问题密切相关的,并且已经发现这些论题在其它领域中有着众多的应用。康康map2023-05-23 12:57:441
组合数学是一门怎样的学科,与计算机有关系吗
广义的组合数学就是离散数学,狭义的组合数学是图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。 组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化(最佳组合)等。历史及发展虽然数数始于以结计数的远古时代,由于那时人的智力的发展尚处于低级阶段,谈不上有什么技巧。随着人们对于数的了解和研究,在形成与数密切相关的数学分支的过程中,如数论、代数、函数论以至泛函的形成与发展,逐步地从数的多样性发现数的多样性,产生了各种数数的技巧。同时,在人们对于形有了深入的了解和研究的基础上,在形成与形密切相关的各种数学分支的过程中,如几何学、拓扑学以至范畴论的形成与发展,逐步地从形的多样性也发现了数形的多样性,产生了各种数形的技巧。近代的集合论、数理逻辑等反映了潜在的数与形之间的结合。而现代的代数拓扑和代数几何等则将数与形密切地联系在一起了。这些,对于以数的技巧为中心课题的近代组合学的形成与发展都产生了而且还将会继续产生深刻的影响。由此观之,组合学与其他数学分支有着必然的密切联系。它的一些研究内容与方法来自各个分支也应用于各个分支。当然,组合学与其他数学分支一样也有其独特的研究问题与方法,它源于人们对于客观世界中存在的数与形及其关系的发现和认识。例如,中国古代的《易经》中用十个天干和十二个地支以六十为周期来记载月和年,以及在洛书河图中关于幻方的记载,是人们至今所了解的最早发现的组合问题。于11和12世纪间,贾宪就发现了二项式系数,杨辉将它整理记载在他的《续古抉奇法》一书中。这就是中国通常称的杨辉三角。事实上,于12世纪印度的婆什迦罗第二也发现了这种组合数。13世纪波斯的哲学家曾讲授过此类三角。而在西方,布莱兹·帕斯卡发现这个三角形是在17世纪中期。这个三角形在其他数学分支的应用也是屡见不鲜的。同时,帕斯卡和费马均发现了许多与概率论有关的经典组合学的结果。因此,西方人认为组合学开始于17世纪。组合学一词是德国数学家莱布尼茨在数学的意义下首次应用。也许,在那时他已经预感到了其将来的蓬勃发展。然而只有到了18世纪欧拉所处时代,组合学才可以说开始了作为一门科学的发展,因为那时,他解决了哥尼斯堡七桥问题,发现了多面体(首先是凸多面体,即平面图的情形)的顶点数、边数和面数之间的简单关系。现在已被人们称为欧拉公式。甚至,当今人们所称的哈密顿圈的首创者也应该是欧拉。这些不但使欧拉成为组合学的一个重要组成部分——图论而且也成为占据现代数学舞台中心的拓扑学发展的先驱。同时,他对导致当今组合学中的另一个重要组成部分——组合设计中的拉丁方的研究所提出的猜想,人们称为欧拉猜想,直到1959年才得到完全的解决。于19世纪初,高斯提出的组合系数,今称高斯系数,在经典组合学中也占有重要地位。同时,他还研究过平面上的闭曲线的相交问题,由此所提出的猜想称为高斯猜想,它直到20世纪才得到解决。这个问题不仅贡献于拓扑学,而且也贡献于组合学中图论的发展。同在19世纪,由乔治·布尔发现且被当今人们称为布尔代数的分支已经成为组合学中序理论的基石。当然,在这一时期,人们还研究其他许多组合问题,它们中的大多数是娱乐性的。20世纪初期,庞加莱联系多面体问题发展了组合学的概念与方法,导致了近代拓扑学从组合拓扑学到代数拓扑学的发展。于20世纪的中、后期,组合学发展之迅速也许是人们意想不到的。首先,于1920年费希尔(Fisher,R.A.)和耶茨(Yates,F.)发展了实验设计的统计理论,其结果导致后来的信息论,特别是编码理论的形成与发展.于1939年,坎托罗维奇(Канторович,Л.В.)发现了线性规划问题并提出解乘数法。于1947年丹齐克(Dantzig,G.B.)给出了一般的线性规划模型和理论,他所创立的单纯形方法奠定了这一理论的基础,阐明了其解集的组合结构。直到今天它仍然是应用得最广泛的数学方法之一。这些又导致以网络流为代表的运筹学中的一系列问题的形成与发展。开拓了人们目前称为组合最优化的一个组合学的新分支。在20世纪50年代,中国也发现并解决了一类称为运输问题的线性规划的图上作业法,它与一般的网络流理论确有异曲同工之妙。在此基础上又出现了国际上通称的中国邮递员问题。另一方面,自1940年以来,生于英国的塔特(Tutte,W.T.)在解决拼方问题中取得了一系列有关图论的结果,这些不仅开辟了现今图论发展的许多新研究领域,而且对于20世纪30年代,惠特尼(Whitney,H.)提出的拟阵论以及人们称之为组合几何的发展都起到了核心的推动作用。应该特别提到的是在这一时期,随着电子技术和计算机科学的发展愈来愈显示出组合学的潜在力量。同时,也为组合学的发展提出了许多新的研究课题。例如,以大规模和超大规模集成电路设计为中心的计算机辅助设计提出了层出不穷的问题。其中一些问题的研究与发展正在形成一种新的几何,目前人们称之为组合计算几何。关于算法复杂性的研究,自1961年库克(Cook,S.A.)提出NP完全性理论以来,已经将这一思想渗透到组合学的各个分支以至数学和计算机科学中的一些分支。近20年来,用组合学中的方法已经解决了一些即使在整个数学领域也是具有挑战性的难题。例如,范·德·瓦尔登(Van der Waerden,B.L.)于1926年提出的关于双随机矩阵积和式猜想的证明;希伍德(Heawood,P.J.)于1890年提出的曲面地图着色猜想的解决;著名的四色定理的计算机验证和扭结问题的新组合不变量发现等。在数学中已经或正在形成着诸如组合拓扑、组合几何、组合数论、组合矩阵论、组合群论等与组合学密切相关的交叉学科。此外,组合学也正在渗透到其他自然科学以及社会科学的各个方面,例如,物理学、力学、化学、生物学、遗传学、心理学以及经济学、管理学甚至政治学等。[1]分支根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。[1]中国的研究者在中国当代的数学家中,较早地在组合学中的不同方面作出过贡献的有华罗庚、吴文俊、柯召、万哲先、张里千和陆家羲等。其中,万哲先和他领导的研究组在有限几何方面的系统工作不仅对于组合设计而且对于图的对称性的研究都有影响。陆家羲的有关不交斯坦纳三元系大集的一系列的文章不仅解决了组合设计方面的一个难题,而且他所创立的方法对于其后的研究者也产生了和正产生着积极的作用。[1]组合数学中的著名问题计算一些物品在特定条件下分组的方法数目。这些是关于排列、组合和整数分拆的。地图着色问题:对世界地图着色,每一个国家使用一种颜色。如果要求相邻国家的颜色相异,是否总共只需四种颜色?这是图论的问题。船夫过河问题:船夫要把一匹狼、一只羊和一棵白菜运过河。只要船夫不在场,羊就会吃白菜、狼就会吃羊。船夫的船每次只能运送一种东西。怎样把所有东西都运过河?这是线性规划的问题。中国邮差问题:由中国组合数学家管梅谷教授提出。邮递员要穿过城市的每一条路至少一次,怎样行走走过的路程最短?这不是一个NP完全问题,存在多项式复杂度算法:先求出度为奇数的点,用匹配算法算出这些点间的连接方式,然后再用欧拉路径算法求解。这也是图论的问题。任务分配问题(也称婚配问题):有一些员工要完成一些任务。各个员工完成不同任务所花费的时间都不同。每个员工只分配一项任务。每项任务只被分配给一个员工。怎样分配员工与任务以使所花费的时间最少?这是线性规划的问题。如何构作幻方。大乐透meira2023-05-23 12:57:434
"惠特尼"数学家的简介
惠特尼,H.(Whitney,Hassler)1907年3月23日生于美国纽约;1989年5月10日卒于普林斯顿.数学、数学教育. 惠特尼的祖父是语言学家,外祖父是著名天文学家S.纽康门(Newcomb,1897—1898年曾任美国数学会主席),父亲是法官.他少时喜欢制作机械玩具,并没有数学上的偏爱.据他自己讲,唯一与数学家生涯有关的是在9岁时思考能被9整除的数的公式,认为与10有关,而且据此推出被11整除的数的公式.小学、中学期间只学一点点数学,1921—1923年他到瑞士上学,他学一年法文、一年德文之外就学爬山.1924年上耶鲁大学学习物理,其间也没听过数学,所用的微积分是他自修的,学完也就忘了.1928年取得物理学的学士学位后,又继续专攻音乐,1929年取得音乐学士学位.他一生热爱音乐,有高度音乐才华,会弹奏钢琴,演奏小提琴、中提琴、双簧管等乐器,曾担任普林斯顿交响乐团首席小提琴手.还爱好爬山,《全集》中有他14岁时站在险峻的瑞士阿尔卑斯山峰顶端的照片.大学毕业后,由于对四色问题感兴趣,去哈佛大学考G.D.伯克霍夫(Birkhoff)的博士研究生.但第一次考试没有通过,这使伯克霍夫极为恼火.不过伯克霍夫还是收留了这位后来决不逊于自己的学生,而且在自己不专攻的领域指导他.不久,惠特尼的论文就一篇接一篇地出来了,在他1932年拿到博士学位时,他写了近10篇论文,完全是图论的.博士论文的题目是“图的着色”(The coloring of graphs),其中定义及计算“色数”.由于他工作出色,1931—1933年任美国国家研究委员会研究员,1933年在哈佛大学数学系任讲师,1946年升为教授.这时,他的方向也从图论改为拓扑,1935年9月参加在苏联莫斯科举行的国际拓扑学大会.而这次大会成为拓扑学史的里程碑,用他最后一篇论文的题目来说就是“莫斯科1935:拓扑学移向美国” (Moscow 1935:Topology moving toward America).文中写道,会上H.霍普夫(Hopf)成为他最喜欢的拓扑学家,当时所有大人物都去了,拓扑学的面貌正在改变:四个人不约而同地引进上同调,同伦论也正式出现,在向量场问题上的应用导致纤维丛概念的产生,而这种大改变与惠特尼的工作密不可分,也决定了惠特尼后来10年的工作方向. 第二次世界大战期间,他参与战时研究工作,1943—1945年在科学研究发展局国防研究委员会应用数学组搞研究.战后,他在美国数学会作1946年度大会讲演,题目是“光滑流形的拓扑学”,1948一1950年任美国数学会副主席,1944—1949年任《美国数学杂志》(American Journal of Mathematics)的编辑,1949—1954年任《数学评论》(Mathematical review)的编辑.1950年他任在哈佛召开的国际数学家大会程序委员会委员,在大会上作“n维空间中的r维积分”的报告. 1952年他被任命为普林斯顿高级研究院教授,1977年退休.这个时期他曾任美国国家科学基金会数学组第一任主席,1966一1967年任国家研究委员会支持数学科学研究委员会委员. 1967年起,他的兴趣完全转向数学教育,特别是中小学教育.他亲自深入课堂,了解学生的思想及感觉,发现数学教学中许多问题.他指出小孩的直觉方式与数学家的方式十分接近.当时的学校教学目标狭窄,语言贫乏,学生碰到问题只会代公式,没有学会思考.教学是灌输莫名其妙的概念以及应付标准化的考试,学生只能被动接受.为此他制订了教师进修计划,写了教师指导教材.他是美国、英国、比利时、巴西等国的数学教学的顾问.1979—1982年任国际数学教育委员会中心主席. 由于他的非凡贡献,他获得很多荣誉.1945年他被选为美国国家科学院院士,1976年被授予美国国家科学奖章,1982年获沃尔夫(Wolf)奖,1985年以其一生成就获美国数学会斯蒂尔(Steele)奖. 惠特尼一生发表近80篇论文,三种专著,即《几何积分论》(Geometric integration theory,1957)、《复解析簇》(Complexanalytic varieties,1972)和《数学活动》(Math activities,1974).他是一系列新概念、新理论的开创者,其中最主要的是拟阵、上同调、纤维丛、示性类、分类空间、分层等. 1.图论 惠特尼一生对四色问题感兴趣,他最早和最后的数学论文都是关于四色问题的.他给出四色问题的等价命题并研究可约性问题.从四色问题出发他研究一般图论,特别是得出两图同胚的条件:如G和 G"是两连通图,均不包含三个形如 ab,ac,ad的弧.若存在任意具有公共顶点的两弧到另一图的具有公共顶点的两弧之间的一一对应,则两图同胚.他定义图的连通度,并给出n重连通的充分必要条件(所谓n重连通是指至少n+1个顶点的图不可能因去掉n-1个或更少的顶点以及连接它们的弧而使所得的图不连通.如果图Gn重连通但不n+1重连通,则称连通度为n).他还定义图G的对偶G",证明图G可嵌入平面的充分必要条件是G具有对偶图G",从而给著名的K.库拉托夫斯基(Ku-ratowski)不可嵌入平面图的定理一个直接的组合证明. 他的博士论文是关于图的着色问题,其中证明M(λ)的公式并进行计算,这里M(λ)是用λ种颜色给一图不同着色方法数,他引进一组数mij,它们不仅可用来计算M(λ),还可定义图G的拓扑不变量; 其中R为图G的秩,N为G的零度.他利用这些不变量研究图的分类问题. 惠特尼在组合论方面的最大成就是他引进拟阵(matroid)理论,这是一种抽象的线性相关性理论,它不仅包含图论为其特例,而且还包括网络理论、综合几何以及横截(transversal)理论等.他的出发点很简单,考虑矩阵M的列C1,C2,…,Cn,这些列的子集或者线性独立或者线性相关,从而所有子集可划分为两类,这些类并非任意,它必须满足下面两个条件: (1)一个独立集的任何子集也是独立的; (2)如果Np及Np+1分别是p个列及p+1个列的独立集,则Np加上Np+1中的某个列构成一个独立的p+1集. 他把满足这两个条件的系统称为拟阵,并把许多图的性质推广到拟阵上. 2.可微映射和奇点理论 (1)可微函数的解析延拓 惠特尼对拓扑学的主要贡献是建立微分拓扑学,为此,必须将拓扑学考虑的连续映射推广到可微情形.惠特尼在他早期工作中(1932—1942)就为此奠定基础. 1925年苏联数学家П.C.乌雷松(Улысон)证明,如A是n维欧氏空间E中的闭集(有界或无界),f(x)为A中定义的连续函数,则f可延拓成为整个E上的连续函数F.惠特尼在1932年证明,存在F不仅连续,而且在E—A上可微,甚至解析;如果f(x)在A中属于Cm,则在A中F与f相等,且F的到m阶的各阶导数与f的各阶导数对应相等.其后他又考虑A为任意子集合的情形.此时在包含A的开集上可微阶降1.他还研究泰勒展开的余项的可微性问题,这些对研究奇点理论很重要. (2)奇点理论 奇点理论是惠特尼最重要的创造之一,它来源于微分嵌入及浸入问题,奇点是临界点的推广.1942年他首先 研究n维欧几里得空间En到E2n-1的微分映射f的奇点,发现使f微小变化,可得f*,它的奇点是弧立奇点,并可化为标准型: yi=xi(i=2,…,n), ym+i-1=xixi(i=2,…,n). 1955年,他首先对于平面E2到E的奇点类型进行分类;结果只有两类,一类是折点(fold),其标准型为 另一类是尖点(Cusp),其标准型为 通过这篇论文,开创了奇点理论.1956年他又对En→Em的微分映射奇点的一些情形进行分类并得出标准型,其中包括n≥m=2,3以及(n,m)=(4,4),(5,5),(5,4),(n,2n-2)等情形.对于其他的En→Em,其中n=3,4,m=4,…,2n-3,在当时所知甚少.这个基本的奇点分类问题连同其他问题形成了奇点理论的热门.同年R.托姆(Thorm)运用自己的横截理论以及普遍开折理论首先取得突破,这项研究成为后来他的突变理论的基础.其后1968—1971年J.麦泽(Mather)建立稳定性理论及决定性理论,1967年起以苏联数学家B.И.阿诺尔德(Арнолъв)为首的苏联学派在理论及应用方面取得辉煌的成就. 1948年他还发表了“论可微函数的理想”(On ideals of di-fferentiable functions),这开辟了奇点理论另一个新方向.后来B.马格朗日(Malgrange)等对这方面有很大突破,包括证明“预备定理”. (3)分层理论 分层理论是惠特尼最后创造的理论,从某种意义上说,也是奇点理论的自然延续.通常研究的欧氏空间及流形均有很好的齐性结构(局部具有相同的结构),但这点即使对代数簇也不满足,特别是由解析几何延续下来的实代数簇一般存在奇点.从1957年到1965年惠特尼研究实代数簇的拓扑学,并讨论把簇分解为流形,1957年引进惠特尼层化的概念,并且对代数簇及解析簇进行层化分解,这概念后来被托姆发展成分层集理论,在奇点的局部及大范围研究中起重要作用.1965年S.武雅谢维茨(ojasiewica)证明任何半解析集均有惠特尼分层.1965年惠特尼对解析簇定义了切向量、切平面族及切锥的概念,并考虑剖分时切集的协调问题. 3.微分流形的拓扑学 虽然庞加莱甚至黎曼已研究微分流形的拓扑学,但是由于工具不足,真正创立微分流形的拓扑学以及微分拓扑学的是惠特尼,他在1936年的论文“微分流形”(Differentiable manifolds)中,奠定了微分流形理论基础.他给出微分流形的内蕴定义,定义其上的Cr结构(1≤r≤∞),他证明所有Cr流形的Cr结构都包含C∞坐标系,且其C∞结构唯一确定.这个C∞结构称为该流形的可微结构或微分结构或光滑结构,相应的流形称为可徽流形或微分流形或光滑流形,微分流形与拓扑流形有本质的差别,即一个拓扑流形上可以不容许任何微分结构也可以容许多个微分结构,但是任何微分结构部容许实解析结构,而且还容许黎曼度量,这些也是惠特尼证明的.在这篇论文中,他证明了一些最基本的定理,特别是嵌入及浸入定理:任何n维微分流形均可微分嵌入在R2n+1(2n+1维欧氏空间)中,均可微分浸入在R2n中.1944年他又改进为n维微分流形可嵌入于R2n中,可浸入于R2n-1中.对于某些流形,这些结果已臻至善.这个工作开拓了微分流形的一个重要领域,其后,吴文俊等许多拓扑学家做出了贡献. 4.纤维丛及示性类 惠特尼在1935年首次定义真正的“纤维空间”,当时他称为“球空间”,1940年他改称为“球丛”,在1937年及1941年他对此作两个报告,包括许多根本的结果,他还打算对此写一本书,始终没有完成.他的兴趣一直集中于“示性类”(Characteristic class)上.他于1936年和瑞士数学家E.施蒂费尔(Stiefel)在1935年独立地定义这种示性类,后来称为施蒂费尔-惠特尼示性类.他的目的是用示性类来研究微分流形的拓扑学.对此,纤维丛只是一个工具,所以他的定义并非每一细节都讲得很清楚,但是他的定义是很一般的.1940—1950年间,纤维丛成为研究许多拓扑问题(特别是同伦、同调及微分几何问题)的主要工具.1949/1950年度的嘉当讨论班以纤维丛为专题进行系统讨论,1951年N.E.斯廷洛德(Steenrod)的专著《纤维丛的拓扑学》(Topology of fi-ber bundles)的出版,标志着纤维丛理论的成熟,其中惠特尼做出突出贡献. (1)分类问题 从一开始,惠特尼就主要研究纤维丛的分类问题,1937年他对球丛得出分类空间,即格拉斯曼流形Gn,r,并断言底空间为B、秩为r的球丛同构类为〔B,Gn,r〕,即B到Gn,r映射的同伦类(nr),他给出证明概要,1943年斯廷洛德完成了证明,后称惠特尼-斯廷洛德定理. 惠特尼还知道以B为底空间的球丛的丛空间只依赖于B的同伦型.这事实于1939年为J.费尔德波(Feldbau)所证明,另一方面,惠特尼早在1935年,对纤维丛ξ及连续映射g:B"→B构造新纤维丛g *(ξ)并称为g的拉回(Pull-back),在研究纤维丛的分类中至关重要.1959年在和A.道尔德(Dold)合作的论文(文献中),对4维复形上的定向球丛进行分类. (2)示性类 施蒂费尔只考虑微分流形的切丛的示性类,而惠特尼考虑的要广得多,他考虑任意球丛(E,B,P)的底空间B也可以是任意局部有限的单纯复合形.他把示性类定义为施蒂费尔流形Sn,m的整系数同调类.他指出,Sn,m的同调群 1937年,他改用上同调定义未性类.1940年他指出,对于连续映射 g:B"0→B, 如果E"=g*(E)为E的拉回,则 Wr(E")=g*(Wr(E)). 同时他给出惠特尼的和公式:定义同一底空间上两球丛E′,E〃的惠 其中∪表上积,他指出当r≥4,证明“极难”,1941年他只给出E及E′都是线丛的证明.公开发表的第一个证明是吴文俊在1948年给出的.他还用向量丛取代球丛,同年陈省身也发表另一个证明. 惠特尼还给出示性类的形式幂级数以及偶示性类的概念.至此,施蒂费尔-惠特尼示性类的理论基础正式建立.其后,J.米尔诺(Milnor)以惠特尼提出的四个定理为公理开展示性类理论,而且其他的示性类特别是Л.C.庞特里亚金(Понтрягин)示性类及陈省身示性类也是依据施蒂费尔-惠特尼示性类的模式定义及研究的. (3)示性类的应用 示性类在拓扑学及几何学巾起着极为重要的作用,惠特尼本人主要应用示性类来研究浸入问题.例如,他证明8维实射影空间P8(R)不能浸入到R14中,但能浸入在R15中,他的理论后来为吴文俊等所发展. 5.代数拓扑学 1935年是代数拓扑学的转折点,其主要标志是上同调理论与同伦理论的建立.在庞加莱引入同调概念40年后,四位数学家几乎同时独立地引入上同调概念,他们是J.W.亚历山大(Alexander)、惠特尼、E.切赫(ech)、A.H.柯尔莫哥洛夫(Колмогоров).当其他三位在1935年莫斯科会议宣布结果时,惠特尼的结果已经发表,上同调类由于有上积,从而有环结构,比同调包含更多的拓扑信息. 同伦论中,1937年惠特尼用上同调来表述霍普夫-胡列维茨(Hurewicz)判据,如果X是n维局部有限胞腔复形,Y是n维(n-1)连通空间,则f,g:X→Y同伦当且仅当 Hn(Y;Z)→Hn(X;Z). 由此推出 〔X,x0;Y,y0〕→Hn(X;πn(Y)) 是一一对应.对于不同维的映射,这些条件不一定成立,惠特尼在1936年给出过2维复形到2维或3维射影空间的映射同伦的代数条件,但未发表.1941年,H.E.罗宾斯(Robbins)推广到2维复形到任何空间的映射的同伦分类,后来P.奥兰姆(Olum)又大规模地予以简化及推广.对3维复形,庞特里亚金在1941年考虑它到S2的映射同伦分类,其中首先应用新出现的上积.其实惠特尼早在1936年已得出相应结果.1948年,他研究单连通空间R的第二及第三同伦群的关系,并据此给出3维复形k到R中两个连续映射同伦的充分必要条件以及映射扩张的阻碍类.还应该指出,1938年惠特尼引进阿贝尔群的张量积概念,这对代数拓扑学及同调代数是必不可少的工具. 6.几何积分论 1946—1957年间,惠特尼建立几何积分论.它是更一般的积分理论,例如n维空间中的r维积分.借此,他给上链、上闭链等一个解析的解释,例如几何上链是处于“一般位置”的奇异链上的函数.这样,他把 E.嘉当(Cartan)及 G.德·拉姆(de Rham)的外微分形式理论中的可微条件换成李普希茨(Lipschitz)条件得出的积分理论等价于代数上同调理论,对于更一般的李普希茨空间也成立,它包括多面体及绝对邻域收缩核为其特例,特别是把斯托克斯(Stokes)定理推广到李普希茨空间上,他的理论总结在《几何积分论》(1957)一书中.此后故乡只2023-05-23 12:57:431
哈斯勒·惠特尼的数学成就
惠特尼一生发表近80篇论文,三种专著,即《几何积分论》(Geometric integration theory,1957)、《复解析簇》(Complexanalytic varieties,1972)和《数学活动》(Math activities,1974).他是一系列新概念、新理论的开创者,其中最主要的是拟阵、上同调、纤维丛、示性类、分类空间、分层等.图论惠特尼一生对四色问题感兴趣,他最早和最后的数学论文都是关于四色问题的.他给出四色问题的等价命题并研究可约性问题.从四色问题出发他研究一般图论,特别是得出两图同胚的条件:如G和 G"是两连通图,均不包含三个形如 ab,ac,ad的弧.若存在任意具有公共顶点的两弧到另一图的具有公共顶点的两弧之间的一一对应,则两图同胚.他定义图的连通度,并给出n重连通的充分必要条件(所谓n重连通是指至少n+1个顶点的图不可能因去掉n-1个或更少的顶点以及连接它们的弧而使所得的图不连通.如果图Gn重连通但不n+1重连通,则称连通度为n).他还定义图G的对偶G",证明图G可嵌入平面的充分必要条件是G具有对偶图G",从而给著名的K.库拉托夫斯基(Ku-ratowski)不可嵌入平面图的定理一个直接的组合证明.他的博士论文是关于图的着色问题,其中证明M(λ)的公式并进行计算,这里M(λ)是用λ种颜色给一图不同着色方法数,他引进一组数mij,它们不仅可用来计算M(λ),还可定义图G的拓扑不变量;其中R为图G的秩,N为G的零度.他利用这些不变量研究图的分类问题.惠特尼在组合论方面的最大成就是他引进拟阵(matroid)理论,这是一种抽象的线性相关性理论,它不仅包含图论为其特例,而且还包括网络理论、综合几何以及横截(transversal)理论等.他的出发点很简单,考虑矩阵M的列C1,C2,…,Cn,这些列的子集或者线性独立或者线性相关,从而所有子集可划分为两类,这些类并非任意,它必须满足下面两个条件:(1)一个独立集的任何子集也是独立的;(2)如果Np及Np+1分别是p个列及p+1个列的独立集,则Np加上Np+1中的某个列构成一个独立的p+1集.他把满足这两个条件的系统称为拟阵,并把许多图的性质推广到拟阵上.可微映射和奇点理论(1)可微函数的解析延拓 惠特尼对拓扑学的主要贡献是建立微分拓扑学,为此,必须将拓扑学考虑的连续映射推广到可微情形.惠特尼在他早期工作中(1932—1942)就为此奠定基础.1925年苏联数学家П.C.乌雷松(Улысон)证明,如A是n维欧氏空间E中的闭集(有界或无界),f(x)为A中定义的连续函数,则f可延拓成为整个E上的连续函数F.惠特尼在1932年证明,存在F不仅连续,而且在E—A上可微,甚至解析;如果f(x)在A中属于Cm,则在A中F与f相等,且F的到m阶的各阶导数与f的各阶导数对应相等.其后他又考虑A为任意子集合的情形.此时在包含A的开集上可微阶降1.他还研究泰勒展开的余项的可微性问题,这些对研究奇点理论很重要.(2)奇点理论 奇点理论是惠特尼最重要的创造之一,它来源于微分嵌入及浸入问题,奇点是临界点的推广.1942年他首先研究n维欧几里得空间En到E2n-1的微分映射f的奇点,发现使f微小变化,可得f*,它的奇点是弧立奇点,并可化为标准型:yi=xi(i=2,…,n),ym+i-1=xixi(i=2,…,n).1955年,他首先对于平面E2到E的奇点类型进行分类;结果只有两类,一类是折点(fold),其标准型为另一类是尖点(Cusp),其标准型为通过这篇论文,开创了奇点理论.1956年他又对En→Em的微分映射奇点的一些情形进行分类并得出标准型,其中包括n≥m=2,3以及(n,m)=(4,4),(5,5),(5,4),(n,2n-2)等情形.对于其他的En→Em,其中n=3,4,m=4,…,2n-3,在当时所知甚少.这个基本的奇点分类问题连同其他问题形成了奇点理论的热门.同年R.托姆(Thorm)运用自己的横截理论以及普遍开折理论首先取得突破,这项研究成为后来他的突变理论的基础.其后1968—1971年J.麦泽(Mather)建立稳定性理论及决定性理论,1967年起以苏联数学家B.И.阿诺尔德(Арнолъв)为首的苏联学派在理论及应用方面取得辉煌的成就.1948年他还发表了“论可微函数的理想”(On ideals of di-fferentiable functions),这开辟了奇点理论另一个新方向.后来B.马格朗日(Malgrange)等对这方面有很大突破,包括证明“预备定理”.(3)分层理论 分层理论是惠特尼最后创造的理论,从某种意义上说,也是奇点理论的自然延续.通常研究的欧氏空间及流形均有很好的齐性结构(局部具有相同的结构),但这点即使对代数簇也不满足,特别是由解析几何延续下来的实代数簇一般存在奇点.从1957年到1965年惠特尼研究实代数簇的拓扑学,并讨论把簇分解为流形,1957年引进惠特尼层化的概念,并且对代数簇及解析簇进行层化分解,这概念后来被托姆发展成分层集理论,在奇点的局部及大范围研究中起重要作用.1965年S.武雅谢维茨(ojasiewica)证明任何半解析集均有惠特尼分层.1965年惠特尼对解析簇定义了切向量、切平面族及切锥的概念,并考虑剖分时切集的协调问题.微分流行的拓扑学虽然庞加莱甚至黎曼已研究微分流形的拓扑学,但是由于工具不足,真正创立微分流形的拓扑学以及微分拓扑学的是惠特尼,他在1936年的论文“微分流形”(Differentiable manifolds)中,奠定了微分流形理论基础.他给出微分流形的内蕴定义,定义其上的Cr结构(1≤r≤∞),他证明所有Cr流形的Cr结构都包含C∞坐标系,且其C∞结构唯一确定.这个C∞结构称为该流形的可微结构或微分结构或光滑结构,相应的流形称为可徽流形或微分流形或光滑流形,微分流形与拓扑流形有本质的差别,即一个拓扑流形上可以不容许任何微分结构也可以容许多个微分结构,但是任何微分结构部容许实解析结构,而且还容许黎曼度量,这些也是惠特尼证明的.在这篇论文中,他证明了一些最基本的定理,特别是嵌入及浸入定理:任何n维微分流形均可微分嵌入在R2n+1(2n+1维欧氏空间)中,均可微分浸入在R2n中.1944年他又改进为n维微分流形可嵌入于R2n中,可浸入于R2n-1中.对于某些流形,这些结果已臻至善.这个工作开拓了微分流形的一个重要领域,其后,吴文俊等许多拓扑学家做出了贡献.纤维丛及示性类惠特尼在1935年首次定义真正的“纤维空间”,当时他称为“球空间”,1940年他改称为“球丛”,在1937年及1941年他对此作两个报告,包括许多根本的结果,他还打算对此写一本书,始终没有完成.他的兴趣一直集中于“示性类”(Characteristic class)上.他于1936年和瑞士数学家E.施蒂费尔(Stiefel)在1935年独立地定义这种示性类,后来称为施蒂费尔-惠特尼示性类.他的目的是用示性类来研究微分流形的拓扑学.对此,纤维丛只是一个工具,所以他的定义并非每一细节都讲得很清楚,但是他的定义是很一般的.1940—1950年间,纤维丛成为研究许多拓扑问题(特别是同伦、同调及微分几何问题)的主要工具.1949/1950年度的嘉当讨论班以纤维丛为专题进行系统讨论,1951年N.E.斯廷洛德(Steenrod)的专著《纤维丛的拓扑学》(Topology of fi-ber bundles)的出版,标志着纤维丛理论的成熟,其中惠特尼做出突出贡献.(1)分类问题 从一开始,惠特尼就主要研究纤维丛的分类问题,1937年他对球丛得出分类空间,即格拉斯曼流形Gn,r,并断言底空间为B、秩为r的球丛同构类为〔B,Gn,r〕,即B到Gn,r映射的同伦类(nr),他给出证明概要,1943年斯廷洛德完成了证明,后称惠特尼-斯廷洛德定理.惠特尼还知道以B为底空间的球丛的丛空间只依赖于B的同伦型.这事实于1939年为J.费尔德波(Feldbau)所证明,另一方面,惠特尼早在1935年,对纤维丛ξ及连续映射g:B"→B构造新纤维丛g *(ξ)并称为g的拉回(Pull-back),在研究纤维丛的分类中至关重要.1959年在和A.道尔德(Dold)合作的论文(文献中),对4维复形上的定向球丛进行分类.(2)示性类 施蒂费尔只考虑微分流形的切丛的示性类,而惠特尼考虑的要广得多,他考虑任意球丛(E,B,P)的底空间B也可以是任意局部有限的单纯复合形.他把示性类定义为施蒂费尔流形Sn,m的整系数同调类.他指出,Sn,m的同调群1937年,他改用上同调定义未性类.1940年他指出,对于连续映射g:B"0→B,如果E"=g*(E)为E的拉回,则Wr(E")=g*(Wr(E)).同时他给出惠特尼的和公式:定义同一底空间上两球丛E′,E〃的惠其中∪表上积,他指出当r≥4,证明“极难”,1941年他只给出E及E′都是线丛的证明.公开发表的第一个证明是吴文俊在1948年给出的.他还用向量丛取代球丛,同年陈省身也发表另一个证明.惠特尼还给出示性类的形式幂级数以及偶示性类的概念.至此,施蒂费尔-惠特尼示性类的理论基础正式建立.其后,J.米尔诺(Milnor)以惠特尼提出的四个定理为公理开展示性类理论,而且其他的示性类特别是Л.C.庞特里亚金(Понтрягин)示性类及陈省身示性类(简称陈类)也是依据施蒂费尔-惠特尼示性类的模式定义及研究的.(3)示性类的应用 示性类在拓扑学及几何学巾起着极为重要的作用,惠特尼本人主要应用示性类来研究浸入问题.例如,他证明8维实射影空间P8(R)不能浸入到R14中,但能浸入在R15中,他的理论后来为吴文俊等所发展.代数拓扑学1935年是代数拓扑学的转折点,其主要标志是上同调理论与同伦理论的建立.在庞加莱引入同调概念40年后,四位数学家几乎同时独立地引入上同调概念,他们是J.W.亚历山大(Alexander)、惠特尼、E.切赫(Céch)、A.H.柯尔莫哥洛夫(Колмогоров).当其他三位在1935年莫斯科会议宣布结果时,惠特尼的结果已经发表,上同调类由于有上积,从而有环结构,比同调包含更多的拓扑信息.同伦论中,1937年惠特尼用上同调来表述霍普夫-胡列维茨(Hurewicz)判据,如果X是n维局部有限胞腔复形,Y是n维(n-1)连通空间,则f,g:X→Y同伦当且仅当Hn(Y;Z)→Hn(X;Z).由此推出〔X,x0;Y,y0〕→Hn(X;πn(Y))是一一对应.对于不同维的映射,这些条件不一定成立,惠特尼在1936年给出过2维复形到2维或3维射影空间的映射同伦的代数条件,但未发表.1941年,H.E.罗宾斯(Robbins)推广到2维复形到任何空间的映射的同伦分类,后来P.奥兰姆(Olum)又大规模地予以简化及推广.对3维复形,庞特里亚金在1941年考虑它到S2的映射同伦分类,其中首先应用新出现的上积.其实惠特尼早在1936年已得出相应结果.1948年,他研究单连通空间R的第二及第三同伦群的关系,并据此给出3维复形k到R中两个连续映射同伦的充分必要条件以及映射扩张的阻碍类.还应该指出,1938年惠特尼引进阿贝尔群的张量积概念,这对代数拓扑学及同调代数是必不可少的工具.几何积分论1946—1957年间,惠特尼建立几何积分论.它是更一般的积分理论,例如n维空间中的r维积分.借此,他给上链、上闭链等一个解析的解释,例如几何上链是处于“一般位置”的奇异链上的函数.这样,他把 E.嘉当(Cartan)及 G.德·拉姆(de Rham)的外微分形式理论中的可微条件换成李普希茨(Lipschitz)条件得出的积分理论等价于代数上同调理论,对于更一般的李普希茨空间也成立,它包括多面体及绝对邻域收缩核为其特例,特别是把斯托克斯(Stokes)定理推广到李普希茨空间上,他的理论总结在《几何积分论》(1957)一书中.水元素sl2023-05-23 12:57:421
计算机知识中“离散数学”是怎么一回事?
计算机知识中“离散数学”是怎么一回事? 离散数学是随着计算机科学的发展和计算机应用的日趋广泛而逐渐形成的一门学科, 是 20 世纪 70 年代初期形成的新兴学科, 是近代数学的一个分支 , 主要研究有限个或可数无限个离散量的结构和相互关系, 离散数量关系和离散结构数学结构模型 。由于计算机科学的迅速发展,与其有关的领域中,提出了许多有关离散量的理论问题,需要用某些数学的工具做出描述和深化。离散数学把计算机科学中所涉及到的研究离散量的数学综合在一起,进行较系统的、全面的论述,为研究计算机科学的相关问题提供了有力的工具。 离散数学的许多概念及问题自然地出现在数学的许多分支中,并且也在其它学科中发现了它的应用。这些包括在信息论和电子工程中的应用,在统计物理,在化学及在分子生物学。例如,像 Ramsey 理论、组合集合论、拟阵理论、极值图论、组合几何及相差论的组合论等论题。还包括在计算机学科的应用,如计算机科学中的数据结构、操作系统、编译理论、算法分析、逻辑设计、系统结构、容错诊断、机器定理证明等理论都是与数学和科学世界的大部分问题密切相关的,并且已经发现这些论题在其它领域中有着众多的应用。 计算机程序的安装是怎么一回事? 就是把程序安装在计算机上,你按“下一步”,最后点“完成”。 你能到网络来我们很欣慰。 计算机编程到底是怎么一回事 就是靠你输入的程序来密令机器进行自动循环工作! 大一计算机考试是怎么一回事 是大一的计算机吧?公共课程的那个吧?夏宝岚讲得都比较仔细的,你去找上她课的学生,问他们有没有记下课堂笔记,把笔记搞定就肯定没问题了,但上面也肯定基本上没考试原题的,只是都是同样类似的方法,所以最起码要把笔记大致搞懂理解注:以上仅个人意见,挂了可不负责哦 计算机办公软件考试是怎么一回事 计算机办公软件的考试属于劳动部门的技术技能考试。指的是计算机二级考试。 二级office: 按照新大纲,需要学习的内容有:计算机的基础知识,Word的功能和使用 ,Excel的功能和使用,PowerPoint的功能和使用。 二级开始内容: 计算机二级考试包含语言程序设计,包括C、C++、Java、Visual Basic、WEB程序设计;VFP,数据库程序设计(包括VisualFoxPro、Aess、MySql);MS office高级应用包括Word、EXCEL、PPT办公软件高级应用。(注:二级Delphi科目从2013年上半年开始停考,只接受补考考生报名,不再接受新考生报名。)二级C从2013年开始已从传统的笔试和上机考试改革成无纸化考试。 计算机知识结构|计算机知识树 计算机系统分为:硬件系统和软件系统 硬件又分为:主机和外部设备 主机分为:cpu和内存储器 cpu:运算器和控制器 内存储器:DRAM和SDRAN 外部设备:外存储器、输入设备、输出设备 软件系统分为:系统软件、应用软件 野马计算机学校网络教育是怎么一回事? 每年两次报名时间,分别为5月开始,和10月开始。结束一般为一个月以上, 你可以参加10月份的报名。 如果是北京的话,你得问当地的招生电话来确定了,赶快打的问一下,别耽误了。山西的10份有一次。 中学计算机知识: 10.c 11.d 12.b 13.a 14.a 15.b 以上是本人只凭以前的记忆填的,七八年没碰这些东西了,可能有误. 知识产权资助是怎么一回事? 你说的资助可能是申请过程中国家对申请费用的减缓,另一种资助是根据你所在的地区的政策会给专利权人一定补助,每个地方不一样。还有一种就是,国家或地方为了鼓励科技创新,为企业提供各种政策优惠,资金补助,事业单位,为工作人员也有这样子的鼓励方式。 计算机知识 三、辨析题(10分,正确的填√,错误的填×) 1.计算机软件系统分为系统软件和应用软件两大部分( √)。 2.三位二进制数对应一位八进制数(√ )。 3.一个正数的反码与其原码相同(√ )。 4.将Windows应用程序窗口最小化后,该程序将立即关闭(× )。 5.用Word 2003编辑文档时,插入的图片默认为嵌入版式(√ )。 6.PowerPoint中的一张幻灯片必须对应一个演示文件(× )。 7.Inter中的FTP是用于文件传输的协议(√ )。 8.Windows中的文件夹实际代表的是外存储介质上的一个存储区域( √)。 9.路由器是网络中专门用来寻找路径的一种网络服务器(× )。 10.计算机病毒是一种恶意程序(√ )。 四、简答题(40分) 1.简述操作系统的功能。 操作系统是一组直接控制和管理电脑硬件资源和软件资源, 使电脑高效、协调、自动地工作,以方便用户充分而有效地利用资源的程序。 操作系统 提供 五个方面的功能:存储器管理、处理机管理、设备管理、文件管理和作业管理。 2.简述如何添加/删除Windows的组件。 (1).打开控制面板中的添加删除程序 (2).选择Windows组件 / 在打开的对话框中选择你要添加或删除的组件(提示一下,过程中要用到Windows的安装光盘(XP),VISTA不用光盘!) 3.简述IP协议如何实现互联网上任意两台计算机的通信。 在Inter中,一台计算机可以有一个或多个IP地址,就像一个人可以有多个通信地址一样,但两台或多台计算机却不能共用一个IP地址。如果有两台计算机的IP地址相同,则会引起异常现象,无论哪台计算机都将无法正常工作。 4.简述信息安全的特征 机密性、完整性、可用性 5.已知计算机的字长为8位,求十进制数—102的原码、反码和补码。 -102 [-102]原码11100110 (二进制)8位字长的话表示为E6 [-102]反码00011001 8位字长的话表示为19 [-102]补码 因为是负数 所以取反加1 10011010 8位字长的话表示为9A 希望你学习步步高升哦 好好学习计算机 呵呵 是我自己做的 可能有有失之处 请原谅 谢谢哦西柚不是西游2023-05-23 12:57:421
报考陕西师范大学基础数学专业考研
初试科目:数学分析150,高等代数150,英语100,政治100,复试线大概340,英语国家线,四六级影响不大,复试包括笔试和面试:笔试科目:实变函数,近世代数,常微分方程,概率论与数理统计,泛函分析!占分比值几乎均分,面试包括,数学专业英语翻译(随机给你拿出一段英语文章,数学类书籍的,当时我翻译的那段叫 概率测度,感觉比较难)复试的笔试科目,随机面试,一般好几个老师问你,我当时五个老师给我提问题!这个难度不是很大!!!!初试成绩的55%+复试45%就是你最终成绩!!!!苏州马小云2023-05-23 12:57:423
请问彩田小学数学周抽屉原理的题是什么?(要答案)急!!!下午2;00前回复
这个保密无尘剑 2023-05-23 12:57:4110
请教一道简单数学题.
貌似好深奥~~豆豆staR2023-05-23 12:57:4115