如何在无限远展开为洛朗级数
你好:在无限远展开为洛朗级数就看不见了必须在有限远处再远看不见。苏萦2023-05-25 18:52:021
ztree的最大级数不是号称无限级的吗
和监管环境换句话NerveM 2023-05-25 18:52:021
证明此级数连续,无穷次可导,且可逐项求导。
先验证该级数在 (0,+∞) 内闭一致收敛,其余就好办了。 对 (0,+∞) 的任意一点 x0,取 (0,+∞) 的包含 x0 的闭子区间 [a,b],有 |ne^(-nx)|≤ ne^(-an),x∈[a,b],而级数Σne^(-an) 收敛,据 M-判别法,得知原级数在 [a,b] 上一致收敛。又 ne^(-nx) 在 [a,b] 上连续(或无限次可导),可知原级数在 [a,b] 上连续(或无限次可导),且逐项可导。……wpBeta2023-05-25 18:52:011
级数判别法证明
高斯判别法没见过,其他的我们都是直接用,你是数学专业的?要证明这些ardim2023-05-25 18:52:016
判别级数的收敛性:n=1∑无限大,n!/10的n次方
利用级数收敛的必要条件,我们考察n!/10^n是否趋向于0注意到当n>10时,n!/10^n关于n是递增的(因为每次分子上乘上一个大于10的数,分母上只除了10),所以通项不收敛到0,因此级数发散。FinCloud2023-05-25 18:52:012
什么叫无穷级数?
无穷级数是研究有次序的可数无穷个数或者函数的和的收敛性及和的数值的方法,理论以数项级数为基础,数项级数有发散性和收敛性的区别。只有无穷级数收敛时有一个和;发散的无穷级数没有和。算术的加法可以对有限个数求和,但无法对无限个数求和,有些数列可以用无穷级数方法求和。 包括数项级数、函数项级数(又包括幂级数、Fourier级数)。如假定有一个无穷数列: u1,u2,u3,...un,... 其前n项的和为: sn = u1 + u2 + u3 + ... + un 由此得出另一个无穷数列: s1,s2,s3,...sn,... 它是由上一个无穷数列持续相加造成的。例如,如果u是任意的: u1=1,u2=3,u3=5,...un ... 但s不会是任意的,它是和任意数列有逐级加和关系的: s1=1,s2=4,s3=9,...sn,... 当n无限增加时,sn趋向一个极限 如果极限存在,这个无穷数列就叫做是收敛的无穷级数,如果极限不存在,这个数列就是发散的。只有收敛的无穷级数存在一个和s。 s = u1 + u2 + u3 + ... + un + ...拌三丝2023-05-25 18:52:011
数列nAn收敛,无穷级数∑n(An-An-1)收敛,证无限级数∑An也收敛
级数(n+1)(u[n+1]-u[n])收敛,那么前n项和(部分和)Sn" = 2(u[2]-u[1]) +3(u[3]-u[2])+。。。+(n+1)(u[n+1]-u[n]) = -2u[1]-u[2]-u[3]-。。。-u[n]+(n+1)u[n+1] = -u[1] -Sn + (n+1)u[n+1] 那么当zhin→∞时, S" = -u[1] - S + 0 其中0为nu[n]的极限。 故un收敛。按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an 项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。扩展资料等差数列的其他推论:① 和=(首项+末项)×项数÷2;②项数=(末项-首项)÷公差+1;③首项=2x和÷项数-末项或末项-公差×(项数-1);④末项=2x和÷项数-首项;⑤末项=首项+(项数-1)×公差;⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。左迁2023-05-25 18:52:013
无限个收敛级数相加一定收敛吗
∑1/2^n=(1/2)*(1-(1/2^(n))/(1-1/2)=1-1/2^n=1∑1/3^n=(1/3)*(1-(1/3^n))/(1-1/3)=(1/2)(1-1/3^n)=1/2∑1/4^n=(1/4)(1-(1/4^n))/(1-1/4)=(1/3)(1-1/4^n)=1/3∑1/n^n=(1/n)(1-(1/n^n))/(1-1/n)=(1/(n-1))(1-1/n^n) =1/(n-1)拌三丝2023-05-25 18:52:013
高数 微积分 定积分 椭圆 周长 泰勒公式 无限级数
,你试试:先对 f 的积分上限函数F(x) = ∫[0,x]f(t)dt = sqr(1+x^2)-1展开成Miclaurin级数,再求导陶小凡2023-05-25 18:52:001
数字最大无级数是多少
数字最大无级数是2.7182818284。根据查询相关公开信息显示,无级数的定义是指一个数是否可以被无限次幂次方展开,而无级数的最大值,就是欧拉数或者叫做欧拉常数,它的数值约为2.7182818284,因此,数字最大无级数是2.7182818284。人类地板流精华2023-05-25 18:52:001
这是一个求级数的题
这个很简单呀,只是用无限等比级数的公式就好了。无限等比级数的和,等于首项除以1减公比。而该等比级数的首项为e^(-2π),公比也为e^(-2π)。于是:原式 = e^(-2π) / [1-e^(-2π)]=1 / [e^(2π)-1] (分子分母同时乘以e^(2π))因此,原等式成立。左迁2023-05-25 18:52:002
在级数中,什么是有限项,什么是无限
这个命题不对。 我们只能说如果级数收敛,则它的一般项极限为零。 或者如果级数的一般项不为零,则该级数必定发散。 但不能说如果无穷级数的一般项随项数n趋于无穷大时以零为极限,则该级数必收敛。比如“调和级数”。bikbok2023-05-25 18:52:001
级数是数列无限多项的和吗?有限多项的和还算是级数吗?
定义是这样说的,级数是一个数列按顺序所作的和;有限多项的和可以算是级数,此时可视为后面加上了无限多个 0。瑞瑞爱吃桃2023-05-25 18:52:001
级数能不能用求导法则求导?无限项要怎么求?积分呢?
级数都是无限的。。这个其实很麻烦1.能用逐项求积分的前提是:这个级数是一致收敛的且每一项都连续2.能用逐项求导法则的前提是:级数∑Un(x)的每一项Un(x)都有连续的导函数,级数∑Un(x)收敛,且∑U"n(x)一致收敛阿啵呲嘚2023-05-25 18:52:001
用c语言编写任意精度的无穷级数求和程序
分数太少!不想回答大鱼炖火锅2023-05-25 18:52:003
微积分/无穷级数/敛散判别
你是来测智商的吗……meira2023-05-25 18:52:004
添无限个括号后的级数是发散级数,那么原级数也是发散级数?
你好!对的。有个定理:收敛级数加括号后仍是收敛级数。本题是这个定理的逆否命题。经济数学团队帮你解答,请及时采纳。谢谢!大鱼炖火锅2023-05-25 18:52:001
级数能不能用求导法则求导?无限项要怎么求?积分呢?
级数都是无限的。。这个其实很麻烦1.能用逐项求积分的前提是:这个级数是一致收敛的且每一项都连续2.能用逐项求导法则的前提是:级数∑Un(x)的每一项Un(x)都有连续的导函数,级数∑Un(x)收敛,且∑U"n(x)一致收敛大鱼炖火锅2023-05-25 18:52:002
无穷级数常见6个公式是什么?
无穷级数常见6个公式是1除1减x等于∑x^n减1,1除1加K,1除1加K^n。这是公比为q等于x的等比级数求和公式的反过来应用,可以直接使用其中要用到收敛的等比级数的余项级数,仍然是等比级数和。无穷级数常见6个公式特点无穷级数是研究有次序的可数或者无穷个数函数的和的收敛性及和的数值的方法,理论以数项级数为基础,数项级数有发散性和收敛性的区别,只有无穷级数收敛时有一个和,发散的无穷级数没有和,算术的加法可以对有限个数求和,但无法对无限个数求和有些数列可以用无穷级数方法求和。正项级数的主要特征就是如果考虑级数的部分和数列,就得到了一个单调上升数列,而对于单调上升数列是很容易判断其敛散性的正项级数收敛的充要条件是部分和数列有界,有界性可以通过许多途径来进行判断,由此我们可以得到一系列的敛散性判别法。wpBeta2023-05-25 18:51:591
【高等数学】无穷级数篇
由幂级数的和函数的求解可知,一个幂级数可以在其收敛区间内表示成一个函数(和函数),在这里我把该过程理解为:多个幂函数的和可以看作一个非幂函数。 这里我们讨论的函数的幂级数展开是与此相反的问题:如何把一个函数表示成幂级数的形式,也就是一个函数如何能在某个区间内表示成多个幂函数的和。 即以上式子的形式,那么就称函数f(x)再点 处的幂级数展开式,其中D为幂级数的收敛域。 在本小节中,我们需要弄清楚两个问题:�什么样的函数能够展开成幂级数?�幂级数展开式的系数如何确定? (1)什么样的函数能够展开成幂级数? 如果函数f(x)在点 的某领域内任意阶导数存在,则其能被泰勒公式展开。 如果函数f(x)在点 的某领域内满足充分必要条件:拉格朗日余项满足: (2)幂级数展开式的系数如何确定? 由泰勒公式中自变量范围的延伸可以得到幂级数的系数 为: 我们需要注意的是:如果函数能够展开为幂级数,则其展开式必为图中的形式,且是唯一的。 我的理解是,由于它是根据泰勒公式延伸得来,因此把它叫做泰勒级数也十分准确。个人认为泰勒公式和泰勒级数有两点区别:�泰勒公式是有限项的和,泰勒级数是无限项的和�泰勒级数因为是无限项,因此省去了余项的部分。 在题目当中,我们更常见的是麦克劳林级数,即当 =0时,这种泰勒级数的特殊情况也叫做麦克莱林级数。 知道了级数的来历,我们也要掌握解题的方法:这里我们介绍两种类型的题目的解题方法。 1、对于常用函数的麦克劳林级数的求法:(直接展开法) 下面是总结归纳常见函数的麦克劳林公式,同学们可以收藏起来下次直接使用哟~ 2、利用幂级数的性质和已知函数的级数,求未知函数的级数:(间接展开法)meira2023-05-25 18:51:591
无穷级数求和7个公式
ln(x+1)的麦克劳林级数:x-x^2/2+x^3/3-x^4/4+...+(-1)^(n+1)x^n/n+... x=1得ln2=1-1/2+1/3-1/4+1/5-...(阿贝尔第二定理) -1<x<1时1 bdsfid="118" (1+x^2)="1-x^2+x^4-x^6+...+((-1)^n)(x^(2n))+..."> 两边积分得arctanx=x-x^3/3+x^5/5-x^7/7+... 将x=1代入得arctan1=pi/4=1-1/3+1/5-1/7+1/9-1/11+...(阿贝尔第二定理) 您记忆错乱</x此后故乡只2023-05-25 18:51:592
无限项级数的敛散性与正项级数的敛散性?
无穷级数常见6个公式是ln(x+1)的麦克劳林级数:x-x^2/2+x^3/3-x^4/4+...+(-1)^(n+1)x^n/n+...。x=1得ln2=1-1/2+1/3-1/4+1/5-...(阿贝尔第二定理)-1<x<1时1 bdsfid="118" (1+x^2)="1-x^2+x^4-x^6+...+((-1)^n)(x^(2n))+...两边积分得arctanx=x-x^3/3+x^5/5-x^7/7+。正项级数及其敛散性:正项级数的主要特征就是如果考虑级数的部分和数列,就得到了一个单调上升数列。而对于单调上升数列是很容易判断其敛散性的:正项级数收敛的充要条件是部分和数列有界。有界性可以通过许多途径来进行判断,由此我们可以得到一系列的敛散性判别法。以上内容参考:百度百科-无穷级数CarieVinne 2023-05-25 18:51:591
无穷级数和常数项级数的关系
您好,常数项级数是无穷级数的一种。常数项级数是数项基数,另外,还有函数项级数,数项级数和函数项级数统称级数。又因为级数也可以由有限项组成,故由无限项所组成的级数才能成为无穷级数。无穷级数理论是关于无穷多项相加的理论,就其本质而言,无穷级数是一种特殊形式的极限。无穷级数是高等数学的一个重要组成部分,它通常是表示函数、研究函数性质和进行数值计算的有力工具,在实际问题中,有着广泛的应用。祝学习愉快北境漫步2023-05-25 18:51:591
数列nAn收敛,无穷级数∑n(An-An-1)收敛,证无限级数∑An也收敛
简单计算一下即可,答案如图所示小菜G的建站之路2023-05-25 18:51:592
无穷级数1 + 1/2i + ...i从1到无限 结果等于2 是怎么算出来的。
只能无限接近2.不会=2.韦斯特兰2023-05-25 18:51:593
数列nAn收敛,无穷级数∑(An-An-1)收敛,证无限级数∑An收敛。速度求思路~
没有具体一般向表达式,只能从收敛定义出发。 应用柯西审敛原理。用E-N 语言,就可以判定级数收敛。无穷级数∑(An-An-1)收敛,用柯西E-N 语言表达,而后通过放缩法,可以得到E/2,这样就可以判定∑An收敛。Jm-R2023-05-25 18:51:592
无穷级数和数列到底有什么区别呀,我觉得就是数列。
数列是有限项,无穷级数是无限项,就相当于数列中的n趋于无穷大wpBeta2023-05-25 18:51:591
无穷级数 n^2/n^2+1收敛还是发散
很明显是发散的,因为级数的一般项当n趋于无限大时趋于1,而不趋于0,违反级数收敛的必要条件。北有云溪2023-05-25 18:51:591
无限个收敛级数相加一定收敛吗
对,也不对。你似乎把求和指标与参数弄混了……先定义一个什么是无限个收敛级数相加。首先一个收敛级数总有收敛到一个值吧,所以到头来还是考虑无限个数相加,和是否收敛的问题。不过我觉得你想问的应该是:如果级数∑a(1,n),∑a(2,n),∑a(3,n),...,∑a(m,n),...都是收敛的级数,那么我定义一个新的级数:b(n)=a(1,n)+a(2,n)+...+a(m,n)+...那么∑b(n)是否收敛。请注意以上所有的和号都是对n求和的。你的问题没有明确就在于:在1/n^n中,作为底数的n是一个固定的参数,而作为指数的n是求和的指标。但是你这么一写出来,会以为是这么一个级数:1+1/2^2+1/3^3+...+1/n^n+...这和你开始写的等比级数就不是一回事了。虽然它也收敛,但结果是写不出来的。如果你取的是a(m,n)=1/n^m(这应该是你的本意?)那么b(n)=1/n+(1/n)^2+...=1/(n-1),n>1时(n=1时b(n)没有定义)那么∑b(n)是发散的。对于正项级数来说,如果∑b(n)收敛,就一定有∑b(n)=∑a(1,n)+∑a(2,n)+∑a(3,n)+...+∑a(m,n)+...(这暗含了上式右边也是收敛的)但是如果∑b(n)发散,这时上式的右边也必然发散,我们就不去谈它们是否相等的问题。当然,你要判断的是∑b(n)的收敛性,你既可以计算b(n),也可以计算c(m)=∑a(m,n),再看∑c(m)是否收敛,但是结果是肯定的:无限个收敛级数相加不一定收敛,在你给出的例子中就不是北有云溪2023-05-25 18:51:591
在级数中,什么是有限项,什么是无限项?
数得清个数的就是有限 数不清无数个即是无限??康康map2023-05-25 18:51:592
sinx怎样用泰勒级数展开?
sinx用泰勒公式展开是sinx=x-1/3!x^3+1/5!x^5+o(x ^5)。常用的泰勒公式展开式为:Fx=fx0/0!+f(x0)/1!(x-x0)+f(x0)/2!(x-x0)+...+f(x0)/n!(x-x0)n次方+Rn(x)。高等数学中的应用在高等数学的理论研究及应用实践中,泰勒公式有着十分重要的应用,简单归纳如下:(1)应用泰勒中值定理(泰勒公式)可以证明中值等式或不等式命题。(2)应用泰勒公式可以证明区间上的函数等式或不等式。(3)应用泰勒公式可以进行更加精密的近似计算。(4)应用泰勒公式可以求解一些极限。陶小凡2023-05-25 12:16:501
求sec(x)的展开泰勒级数
secx=1/cosx所以只要求cosx的泰勒展开,然后取倒数就可以了。cosx=1-【x^2/2!】+【x^4/4!】-.....+【[(-1)^n][x^(2n)]/[(2n)!]】+o(x^(2n+1))无尘剑 2023-05-25 12:16:501
泰勒级数和泰勒展开式有什么区别?公式一模一样啊。。。。
一、定义不同泰勒级数(英语:Taylorseries)是用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒展开式是一个用函数在某点的信息描述其附近取值的公式。二、要求不同泰勒级数要求在被展开处无限阶可导,是函数展开成有限项的幂级数。泰勒展开式要求被展开函数在该出n+1阶可导,满足幂级数收敛于f(x),而将f(x)展开成无限项幂级数的精确表示。三、应用不同泰勒级数的应用体现在以下三个方面:1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。2、一个解析函数可被延伸为一个定义在复平面上的一个开区域上的泰勒级数通过解析延拓得到的函数,并使得复分析这种手法可行。3、泰勒级数可以用来近似计算函数的值。泰勒展开式的应用体现在以下五个方面:1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。3、泰勒级数可以用来近似计算函数的值,并估计误差。4、证明不等式。5、求待定式的极限。参考资料来源:百度百科-泰勒级数参考资料来源:百度百科-泰勒公式北有云溪2023-05-25 12:16:491
用级数求函数的高阶导数
1.求高阶导数是泰勒公式,或者幂级数的一个主要应用。 主要是利用表达式的唯一性。2. 一方面,由定义,f(x)=arctanx 的麦克老林公式中,x^n的系数是:f(n)(0) / n!,f(n)(0)表示在x=0处的n阶导数。 另一方面,f " (x)=1/(1+x^2)=∑(-1)^n×x^(2n),3.所以,f(x)=∑(-1)^n×x^(2n+1)/ (2n+1) 比较两个表达式中x^n的系数,得: 当n为偶数时,f(x)在x=0处的n阶导数是0; 当n为奇数时,设n=2m+1,f(x)在x=0处的n阶导数是:(-1)^m× (2m)! 比较两个式子,就可以求出 f(x)=arctanx的n阶导数在x=0处的值。 4.具体的用级数求函数的高阶导数,过程见上图。西柚不是西游2023-05-25 12:16:091
矩阵幂级数咋求收敛半径
这里有两个概念,你弄混了。一个是谱半径,记 ho(A) 为 A的谱半径,则 ho(A) = max | lambda |, 即矩阵A的 绝对值最大的特征值即为矩阵A的谱半径。另一个是收敛半径,若幂级数为 sum a_k z^k, 则 记 R= lim_{k -> 无穷大} a_{k-1} / a_k, 则相应的矩阵幂级数的收敛半径为 也为 R。两者的关系是,当谱半径小于收敛半径时,矩阵幂级数收敛。当大于时,发散。也就是说和特征值有关的应该是谱半径,其为 模最大的特征值的模mlhxueli 2023-05-24 22:49:541
求幂级数∑(-1)^nx^n/n^n的收敛半径
解不等式,得x收敛域水元素sl2023-05-24 07:49:004
伽马函数的级数展开是怎样的? ln( Γ(z))怎样展开?
通常情况下得到的是渐进展开式左迁2023-05-24 07:48:481
什么是超几何级数
超几何函数hypergeometric functions 作为超几何方程的解,通过无限项的多项式(即幂级数)定义的函数,其系数按特定的规则确定。这种函数大都与物理学的微分方程问题中的其他函数结合在一起,很少作为某个特殊问题的解本身而出现。一般定义为任意一个这样的幂级数,其一次幂项x的系数为(a×b)/(c×1),a、b、c为任意常数,尔后,xn+1的系数等于前一项xn的系数乘(a+n)(b+n)/(c+n)(1+n)还有更一般的也称为超几何函数的级数,其中的一个是第一项包含了更多的常数(a×b×c×d×…)/(m×n×p×q×…)以后逐项的系数用类似于上面的方法构成。善士六合2023-05-24 07:48:441
超几何级数为什么叫超几何级数?
几何级数内容更深 拓展的更多 超级几何级数铁血嘟嘟2023-05-24 07:48:442
小学五年级数学什么是质数
你好一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。满意请采纳Ntou1232023-05-23 22:48:074
为什么要把函数展开成级数?
是的,有的函数本身不好研究,就将它拆开成级数,针对级数的每一项单独研究,这样比较清晰和简单。有的是拆开成等差,等比级数,有的是拆开成布尔函数(哈尔变换和哈达玛变换),还有拆开成三角函数(傅里叶级数)如果满意,欢迎采纳,谢谢如有疑问,欢迎追问人类地板流精华2023-05-23 19:24:551
级数展开公式是什么?
级数展开公式是:即一个函数的傅里叶级数在它收敛于此函数本身时的一种称呼。若函数f(x)的傅里叶级数处处收敛于f (x),则此级数称为f(x)的傅里叶展开式。傅里叶展开式是一个函数的傅里叶级数在它收敛于此函数本身时的一种称呼。而傅里叶级数得名于法国数学家约瑟夫·傅里叶(1768年–1830年),他提出任何函数都可以展开为三角级数。此前数学家如拉格朗日等已经找到了一些非周期函数的三角级数展开,而认定一个函数有三角级数展开之后,通过积分方法计算其系数的公式,欧拉、达朗贝尔和克莱罗早已发现。傅里叶的工作得到了丹尼尔·伯努利的赞助。傅里叶介入三角级数用来解热传导方程,其最初论文在1807年经拉格朗日、拉普拉斯和勒让德评审后被拒绝出版,他被称为傅里叶逆转定理的理论后来发表于1820年的《热的解析理论》中。将周期函数分解为简单振荡函数的总和的最早想法,可以追溯至公元前3世纪古代天文学家的均轮和本轮学说。水元素sl2023-05-23 19:24:351
傅里叶级数在热学中的意义
傅里叶级数在热学中的意义: 傅里叶级数可以表示在某点出现电子的概率。 傅立叶定律是传热学中的一个基本定律,可以用来计算热量的传导量。 相关的公式为:Φ=-λA(dt/dx),q=-λ(dt/dx) 其中Φ为导热量,单位为W,λ为导热系数,A为传热面积,单位为m^2,t为温度,单位为K,x为在导热面上的坐标,单位为m,q为热流密度,单位为W/m^2,负号表示传热方向与温度梯度方向相反,λ表征材料导热性能的物性参数(λ越大,导热性能越好)。FinCloud2023-05-23 19:24:351
三角波傅里叶级数余弦分量幅值an公式怎么变换的
可以先求不定积分,被积函数可以把括号打开,变成一个余弦函数,加一个t× cosnwt,方法主要是换元和分部积分法Jm-R2023-05-23 19:24:351
周期信号傅里叶级数的计算公式
出题者脑残,第二问已经暴露了第一问的答案。方波信号,周期,频谱无偶次谐波,奇次谐波的幅度呈4A/(Npi)递减,其中N为谐波数。2)均值为零,频率只有奇次谐波,各频率的幅值4A/(Npi),其中N为谐波数。脑残题,鄙视!ardim2023-05-23 19:24:351
傅里叶级数收敛性的判别公式是什么?
傅里叶级数展开公式如下:傅里叶级数像三角波,矩形波,梯形波这种波形不连续,因此在仿真软件中很容易出现计算不收敛的情况。所以,在这种情况下,利用一系列谐波叠加的形式来等价于原来的波形,可以很好的优化模型。傅里叶展开式收敛性判别至今还没有判断傅里叶级数的收敛性充分必要条件,但是对于实际问题中出现的函数,有很多种判别条件可用于判断收敛性。比如x(t)的可微性或级数的一致收敛性。在闭区间上满足狄利克雷条件的函数表示成的傅里叶级数都收敛。狄利克雷条件如下:在定义区间上,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个极值点;在任何有限区间上,x(t)只能有有限个第一类间断点。以上资料参考:百度百科-傅里叶展开式水元素sl2023-05-23 19:24:341
傅里叶级数收敛的必要条件是什么?
傅里叶级数展开公式如下:傅里叶级数像三角波,矩形波,梯形波这种波形不连续,因此在仿真软件中很容易出现计算不收敛的情况。所以,在这种情况下,利用一系列谐波叠加的形式来等价于原来的波形,可以很好的优化模型。傅里叶展开式收敛性判别至今还没有判断傅里叶级数的收敛性充分必要条件,但是对于实际问题中出现的函数,有很多种判别条件可用于判断收敛性。比如x(t)的可微性或级数的一致收敛性。在闭区间上满足狄利克雷条件的函数表示成的傅里叶级数都收敛。狄利克雷条件如下:在定义区间上,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个极值点;在任何有限区间上,x(t)只能有有限个第一类间断点。以上资料参考:百度百科-傅里叶展开式tt白2023-05-23 19:24:341
傅里叶级数 a0 an bn 怎么求
a0=1/μ∫f(x)dxan=1/μ∫f(x)cosnx/μdxbn=1/μ∫f(x)sinnx/μdx积分区间为(-μ,μ)μ可以等于π凡尘2023-05-23 19:24:343
泰勒公式和傅里叶级数的联系和区别
傅里叶级数相当于按照余弦或者正弦展开式 泰勒公式:可以按照任意函数展开此后故乡只2023-05-23 19:24:341
傅里叶级数与泰勒公式有什么内在联系吗?
不妨先想想平面向量的正交分解。前者是函数在三角函数空间span{1,cosx,sinx,cos2x,sin2x,……}下的分解,各项系数就是在各个分量上的投影。而Taylor级数则是在多项式空间span{1,x,x^2,……}下的分解。wpBeta2023-05-23 19:24:341
x*(t)=x(t) 信号与系统讲傅里叶级数时出现的公式 这是什么意思呢?
书上应该是说如果x*(t)=x(t),即x(t)为实信号,则有a(-k)=a*(k),你再看看书、、、、铁血嘟嘟2023-05-23 19:24:342
傅里叶级数问题
请问你求an的公式对了吗? 我看了一下,你的公式没有错!他是以2l为周期的函数展开式的公式其中L=pai/2代入就是an=(2/π)f(x)cos2nxdx在-π/2→π/2上的积分=(2/π)f(x)cos2nxdx在0→π上的积分所以我觉得是答案印刷上的错误吧!相信自己!tt白2023-05-23 19:24:342
[傅里叶变换公式] 常见函数的傅里叶级数
第2章 信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量 信号分析:从信号中提取有用信息的方法和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号,非周期信号。 x( 质量-弹簧系统的力学模型 非确定性信号(随机信号):给定条件下 取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号 频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 T:周期。注意n的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 (,…) 傅立叶系数: 式中 T--周期;0--基频, 0=2/T。 三角函数展开式的另一种形式: 周期信号可以看作均值与一系列谐波之和--谐波分析法 频谱图 周期信号的频谱三个特点:离散性、谐波性、收敛性 例1:求周期性非对称周期方波的傅立叶 级数并画出频谱图 解: 解: 信号的基频 傅里叶系数 n次谐波的幅值和相角 最后得傅立叶级数 频谱图 二、 周期信号傅里叶级数的复指数形式 欧拉公式 或 傅立叶级数的复指数形式 复数傅里叶系数的表达式 其中an,bn的计算公式与三角函数形式相同,只是n包括全部整数。 一般cn是个复数。 因为an是n的偶函数,bn是n的奇函数,因此 # 即:实部相等,虚部相反,cn与c-n共轭。 cn的复指数形式 共轭性还可以表示为 即:cn与c-n模相等,相角相反。 傅立叶级数复指数也描述信号频率结构。它与三角函数形式的关系 对于n>0 (等于三角 函数模的一半) 相角相等) 用cn画频谱:双边频谱 第一种:幅频谱图:|cn|-图:n- 相频谱, 第二种:实谱频谱图:Recn-,虚频谱图: Imcn-;也就是an-和-bn-. # §2-3 非周期信号与连续频谱 分两类: a.准周期信号 定义:由没有公共周期(频率)的周期信号组成 频谱特性:离散性,非谐波性 判断方法:周期分量的频率比(或周期比)不是有理数 b.瞬变非周期信号 几种瞬变非周期信号 数学描述:傅里叶变换 一、 傅里叶变换 演变思路:视作周期为无穷大的周期信号 式(2.22)借助(2.16)演变成: 定义x(t)的傅里叶变换X(ω) X(ω)的傅里叶反变换x(t): 傅里叶变换的频谱意义:一个非周期信号可以分解为角频率 连续变化的无数谐波 的叠加。称X()其为函数x(t)的频谱密度函 数。 对应关系: X()描述了x(t)的频率结构 X()的指数形式为 以频率 f (Hz)为自变量,因为f =w/(2p),得 X( f ) 频谱图 幅值频谱图和相位频谱图: 幅值频谱图 相位频谱图 () 实频谱图ReX(ω)和虚频谱图Im(ω ) 如果X()是实函数,可用一张X()图表示。负值理解为幅值为X()的绝对值,相角为或。 二、 傅里叶变换的主要性质 (一)叠加性 (二)对称性 (注意翻转) (三)时移性质 (幅值不变,相位随 f 改变±2ft0) (四)频移性质 (注意两边正负号相反) (五)时间尺度改变特性 (六)微分性质 (七)卷积性质 (1)卷积定义 (2)卷积定理 三、 脉冲函数及其频谱 (一) 脉冲函数: (t) 0) 定义函数(要通过函数值和面积两方面定义) 函数值: 脉冲强度(面积) (二)脉冲函数的样质 1. 脉冲函数的采性(相乘)样质: xx(t0)(tt0) 函数值: 强度: 结论:1.结果是一个脉冲,脉冲强度是x(t) 在脉冲发生时刻的函数值 2.脉冲函数与任意函数乘积的积分等于该函数在脉冲发生时刻的的值。 2. 脉冲函数的卷积性质: (a) 利用结论2 (b) 利用结论2 结论:平移 x(t (三)脉冲函数的频谱 均匀幅值谱 由此导出的其他3个结果 (利用时移性 质) (利用对称性 质) (对上式, 再用频移性质) (四)正弦函数和余弦函数的频谱 余弦函数的频谱 (f) 正弦函数的频谱 (f)ardim2023-05-23 19:24:331
数学傅里叶级数证明中a0什么意思?
这个我也不知道是什么意思,你可以去搜寻一下别人。北有云溪2023-05-23 19:24:333
通俗易懂的傅里叶级数和傅里叶变换(二)
在上一篇中 通俗易懂的傅里叶级数和傅里叶变换(一) 中简单介绍了什么是傅里叶级数,最后得到了在周期为 的傅里叶级数的系数解,那么如何得到任意周期的傅里叶级数呢? 我们先看在周期为 的函数傅里叶级数表达: 其对应的解为:如何将其变为任意周期的函数呢? 其实这里只需要简单的换元操作即可。 举个栗子: 其周期为 , 。我们令 ,则 ,整理下: 所以在对于t来说就变换成了周期为 的函数。 so对于周期为 (方便计算)的函数f(t) 只需令 带入原周期为 的函数即可: 同样的可以得到:最后我们得到:过程很简单,我就省略了,毕竟人生苦短。 我们在写一下傅里叶级数的公式: 其中T代表函数的周期,也就是上面的2L,对应的解就是:想要得到傅里叶级数的复数形式,需要先了解下欧拉公式。 关于欧拉公式,网上有很多的博客,这里就不细说了,只是简单说下欧拉公式的本质。 我们先看下公式:可以看作是复平面上的一个向量,其到实轴的投影是 ,到虚轴的投影是 ,其中 便是向量与实轴的夹角。而欧拉公式的直观理解就是在复平面上做圆周运动 随着 变化, 就变成圆周运动了。而前面的系数a则是圆的半径,当a=1的时候就是在单位圆上做圆周运动。 而且通过欧拉公式,我们可以得到三角函数的复数形式:将上面的复变三角函数替换傅里叶级数中的三角函数得到: 我们令 中的n为-n 则得到: 所以可以看到n的范围变成了 到 ,并且每一项都有 ,于是我们可以得到一个漂亮的形式:其中 分为3中情况:我们将傅里叶级数之前的解带入上边这里因为cos是偶函数,sin是奇函数所以:可以惊奇的发现,三种情况的解是一样的。所以对于任意周期函数,我们都可以写成: 但其中的每一项是什么意思呢? 还记得之前说的 的本质吗?在圆上做圆周运动,那么 也是在做周期运动了。那 又是什么呢? 我们知道 ,所以我们可以把 看成是以 为单位的频率(正常来讲频率是 )。而系数 是就可以看成是几倍的基频,正数是逆时针运动,负数就是顺时针运动。在图形上的反应就是,频率越高,转的越快了 ,但其最小公共周期是一样的。 1倍基频那么系数 怎么理解呢?前面说过 的系数a是代表 运动的圆半径,这里 是复数是不是也能这样理解呢?其实粗糙来讲是可以这样理解的。 看个图,只管的理解下把上图中红色的向量相对于蓝色的向量只是多了系数 ,所以红色向量运动的半径就是2刚好是复数 的模长乘以1,当然除此之外,红色向量的幅角也变大了些。这些都是因为复数的乘法性质---复数相乘表现为幅角相加,模长相乘。 这下,当有人和你说傅里叶变换是把时域变换到频域上,你应该就很容易理解是什么意思了。频域就是1倍,2倍,3倍.......的 ,而每个 都有自己的幅长 ,当把这些所有的 相加,就得到时域中的图像。 更加生动有趣的介绍可以参见 傅里叶分析之掐死教程 ,我这里是从数学的角度来介绍傅里叶变换。 目前该证明的都差不多了,还有最后一个任务,就是推广到非周期函数上。对于非周期函数,我们可以看成是周期无限远的函数,那也就是周期T变成 的时候傅里叶级数。随则T的变大 也就不断的减小,当T趋近于 的时候, 也由 变成了 ,那么很自然就需要对 做积分。 我们先看下当T趋近于 的时候 我们可以得到: 将这些带入 傅里叶级数,并且T趋近于 ,就得到: 其中画红圈的地方就是傅里叶变换而整个公式就是傅里叶逆变换,写成:以上就是傅里叶变换的全部内容,如果你喜欢的话就点个赞。有时间的话,我会写些傅里叶变换的应用。kikcik2023-05-23 19:24:331
如何计算傅里叶级数的通用公式?
f(x)=a0 + a1*cos(wx) + a2*cos(2wx) + ...+ b1*sin(wx) +b2*sin(2wx) +...所以f(-x)=a0 + a1*cos(-wx) + a2*cos(-2wx) + ...+ b1*sin(-wx) +b2*sin(-2wx) +...cos是偶函数,sin是奇函数,所以f(-x)=a0 + a1*cos(wx) + a2*cos(2wx) + ...- b1*sin(wx) -b2*sin(2wx) +...所以f(-x)的a0'就是a0,an'就是an,但是bn'=-bn扩展资料:傅里叶级数的公式:给定一个周期为T的函数x(t),那 么它可以表示为无穷级数:(j为虚数单位)(1)其中, 可以按下式计算:(2)注意到是周期为T的函数,故k 取不同值时的周期信号具有谐波关系(即它们都具有一个共同周期T)。k=0时,(1)式中对应的这一项称为直流分量,k=1时具有基波频率称为一次谐波或基波,类似的有二次谐波,三次谐波等等。可桃可挑2023-05-23 19:24:331
傅里叶级数展开公式n=0和n=1一样吗
二者的敛散性是一样的。标准形式是从n=0开始。n从1开始可以统一到n从0开始的形式,例如∑〔n从1开始〕1/n_=∑〔n从0开始〕1/(n+1)_。如果说到∑〔n从0开始〕1/(n+1)_与∑〔n从1开始〕1/(n+1)_,二者的敛散性是一样的,即求收敛半径时,没有影响,有影响的是二者的和。这一点,对一般的an也是这样。善士六合2023-05-23 19:24:331
设函数f(x)=πx+x2(-π<x<π)的傅里叶级数展开式为,则其中系数b3的值为______?
其实是非常简单的,你只需要把公式展开就是可以的。FinCloud2023-05-23 19:24:334
离散傅里叶级数系数有什么物理意义
傅立叶变换是以时间为自变量的信号和以频率为自变量的频谱函数之间的一种变换关系.由于自变量时间和频率可以是连续的,也可以是离散的,因此可以组成几种不同的变换对非周期的连续时间,连续频率-----傅里叶变换北有云溪2023-05-23 19:24:321
一组离散数据变成三角函数线性和的形式,傅里叶级数展开。求幅值和初相位。
fft函数可以解决这个问题使用matlab中fft函数,得到Ck三角形式是这样的最后题主使用三角公式就完事了水元素sl2023-05-23 19:24:312
离散傅里叶级数的介绍
离散傅里叶级数,连续周期信号的连续傅里叶级数有着无穷多的离散频率分量,相邻分量的间距由信号的周期决定,等于1/T(角度,弧度乘2π)。拌三丝2023-05-23 19:24:311
傅立叶级数和傅里叶变换有什么关系
傅立叶级数和傅里叶变换关系如下:傅里叶级数仅适用于周期信号,傅里叶变换可以视作傅里叶级数的延伸,可以用于分析非周期信号的频谱特性。事实上,引入冲击函数后,周期信号也可以进行傅里叶变换。傅里叶级数:所有周期信号都可以分解为不同频率的各次谐波分量。傅里叶变换:非周期信号可以看作不同频率的余弦分量叠加,其中频率分量可以是从0到无穷大任意频率,而不是像傅里叶级数一样由离散的谐波分量组成。傅里叶级数和傅里叶变换都源自于傅里叶原理得出;傅里叶变换是从傅里叶级数推演而来的,傅里叶级数是所有周期函数都可以分解成一系列的正交三角函数,这样,周期函数对应的傅里叶级数即是它的频谱函数。傅里叶变换是完全的频域分析,而傅里叶级数是周期信号的另一种时域的表达方式,也就是正交级数,它是不同的频率的波形的叠加。傅里叶级数适用于对周期性现象做数学上的分析,傅里叶变换可以看作傅里叶级数的极限形式,也可以看作是对周期现象进行数学上的分析,同时也适用于非周期性现象的分析。u投在线2023-05-23 19:24:311
离散傅里叶级数的计算公式
周期为N的周期序列<math>left{ a_n ight}</math>,其离散傅里叶级数为<math>left{ x_k ight}</math>:<math>x[k]=sum_{n=<N>} a_ncdot e^{-jn(frac{2pi}{N})k}</math>其中,DFS的逆变换序列:<math>a_n=frac{1}{N}sum_{k=<N>} x[k]cdot e^{jn(frac{2pi}{N})k}</math> (k=<N>表示对一个周期N内的值求和)u投在线2023-05-23 19:24:301
离散傅里叶级数系数有什么物理意义
离散傅里叶级数系数的物理意义: 傅立叶变换是以时间为自变量的信号和以频率为自变量的频谱函数之间的一种变换关系. 由于自变量时间和频率可以是连续的,也可以是离散的,因此可以组成几种不同的变换对 非周期的连续时间,连续频率-----傅里叶变换 正变换 X(jΩ)={-∞,+∞}x(t)*exp^-jΩt dt 反变换 x(t)=1/2π{-∞,+∞} X(JΩ)*e^jΩt dt 由于数字信号处理是希望在计算机上实现各种运算和变换,其所涉及的变量和运算都是离散的,而前面三种傅里叶变换对中,时域或频域中至少有一个域是连续的,所以都不可以在计算机上进行运算和实现,因此对于数字信号处理,应该找到在时域和频域都是离散的傅里叶变换,即离散傅里叶变换 前面的讨论已经得出结论:时域的周期性导致频域的离散型,时域的连续函数在频域形成非周期频谱;而时域的离散型造成频域的周期延拓,时域的非周期性对应于频域的连续函数形式.那么对于时域和频域都是离散的离散傅里叶变换,应该形成时域和频域都具有周期性的函数. 在工程实际中经常遇到的模拟信号xn(t),其频谱函数Xn(jΩ)也是连续函数,为了利用DFT对xn(t)进行谱分析,对xn(t)进行时域采样得到x(n)= xn(nT),再对x(n)进行DFT,得到X(k)则是x(n)的傅里叶变换X(ejω)在频率区间[0,2π]上的N点等间隔采样,这里x(n)和X(k)都是有限长序列 然而,傅里叶变换理论证明,时间有限长的信号其频谱是无限宽的,反之,弱信号的频谱有限款的则其持续时间将为无限长,因此,按采样定理采样时,采样序列应为无限长,这不满足DFT的条件.实际中,对于频谱很宽的信号,为防止时域采样后产生‘频谱混叠",一般用前置滤波器滤除幅度较小的高频成分,使信号的贷款小于折叠频率;同样对于持续时间很长的信号,采样点数太多也会导致存储和计算困难,一般也是截取有限点进行计算.上述可以看出,用DFT对模拟信号进行谱分析,只能是近似的,其近似程度取决于信号带宽、采样频率和截取长度再也不做站长了2023-05-23 19:24:301
离散傅里叶级数系数有什么物理意义
傅立叶变换是以时间为自变量的信号和以频率为自变量的频谱函数之间的一种变换关系。由于自变量时间和频率可以是连续的,也可以是离散的,因此可以组成几种不同的变换对非周期的连续时间,连续频率-----傅里叶变换正变换X(jΩ)={-∞,+∞}x(t)*exp^-jΩt dt反变换x(t)=1/2π{-∞,+∞} X(JΩ)*e^jΩt dt由于数字信号处理是希望在计算机上实现各种运算和变换,其所涉及的变量和运算都是离散的,而前面三种傅里叶变换对中,时域或频域中至少有一个域是连续的,所以都不可以在计算机上进行运算和实现,因此对于数字信号处理,应该找到在时域和频域都是离散的傅里叶变换,即离散傅里叶变换前面的讨论已经得出结论:时域的周期性导致频域的离散型,时域的连续函数在频域形成非周期频谱;而时域的离散型造成频域的周期延拓,时域的非周期性对应于频域的连续函数形式。那么对于时域和频域都是离散的离散傅里叶变换,应该形成时域和频域都具有周期性的函数。在工程实际中经常遇到的模拟信号xn(t),其频谱函数Xn(jΩ)也是连续函数,为了利用DFT对xn(t)进行谱分析,对xn(t)进行时域采样得到x(n)= xn(nT),再对x(n)进行DFT,得到X(k)则是x(n)的傅里叶变换X(ejω)在频率区间[0,2π]上的N点等间隔采样,这里x(n)和X(k)都是有限长序列然而,傅里叶变换理论证明,时间有限长的信号其频谱是无限宽的,反之,弱信号的频谱有限款的则其持续时间将为无限长,因此,按采样定理采样时,采样序列应为无限长,这不满足DFT的条件。实际中,对于频谱很宽的信号,为防止时域采样后产生‘频谱混叠",一般用前置滤波器滤除幅度较小的高频成分,使信号的贷款小于折叠频率;同样对于持续时间很长的信号,采样点数太多也会导致存储和计算困难,一般也是截取有限点进行计算。上述可以看出,用DFT对模拟信号进行谱分析,只能是近似的,其近似程度取决于信号带宽、采样频率和截取长度陶小凡2023-05-23 19:24:292
开刷:《信号与系统》 Lec #10 离散时间傅里叶级数和变换
课本是电子工业出版社出版的奥本海姆《信号与系统》第二版,刘树棠译。 视频课可以在网易公开课看到,搜索MIT的信号与系统,老师就是课本的作者。 p.133 - p.147 p.150 - p.152 p.155 - p.159 p.227 - p.236 首先我们证明复指数信号 是LTI系统的特征函数,假设LTI系统的单位脉冲响应为 ,输入 ,那么输出可以通过卷积和得到, 令 ,那么 得证 是离散LTI系统的特征函数, 是特征值。 在傅里叶分析中,只考虑 的情况,也即 ,因此仅考虑 形式的复函数。 回忆第一章学习离散时间周期信号时,一个与连续时间周期信号非常重要的不同点,就是成谐波关系的周期信号只有 个,因为在频率上相差 的整数倍的离散时间复指数信号是一模一样的!那么这就意味着离散时间周期信号的傅里叶级数是一个 有限项级数 。 定义一个离散时间周期信号 , 基波周期为使上式成立的最小正整数 ,基波频率 。傅里叶分析中我们使用复指数函数 就是一个典型的离散时间周期信号。下面这个式子定义了一组成谐波关系的复指数信号,它们都是周期的,其基波频率都是 的倍数, 因为对于谐波函数来说,频率相差 的整数倍时,两函数相等,具体来说就是谐波函数只有 个, 我们希望利用 的线性组合来表示一个更为一般的周期信号 ,即 注意上面求和中,求和限为 , 可以从0到 ,也可以1到 ,也可以其他任意 个连续整数。 对于复指数 这样一个周期信号,在一个周期内对自变量 求和, 仔细观察上面的求和式,当 时, 为一个常数1,这时对 求和结果就是 ;而当 取其他值时, 是一个周期信号,周期为 ,那么在周期内对 求和结果为0。 基于以上推导,我们现在来想办法求傅里叶级数系数 。将 的傅里叶级数表达式重写在下面, 首先,左右两边同时乘以 , 再对自变量 在 内求和, 交换上式等号右边的求和顺序可得, 想不明白上面求和顺序变换的话,可以笨办法展开求和,发现求和顺序变化不影响求和结果。我的理解是求一个 行 列的矩阵元素的和,你可以横着求和也可以竖着求和;又或者说在程序里用for循环求二阶矩阵的和,可以for i包含for j,也可以for j包含for i,这个求和顺序不会影响求和结果。 回到上面的等式,等号右边有一个求和 当 时(或者说相差 的整数倍,我这里就简单点不严谨一下),这个求和结果等于 ;如果 ,这个求和结果为0。 那么可以写出下面这个式子, 这样离散时间周期信号傅里叶级数系数就求出来了, 回想连续时间周期信号傅里叶级数系数的求解,和这里思路一模一样,都是利用了直流为0的周期信号在周期内求和结果等于0的性质。 此外,除了 的傅里叶级数表达是一个有限项级数,与连续时间不同的是,因为 所以, 也就是说, 的值是以 为周期重复的。 由于 的傅里叶级数表达是一个有限项级数,因此离散时间周期信号的傅里叶级数不存在收敛问题,也不存在吉布斯现象。 上面的求和就是 周期卷积 。 这篇笔记一开始,我们定义了 , 其中 是LTI系统的单位脉冲响应。 被称作 系统函数 ,将 局限在 形式的系统函数被称为系统的 频率响应 , 令LTI系统输入 为一个周期信号,其傅里叶级数表示为, 输出就是, 考虑某一序列 ,具有有限持续期,也就是说对于整数 和 ,在 的范围之外, 。由这个非周期信号可以构成一个周期序列 ,使得对 来说, 是它的一个周期。随着 的周期 增大, 就在更长的时间间隔内与 相等,而当 时, 。 写出周期信号 的傅里叶级数表达, 因为在 区间内, ,所以 可以写作, 又因为在 区间外,有 ,所以 现定义函数 那么 其中 表示频域中的样本间隔。将 代回到 的傅里叶级数综合公式中, 又因为 , 随着 ,上式中的求和演变为一个积分,积分宽度为 ,因为求和是对 个宽为 的间隔内完成的,所以积分宽度为 。 上式就是离散时间傅里叶变换。 在离散时间中,由于频率相差 的复指数信号是完全一样的 ,所以 如果 是绝对可积的,即 或者信号 的能量是有限的,即 那么 的傅里叶变换 就是收敛的。 对于综合公式,因为积分区间是有限的,因此一般不存在收敛问题,而且也不会有吉布斯现象。 与连续时间相同,利用把一个周期信号的变换表示成频域中的冲激串的办法,就可以把离散时间周期信号也划入到傅里叶变换的框架中。考虑如下信号, 我们在学习连续时间周期信号傅里叶变换时,知道 的傅里叶变换就是一个发生在 处的冲激。于是我们期望在离散时间中也会有相同结果。然而离散时间傅里叶变换对 来说必须是周期的,周期为 ,那么 的傅里叶变换应该就是发生在 、 、 等处的冲激,即 为了验证上式,求 的傅里叶逆变换, 注意看,这里积分区间为 ,因此整个积分区间内只会有一个冲激,假设积分区间内的冲激发生在 ,那么 这就证明了 现在我们考虑一个周期序列 ,周期为 ,其傅里叶级数为 那么我们就可以写出 的傅里叶变换可桃可挑2023-05-23 19:24:291
函数展开成傅里叶级数时所要求的条件是什么?
基本要有是绝对可积具体条件1.可积2.有限间断点3 间断点处函数极限存在tt白2023-05-23 19:24:273
傅里叶级数成立区间
应该是x≠nπ,因为 x=nπ 是 f(x) 不连续点,而 中的等号仅在连续点成立。韦斯特兰2023-05-23 19:24:271
傅里叶级数有什么用啊?
那是非常有用。 从技术上讲,傅里叶级数以及发展出来的傅里叶变换,傅里叶分析,可以把一个时间域上的信号转化到频率域上(当然,也可以转回来),这在工科中的应用非常之多。 一个我想到的最简单的例子:一个连续的信号,我想转成离散的信号传输,那么我可以使用傅里叶变换把它写成傅里叶级数的形式(这是一个无穷的级数和),然后我通过滤波舍弃掉过于高频的部分(这部分可以理解为噪音),剩下来的就是一个有限和,那么这个复杂的连续信号就可以用有限个傅里叶系数(和相应的基)表示出来,传输时也只用传输这有限个离散量了。传输到后,只要通过傅里叶逆变换就又变成原来的信号(去掉高频部分)了。 从哲学上讲,傅里叶变换为我们提供了一种新的观察、分析事物的角度,而且在很多时候,这一角度比变换前更接近事物的本质。傅里叶变换可以抽象出一个分析模式:对处于某个域(如:周期函数域)上的对象的研究,我们可以先建立这个域上的一组基(如:傅里叶基),这个域上的对象都可以用这组基(唯一地)表示出来(如:傅里叶变换),而且这组基本身有一些很好的性质(正交性,可解释性等等),那么对这种对象的研究,就可以转化为对对象在这组基上的投影的研究。通常可以得到一些很好的性质,这些性质可以通过某种方法(如:傅里叶逆变换)应用到原对象上。傅里叶变换是这种思维方法最简单也是最广泛的应用之一。以后还有很多相似的分析方法,如一般正交基,BERNSTAIN基等等。还有抽象数学中很多原空间中难以解决的问题就到其对偶空间上解决,也是类似的思想。瑞瑞爱吃桃2023-05-23 19:24:272
傅里叶级数展开公式是什么?
傅里叶级数展开公式是 F^(ω)=∫(上限+∞,下限-∞)f(t)exp(-iωt)dt。傅里叶展开式是指用三角级数表示的形式,即一个函数的傅里叶级数在它收敛于此函数本身时的一种称呼。若函数f(x)的傅里叶级数处处收敛于f (x),则此级数称为f(x)的傅里叶展开式。性质1、收敛性傅里叶级数的收敛性:满足狄利赫里条件的周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下:在任何周期内,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个最大值或最小值;在任何有限区间上,x(t)只能有有限个第一类间断点。2、正交性所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性。韦斯特兰2023-05-23 19:24:271
高数,傅里叶级数
解析:∵s(x)是傅里叶正弦级数(展开式中只含正弦项;奇函数的傅里叶级数只含有正弦项)∴可将f(x)奇式延拓至区间(-π,0),就是使F(x)在区间(-π,π)成为一个奇函数。即 { -π ,-π<x<-π/2 F(x)={ x ,-π/2≤x≤π/2 { π ,π/2<x<π F(x)在区间[0,π)与f(x)重合当x是函数F(x)的间断点时,它的和等于左、右极限的平均值,即s(x)=1/2[f(x-0)+f(x+0)]∵当x=-π/2时,恰为函数F(x)的间断点∴s(-π/2)=1/2[f(-π/2-0)+f(-π/2+0)]=1/2[(-π)+(-π/2)]==-3π/4。祝学习进步!凡尘2023-05-23 19:24:271
傅里叶叶级数,什么时候用奇延拓什么时候用偶延拓?
正弦级数奇延拓,余弦级数偶延拓拌三丝2023-05-23 19:24:272
傅里叶叶级数,什么时候用奇延拓什么时候用偶延拓
一般地,在解题时,用奇延拓和偶延拓都是可以的。但是在有一类题目中,即先让你将f(x)化成傅里叶级数,然后再利用级数求某一具体的级数的值,这个时候,就必须要采用合适的方法,我们一般是先用两种方法计算,然后再比较得出的傅里叶级数和所求级数,从而选择用奇延拓还是偶延拓~可桃可挑2023-05-23 19:24:272
怎么求傅里叶级数的和函数
一.傅里叶级数的三角函数形式设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f,ω1.由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数.即其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量.A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等.基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波.式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加.上式有可改写为如下形式,即当A0,An,ψn求得后,代入式(10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式.把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析.工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用.从式(10-2-3)中看出,将n换成(-n)后即可证明有a-n=anb-n=-bnA-n=Anψ-n=-ψn即an和An是离散变量n的偶函数,bn和ψn是n的奇函数.二.傅里叶级数的复指数形式将式(10-2-2)改写为可见与互为共轭复数.代入式(10-2-4)有上式即为傅里叶级数的复指数形式.下面对和上式的物理意义予以说明:由式(10-2-5)得的模和辐角分别为可见的模与幅角即分别为傅里叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅.的求法如下:将式(10-2-3a,b)代入式(10-2-5)有上式即为从已知的f(t)求的公式.这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数.在(10-2-7)中,由于离散变量n是从(-∞)取值,从而出现了负频率(-nω1).但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量.即引入傅立叶级数复指数形式的好处有二:(1)复数振幅同时描述了第n次谐波的振幅An和初相角ψn;(2)为研究信号的频谱提供了途径和方便.北营2023-05-23 19:24:272
怎么求傅里叶级数的和函数
一. 傅里叶级数的三角函数形式 设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f , ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即 其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量。A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等。基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波。式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加。 上式有可改写为如下形式,即 当A0,An, ψn求得后,代入式 (10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式。 把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析。工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用。 从式(10-2-3)中看出,将n换成(-n)后即可证明有 a-n=an b-n=-bn A-n=An ψ-n=-ψn 即an和An是离散变量n的偶函数,bn和ψn是n的奇函数。 二. 傅里叶级数的复指数形式 将式(10-2-2)改写为 可见 与 互为共轭复数。代入式(10-2-4)有 上式即为傅里叶级数的复指数形式。 下面对和上式的物理意义予以说明: 由式(10-2-5)得的模和辐角分别为 可见的模与幅角即分别为傅里叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅。 的求法如下:将式(10-2-3a,b)代入式(10-2-5)有 上式即为从已知的f(t)求的公式。这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即 即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数。 在(10-2-7)中,由于离散变量n是从(-∞)取值,从而出现了负频率(-nω1)。但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量。即 引入傅立叶级数复指数形式的好处有二:(1)复数振幅同时描述了第n次谐波的振幅An和初相角ψn;(2)为研究信号的频谱提供了途径和方便。meira2023-05-23 19:24:271
傅里叶余弦级数
设f是定义在[-π,π]上的偶函数,易知其傅里叶系数为an=2/π∫(0-->π)f(x)cosnxdx,n=0,1,2...bn=0其傅里叶级数为f(x)=a0/2+∑(n=1-->∞)ancosnx称为傅里叶余弦级数北境漫步2023-05-23 19:24:271
傅里叶级数和函数
先计算f(x)的Fourier系数a0=(1/π)*∫(-π,π) f(x) dx=(1/π)*∫(0,π) (x+1) dx=(1/π)*(x^2/2+x) | (0,π)=(1/π)(π^2/2+π)=π/2+1an=(1/π)*∫(-π,π) f(x)cos(nx) dx=(1/π)*∫(0,π) (x+1)cos(nx) dx=((-1)^n-1)/(πn^2)bn=(1/π)*∫(-π,π) f(x)sin(nx) dx=(1/π)*∫(0,π) (x+1)sin(nx) dx=((π+1)(-1)^(n+1)+1)/(πn)由此可得f(x)~S(x)=a0/2+∑(n=1,∞)(an*cos(nx)+bn*sin(nx)) =π/4+1/2+∑(n=1,∞)([((-1)^n-1)/(πn^2)]*cos(nx)+[((π+1)(-1)^(n+1)+1)/(πn)]*sin(nx))又因为f(x)为逐段可微函数因此S(x)收敛到[f(x+0)+f(x-0)]/2那么,S(2π)=S(0)=[f(0+0)+f(0-0)]/2=(1+0)/2=1/2有不懂欢迎追问左迁2023-05-23 19:24:271
双重傅立叶级数
只学过高等数学里的傅里叶级数没听说过还有双重的hi投2023-05-23 19:24:272
怎么由傅里叶变换得到傅里叶级数
最近看了许多傅里叶的东西,有了一定的体会与了解,也姑且做以总结,可能有纰漏或瑕疵,还请见谅。 预备知识:联系周期信号的傅里叶级数、采样定理、卷积定理、变量替换、正交基…… (1)首先从联系连续周期信号的三角型傅里叶级数说起(FS):,其中 上式可以转换为:其中: (2)傅里叶级数的指数形式(FS) 欧拉公式: 将上述欧拉公式代入到(1)中的三角型傅里叶级数中,得到傅里叶级数的指数形式: (一) 其中Fn=(an-j*bn)/2 (式子2) 由上式以及傅里叶级数的三角形式可得:Fn表示傅里叶级数的系数,对应频域的各幅度,由(一)展开式可得,连续周期函数对应的频谱是非周期离散的。 (3)连续非周期信号(FT) 当连续周期信号的周期 T 趋近于无穷大的时候,连续周期信号就变成了连续非周期信号。 当周期 T 趋近于无穷大是,相邻谱线的间隔趋近于无穷小,从而信号的频谱密集成连续频谱,同时,各频率分量的幅度也都趋近于无穷小。为了描述非周期信号的频谱特性,引入频谱密度的概念: ,称F(jw)为频谱密度函数。 (二) (三) (二)称为f(t)的傅里叶变换,(三)为函数F(jw)的傅里叶逆变换。 F(jw)称为f(t)的频谱密度函数或频谱密度。 (4)离散非周期序列(DTFT) 对连续非周期信号f(t)进行等间隔采样,得离散非周期序列: 时域采样对应于频域的周期延拓,由卷积定理可推导如下:进而可得离散非周期信号的傅里叶变换(即离散时间傅里叶变换DTFT)为: 可见X(e^(jw))是w的连续周期函数,周期为2pi,上式称为离散时间傅里叶变换(DTFT),下式称为离散时间傅里叶逆变换(IDTFT)。 (4)离散周期序列(DFS) 要由离散非周期序列推导离散周期序列需要分两种情况: 1.如果离散非周期序列的长度有限,为N,此时可以直接对离散非周期序列的频谱进行等间隔取样(满足频域采样定理),可以利用卷积定理推导得到(类似离散非周期序列中的推导)离散周期序列: 进而可以推导出离散傅里叶级数(DFS) 2.如果离散非周期序列的长度无限,需要对其加窗截取,相当于乘以一个门序列,然后按照 1 中的方法进行处理即可。 由以上推导出离散周期序列的离散傅里叶级数(DFS): 此时,时域、频域均是周期为N的周期序列。 上式称为周期序列的离散傅里叶级数(DFS) 下式表示离散傅里叶级数展开式(逆变换),DFS表示求离散傅里叶系数。 (5)有限长离散非周期序列(离散傅里叶变换DFT) 先对有限长序列x(n)周期延拓,得到离散周期序列,然后对其进行DFS得到离散的周期序列X(K),然后对其取主值序列就得到了x(n)对应的DFT。上式称为离散傅里叶变换(DFT),其快速算法(FFT) 下式称为离散傅里叶逆变换(IDFT),其快速算法(IFFT) (6)拉普拉斯变换 由于有些函数的傅里叶变换不存在,此时可以对其乘以一个衰减因子e^(-△t),△是常数。然后对其进行傅里叶变换。 此过程就可以由傅里叶变换推导到拉普拉斯变换(实际傅里叶变换是拉普拉斯变换的特殊情况,即虚轴上的拉普拉斯变换就对于傅里叶变换)。同样,如果从0开始积分则对应单边拉普拉斯变换。 注意收敛域。 (7)z变换 类似拉普拉斯变换,由于有些序列的离散时间傅里叶变换(DTFT)不存在,此时就引出了z变换。序列在单位圆上的z变换就对应离散时间傅里叶变换(DTFT), 序列在单位圆上的z变换的N点等间隔采样就对应了离散傅里叶变换(DFT) 注:1.至于各种变换的性质,如移位性质,尺度变换,对称性,卷积定理,微分,积分,只要根据定义,利用变量替换等都很容易求得。 2.某一域的连续 对应 另一域的非周期 某一域的离散 对应 另一域的周期 3.时域采样定理:fs>=2fm 频域采样定理:ts>=2tm陶小凡2023-05-23 19:24:271
傅里叶级数展开式是什么?
傅里叶级数展开公式如下:傅里叶级数像三角波,矩形波,梯形波这种波形不连续,因此在仿真软件中很容易出现计算不收敛的情况。所以,在这种情况下,利用一系列谐波叠加的形式来等价于原来的波形,可以很好的优化模型。傅里叶展开式收敛性判别至今还没有判断傅里叶级数的收敛性充分必要条件,但是对于实际问题中出现的函数,有很多种判别条件可用于判断收敛性。比如x(t)的可微性或级数的一致收敛性。在闭区间上满足狄利克雷条件的函数表示成的傅里叶级数都收敛。狄利克雷条件如下:在定义区间上,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个极值点;在任何有限区间上,x(t)只能有有限个第一类间断点。以上资料参考:百度百科-傅里叶展开式北营2023-05-23 19:24:261