超几何分布公式
看书啊,书上有的FinCloud2023-05-24 07:48:444
超几何分布的均值和方差公式是什么?
超几何分布的均值和方差公式:E(X)=(n*M)/N[其中x是样本数,n为样本容量,M为样本总数,N为总体中的个体总数],求出均值,这就是超几何分布的数学期望值。方差公式是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2[这里设a为期望值]。超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。相关定义:方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。再也不做站长了2023-05-24 07:48:441
高中超几何分布公式
超几何分布公式为:P(X=k)=C(Mk)·C(N-Mn-k)/C(Nn),超几何分布是统计学上一种离散概率分布,它描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的次数(不归还)。 超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关,超几何分布中的参数是M、N、n,超几何分布记作X~H(n,M,N)。人类地板流精华2023-05-24 07:48:431
超几何分布公式,什么是超几何分布
比如说一批产品共n件,其中m件不合格的,随即取出n件产品中不合格的产品数x的概率分布:p(x=0)=c(m,0)*c(n-m,n)/c(n,n)p(x=1)=c(m,1)*c(n-m,n-1)/c(n,n)....p(x=l)=c(m,l)*c(n-m,n-l)/c(n,n)也就是说如果p(x=r)=c(m,r)*c(n-m,n-r)/c(n,n)这样的x服从超几何分布此后故乡只2023-05-24 07:48:422
超几何分布的期望和方差公式是什么?
超几何分布期望值的简单公式法,E(X)=(n*M)/N,[其中x是指定样品数,n为样品容量,M为指定样品总数,N为总体中的个体总数],可以直接求出均值。方差有两种算法:V(X)=(X1-a)^2*P1+(x2-a)^2*P2+...+(Xn-a)*Pn。另一种是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2。超几何分布简介:超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N)。以上内容参考:百度百科-超几何分布LuckySXyd2023-05-24 07:48:421
超几何分布计算公式
超几何分布计算公式:E(X)=(n*M)/N[其中x是样本数,n为样本容量,M为样本总数,N为总体中的个体总数],求出均值,这就是超几何分布的数学期望值。方差公式是V(X)=X1^2*P1+X2^2*P2+...Xn^2*Pn-a^2[这里设a为期望值]。超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。相关定义:方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。扩展资料:在统计学中,当估算一个变量的期望值时,一个经常用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。在概率分布中,期望值和方差或标准差是一种分布的重要特征。在经典力学中,物体重心的算法与期望值的算法十分近似。当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。Chen2023-05-24 07:48:421
高中特殊三角函数值表 三角函数诱导公式
高中特殊三角函数值表以下是高中常用的特殊三角函数值表:正弦函数:余弦函数:正切函数:余切函数:正割函数:余割函数:其中,属于无理数的值用近似值表示。三角函数诱导公式三角函数诱导公式,也称为万能公式,是一种将三角函数按照不同角度的和、差、倍角、半角关系表示的公式,使得三角函数的求解更加灵活。以下是常见的三角函数诱导公式:正弦函数:余弦函数:正切函数:其中,公式中的a、b为任意实数。使用三角函数诱导公式,可以将三角函数的问题转化为已知某个角度的三角函数值,求解其他角度的三角函数值。苏州马小云2023-05-24 07:48:412
超几何分布公式,什么是超几何分布
P(X=k)=C(M k)·C(N-M n-k)/C(N n),C是组合,括号里左边的那个放在C右上,右边放右下这个记为X~H(n,M,N),期望E(x)=nM/N 方差D(X)=nM(N-M)(N-n)/[(N^2)(N-1)]超几何分布是统计学上一种离散概率分布。它描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的次数(不归还)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。铁血嘟嘟2023-05-24 07:48:412
超几何分布的公式是什么?
超几何分布公式是P(X=k)=C(M,k)×C(N-M,n-k)/C(N,n)。超几何分布是专业术语,是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N) 。超几何分布是统计学上一种离散概率分布,它描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的次数(不归还),称为超几何分布。概括来说九个字:有限总体无放回抽样。超几何分布在生活中最常用的一个例子就是:不放回抽样检查。以不放回抽样检查为例,对这个公式进行解释:有一批产品共有N件,其中有D件不合格产品,在一次抽样检查中随机抽取了n件做检查,抽中k件不合格产品的概率是多少?其中C(N,n)表示从总数量N中抽取n件产品的数目,C(D,k)表示从不合格产品数量D中抽到k件不合格产品的数目,C(N-D,n-k)表示从合格产品数量N-D中抽取n-k合格产品的数目。人类地板流精华2023-05-24 07:48:411
常用特殊三角函数值公式 计算公式有哪些
三角函数特殊值是高中数学学习的重要知识点,下面我整理了特殊三角函数值公式,供大家参考! 特殊三角函数性质 特殊三角函数是性质特殊的一类三角函数的总称,主要包括正弦三角函数、余弦三角函数、正切三角函数、余切三角函数、正割三角函数、和余割三角函数。 特殊三角函数值:特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。 特殊三角函数值公式有哪些 α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞ α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2 α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2) a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2 α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2 α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3 α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2) α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2 α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1 α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞ α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1 α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞ 特殊三角函数相关公式 sin(a+b)=sin a cos b +cos a sin b cos(a+b)=cos a cos b -sin a sin b sin(a-b)=sin a cos b -cos a sin b cos(a-b)=cos a cos b +sin a sin b tan(a+b)=(tan a +tan b )/(1-tan a tan b ) tan(a-b)=(tan a -tan b )/(1+tan a tan b )此后故乡只2023-05-24 07:48:381
帮我发一张函数的求导公式和特殊函数的求导公式,谢谢!
基本函数的导函数C"=0(C为常数)(x^n)"=nx^(n-1) (n∈R)(sinx)"=cosx(cosx)"=-sinx(e^x)"=e^x(a^x)"=(a^x)*lna(a>0且a≠1)[logax)]" = 1/(x·lna)(a>0且a≠1且x>0)[lnx]"= 1/x和差积商函数的导函数[f(x) + g(x)]" = f"(x) + g"(x)[f(x) - g(x)]" = f"(x) - g"(x)[f(x)g(x)]" = f"(x)g(x) + f(x)g"(x)[f(x)/g(x)]" = [f"(x)g(x) - f(x)g"(x)] / [g(x)^2]复合函数的导函数设 y=u(t) ,t=v(x),则 y"(x) = u"(t)v"(x) = u"[v(x)] v"(x)例 :y = t^2 ,t = sinx ,则y"(x) = 2t * cosx = 2sinx*cosx = sin2x苏州马小云2023-05-24 07:48:372
常见的特殊三角函数值公式大全
对于三角函数值是大家在学习数学的时候,一定要掌握的公式。下面是我为大家整理分享的,仅供大家参考。 特殊三角函数性质 特殊三角函数是性质特殊的一类三角函数的总称,主要包括正弦三角函数、余弦三角函数、正切三角函数、余切三角函数、正割三角函数、和余割三角函数。 特殊三角函数值:特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。 三角函数 α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞ α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2 α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2) a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2 α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2 α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3 α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2) α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2 α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1 α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞ α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1 α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞ 我推荐: 高三学渣逆袭计划作息时间表 黄金三角 α=18°(π/10) sinα=(√5-1)/4 cosα=√(10+2√5)/4 tαnα=√(25-10√5)/5 cscα=√5+1 secα=√(50-10√5)/5 cotα=√(5+2√5) α=36°(π/5) sinα=√(10-2√5)/4 cosα=(√5+1)/4 tαnα=√(5-2√5) cscα=√(50+10√5)/5 secα=√5-1 cotα=√(25+10√5)/5 α=54°(3π/10) sinα=(√5+1)/4 cosα=√(10-2√5)/4 tαnα=√(25+10√5)/5 cscα=√5-1 secα=√(50+10√5)/5 cotα=√(5-2√5) α=72°(2π/5) sinα=√(10+2√5)/4 cosα=(√5-1)/4 tαnα=√(5+2√5) cscα=√(50-10√5)/5 secα=√5+1 cotα=√(25-10√5)/5 通过比较可发现与黄金三角形相关的三角函数值有很强的对称性 这些数值的证明可以借助黄金三角形中的比例 特殊角的三角函数(重要)西柚不是西游2023-05-24 07:48:371
特殊三角函数公式
特殊三角函数是性质特殊的一类三角函数的总称,主要包括正弦三角函数、余弦三角函数、正切三角函数、余切三角函数、正割三角函数、和余割三角函数。特殊三角函数值:特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。特殊三角函数相关公式:在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y倒数关系tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系tanα=sinα/cosαcotα=cosα/sinα三倍角公式sin(3α)=3sinα-4sin^3α=4sinα·sin(60°+α)sin(60°-α)cos(3α)=4cos^3α-3cosα=4cosα·cos(60°+α)cos(60°-α)tan(3α)=(3tanα-tan^3α)/(1-3tan^2α)=tanαtan(π/3+α)tan(π/3-α)Ntou1232023-05-24 07:48:351
特殊三角函数值公式
在三角函数中,有一些特殊角,这些角的三角函数值知道吗?下面就和我一起了解一下吧,供大家参考。 特殊三角函数值表 特殊三角函数值公式归纳 诱导公式公式一: sin(α+k·360°)=sinα(k∈Z). cos(α+k·360°)=cosα(k∈Z). tan(α+k·360°)=tanα(k∈Z). cot(α+k·360°)=cotα(k∈Z). sec(α+k·360°)=secα(k∈Z). csc(α+k·360°)=cscα(k∈Z). 诱导公式公式二: sin(180°+α)=-sinα. cos(180°+α)=-cosα. tan(180°+α)=tanα. cot(180°+α)=cotα. sec(180°+α)=-secα. csc(180°+α)=-cscα. 诱导公式公式三: sin(-α)=-sinα. cos(-α)=cosα. tan(-α)=-tanα. cot(-α)=-cotα. sec(-α)=secα. csc(-α)=-cscα. 诱导公式公式四: sin(180°-α)=sinα. cos(180°-α)=-cosα. tan(180°-α)=-tanα. cot(180°-α)=-cotα. sec(180°-α)=-secα. csc(180°-α)=cscα. 诱导公式公式五 sin(360°-α)=-sinα. cos(360°-α)=cosα. tan(360°-α)=-tanα. cot(360°-α)=-cotα. sec(360°-α)=secα. csc(360°-α)=-cscα. 诱导公式公式六: sin(90°+α)=cosα. cos(90°+α)=-sinα. tan(90°+α)=-cotα. cot(90°+α)=-tanα. sec(90°+α)=-cscα. csc(90°+α)=secα.CarieVinne 2023-05-24 07:48:351
二项式定理中,各项系数之和 是什么意思公式是什么
二项式定理 binomial theorem 二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664、1665年间提出。 此定理指出: 其中,二项式系数指... 等号右边的多项式叫做二项展开式。 二项展开式的通项公式为:... 其i项系数可表示为:...,即n取i的组合数目。 因此系数亦可表示为帕斯卡三角形(Pascal"s Triangle) 二项式定理(Binomial Theorem)是指(a+b)n在n为正整数时的展开式。(a+b)n的系数表为: 1 n=0 1 1 n=1 1 2 1 n=2 1 3 3 1 n=3 1 4 6 4 1 n=4 1 5 10 10 5 1 n=5 1 6 15 20 15 6 1 n=6 ………………………………………………………… (左右两端为1,其他数字等于正上方的两个数字之和) 在我国被称为「贾宪三角」或「杨辉三角」,一般认为是北宋数学家贾宪所首创。它记载于杨辉的《详解九章算法》(1261)之中。在阿拉伯数学家卡西的著作《算术之钥》(1427)中也给出了一个二项式定理系数表,他所用的计算方法与贾宪的完全相同。在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图。但一般却称之为「帕斯卡三角形」,因为帕斯卡在1654年也发现了这个结果。无论如何,二项式定理的发现,在我国比在欧洲至少要早300年。 1665年,牛顿把二项式定理推广到n为分数与负数的情形,给出了的展开式。 二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。 1.熟练掌握二项式定理和通项公式,掌握杨辉三角的结构规律 二项式定理: 叫二项式系数(0≤r≤n).通项用Tr+1表示,为展开式的第r+1项,且, 注意项的系数和二项式系数的区别. 2.掌握二项式系数的两条性质和几个常用的组合恒等式. ①对称性: ②增减性和最大值:先增后减 n为偶数时,中间一项的二项式系数最大,为:Tn/2+1 n为奇数时,中间两项的二项式系数相等且最大,为:T(n+1)/2+1 3.二项式从左到右使用为展开;从右到左使用为化简,从而可用来求和或证明.掌握“赋值法”这种利用恒等式解决问题的思想. 证明:n个(a+b)相乘,是从(a+b)中取一个字母a或b的积。所以(a+b)^n的展开式中每一项都是)a^k*b^(n-k)的形式。对于每一个a^k*b^(n-k),是由k个(a+b)选了a,(a的系数为n个中取k个的组合数(就是那个C右上角一个数,右下角一个数))。(n-k)个(a+b)选了b得到的(b的系数同理)。由此得到二项式定理。 二项式系数之和: 2的n次方 而且展开式中奇数项二项式系数之和等于偶数项二项式系数之和等于2的(n-1)次方 二项式定理的推广: 二项式定理推广到指数为非自然数的情况: 形式为 推广公式 注意:|x|<1 (a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)*b+C(n,2)a^(n-2)*b^2+...+C(n,n)b^n 二项式的递推 二项式展开后各项的系数依次为:,, …,. 其中,第1个数=1,从第2个数开始,后面的每一个数都可以用前面的那个数表示为 这就是二项式展开“系数递推”的依据. 二项式系数递推实际上是组合数由到的递推. 加法定理 来自二项式性质 将杨辉三角形中的每一个数,都用组合符号表示出来, 则得图右的三角形. 自然,“肩挑两数”的性质可写成组合的 加法式. 如 这里,(1)相加两数和是“下标相等,上标差1” 的两数;(2)其和是“下标增1,上标选大”的组合数. 一般地,杨辉三角形中第n+1行任意一数,“肩挑 两数”的结果为组合的加法定理: 有了组合的加法定理,二项式(a+b)展开式的证明就变得非常简便了. 数形趣遇 算式到算图 二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学. 求二项式展开式系数的问题,实际上是一种组合数的计算问题. 用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”. 【图算】 常数项产生在展开后的第5、6两项. 用“错位加法”很容易“加出”杨辉三角形第8行的第5个数. 简图如下: 1 4 6 4 1 1 5 10 10 5 1 …… 15 20 15 6 … 1 …… 35 35 21 …… … 70 56 … 图上得到=70,==56. 故求得展开式中常数项为70 – 2×56 = – 42 【点评】 “式算”与“图算”趣遇,各扬所长,各补所短.o:p> 杨辉三角形本来就是二项式展开式的算图. 对杨辉三角形熟悉的考生,比如他熟悉到了它的第6行: 1,6,15,20,15,6,1 那么他可以心算不动笔,对本题做到一望而答. 杨辉三角形在3年内考了5个(相关的)题目,这正是高考改革强调“多想少算”、“逻辑思维与直觉思维并重”的结果. 这5个考题都与二项式展开式的系数相关,说明数形结合思想正在高考命题中进行深层次地渗透.小菜G的建站之路2023-05-24 07:48:312
求二项式定理,系数最大项公式
在数学里,二项式系数,或组合数,是定义为形如(1+x)的二项式n次幂展开后x的系数(其中n为自然数,k为整数),通常记为。从定义可看出二项式系数的值为整数。 一般二项式x+y的幂可用二项式系数记为 。广义二项式定理把这结果推广至负数或非整数次幂,此时右式则不再是多项式,而是无穷级数。 二项式系数对组合数学很重要,因它的意义是从n件物件中,不分先后地选取k件的方法总数,因此也叫做组合数。因此它有其他记法:两种不相容的记法和,还有Ck、nCk和C(n,k),其中C表示组合的数目,读作“n选k”。从定义出发,把n个1+x项的乘积展开,其中任意k项的x和n??k项的1相乘得出一个x,故此x的系数是从n个选取k个的方法总数。把各项的x标记可以更清楚看出:当n=4,k=2时, (1+x1)(1+x2)(1+x3)(1+x4)=...+x1x2+x1x3+x1x4+x2x3+x2x4+x3x4+...,所以x的系数6等于从4项物件选取2项的方法总数。 二项式系数的值有公式: 若1=1否则 (其中n!表自然数n的阶乘)。二项式系数是帕斯卡三角形的第n+1行从左起第k+1个数,它最先由杨辉发现。 二项式系数符合等式: 可以由其公式证出,也可以从其在组合数学的意义推导出来。如第一式左项表示从n+1件选取k件的方法数,这些方法可分为没有选取第n+1件,即是从其余n件选取k件;和有选取第n+1件,即是从其余n件选取k??1件。而第二式则是每个从n件选取k件的方法,也可看为选取其余n??k件的方法。可桃可挑2023-05-24 07:48:301
二项式系数之和公式是什么?
项式系数之和公式为C(n,0)+C(n,1)+...+C(n,n)=2^n。二项式系数之和:二项式的各项系数之和,可以采用赋值法。(ax+b) n二项式系数和。2ⁿ系数和(a+b)ⁿ,(即x=1时)。把x的位置用1代就是各项系数的和。二项式系数之和与各项系数之和区别: 一、二项式系数:未知数的组合数,为正。二、各项系数:未知数的系数,可正可负。各项系数之和=未知数的系数。陶小凡2023-05-24 07:48:301
求二项式系数的和与各项系数的和的公式是什么?
二项式系数的值为整数。二项式系数之和可以采用赋值法来求,二项式系数之和公式为C(n,0)+C(n,1)+...+C(n,n)=2^n。二项式系数之和怎么求二项式的各项系数之和,可以采用赋值法。(ax十b)ⁿ二项式系数和2ⁿ系数和(a+b)ⁿ,(即x=1时)把x的位置用1代就是各项系数的和。二项式系数之和与各项系数之和区别:一、二项式系数:未知数的组合数,为正。二项式系数之和=C(n,0)+C(n,1)+...+C(n,n)=2^n二、各项系数:未知数的系数,可正可负。各项系数之和=未知数的系数二项式系数定义在数学里,二项式系数,或组合数,是定义为形如(1 + x)ⁿ展开后x的系数(其中n为自然数,k为整数)。从定义可看出二项式系数的值为整数。项式系数符合等式可以由其公式证出,也可以从其在组合数学的意义推导出来。如第一式左项表示从n+1件选取k件的方法数,这些方法可分为没有选取第n+1件,即是从其余n件选取k件;和有选取第n+1件,即是从其余n件选取k−1件。而第二式则是每个从n件选取k件的方法,也可看为选取其余n−k件的方法。此后故乡只2023-05-24 07:48:302
多次项展开式系数通用公式是什么?
多次项展开式系数公式是T(k+1)=C(n,k)a^(n-k)*b^k。二项展开式是依据二项式定理对(a+b)n进行展开得到的式子,由艾萨克·牛顿于1664-1665年间提出。二项展开式是高考的一个重要考点。在二项式展开式中,二项式系数是一些特殊的组合数,与术语“系数”是有区别的。二项式系数最大的项是中间项,而系数最大的项却不一定是中间项。二次项展开定理公式:说明:①Tr+1=cn^r*a^n-r*b^r是(a+b)n的展开式的第r+1项.r=0,1,2,……n.它和(b+a)n的展开式的第r+1项Cn^r*b^n-ra^r是有区别的。②Tr+1仅指(a+b)n这种标准形式而言的,(a-b)n的二项展开式的通项公式是Tr+1=Cn^r*a^n-r*b^r。③系数Cnr叫做展开式第r+1次的二项式系数,它与第r+1项关于某一个(或几个)字母的系数应区别开来。特别地,在二项式定理中,如果设a=1,b=x,则得到公式:(1+x)^n=1+cn1*x+Cn2*x^2+…+Cnr*x^a+…+x^n。当遇到n是较小的正整数时,我们可以用杨辉三角去写出相应的系数。苏州马小云2023-05-24 07:48:301
二次项系数和公式
二次项系数和公式:=(a+b)^n(令x=1)。在数学里,二项式系数,或组合数,是定义为形如(1+x)ⁿ展开后x的系数(其中n为自然数,k为整数)。从定义可看出二项式系数的值为整数。系数(coefficient),是指代数式的单项式中的数字因数。单项式中所有字母的指数的和叫做它的次数。通常系数不为0,应为有理数。mlhxueli 2023-05-24 07:48:291
二项式系数和公式是什么?
如果你问的是高中数学的话:二项式系数和是2的n次方各项系数之和是把x=1带入原式 得到的数就是各项系数之和(这个定义真的很难理解 硬背就行了小菜G的建站之路2023-05-24 07:48:272
二项式定理各项系数和公式是什么?
各项系数和公式是C(n,0)+C(n,1)+...+C(n,n)=2^n。各项系数和是指所有的系数和,令二项式中所有的字母都等于1,则计算出的结果就等于二项式展开式的各项系数的和。二项式定理最初用于开高次方。在中国,成书于1世纪的《九章算术》提出了世界上最早的多位正整数开平方、开立方的一般程序。11世纪中叶,贾宪在其《释锁算书》中给出了“开方作法本原图”,满足了三次以上开方的需要。贾宪并未给出二项式系数的一般公式,因而未能建立一般正整数次幂的二项式定理。13世纪,杨辉在其《详解九章算法》中引用了此图,并注明了此图出自贾宪的《释锁算书》。贾宪的著作已经失传,而杨辉的著作流传至今,所以今称此图为“贾宪三角”或“杨辉三角”。左迁2023-05-24 07:48:271
二项展开式的通项公式是什么?
二项展开式的通项公式是T(r+1)=C(n,r)a^(n-r)b^r T(r+1)表示二项展开式的第r+1项,C(n,r)表示n个数中取r个数的组合^表示次方,表示后面的数是前面的数的上标次方的意思。二项展开式是依据二项式定理对(a+b)n进行展开得到的式子,由艾萨克·牛顿于1664-1665年间提出。二项展开式是高考的一个重要考点。在二项式展开式中,二项式系数是一些特殊的组合数,与术语“系数”是有区别的。二项式系数最大的项是中间项,而系数最大的项却不一定是中间项。需要主要的关于通项公式的几个要点有:1. 项数:总共二项式展开有n+1项,通常通项公式写的是r+1项。2. 通项公式的第r+1项的二次项系数是Cnk,二次项系数不是项的系数。3. 如果二项式的幂指数是偶数,中间的一项二次项系数最大。如果是奇数,则最中间2项最大并且相等。4.指数:a按降幂排列,b按升幂排列,每一项中a、b的指数和为n。再也不做站长了2023-05-24 07:48:271
二项展开式的通项公式并解释各字母含义
二项展开式的通项公式(a+b)^n展开式中的第r+1项是T(r+1)=C(n,r)a^(n-r)b^r T(r+1)表示二项展开式的第r+1项C(n,r)表示n个数中取r个数的组合^表示次方,表示后面的数是前面的数的上标,次方的意思九万里风9 2023-05-24 07:48:271
怎么证明二项展开公式?
二项式定理:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)*b+C(n,2)a^(n-2)*b^2+...+C(n,n)b^n二项展开式是依据二项式定理对(a+b)n进行展开得到的式子,由艾萨克·牛顿于1664-1665年间提出。二项展开式是高考的一个重要考点。在二项式展开式中,二项式系数是一些特殊的组合数,与术语“系数”是有区别的。二项式系数最大的项是中间项,而系数最大的项却不一定是中间项。二项式定理性质:1、在二项展开式中,与首末两端等距离的两项系数相等。2、如果二项式的幂指数是偶数,中间的一项系数最大。如果二项式的幂指数是奇数,中间两项的系数最大,并且相等。北营2023-05-24 07:48:271
二项式各项系数和公式是什么?
各项系数和公式是C(n,0)+C(n,1)+...+C(n,n)=2^n。各项系数和是指所有的系数和,令二项式中所有的字母都等于1,则计算出的结果就等于二项式展开式的各项系数的和。二项式定理最初用于开高次方。在中国,成书于1世纪的《九章算术》提出了世界上最早的多位正整数开平方、开立方的一般程序。11世纪中叶,贾宪在其《释锁算书》中给出了“开方作法本原图”,满足了三次以上开方的需要。贾宪并未给出二项式系数的一般公式,因而未能建立一般正整数次幂的二项式定理。13世纪,杨辉在其《详解九章算法》中引用了此图,并注明了此图出自贾宪的《释锁算书》。贾宪的著作已经失传,而杨辉的著作流传至今,所以今称此图为“贾宪三角”或“杨辉三角”。tt白2023-05-24 07:48:261
二项展开式的通项公式是什么?
二项展开式的通项公式是T(r+1)=C(n,r)a^(n-r)b^r T(r+1)表示二项展开式的第r+1项,C(n,r)表示n个数中取r个数的组合^表示次方,表示后面的数是前面的数的上标次方的意思。二项展开式是依据二项式定理对(a+b)n进行展开得到的式子,由艾萨克·牛顿于1664-1665年间提出。二项展开式是高考的一个重要考点。在二项式展开式中,二项式系数是一些特殊的组合数,与术语“系数”是有区别的。二项式系数最大的项是中间项,而系数最大的项却不一定是中间项。需要主要的关于通项公式的几个要点有:1. 项数:总共二项式展开有n+1项,通常通项公式写的是r+1项。2. 通项公式的第r+1项的二次项系数是Cnk,二次项系数不是项的系数。3. 如果二项式的幂指数是偶数,中间的一项二次项系数最大。如果是奇数,则最中间2项最大并且相等。4.指数:a按降幂排列,b按升幂排列,每一项中a、b的指数和为n。左迁2023-05-24 07:48:261
二项式系数和公式
二项式系数和公式为C^o*n+C^2*n+C^4*n+……=C^1*n+C^3*n+C^5*n+……=2^(n-1)。初等代数中,二项式是只有两项的多项式,即两个单项式的和。二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。小菜G的建站之路2023-05-24 07:48:261
二项式定理中各项系数和公式是什么
赋值法,令x=1人类地板流精华2023-05-24 07:48:262
二项式系数的计算公式是什么?
Cn0=1.计算结果如下:初等代数中,二项式是只有两项的多项式,即两个单项式的和。 二项式是仅次于单项式的最简单多项式。数形趣遇二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。【图算】常数项产生在展开后的第5、6两项,用“错位加法”很容易“加出”杨辉三角形第8行的第5个数,简图如下:1 4 6 4 11 5 10 10 5 1…… 15 20 15 6 …1 …… 35 35 21 ……… 70 56 …图上得到=70,=56。故求得展开式中常数项为70 – 2×56 = – 42。肖振2023-05-24 07:48:241
二项式系数的公式是什么?
各项系数和公式是C(n,0)+C(n,1)+...+C(n,n)=2^n。各项系数和是指所有的系数和,令二项式中所有的字母都等于1,则计算出的结果就等于二项式展开式的各项系数的和。二项式定理最初用于开高次方。在中国,成书于1世纪的《九章算术》提出了世界上最早的多位正整数开平方、开立方的一般程序。11世纪中叶,贾宪在其《释锁算书》中给出了“开方作法本原图”,满足了三次以上开方的需要。贾宪并未给出二项式系数的一般公式,因而未能建立一般正整数次幂的二项式定理。13世纪,杨辉在其《详解九章算法》中引用了此图,并注明了此图出自贾宪的《释锁算书》。贾宪的著作已经失传,而杨辉的著作流传至今,所以今称此图为“贾宪三角”或“杨辉三角”。meira2023-05-24 07:48:241
二项式系数公式是什么?
排列组合cnk公式是Cnk = [ n (n-1)(n-2)....(n-k+1) ] / k的阶乘。对于任意一个n次多项式,总可以只借助最高次项和(n-1)次项,根据二项式定理,凑出完全n次方项,其结果除了完全n次方项,后面既可以有常数项,也可以有一次项、二次项、三次项等,直到(n-2)次项。由于二次以上的n次多项式(n>2,n∈Z),在配n次方之后,并不能总保证在完全n次方项之后仅有常数项。于是,对于二次以上的一元整式方程,我们无法简单地像一元二次方程那样,只需配出关于x的完全平方式,然后将后面仅剩的常数项移到等号另一侧,再开平方,就可以推出通用的求根公式。发展历史:二项式定理最初用于开高次方。在中国,成书于1世纪的《九章算术》提出了世界上最早的多位正整数开平方、开立方的一般程序。11世纪中叶,贾宪在其《释锁算书》中给出了“开方作法本原图”,满足了三次以上开方的需要。此图即为直到六次幂的二项式系数表,但是,贾宪并未给出二项式系数的一般公式,因而未能建立一般正整数次幂的二项式定理。13世纪,杨辉在其《详解九章算法》中引用了此图,并注明了此图出自贾宪的《释锁算书》。贾宪的著作已经失传,而杨辉的著作流传至今,所以今称此图为“贾宪三角”或“杨辉三角”。左迁2023-05-24 07:48:241
三角形数列递推公式
数列1 3 6 10 15 21…的递推公式是an=an-1 + nan-a(n-1)= na(n-1)-a(n-2)= n-1a(n-2)-a(n-3)= n-2a(n-3)-a(n-4)= n-3.a3-a2= 3a2-a1= 2a1= 1an=1+2+3+.+(n-3)+(n-2+)+(n-1)+n=n(n+1)/2大鱼炖火锅2023-05-24 07:48:231
斐波那契数列通项公式是怎么得来的???
【斐波那挈数列通项公式的推导】斐波那契数列:1,1,2,3,5,8,13,21……如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:F(1)=F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3)显然这是一个线性递推数列。通项公式的推导方法一:利用特征方程线性递推数列的特征方程为:X^2=X+1解得X1=(1+√5)/2,X2=(1-√5)/2.则F(n)=C1*X1^n+C2*X2^n∵F(1)=F(2)=1∴C1*X1+C2*X2C1*X1^2+C2*X2^2解得C1=1/√5,C2=-1/√5∴F(n)=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}【√5表示根号5】通项公式的推导方法二:普通方法设常数r,s使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]则r+s=1,-rs=1n≥3时,有F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]……F(3)-r*F(2)=s*[F(2)-r*F(1)]将以上n-2个式子相乘,得:F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]∵s=1-r,F(1)=F(2)=1上式可化简得:F(n)=s^(n-1)+r*F(n-1)那么:F(n)=s^(n-1)+r*F(n-1)=s^(n-1)+r*s^(n-2)+r^2*F(n-2)=s^(n-1)+r*s^(n-2)+r^2*s^(n-3)+r^3*F(n-3)……=s^(n-1)+r*s^(n-2)+r^2*s^(n-3)+……+r^(n-2)*s+r^(n-1)*F(1)=s^(n-1)+r*s^(n-2)+r^2*s^(n-3)+……+r^(n-2)*s+r^(n-1)(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)=(s^n-r^n)/(s-r)r+s=1,-rs=1的一解为s=(1+√5)/2,r=(1-√5)/2则F(n)=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}水元素sl2023-05-24 07:48:231
求数列通项公式的方法大全
构造法求数列的通项公式在数列求通项的有关问题中,经常遇到即非等差数列,又非等比数列的求通项问题,特别是给出的数列相邻两项是线性关系的题型,在老教材中,可以通过不完全归纳法进行归纳、猜想,然后借助于数学归纳法予以证明,但新教材中,由于删除了数学归纳法,因而我们遇到这类问题,就要避免用数学归纳法。这里我向大家介绍一种解题方法——构造等比数列或等差数列求通项公式。构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助模型,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉.供参考。1、构造等差数列或等比数列由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法.例1设各项均为正数的数列的前n项和为Sn,对于任意正整数n,都有等式:成立,求的通项an.解:,∴,∵,∴.即是以2为公差的等差数列,且.∴例2数列中前n项的和,求数列的通项公式.解:∵当n≥2时,令,则,且是以为公比的等比数列,∴.2、构造差式与和式解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式.例3设是首项为1的正项数列,且,(n∈N*),求数列的通项公式an.解:由题设得.∵,,∴.∴.例4数列中,,且,(n∈N*),求通项公式an.解:∵∴(n∈N*)3、构造商式与积式构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法.例5数列中,,前n项的和,求.解:,∴∴4、构造对数式或倒数式有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.例6设正项数列满足,(n≥2).求数列的通项公式.解:两边取对数得:,,设,则是以2为公比的等比数列,.,,,∴例7已知数列中,,n≥2时,求通项公式.解:∵,两边取倒数得.可化为等差数列关系式.∴真颛2023-05-24 07:48:232
数列递推公式形如二次函数形式的如何求通项
它的通项只能是一个递推公式,如下书写即可:1当n=1时an=a^2(n-1),当n>1时给个资料你看,你会发现这题本法已是最简的表示法了简化形式xn+1=Pxn2+Q(P≠0)下面只讨论这个形式,暂时只研究P>0的情况.1§Q>0,这个非常难,不幸这个递推数列方程没有解析解(即无法通过初等函数来表达,要用无穷级数来表达,用级数表达难度很大,而其本身失去了简化运算的意义.)2§Q=0,这个形式最简单.两边取对数∴lnxn+1=lnP+2lnxn(xn>0)lnxn+1+lnP=ln(Pxn+1)=2ln(Pxn)注意:若x11)xn=x1(n=1)△3§Q0)北营2023-05-24 07:48:231
老师给我们讲了一阶递推数列的通项公式求法!怎样理解“一阶”?“一阶递推数列”又是什么?
一阶就是说是一次的,比如,y=3X+5,这就是一阶的,An=A1+(N-1)d,这也是一阶的. 一阶递推数列,比如说:2 4 6 8 10 .2n. 这就是个一阶递推数列. 希望楼主搞懂了瑞瑞爱吃桃2023-05-24 07:48:221
斐波纳契递推数列:a1=1,an=2(a1+a2+...+an-1) ,求通项公式。
当n>=2时, an=2Sn-1,a(n+1)=2Sn, 所以,由an=Sn-(Sn-1)知,(an+1)=3an,数列{ an }公比为3,an=3的n-1次方,i当n=1时,a1=1,故 an=3的n-1次方可桃可挑2023-05-24 07:48:223
高中数学数列递推公式
将所有等式相加等式左边为A2+.........+A(n-1)+A(n)右边为A1+A2+.........+A(n-1)+f(1)+........+f(n-1)左右两边同时消去A2+.........+A(n-1)就得到A(n)=A1+f(1)+........+f(n-1)u投在线2023-05-24 07:48:221
斐波那契数列通项公式是怎样推导出来的
数学归纳法铁血嘟嘟2023-05-24 07:48:222
用数学归纳法证明斐波那契数列公式
给你点资料,看完自然就会了! 斐波那契数列,“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年.籍贯大概是比萨).他被人称作“比萨的列昂纳多”.1202年,他撰写了《珠算原理》(Liber Abaci)一书.他是第一个研究了印度和 *** 数学理论的欧洲人.他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个 *** 老师的指导下研究数学.他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学. 斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21…… 这个数列从第三项开始,每一项都等于前两项之和.它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】 很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的. 【该数列有很多奇妙的属性】 比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887…… 还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1. 如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到. 如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值. 斐波那契数列的第n项同时也代表了 *** {1,2,...,n}中所有不包含相邻正整数的子集个数. 【斐波那契数列别名】 斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”. 斐波那契数列 一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来.如果所有兔都不死,那么一年以后可以繁殖多少对兔子? 我们不妨拿新出生的一对小兔子分析一下: 第一个月小兔子没有繁殖能力,所以还是一对; 两个月后,生下一对小兔民数共有两对; 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对; ------ 依次类推可以列出下表: 经过月数:0123456789101112 兔子对数:1123581321345589144233 表中数字1,1,2,3,5,8---构成了一个数列.这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项. 这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.) 【斐波那挈数列通项公式的推导】 斐波那契数列:1,1,2,3,5,8,13,21…… 如果设F(n)为该数列的第n项(n∈N+).那么这句话可以写成如下形式: F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 显然这是一个线性递推数列. 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2, X2=(1-√5)/2. 则F(n)=C1*X1^n + C2*X2^n ∵F(1)=F(2)=1 ∴C1*X1 + C2*X2 C1*X1^2 + C2*X2^2 解得C1=1/√5,C2=-1/√5 ∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】 通项公式的推导方法二:普通方法 设常数r,s 使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)] 则r+s=1, -rs=1 n≥3时,有 F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)] F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)] F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)] …… F(3)-r*F(2)=s*[F(2)-r*F(1)] 将以上n-2个式子相乘,得: F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)] ∵s=1-r,F(1)=F(2)=1 上式可化简得: F(n)=s^(n-1)+r*F(n-1) 那么: F(n)=s^(n-1)+r*F(n-1) = s^(n-1) + r*s^(n-2) + r^2*F(n-2) = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3) …… = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1) = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1) (这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和) =[s^(n-1)-r^(n-1)*r/s]/(1-r/s) =(s^n - r^n)/(s-r) r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2 则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} 【C语言程序】 main() { long fib[40] = {1,1}; int i; for(i=2;iNtou1232023-05-24 07:48:221
数列的递推公式有哪几种? 数列的递推公式有哪几种? 递推公式的所有类型~能举几个例子更好~
1) 分数类的可以用.裂项求和 例题 1/1*2+1/2*3+1/3*14.1/n(n+1) =1-1/2+1/2-1/3+..+1/n-1/n+1 =n/n+1 只要是分式数列求和基本可以采用裂项法 裂项的方法是用分母中较小因式的倒数减去较大因式的倒数,通分后与原通项公式相比较就可以得到所需要的常数 2) 叠加法 1 3 6 10 15 .的通式是什么 a2-a1=2 a3-a2=3 a4-a3=4 a5-a4=5 3) an= a6-a5=6 .. an-a(n-1)=n a2-a1+(a3-a2)+(a4-a3)+(a5-a4)+(a6-a5)+..+(an-a(n-1)) =2+3+4+..+n an-a1=(n+2)(n-1)/2 an=(n^2+n)/2 3) 公式法 Sn=an^2+bn an=Sn-S(n-1) 例: a1=3 Sn=n^2+2n S(n-1)=(n-1)^2+2(n-1) an=2n+1, 4)拼凑法 an=3a(n-1)+2 (an+1)=3(a(n-1)+1) (an+1)/(a(n-1)+1)=3 an+1是个等比数列, 如: an=(a(n-1)/(2a(n-1)+2) 1/an=(2a(n-1)+2)/a(n-1) =2+2/a(n-1) (1/an+2)=2(1/a(n-1)+2) ((1/an)+2)是等比数列 还有很多==递推方法Chen2023-05-24 07:48:221
高一数学【求数列1 2 4 8 16…的通项公式】
2^(n-1)韦斯特兰2023-05-24 07:48:215
求递推数列通项公式的常用方法
形如:a(n+1)=(aan+b)/(can+d),a,c不为0的分式递推式都可用不动点法求。当f(x)=x时,x的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。典型例子:a(n+1)=(a(an)+b)/(c(an)+d)简单地说就是在递推中令an=x代入a(n+1)也等于x然后构造数列.(但要注意,不动点法不是万能的,有的递推式没有不动点,但可以用其他的构造法求出通项;有的就不能求出)令x=(ax+b)/(cx+d)即cx2+(d-a)x-b=0令此方程的两个根为x1,x2,若x1=x2则有1/(a(n+1)-x1)=1/(an-x1)+p其中p可以用待定系数法求解,然后再利用等差数列通项公式求解。若x1≠x2则有(a(n+1)-x1)/(a(n+1)-x2)=q((an-x1)/(an-x2)其中q可以用待定系数法求解,然后再利用等比数列通项公式求解。【注】形如:a(n+1)=(aan+b)/(can+d),a,c不为0的分式递推式都可用不动点法求。让a(n+1)=an=x,代入化为关于x的二次方程(1)若两根x1不等于x2,有{(an-x1)/(an-x2)}为等比数列,公比由两项商求出(2)若两根x1等于x2,有{1/(an-x1)}为等差数列,公差由两项差求出若无解,就只有再找其他方法了。并且不动点一般只用于分式型上下都是一次的情况,如果有二次可能就不行了。例1:在数列{an}中,a(n+1)=(2an+8)/an,a1=2,求通项【解】a(n+1)=(2an+8)/an,a(n+1)=2+8/an令an=x,a(n+1)=xx=2+8/xx^2-2x-8=0x1=-2,x2=4{(an-4)/(an+2)}为等比数列令(an-4)/(an+2)=bnb(n+1)/bn=[(a(n+1)-4)/(a(n+1)+2)]/[(an-4)/(an+2)]=-1/2b(n+1)=(-1/2)bnb1=-1/2bn=(-1/2)^n=(an-4)/(an+2)an=[4+2*(-1/2)^n]/[1-(-1/2)^n],n>=1例2:a1=1,a2=1,a(n+2)=5a(n+1)-6an,【解】特征方程为:y²=5y-6那么,m=3,n=2,或者m=2,n=3于是,a(n+2)-3a(n+1)=2[a(n+1)-3an](1)a(n+2)-2a(n+1)=3[a(n+1)-2an](2)所以,a(n+1)-3a(n)=-2^n(3)a(n+1)-2a(n)=-3^(n-1)(4)消元消去a(n+1),就是an,an=-3^(n-1)+2^n.CarieVinne 2023-05-24 07:48:212
等差数列的递推公式是什么?
An=A1+(n-1)dAn是数列第n项A1是数列第一项n是项数d是公差。或者An=A(n-1)+dA(n-1)表示数列第(n-1)项的值FinCloud2023-05-24 07:48:212
数学递进的公式?
有无数的公式,不可能列出来。再也不做站长了2023-05-24 07:48:213
请问,数列x,y,z的通项公式是多少?
方程y"+y=0的通解为:y=C1cosx+C2sinx具体回答如下:特征方程:r+1=0可以解得:r1、2=±i所以通解为:y=C1cosx+C2sinx 所以答案是:y=C1cosx+C2sinx特征方程的高阶递推:对于更高阶的线性递推数列,只要将递推公式中每一个xn换成x,就是它的特征方程。最后我们指出。上述结论在求一类数列通项公式时固然有用,但将递推数列转化为等比(等差)数列的方法更为重要。如对于高阶线性递推数列和分式线性递推数列,我们也可借鉴前面的参数法,求得通项公式。墨然殇2023-05-24 07:48:211
数列递推公式是什么意思
就是给出某数列相邻两项(或者相邻三项甚至有的给定相邻四项)的关系式,并给出第一项(或前两项甚至前三项)的值据此让你来推知该数列的第n项与项数n之间存在的规律(即求通项公式)。小菜G的建站之路2023-05-24 07:48:203
一阶线性递推数列求通项公式
可以使用待定系数法。设a[n+1]=ka[n]+b,如果k=1就是等差数列,因此仅关注k不等于1的情况。注意到如果递推式可以化成a[n+1]+λ=k(a[n]+λ)的形式,a[n]+λ就是等比数列,从而可以得到a[n]+λ=(a[1]+λ)k^(n-1),进而得到a[n]=(a[1]+λ)k^(n-1)-λ。因此关键就是求λ。注意a[n+1]+λ=k(a[n]+λ)等价于a[n+1]=ka[n]+kλ-λ,对比a[n+1]=ka[n]+b可知kλ-λ=b,因此λ=b/(k-1)。综上,可求得a[n]=(a[1]+b/(k-1))k^(n-1)-b/(k-1)。肖振2023-05-24 07:48:203
什么是数列的递推公式,什么是数列的通项公式?数列的递推公式与通项公式怎么理解,
递推公式:如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式。例如斐波纳契数列的递推公式为an=a(n-1)+a(n-2)等差数列递推公式:an=a(n-1)+d(d为公差)等比数列递推公式:bn=b(n-1)*q(q为公比)通项公式:如果一个数列的第n项an与其项数n之间的关系可用式子an=f(n)来表示,这个式子就称为该数列的通项公式。定义怕给错了,上面是摘的百度百科递推公式就是知道前几项用公式推出后一项(所谓“递推”)通项公式就是知道是第几项直接能得出此项的值(所以是“通”项)关系的话……有通项公式可以求出递推公式,有递推公式和首项(或前几项)可以得到递推公式【用数学归纳法】北有云溪2023-05-24 07:48:201
已知一个数列的递推公式、如何求解它的通项公式。
公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法等等。 类型一归纳—猜想—证明 由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明. 类型二“逐差法”和“积商法” (1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子: a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1), 且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”. (2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即 a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,an/an-1=f(n-1),且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”. 类型三构造法 递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解. 类型四可转化为类型三求通项 (1)“对数法”转化为类型三. 递推式为an+1=qan�k(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为类型三. (2)“倒数法”转化为类型三. 递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb). 若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为类型三. 若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况. 类型五递推式为an+1/an=qn/n+k(q≠0,k∈N) 可先将等式(n+k)an+1=qnan两边同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)•nan,则bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1. 从而bn+1=qbn,因此数列{bn}是公比为q,首项为b1=k(k-1)(k-2)…2•1•a1=k!a1的等比数列,进而可求得an. 总之,由数列的递推公式求通项公式的问题比较复杂,不可能一一论及,但只要我们抓住递推数列的递推关系,分析结构特征,善于合理变形,就能找到解决问题的有效途径.类型一�归纳—猜想—证明 由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明. �例1�设数列{an}是首项为1的正项数列,且(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…),则它的通项公式是an=______________.(2000年全国数学卷第15题) 解:将(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…)分解因式得(an+1+an)〔(n+1)an+1-nan〕=0.��由于an>0,故(n+1)an+1=nan,即an+1=n/(n+1)an.��因此a2=(1/2)a1=(1/2),a3=(2/3)a2=(1/3),….猜想an=(1/n),可由数学归纳法证明之,证明过程略. 类型二�“逐差法”和“积商法” (1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子: a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1), 且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”. 例2�已知数列{an}满足a1=1,an=3n-1+an-1(n≥2),证明:an=(3n-1)/2. (2003年全国数学卷文科第19题) 证明:由已知得an-an-1=3n-1,故 an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=3n-1+3��n-2�+…+3+1=3n-1/2. 所以得证. (2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即 a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,a��n�/an-1�=f(n-1)�,�且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”. 例3�(同例1)(2000年全国数学卷第15题) 另解:将(n+1)a2n+1-nan2+an+1an=0(n�=1,2,3,…)化简,得(n+1)an+1=nan,即 an+1/an=n/(n+1).� 故an=an/an-1•an-1/an-2•an-2/an-3•…•a2/a1�=n-1/n•n-2/n-1•n-3/n-2• … •1/2�=1/n. 类型三�构造法 递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解. 例4�(同例2)(2003年全国数学卷文科第19题) 另解:由an=3n-1+an-1得3•an/3n=an-1/3n-1+1. 令bn=an/3n,则有 bn=1/3bn-1+1/3. (*) 设bn+x=1/3(bn-1+x),则bn=1/3bn-1+1/3x-x,与(*)式比较,得x=-1/2,所以bn-1/2=1/3(bn-1-1/2).因此数列{bn-1/2}是首项为b1-1=a1/3=-1/6,公比为1/3的等比数列,所以bn-1/2=-1/6•(1/3)n-1,即an/3n-1/2=-1/6(1/3)n-1.故an=3n〔1/2-1/6(1/3)n-1〕=3n-1/2. 例5�数列{an}中,a1=1,an+1=4an+3n+1,求an.� 解:令an+1+(n+1)x+y=4(an+nx+y),则 an+1=4an+3nx+3y-x,与已知an+1=4an+3n+1比较,得 3x=3, 所以 x=1, 3y-x=1, y=(2/3).故数列{an+n+(2/3)}是首项为a1+1+(2/3)=(8/3),公比为4的等比数列,因此an+n+(2/3)=(8/3)•4n-1,即 an=(8/3)•4n-1-n-(2/3). 另解:由已知可得当n≥2时,an=4an-1+3(n-1)+1,与已知关系式作差,有an+1-an=4(an-an-1)+3,即an+1-an+1=4(an-an-1+1),因此数列{an+1-an+1}是首项为a2-a1+1=8-1+1=8,公比为4的等比数列,然后可用“逐差法”求得其通项an=(8/3)•4n-1-n-(2/3). 类型四�可转化为 类型三求通项 (1)“对数法”转化为 类型三. 递推式为an+1=qan�k(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为 类型三. 例6�已知数列{an}中,a1=2,an+1=an2,求an. 解:由an+1=an2>0,两边取对数得lgan+1=2lgan.令bn=lgan则bn+1=2bn.因此数列{bn}是首项为b1=lga1=lg2,公比为2的等比数列,故bn=2n-1lg2=lg22n-1,即an=22n-1. (2)“倒数法”转化为 类型三. 递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb). 若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为 类型三. 若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况. 例7�在数列{an}中,已知a1=2,an+1=(3an+1)/(an+3),求通项an. 解:设an+1+x=y(an+x)/an+3,则an+1=(y-x)an+(y-3)x/an+3,结合已知递推式得 y-x=3, 所以 x=1, y-3=1, y=4,则有an+1+1=4(an+1)/an+3,令bn=an+1,则bn+1=4bn/bn+2,求倒数得1/bn+1=1/2•1/bn+1/4,即1/bn+1-1/2=1/2(1/bn-1/2). 因此数列{1/bn-1/2}是首项为1/b1-1/2=1/a1+1-1/2=-1/6,公比为1/2的等比数列. 故1/bn-1/2=(-1/6)(1/2)n-1,从而可求得an. 类型五�递推式为an+1/an=qn/n+k(q≠0,k∈N) 可先将等式(n+k)an+1=qnan两边同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)•nan,则bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1. 从而bn+1=qbn,因此数列{bn}是公比为q,首项为b1=k(k-1)(k-2)…2•1•a1=k!a1的等比数列,进而可求得an. 例8�(同例1)(2000年全国数学卷第15题) 另解:将(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,…),化简得(n+1)an+1=nan,令nan=bn,则bn+1=bn,所以数列{bn}是常数列,由于首项b1=1•a1=1,所以bn=1,即nan=1,故an=1/n. 总之,由数列的递推公式求通项公式的问题比较复杂,不可能一一论及,但只要我们抓住递推数列的递推关系,分析结构特征,善于合理变形,就能找到解决问题的有效途径.苏州马小云2023-05-24 07:48:201
数学递推公式
递推公式的概念:可以通过给出数列的第1项(或前若干项),并给出数列的某一项与它的前一项(或前若干项)的关系式来表示数列,这种表示数列的式子叫做这个数列的递推公式。递推公式是数列所特有的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可. 递推公式: 如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式。例如斐波纳契数列的递推公式为an=an-1+an-2NerveM 2023-05-24 07:48:202
数列a(n+1)=an^2+1,a1=1的通项公式是什么? a1=1
它的通项只能是一个递推公式,如下书写即可:1当n=1时an=a^2(n-1),当n>1时给个资料你看,你会发现这题本法已是最简的表示法了简化形式xn+1=Pxn2+Q(P≠0)下面只讨论这个形式,暂时只研究P>0的情况。1§Q>0,这个非常难,不幸这个递推数列方程没有解析解(即无法通过初等函数来表达,要用无穷级数来表达,用级数表达难度很大,而其本身失去了简化运算的意义。)2§Q=0,这个形式最简单。两边取对数∴lnxn+1=lnP+2lnxn(xn>0)lnxn+1+lnP=ln(Pxn+1)=2ln(Pxn)注意:若x1<0,要从x2开始,x2肯定大于0。{ln(Pxn)}就是等比数列∴ln(Pxn)=2n-2ln(Px2)xn=(Px2)^2n-2/P(n>1)xn=x1(n=1)△3§Q<0,为了方便讨论及记忆先指定其形式为xn+1=Pxn2-Q(P≠0,Q>0)这种比较难,对于高中生来说能想到线性变换化简都不错了,更后面的变换更难想到。这种题高考是考过的,竞赛更不用说了。(1)两边同时除以Q/2变换为2xn+1/Q=PQ/2(2xn/Q)2-2(P≠0,Q>0)于是形式上变成了rn+1=krn2-2(k>0),对于这个递推形式,容易证明从某项起,这个数列是递增数列,这儿不再详细证明。代换方法是令rn=bn+1/bn,bn+1=bn2(即bn=b1^2n-1)注意:rn,bn>0,若rn≤0,则要从使得rn>0的第m项rm开始,通过rm=bm+1/bm,算出bm,bn=bm^2n-m。数学需要严谨。前面的项是摆动的,无法直接求。这个是最简形式了,这个形式是有解的,可以想想为什么要化为-2。下面以一个例子来说明解这种最简形式的具体求解思路。例:an+1=an2-2,a1=-51/2。求an。令an=bn+1/bn。bn+1+1/bn+1+2=(bn+1/bn)2注意右边可化为(bn+11/2+1/bn+11/2)2=(bn+1/bn)2bn+11/2+1/bn+11/2=bn+1/bn注意这里我们只要满足上面那个等式就行了,具体bn有多少种解我们不关心,所以最简单,只要bn+11/2=bn就行了。显然lnbn+1=2lnbn,{lnbn}是等比数列,注意bn>0,需要an>0来保证,但第二项大于0,所以从第二项起。lnbn=2n-2lnb2a2=3=b2+1/b2,取一个根即可b2=(3+51/2)/2bn=[(3+51/2)/2]^2n-2an=bn+1/bn=[(3+51/2)/2]^2n-2+[(3-51/2)/2]^2n-2(n≥2)an=-51/2(n=1)P<0的情况,只需令yn=-xn就可化为yn=-Pyn2-Q(P<0),即转化成为xn+1=Pxn2+Q(P>0)的形式△综上所述:an+1=Aan2+Ban+C(A≠0,an≠an+1)的递推数列都可以通过线性变换将形式化简成xn+1=Pxn2+Q(P>0)的形式若Q<0,则可以进一步化简为xn+1=kxn2-2(k>0)这样的形式,若m项起xn>0,则通过xn=bn+1/bn,bn=bm^2n-m来求n≥m部分的通项公式(n<m的部分由于数列摆动难以求解)。若是特殊形式,还可以进行降次处理。但是,这只是在实数范围内的解法。如果扩展到复数范围,则完全可以不考虑an的正负,可以让Xn是复数。这样通项公式里就含有了i,但是求出的各项值却都是实数。原因是Xn的幂是2^n-1,含i的项都会有平方。这样完全不影响结果。而且还使通项公式n的取值范围增大。再也不做站长了2023-05-24 07:48:201
数列递推公式累加法怎么加
移项,得an-an-1=3n-2∴a2-a1=3*2-2a3-a2=3*3-2......an-an-1=3n-2可以看到,先消去的为减数,(如a2)an-a1=3(2+3+...+(n-1))-2*(n-1)整理,即可。meira2023-05-24 07:48:192
求数列的通项公式的方法
在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的检验,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键。 求数列通项公式常用以下几种方法: 一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。 例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。 解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。 二、已知数列的前n项和,用公式 S1 (n=1) Sn-Sn-1 (n2) 例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5 (A) 9 (B) 8 (C) 7 (D) 6 解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B) 此类题在解时要注意考虑n=1的情况。 三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。 例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。 解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -, 再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以, - (n=1) - (n2) 四、用累加、累积的方法求通项公式 对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。 例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式 解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0 又∵{an}是首项为1的正项数列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-, 又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)五、用构造数列方法求通项公式 题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有 an(或Sn)的式子,使其成为等比或等差数列,从而求出an(或Sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。 例:已知数列{an}中,a1=2,an+1=(--1)(an+2),n=1,2,3,…… (1)求{an}通项公式 (2)略 解:由an+1=(--1)(an+2)得到an+1--= (--1)(an--) ∴{an--}是首项为a1--,公比为--1的等比数列。 由a1=2得an--=(--1)n-1(2--) ,于是an=(--1)n-1(2--)+- 又例:在数列{an}中,a1=2,an+1=4an-3n+1(n∈N*),证明数列{an-n}是等比数列。 证明:本题即证an+1-(n+1)=q(an-n) (q为非0常数) 由an+1=4an-3n+1,可变形为an+1-(n+1)=4(an-n),又∵a1-1=1, 所以数列{an-n}是首项为1,公比为4的等比数列。 若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。 又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略 解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1 解题方略mlhxueli 2023-05-24 07:48:192
数列的递推公式
概念如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式。例如斐波纳契数列的递推公式为an=an-1+an-2等差数列递推公式:an=d(n-1)+a(d为公差 a为首项)等比数列递推公式:bn=q(n-1)*b (q为公比 b为首项)由递推公式写出数列的方法:1. 根据递推公式写出数列的前几项,依次代入计算即可;2.若知道的是末项,通常将所给公式整理成用后面的项表示前面的项的形式。递推列亦称递归列。由前面的项能推出后面的项的数列。指对所有n>p,满足形如an=f(an-1,an-2,…,an-p)的关系式的序列{an},其中f为某个函数。p是某个固定的正整数,a1,a2,…,ap为已知数。p称为这个递推列的阶数.上述关系式称为递推公式,给定a1,a2,…,ap,可以从它得到所有an。形如an+c1an-1+c2an-2+…+cpan-p=0(c1,c2,…,cp是常数)的递推公式称为线性递推公式,相应的序列称为线性递推列。最简单的递推列是一阶递推列,即满足an=f(an-1)的序列{an}.它又称迭代列。等差数列与等比数列都是线性的迭代列hi投2023-05-24 07:48:191
如何求递推数列的通项公式?
方程y"+y=0的通解为:y=C1cosx+C2sinx具体回答如下:特征方程:r+1=0可以解得:r1、2=±i所以通解为:y=C1cosx+C2sinx 所以答案是:y=C1cosx+C2sinx特征方程的高阶递推:对于更高阶的线性递推数列,只要将递推公式中每一个xn换成x,就是它的特征方程。最后我们指出。上述结论在求一类数列通项公式时固然有用,但将递推数列转化为等比(等差)数列的方法更为重要。如对于高阶线性递推数列和分式线性递推数列,我们也可借鉴前面的参数法,求得通项公式。gitcloud2023-05-24 07:48:191
数列的递推公式
数列的递进公式,如下所示:数列的递推公式=n/n+1。如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式。例如斐波纳契数列的递推公式为 an=an-1+an-2。等差数列递推公式:an=d(n-1)+a(d为公差,a为首项)。等比数列递推公式:bn=q(n-1)*b (q为公比 b为首项)。由递推公式写出数列的方法:1. 根据递推公式写出数列的前几项,依次代入计算即可。2.若知道的是末项,通常将所给公式整理成用后面的项表示前面的项的形式。数列的含义:数列是以正整数集或它的有限子集为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项,通常也叫做首项,排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。水元素sl2023-05-24 07:48:191
什么是数列的递推公式,什么是数列的通项公式
递推公式:如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式.例如斐波纳契数列的递推公式为an=a(n-1)+a(n-2)等差数列递推公式:an=a(n-1)+d(d为公差)等比数列递推公式:bn=b(n-1)* q (q为公比)通项公式:如果一个数列的第n项an与其项数n之间的关系可用式子an=f(n)来表示,这个式子就称为该数列的通项公式.北有云溪2023-05-24 07:48:192
求数列 线性递推原理和公式
一阶线性递推数列主要有如下几种形式:1.这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和). 当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时,则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0.2.这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积). 当为常数时,用累乘法可求得等比数列的通项公式.3.;这类数列通常可转化为,或消去常数转化为二阶递推式.例1已知数列中,,求的通项公式.解析:解法一:转化为型递推数列.∵∴又,故数列{}是首项为2,公比为2的等比数列.∴,即.解法二:转化为型递推数列.∵=2xn-1+1(n≥2) ① ∴=2xn+1 ②②-①,得(n≥2),故{}是首项为x2-x1=2,公比为2的等比数列,即,再用累加法得.解法三:用迭代法.当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.例2 已知函数的反函数为求数列的通项公式.解析:由已知得,则.令=,则.比较系数,得.即有.∴数列{}是以为首项,为公比的等比数列,∴,故.评析:此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之.(4)若取倒数,得,令,从而转化为(1)型而求之.(5);这类数列可变换成,令,则转化为(1)型一阶线性递推公式.例3 设数列求数列的通项公式.解析:∵,两边同除以,得.令,则有.于是,得,∴数列是以首项为,公比为的等比数列,故,即,从而.例4 设求数列的通项公式.解析:设用代入,可解出.∴是以公比为-2,首项为的等比数列.∴,即.(6)这类数列可取对数得,从而转化为等差数列型递推数列.二、可转化为等差、等比数列或一些特殊数列的二阶递推数列 例5 设数列求数列的通项公式.解析:由可得设故即用累加法得 或例6 在数列求数列的通项公式.解析:可用换元法将其转化为一阶线性递推数列.令使数列是以为公比的等比数列(待定).即∴对照已给递推式,有即的两个实根.从而∴ ①或 ②由式①得;由式②得.消去.例7 在数列求.解析:由 ①,得②.式②+式①,得,从而有.∴数列是以6为其周期.故==-1.三、特殊的n阶递推数列例8 已知数列满足,求的通项公式.解析:∵ ① ∴②②-①,得.∴故有将这几个式子累乘,得又例9 数列{}满足,求数列{}的同项公式.解析:由①,得②.式①-式②,得,或,故有.∴,.将上面几个式子累乘,得,即.∵也满足上式,∴.阿啵呲嘚2023-05-24 07:48:182
二次递推数列如何求通项公式
非常重要的二次递推数列求法形如an+1=aan2+ban+c(a≠0,an≠an+1)的递推数列,难度很大。让人大跌眼镜的是某几个省高考居然考了,所以发上来解法,只针对基础很好的同学。其通解要讨论n多种情况,有点混沌的味道。恕我水平有限,现阶段只想出这些特殊情况。an+1=aan2+ban+c(a≠0,an≠an+1)基本思路通过线性变换(线性变换是最基本的形式简化方式)xn=an+b/(2a),即化为完全平方将形式简化为xn+1=axn2+[(4ac-b2+2b)/(4a)]即简化形式xn+1=pxn2+q(p≠0)下面只讨论这个形式,暂时只研究p>0的情况。1、q>0,这个非常难,不幸这个递推数列方程没有解析解(即无法通过初等函数来表达,要用无穷级数来表达,用级数表达难度很大,而其本身失去了简化运算的意义。)2、q=0,这个形式最简单。两边取对数∴lnxn+1=lnp+2lnxn(xn>0)lnxn+1+lnp=ln(pxn+1)=2ln(pxn)注意:若x1<0,要从x2开始,x2肯定大于0。{ln(pxn)}就是等比数列∴ln(pxn)=2n-2ln(px2)xn=(px2)^2n-2/p(n>1)xn=x1(n=1)△3§q<0,为了方便讨论及记忆先指定其形式为xn+1=pxn2-q(p≠0,q>0)这种比较难,对于高中生来说能想到线性变换化简都不错了,更后面的变换更难想到。这种题高考是考过的,竞赛更不用说了。(1)两边同时除以q/2变换为2xn+1/q=pq/2(2xn/q)2-2(p≠0,q>0)于是形式上变成了rn+1=krn2-2(k>0),对于这个递推形式,容易证明从某项起,这个数列是递增数列,这儿不再详细证明。代换方法是令rn=bn+1/bn,bn+1=bn2(即bn=b1^2n-1)注意:rn,bn>0,若rn≤0,则要从使得rn>0的第m项rm开始,通过rm=bm+1/bm,算出bm,bn=bm^2n-m。数学需要严谨。前面的项是摆动的,无法直接求。这个是最简形式了,这个形式是有解的,可以想想为什么要化为-2。下面以一个例子来说明解这种最简形式的具体求解思路。例:an+1=an2-2,a1=-51/2。求an。令an=bn+1/bn。bn+1+1/bn+1+2=(bn+1/bn)2注意右边可化为(bn+11/2+1/bn+11/2)2=(bn+1/bn)2bn+11/2+1/bn+11/2=bn+1/bn注意这里我们只要满足上面那个等式就行了,具体bn有多少种解我们不关心,所以最简单,只要bn+11/2=bn就行了。显然lnbn+1=2lnbn,{lnbn}是等比数列,注意bn>0,需要an>0来保证,但第二项大于0,所以从第二项起。lnbn=2n-2lnb2a2=3=b2+1/b2,取一个根即可b2=(3+51/2)/2bn=[(3+51/2)/2]^2n-2an=bn+1/bn=[(3+51/2)/2]^2n-2+[(3-51/2)/2]^2n-2(n≥2)an=-51/2(n=1)p<0的情况,只需令yn=-xn就可化为yn=-pyn2-q(p<0),即转化成为xn+1=pxn2+q(p>0)的形式△综上所述:an+1=aan2+ban+c(a≠0,an≠an+1)的递推数列都可以通过线性变换将形式化简成xn+1=pxn2+q(p>0)的形式若q<0,则可以进一步化简为xn+1=kxn2-2(k>0)这样的形式,若m项起xn>0,则通过xn=bn+1/bn,bn=bm^2n-m来求n≥m部分的通项公式(n评论000加载更多康康map2023-05-24 07:48:182
数列递推公式 [高考中常见的递推数列问题及解题策略]
数列是高考数学中考查的重点,在高考解答题中,求数列的通项公式,是考查的一个热点。然而,已知条件中,往往是以递推数列的形式给出,通过递推数列形式,考查学生方程思想、化归思想,观察能力、整理能力及待定系数法等思想方法。那么,高考中的常见递推数列的模型有哪些呢?相应的模型又有怎样的解决策略呢?现归纳总结如下: 一、形如αn+1=αn+f(n)(n∈N*)型 这类问题实质上是将等差数列的递推模型(即αn+1=αn+d(n∈N*)一般化。解决这类问题的一般策略是:累加法,即αn=α1+(α2-α1)+(α3-α2)+…+(αn-αn-1) =α1+[f(1)+f(2)+f(3)+…+f(n-1) ] (其中,α1已知,f(n)可求和) 例1、(2009年全国卷Ⅰ理)在数列 {αn}中α1=1,。设,求数列{bn}的通项公式。 分析:由已知有 利用累加法即可求出数列{bn}的通项公式: (n∈N*)。 二、形如αn+1=f(n)・αn(n∈N*)型 这类问题实质上是将等比数列的递推模型(即αn+1=q・αn(n∈N*)一般化。解决问题的一般策略是:累乘法,即 (其中α1已知) 例2、(2004年全国卷Ⅰ理)已知数列{αn}满足α1=1,αn=α1+2α2+3α3+…+(n-1)αn-1(n≥2),则{αn}的通项。 解析:∵αn=α1+2α2+3α3+…+(n-1)αn-1(n≥2)① ∴αn+1=α1+2α2+3α3+…+nαn(n≥2)② ②-①得:αn+1-αn=nαn, 即 三、形如αn+1=p・αn+q(p,q为常数,且p≠0,1,q≠0,n∈N*)型 这类问题实质上是等差、等比数列递推公式的综合与一般化。解决问题的策略是:待定系数法,即αn+1=pαn+q一定可化为:αn+1-t=p(αn-t)(t为参数,可用待定系数法求得), 从而数列{αn-t}是首项为α1-t,公比为p的等比数列,然后利用等比数列的通项公式求出数列{αn}的通项公式。 例3、(07年全国Ⅱ理21(1))设数列{αn}的首项 求 {αn}的通项公式。 解:由 整理得. 又1-α1≠0,所以{1-αn}是首项为1-α1,公比为的等比数列,得 。 四、形如αn+1=p・αn+qn+1(p,q为常数,且pq≠0,1,n∈N*)型 这类问题是将上述形式三中的q一般化成q的指数形式而得,因此可转化成模型三进行分析。解决问题的一般策略是:指数常数化,即 将αn+1=p・αn+qn+1化成,然后用模型三的方法求出数列{}的通项公式,进一步求出通项αn。 例4、(07年北京16题改编)在数列 {αn}中,α1=2,αn=4αn-1+2n(n≥2,n∈N*).求数列{αn}的通项公式。 解:由α1=2,αn=4αn-1+2n,等式两边同时除以2n, 得,则 bn=2bn-1+1 ∴bn+1=2(bn-1+1) ∴数列{bn+1}是以为首项,2为公比的等比数列, ∴bn+1=2・2n-1, ∴bn=2n-1 ∴αn=2n・bn=4n-2n。 五、形如 型 这类问题是通过等式两边同时取倒数,转化成模型三的问题来解决。解决策略是:取倒数法,即 由得, 即, 进一步转化成,利用整体思想转化成等比数列,从而达到求出通项αn。 例5、(2008年陕西卷22(1))已知数列{αn}的首项 .求{αn}的通项公式; 解:∵,, 又是以为首项,为公比的等比数列. , . 六、形如 型 解决这类问题,要想办法把 的指数放在系数的位置上来,从而想到利用对数函数的性质,通过等式两边同时取对数的形式来解决,因此,解决策略是:取对数法,即 由αn+1=p・αn+q得logααn+1=logα,即logααn+1=q・logααn+logαp,从而转化成模型三的问题来求解,进一步求出通项αn。 例6、(2006年山东卷改编)已知α1=2,点(αn,αn+1)在函数f(x)=x2=2x的图象上,其中m=1,2,3,…求数列{αn}的通项αn。 解:∵点(α1,αn+1)在函数f(x)=x2+2x的图象上, ∴αn+1=αn2 +2αn,∴1+αn+1=(1+αn)2, 又α1=2,∴αn>0 上式两边同时取以3为底的对数得:log3(1+αn+1)=log3(1+αn)2, 即:log3(1+αn+1)=2log3(1+αn), ∴数列{log3(1+αn)}是以log3(1+α1)=log3(1+2)=1为首项,2为公比的等比数列, ∴log3(1+αn)=1・2n-1, 即αn=32n-1-1(n∈N*)。 七、形如αn+2=p・αn+1+q・αn(p,q≠0)型 对于这类问题,可将αn+2=p・αn+1+q・αn① 变形为αn+2-ααn+1=β(αn+1-ααn),即αn+2=(α+β)αn+1-αβα n②, 由①②得解出α,β,于是 是公比为β的等比数列,从而转化成模型一或模型四求解,这种方法叫特征根法。 例7、(08天津卷20改编)在数列 {αn}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).求数列{αn}的通项公式。 解:由题设an+1=(1+q)an-qan(n≥2),得 an+1-an=q(an-an-1), 令bn=an+1-an, 则bn=qbn-1,n≥2. 又b1=a2-a1=1,q≠0,所以{bn}是首项为1,公比为q的等比数列. ∴bn=qn-1,即an+1-an=qn-1(n≥2) ∴a2-a1=1, a3-a2=q, …… an-an-1=qn-1,(n≥2). 将以上各式相加,得an-a1=1+q+…+qn-2(n≥2). 所以当n≥2时, 上式对n=1显然成立. 八、形如Sn=f(an)型 这类问题主要是利用公式进行转化,要么将已知式转化成关于an的递推模型,要么将已知条件转化成关于Sn的递推模型,再用上述模型之一进行转化求出αn或Sn,称之为公式转化法。 例8、(08全国Ⅱ20(1))设数列{αn}的前n项和为Sn.已知a1=1,an+1=Sn+3n,.求数列{αn}的通项公式。 解:依题意,Sn+1-Sn=an+1=Sn+3n,即Sn+1=2Sn+3n, 由此得Sn+1-3n+1=2(Sn-3n), 设bn=Sn-3n,则bn+1=2bn, ∴数列{bn}是首项为b1=s1-3=a-3,公比为2的等比数列, ∴,bn=Sn-3n=(a-3)2n-1,.① ∴Sn=(a-3)・2n-1+3, ∴an+1=(a-3)・2n-1+2・3n() 故。 例9、(09全国Ⅱ理改编)设数列 的前n项和为Sn,已知a1=1,Sn+1=4an+2求数列{an}的通项公式。 解:∵a1=1及Sn+1=4an+2, 当n=1时,a1+a2=4a1+2,a2=3a1+2=5 当n≥2时, 由Sn+1=4an+2, ① 得Sn=4an-1+2, ② ①-②得an+1=4an-1,∴an+1=2(an-2an-1) 令bn=an+1-2an,则bn=2bn-1 ∴{bn}是首项b1=3,公比为2的等比数列. ∴bn=an+1-2an=3・2n-1, ∴数列是首项为,公差为的等比数列. ∴, ∴。 总之,已知数列的递推关系,求数列的通项公式,是高考理科数学解答题中考查的重点和热点,也是难点。要突破这一难点,必须熟悉常见的递推模型及解决策略,充分利用题目中所给的“梯度数列”,通过变形及整体思想,转化为等差、等比数列问题,从而求出数列的通项公式。 本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文kikcik2023-05-24 07:48:181
数列的递推公式
数列的递推公式=n/n+1。如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式。例如斐波纳契数列的递推公式为an=an-1+an-2。数列是以正整数集或它的有限子集为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项,通常也叫做首项,排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。人类地板流精华2023-05-24 07:48:171
数列递推公式
在一个数列中,如果可以用一个固定的公式来表示某项与它之前的一项或几项之间的关系,这个公式就叫做数列的递推公式。等差数列的通项公式:(d为公差)等比数列的通项公式:(q为公比)等差数列递推公式:an=d(n-1)+a(d为公差 a为首项)等比数列递推公式:bn=q(n-1)*b (q为公比 b为首项)递推公式是数列所特有的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可.----还需要一个结论。就是一个规律。真颛2023-05-24 07:48:171
数列递推公式是什么意思?
我的理解:an=f(n)或者是a(n+1)=f(an)善士六合2023-05-24 07:48:175
什么是数列的递推公式,什么是数列的通项公式
问题太笼统了。一般说来,递推公式更能反映数列的本质。递推公式和初始条件可以确定一个数列。通项公式an=f(n)虽然能直接揭示数列项an与项数n的关系,但是一般来说,并非每个数列都可以通过递推关系求出通项公式来。对于常系数线性递归数列,可以用特征根法求解通项,但其他情况求通项往往都比较困难,甚至不可能求出。比方说,等差数列a(n+1)=an+d和等比数列b(n+1)=qbn就是线性递归的,通项公式是众所周知的。CarieVinne 2023-05-24 07:48:172
在文本文档中,怎样书写“欧拉公式”?
你好,文本文档是不能够编辑字体的格式的你可以利用Word编辑一下北营2023-05-24 07:48:166
数列递推公式
数列的递推公式=n/n+1。如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式。例如斐波纳契数列的递推公式为an=an-1+an-2。递推数列是可以递推找出规律的数列,找出这个规律的通项式就是解递推数列。求递推数列通项公式的常用方法有:公式法、累加法、累乘法、待定系数法等共十种方法。数列分类:1、按照项数是否有限分为有穷数列和无穷数列。1)项数有限的数列为"有穷数列"。2)项数无限的数列为"无穷数列"。2、按照项与项的大小关系分为递增数列、递减数列和摆动数列。1)从第2项起,每一项都不小于它的前一项的数列叫做递增数列。2)从第2项起,每一项都不大于它的前一项的数列叫做递减数列。3)从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列。3、按照有界性分为有界数列和无界数列。一个数列每一项的绝对值都小于某个正数(即|An|<a, a∈R+)这个数列是有界数列,反之为无界数列。4、一些特殊的数列:1)各项呈周期性变化的数列叫做周期数列(如三角函数)。2)各项相等的数列叫做常数列。苏萦2023-05-24 07:48:161
递推数列公式是怎样来的呢?
齐次方程y"+y=0的特征方程是r^2+1=0则特征根是daor=±i (二复数根)此特征方程的通解是y=C1cosx+C2sinx (C1,C2是任意常数)设原方程的解为y=Ax+B则代入原方程化简得 (A+1)x+B=0 ==>A+1=0,B=0 ==>A=-1,B=0 y=-x是原方程的一个特解扩展资料:求一类数列通项公式时固然有用,但将递推数列转化为等比(等差)数列的方法更为重要。如对于高阶线性递推数列和分式线性递推数列,我们也可借鉴前面的参数法,求得通项公式。如果已知数列 的第1项(或前几项),且任一项 与它的前一项 (或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。LuckySXyd2023-05-24 07:48:161
欧拉函数计算公式的推导(要详细过程)
在<=m的数中,m的欧拉函数等于与它互质的数的个数。例如:10的欧拉函数是5(在1,2,3,4,5,6,7,8,9,10这些≤10的数中,1,3,7,9以及它本身,这五个数和10互质)。九万里风9 2023-05-24 07:48:153
欧拉公式
欧拉公式是指以欧拉命名的诸多公式之一。称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。欧拉定理实际上是费马小定理的推广。此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。中文名:欧拉公式外文名:Eulers formula应用:数学发现人:莱昂哈德·欧拉 当r=0,1时式子的值为0当r=2时值为1当r=3时值为a+b+c豆豆staR2023-05-24 07:48:143
欧拉公式
1、欧拉公式是指以欧拉命名的诸多公式。其中最著名的有:复变函数中的欧拉幅角公式——将复数、指数函数和三角函数联系起来,拓扑学中的欧拉多面体公式,初等数论中的欧拉函数公式。此外还包括其它一些欧拉公式,如分式公式等。 2、分式:a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b),当r=0,1时式子的值为0,当r=2时值为1,当r=3时值为a+b+c。 3、复变函数:e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。 4、空间中的欧拉公式:V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。NerveM 2023-05-24 07:48:131
欧拉函数计算公式
它于1640年由Descartes首先给出证明,后来Euler(欧拉)于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理,R+V-E=2就是欧拉公式。在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理。当R=2时。由说明1这两个区域可想象为以赤道为边界的两个半球面,赤道上有两个“顶点”将赤道分成两条“边界”。即R=2,V=2,E=2于是R+V-E=2,欧拉定理成立。大鱼炖火锅2023-05-24 07:48:121
欧拉公式什么意思
(1)分式里的欧拉公式a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b) 当r=0,1时式子的值为0 当r=2时值为1 当r=3时值为a+b+c(2)复变函数论里的欧拉公式 e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。(3)三角形中的欧拉公式设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则: d^2=R^2-2Rr(4)拓扑学里的欧拉公式 V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。此后故乡只2023-05-23 22:48:142
欧拉函数计算公式是什么?
它于1640年由Descartes首先给出证明,后来Euler(欧拉)于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理,R+ V- E= 2就是欧拉公式。在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+ V- E= 2,这就是欧拉定理。用数学归纳法证明:1、当R= 2时,由说明1这两个区域可想象为以赤道为边界的两个半球面,赤道上有两个“顶点”将赤道分成两条“边界”,即R= 2,V= 2,E= 2于是R+ V- E= 2,欧拉定理成立。2、设R= m(m≥2)时欧拉定理成立,下面证明R= m+ 1时欧拉定理也成立。左迁2023-05-23 22:48:132
欧拉公式是什么?
欧拉公式欧拉公式有4条 (1)分式: a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b) 当r=0,1时式子的值为0 当r=2时值为1 当r=3时值为a+b+c (2)复数 由e^iθ=cosθ+isinθ,得到: sinθ=(e^iθ-e^-iθ)/2i cosθ=(e^iθ+e^-iθ)/2 此函数将两种截然不同的函数---指数函数与三角函数联系起来,被誉为数学中的“天桥”。当θ=π时,成为e^iπ+1=0 它把数学中最重要的e、i、π、1、0联系起来了。(3)三角形 设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则: d^2=R^2-2Rr (4)多面体 设v为顶点数,e为棱数,f是面数,则 v-e+f=2-2p p为亏格,2-2p为欧拉示性数,例如 p=0 的多面体叫第零类多面体 p=1 的多面体叫第一类多面体 等等meira2023-05-23 22:48:1312
四个欧拉公式是什么?
四个欧拉公式分别是复变函数中的欧拉幅角公式,分式公式,三角形中的欧拉公式,物理学中的欧拉公式。欧拉公式是指以欧拉命名的诸多公式。其中最著名的有复变函数中的欧拉幅角公式。即将复数、指数函数与三角函数联系起来。 拓扑学中的欧拉多面体公式,初等数论中的欧拉函数公式。 此外还包括其他一些欧拉公式,比如分式公式等。V加F减E等于XP。V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,XP是多面体P的欧拉示性数。如果P可以同胚于一个球面那么XP等于2,如果P同胚于一个接有h个环柄的球面,那么XP等于2减2h。欧拉公式的应用众所周知,生活中处处存在着摩擦力,欧拉测算出了摩擦力与绳索缠绕在桩上圈数之间的关系。这个欧拉公式是F等于fe乘以ka。其中,f表示我们施加的力,F表示与其对抗的力,e为自然对数的底,k表示绳与桩之间的摩擦系数,a表示缠绕转角,即绳索缠绕形成的弧长与弧半径之比。除了上面提到的四个公式以外,还有很多著名定理都以欧拉的名字命名。康康map2023-05-23 22:48:131
求个质数的公式
知道点,就能求曲线。西柚不是西游2023-05-23 22:48:082
质数公式的素数简介
质数的个数是无穷的。最经典的证明由欧几里得证得,在他的《几何原本》中就有记载。它使用了现在证明常用的方法:反证法。具体的证明如下:●假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设 N = p1 × p2 × …… × pn,那么,N+1是素数或者不是素数。●如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。●如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。●因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。●对任何有限个素数的集合来说,用上述的方法永远可以得到有一个素数不在假设的素数集合中的结论。●所以原先的假设不成立。也就是说,素数有无穷多个。其他数学家也给出了他们自己的证明。欧拉利用黎曼ζ函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,Hillel Furstenberg则用拓扑学加以了证明。 被称为“17世纪最伟大的法国数学家”的费马,也研究过质数的性质。他发现,设Fn=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。这便是费马数。但是,就是在F5上出了问题!费马死后67年,25岁的瑞士数学家欧拉证明:F5=4294967297=641×6700417,它并非质数,而是一个合数!更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1 ,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,2^p-1都是素数,但p=11时,所得2047=23×89却不是素数。还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721×761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。美国中央密苏里大学数学教授柯蒂斯·库珀(CurtisCooper)领导的研究小组于1月25日发现了已知的最大梅森质数——2^57885161-1(即2的57885161次方减1);该质数有17425170位,如果用普通字号将它连续打印下来,它的长度可超过65公里! 人们在寻找梅森质数的同时,对其重要性质——分布规律的研究也一直在进行着。英、法、德、美等国的数学家都曾分别给出过有关梅森质数分布的猜测,但都以近似表达式给出,与实际情况的接近程度均难如人意。中国数学家、语言学家周海中是这方面研究的领先者,他于1992年首次给出了梅森质数分布的精确表达式。这一成果后来被国际上命名为“周氏猜测”。 哥德巴赫猜想哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称“强”或“二重哥德巴赫猜想”后者称“弱”或“三重哥德巴赫猜想”):1、每个不小于6的偶数都可以表示为两个奇素数之和;2、每个不小于9的奇数都可以表示为三个奇质数之和。黎曼猜想黎曼猜想是一个困扰数学界多年的难题,最早由德国数学家波恩哈德·黎曼提出,迄今为止仍未有人给出一个令人完全信服的合理证明。即如何证明“关于质数的方程的所有意义的解都在一条直线上”。此条质数之规律内的质数经过整形,“关于质数的方程的所有意义的解都在一条直线上”化为球体质数分布。孪生质数猜想1849年,波林那克提出孪生质数猜想(the conjecture of twin primes),即猜测存在无穷多对孪生质数。猜想中的“孪生质数”是指一对质数,它们之间相差2。例如3和5,5和7,11和13,10016957和10016959等等都是孪生质数。10016957和10016959是发生在第333899位序号质数月的中旬[18±1]的孪生质数。 任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积 N=(P_1^a1)*(P_2^a2)......(P_n^an) , 这里P_1<P_2<...<P_n是质数,其诸方幂 ai 是正整数。这样的分解称为N 的标准分解式。算术基本定理的内容由两部分构成:分解的存在性、分解的唯一性(即若不考虑排列的顺序,正整数分解为素数乘积的方式是唯一的)。算术基本定理是初等数论中一个基本的定理,也是许多其他定理的逻辑支撑点和出发点。此定理可推广至更一般的交换代数和代数数论。高斯证明复整数环Z[i]也有唯一分解定理。它也诱导了诸如唯一分解整环,欧几里得整环等等概念。 更一般的还有戴德金理想分解定理。 等差数列是数列的一种。在等差数列中,任何相邻两项的差相等。该差值称为公差。类似7、37、67、97、127、157。这样由素数组成的数列叫做等差素数数列。2004年,格林和陶哲轩证明存在任意长的素数等差数列。2004年4月18日,两人宣布:他们证明了“存在任意长度的素数等差数列”,也就是说,对于任意值K,存在K个成等差级数的素数。例如 K=3,有素数序列3, 5, 7 (每两个差2)……K=10,有素数序列 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089 (每两个差210) 。无尘剑 2023-05-23 22:48:081
数学家欧拉证明的与素数有关的公式有哪些?尤其是与黎曼猜想有关的
自己想去可桃可挑2023-05-23 22:48:052