向量的点到平面距离公式是什么?
空间向量点面距离公式:d=|n.MP|/|n|。点到平面距离是指空间内一点到平面内一点的最小长度。特殊的,当点在平面内时,该点到平面的距离为0。相关公式概念:空间中具有大小和方向的量叫做空间向量。向量的大小叫做向量的长度或模(modulus)。规定:长度为0的向量叫做零向量,记为0。模为1的向量称为单位向量。与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a。方向相等且模相等的向量称为相等向量。kikcik2023-05-25 07:24:521
空间点到平面的距离公式推导是什么?
空间点到平面的距离公式推导:设平面的法向量是n,Q是这平面内任意一点,则空间点P到这个平面的距离:d=|QP·n|/|n|,这里QP表示以Q为起点、P为终点的向量。距离d是向量QP在法向量n上投影的绝对值,即d=|PijQP|=||QP|*cos|=||n|*|QP|*cos|/|n|=|QP·n|/|n|。平面直角坐标系中点到已知解析式的直线的最短距离公式。已知解析式的直线AX+BY+C=0。平面直角坐标系中点(X0,Y0)。最短距离=|AX0+BY0+C|/根号(A方+B方)。人类地板流精华2023-05-25 07:24:522
点到平面的距离公式向量法
点到平面的距离公式为:设该点与平面内任意一点的连线的向量为a向量,平面的法向量为n向量,距离为d=|a*n|/|n|,即:a向量与n向量的数量积除以n向量的模。 点到平面的距离就是:该点与平面内任意一点连成的线段,在平面的法向量上的射影长。 在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。mlhxueli 2023-05-25 07:24:521
平面几何,点到平面的垂直距离公式
1)把点到平面的距离看成一个三棱锥的高; (2)求与此高对应的底面的面积; (3)转换顶点或用割补法求出此三棱锥的体积; (4)利用三棱锥体积的自等性(计算三棱锥的体积时,可以把三棱锥先看成四面体,把它的四个顶点中的任何一个作为三棱锥的顶点,而把不含这个顶点的面作为三棱锥的底面,即如果三棱锥是A-BCD,那么有VA-BCD=VB-CDA=VC-DAB=VD-ABC,这一性质称为三棱锥体积的自等性。这是三棱锥独具的性质)列出方程求高。余辉2023-05-25 07:24:521
点到平面的距离公式是什么?
点到平面的距离公式d=|Ax0+By0+Cz0+D|/√ (A²+B²+C²)公式描述公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。点到平面距离公式d=|向量AB*向量n|/向量n的模长d表示点A到面的距离,向量AB是以点A为起点,以平面上任意一点为终点的向量,向量n是平面的法向量。平面的一般式方程Ax +By +Cz + D = 0。凡尘2023-05-25 07:24:511
点到平面的距离公式向量法向量
点到平面的距离公式:d=|Ax0+By0+Cz0+D|/√(A_+B_+C_)。公式描述:公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。在空间向量中,平面外一点P到平面α的距离d为:d=|n.MP|/|n|式中,n:平面α的一个法向向量,M:平面α内的一点,MP---向量。gitcloud2023-05-25 07:24:511
数学,空间向量点到平面的距离公式是什么
在空间向量中,平面外一点P到平面α的距离d为:d=|n.MP|/|n|。式中,n ---平面α的一个法向向量,M ----平面α内的一点,MP---向量。立体几何中,点到平面的距离没有具体的公式。在此情况下,一般是由点向平面作垂线,将垂线与平面内有关的线段构成平面几何图形,利用勾股定理或三角函数,求出要求的距离。扩展资料点到平面距离公式是:点到平面距离是指空间内一点到平面内一点的最小长度叫做点到平面的距离,特殊的有,当点在平面内,则点到平面的距离为0。平面的一般式方程Ax +By +Cz + D = 0其中n = (A, B, C)是平面的法向量,D是将平面平移到坐标原点所需距离(所以D=0时,平面过原点)。向量的模(长度)给定一个向量V(x, y, z),则|V| = sqrt(x * x + y * y + z * z)。向量的点积(内积)给定两个向量V1(x1, y1, z1)和V2(x2, y2, z2)则他们的内积是V1V2 = x1x2 + y1y2 + z1z2。陶小凡2023-05-25 07:24:511
点到面的距离公式是什么?
点到面的距离公式即两点间距离公式。设两个点A、B以及坐标分别为A(x1,y1)、B(x2,y2),则A和B两点之间的距离为:求点到平面的距离的方法一般有有两种:方法一(直接法):过顶点作平面的垂线,则垂线段长就是所求的点到平面的距离;方法二(间接法):设点到平面的距离为h,通过等体积法构造关于h的方程,解出的h即为所求的点到平面的距离。直接法需要脑力思考较多,所以证明过程比较计算过程长,但整题计算量小;间接法是通过构造含有所求距离的方程,最后通过解方程的思想计算出点到平面的距离,相对来说更侧重计算。扩展资料点到平面距离证明过程当d≠0时,根据d的符号,可以判断点Q在平面的哪一侧。假设平面法向量n的方向与图中一致,且该方向指向平面的外侧,那么(1)d>0时,Q在平面外侧;(2)d<0时,Q在平面内侧。参考资料来源:百度百科-两点间距离公式真颛2023-05-25 07:24:511
点到平面的向量公式空间向量点到平面的距离公式是什么
1、在空间向量中,平面外一点P到平面α的距离d为:d=|n.MP|/|n|.式中,n:平面α的一个法向向量,M:平面α内的一点,MP---向量。2、点到平面的距离公式:d=|Ax0+By0+Cz0+D|/√(A2+B2+C2)。公式描述:公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。可桃可挑2023-05-25 07:24:511
点到平面的距离公式是什么?
点到平面的距离公式:d=|Ax0+By0+Cz0+D|/√(A²+B²+C²)。公式描述:公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。文字表示:d=|向量AB*向量n|/向量n的模长。d表示点A到面的距离,向量AB是以点A为起点,以平面上任意一点为终点的向量,向量n是平面的法向量。点到平面距离是指空间内一点到平面内一点的最小长度。特殊的,当点在平面内时,该点到平面的距离为0。拓展资料计算一点到平面的距离,通常可通过向量法或测量法求得。公式描述:公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。d=向量AB×向量n的和的模长÷向量n的模长,d表示点A到面的距离,向量AB是以点A为起点,以平面上任意一点为终点的向量,向量n是平面的法向量。点到平面距离是指空间内一点到平面内一点的最小长度。特殊的,当点在平面内时,该点到平面的距离为0。点到平面的距离就是求出该面的法向量n在平面上任取(除被求点在该平面的射影外)一点,求出平面外那点和所取的那点所构成的向量,记为a,点到平面的距离就是法向量n与a的数量积的绝对值|n·a|除以法向量的模|n|即得所求。此后故乡只2023-05-25 07:24:511
点到平面的距离公式是什么?
空间点到平面的距离公式推导:1、设平面的法向量是n,Q是这平面内任意一点,则空间点P到这个平面的距离:d=|QP·n|/|n|,这里QP表示以Q为起点、P为终点的向量。距离d是向量QP在法向量n上投影的绝对值,即d=|PijQP|=||QP|*cos|=||n|*|QP|*cos|/|n|==|QP·n|/|n|。2、设直线的方向向量是s,Q是这直线上任意一点,则空间点P转这直线的距离:d=|QP×s|/|s|,这里QP表示以Q为起点、P为终点的向量。距离d是以向量QP、向量s为邻边的平行四边形s边上的高,所以d=|QP|*sin=/|s|=|QP×s|/|s|。两平行线之间的距离公式:设两条直线方程为。Ax+By+C1=0。Ax+By+C2=0。则其距离公式为|C1-C2|/√(A²+B²)。推导:两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,则满足Aa+Bb+C1=0,即Aa+Bb=-C1,由点到直线距离公式,P到直线Ax+By+C2=0距离为。d=|Aa+Bb+C2|/√(A²+B²)。=|-C1+C2|/√(A²+B²)。=|C1-C2|/√(A²+B²)。wpBeta2023-05-25 07:24:511
点到平面的距离公式
点到平面的距离公式为:设该点与平面内任意一点的连线的向量为a向量,平面的法向量为n向量,距离为d=|a*n|/|n|,即:a向量与n向量的数量积除以n向量的模。点到平面的距离就是:该点与平面内任意一点连成的线段,在平面的法向量上的射影长。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。.........................................................康康map2023-05-25 07:24:511
点到平面的距离公式是什么?
点到平面距离公式是d=|Ax0+By0+Cz0+D|/√(A²+B²+C²)。点到平面距离是指空间内一点到平面内一点的最小长度。特殊的,当点在平面内时,该点到平面的距离为0。公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。点到平面距离计算的技巧1、直接法作点到平面的垂线,找到垂足,然后构造一个可用的直角三角形来求解问题。适用于垂足好找,且相关线段长度可方便计算的情形。2、等积法(间接法)利用含有高h的各种公式,如棱锥体积V=Sh/3,若能方便地求出基本量S,以及已知V或可方便地以其他方式得出V(等积思想),便可间接求出h。适用于不方便甚至无法直接求解高而底面积易得出,且体积已知或易通过其它途径方便地求得的情形。肖振2023-05-25 07:24:511
点到面的距离公式是什么
点到平面的距离公式:d=|Ax0+By0+Cz0+D|/√(A²+B²+C²)。公式描述:公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。求法:确定一个点的射影(如垂足)位置的方法(分情况),斜线上任意一点在平面上的射影必在斜线在平面的射影上;若一个角所在平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角平分线上;若一条直线与一个角的两边夹角相等,那么这一条直线在平面上的射影在这个角平分线上。如果两个平面相互垂直,一个平面上的点在另一个平面上的射影必在这两个平面的交线上;若三棱锥的侧棱相等或侧棱与底面所成角相等,那么顶点在底面上的射影是底面三角形的外心。LuckySXyd2023-05-25 07:24:511
点到平面距离公式
点到平面距离公式如下:1、设点P(x1,y1,z1)到平面Ax+By+Cz+D=0的距离为d;2、则点P到平面Ax+By+Cz+D=0的距离为:d=|Ax1+By1+Cz1+D|/√(A^2+B^2+C^2)。所以点到平面距离公式是:d=|Ax1+By1+Cz1+D|/√(A^2+B^2+C^2)。CarieVinne 2023-05-25 07:24:511
点到平面的距离公式
点到平面的距离公式d=|Ax0+By0+Cz0+D|/√ (A²+B²+C²)公式描述公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。点到平面距离公式d=|向量AB*向量n|/向量n的模长d表示点A到面的距离,向量AB是以点A为起点,以平面上任意一点为终点的向量,向量n是平面的法向量。平面的一般式方程Ax +By +Cz + D = 0。FinCloud2023-05-25 07:24:511
空间向量和立体几何中,点到面的距离公式是什么?
d=|n.MP|/|n|.mlhxueli 2023-05-25 07:24:517
立体几何点到平面的距离公式
先求平面的法向量,然后过这一点和法向量求点到平面的垂线方程,再计算垂线和平面的交点,交点到那个点的距离就是点到平面的距离。P(X,Y,Z)到平面Ax+By+Cz+D=0的距离d=|AX+BY+CZ+D|/√[(A^2)+(B^2)+(C^2)]。特殊的有,当点在百平面内,则点到平面的距离为0。西柚不是西游2023-05-25 07:24:511
点到平面的距离公式是什么?
点到平面距离公式是d=|Ax0+By0+Cz0+D|/√(A²+B²+C²)。点到平面距离是指空间内一点到平面内一点的最小长度。特殊的,当点在平面内时,该点到平面的距离为0。公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。点到平面距离计算的技巧1、直接法作点到平面的垂线,找到垂足,然后构造一个可用的直角三角形来求解问题。适用于垂足好找,且相关线段长度可方便计算的情形。2、等积法(间接法)利用含有高h的各种公式,如棱锥体积V=Sh/3,若能方便地求出基本量S,以及已知V或可方便地以其他方式得出V(等积思想),便可间接求出h。适用于不方便甚至无法直接求解高而底面积易得出,且体积已知或易通过其它途径方便地求得的情形。拌三丝2023-05-25 07:24:511
空间向量求点到平面的距离公式
kikcik2023-05-25 07:24:501
用法向量的点到面的距离公式
点到平面的距离公式为:设该点与平面内任意一点的连线的向量为a向量,平面的法向量为n向量,距离为d=|a*n|/|n|,即:a向量与n向量的数量积除以n向量的模。点到平面的距离就是:该点与平面内任意一点连成的线段,在平面的法向量上的射影长。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。gitcloud2023-05-25 07:24:503
点到平面的距离公式是什么?
d=|向量AB*向量n|/向量n的模长 d表示点A到面的距离,向量AB是以点A为起点,以平面上任意一点为终点的向量,向量n是平面的法向量肖振2023-05-25 07:24:502
点到平面的距离公式怎么推导出来的?
空间点到平面的距离公式推导:1、设平面的法向量是n,Q是这平面内任意一点,则空间点P到这个平面的距离:d=|QP·n|/|n|,这里QP表示以Q为起点、P为终点的向量。距离d是向量QP在法向量n上投影的绝对值,即d=|PijQP|=||QP|*cos|=||n|*|QP|*cos|/|n|==|QP·n|/|n|。2、设直线的方向向量是s,Q是这直线上任意一点,则空间点P转这直线的距离:d=|QP×s|/|s|,这里QP表示以Q为起点、P为终点的向量。距离d是以向量QP、向量s为邻边的平行四边形s边上的高,所以d=|QP|*sin=/|s|=|QP×s|/|s|。两平行线之间的距离公式:设两条直线方程为。Ax+By+C1=0。Ax+By+C2=0。则其距离公式为|C1-C2|/√(A²+B²)。推导:两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,则满足Aa+Bb+C1=0,即Aa+Bb=-C1,由点到直线距离公式,P到直线Ax+By+C2=0距离为。d=|Aa+Bb+C2|/√(A²+B²)。=|-C1+C2|/√(A²+B²)。=|C1-C2|/√(A²+B²)。meira2023-05-25 07:24:501
点到平面距离的公式是什么啊?
平面的法向量a,点为A。找平面上一点B【以下AB为向量】。公式:距离=向量AB和法向量a的数量积的绝对值除以法向量的模长。在此情况下,一般是由点向平面作垂线,将垂线与平面内有关的线段构成平面几何图形,利用勾股定理或三角函数,求出要求的距离。扩展资料点到平面距离是指空间内一点到平面内一点的最小长度叫做点到平面的距离,特殊的有,当点在平面内,则点到平面的距离为0。平面的一般式方程Ax +By +Cz + D = 0其中n = (A, B, C)是平面的法向量,D是将平面平移到坐标原点所需距离(所以D=0时,平面过原点)。向量的模(长度)给定一个向量V(x, y, z),则|V| = sqrt(x * x + y * y + z * z)。肖振2023-05-25 07:24:491
如何计算点到平面的距离公式?
点到平面的距离公式:d=|Ax0+By0+Cz0+D|/√(A²+B²+C²)。公式描述:公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。求法:确定一个点的射影(如垂足)位置的方法(分情况),斜线上任意一点在平面上的射影必在斜线在平面的射影上;若一个角所在平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角平分线上;若一条直线与一个角的两边夹角相等,那么这一条直线在平面上的射影在这个角平分线上。如果两个平面相互垂直,一个平面上的点在另一个平面上的射影必在这两个平面的交线上;若三棱锥的侧棱相等或侧棱与底面所成角相等,那么顶点在底面上的射影是底面三角形的外心。铁血嘟嘟2023-05-25 07:24:491
空间向量点到平面的距离公式
空间向量点到平面的距离公式:d=|nMP|/|n。平面,是指面上任意两点的连线整个落在此面上,一种二维零曲率广延,这样一种面,它与同它相似的面的任何交线是一条直线。是由显示生活中(例如镜面、平静的水面等)的实物抽象出来的数学概念,但又与这些实物有根本的区别,既具有无限延展性(也就是说平面没有边界),又没有大小、宽窄、薄厚之分,平面的这种性质与直线的无限延展性又是相通的。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。Ntou1232023-05-25 07:24:491
空间点到平面的距离公式和点到平面的距离公式
1、设平面的法向量是n,Q是这平面内任意一点,则空间点P到这个平面的距离:d=|QP·n|/|n|,这里QP表示以Q为起点、P为终点的向量。距离d是向量QP在法向量n上投影的绝对值,即d=|Pij<n>QP|=||QP|*cos<QP,n>|=||n|*|QP|*cos<QP,n>|/|n|==|QP·n|/|n|。2、设直线的方向向量是s,Q是这直线上任意一点,则空间点P转这直线的距离:d=|QP×s|/|s|,这里QP表示以Q为起点、P为终点的向量。距离d是以向量QP、向量s为邻边的平行四边形s边上的高,所以d=|QP|*sin<QP,s>=[|s|*|QP|*sin<QP,s>]/|s|=|QP×s|/|s|。可桃可挑2023-05-25 07:24:491
空间中点到平面的距离,怎样求?公式……
点(a,b,c) 到平面 Ax+By+Cz=D 的距离 =|A*a+B*b+C*c-D| /√(A^2+B^2+C^2) 设平面外那个点为P,平面内任意一点为A,任意一点都行. 则距离为 向量PA点积法向量再除以法向量的模.按此思路自己证明一下吧~北境漫步2023-05-25 07:24:491
点到平面的距离公式
利用三棱锥的体积公式求点到平面的距离,大致步骤是什么?(1)把点到平面的距离看成一个三棱锥的高; (2)求与此高对应的底面的面积; (3)转换顶点或用割补法求出此三棱锥的体积; (4)利用三棱锥体积的自等性(计算三棱锥的体积时,可以把三棱锥先看成四面体,把它的四个顶点中的任何一个作为三棱锥的顶点,而把不含这个顶点的面作为三棱锥的底面,即如果三棱锥是A-BCD,那么有VA-BCD=VB-CDA=VC-DAB=VD-ABC,这一性质称为三棱锥体积的自等性。这是三棱锥独具的性质)列出方程求高。Ntou1232023-05-25 07:24:491
空间向量点到平面距离的公式是什么?怎么证明得到这个公式
工农群众运动的领导LuckySXyd2023-05-25 07:24:492
点到直线的距离公式
ax+by+c=0 x0,y0 |ax0+by0+c|/√(a^2+b^2)已知一点A(a,b)和一直线l y=k1x+b1,直线m y=k2x+b2设直线过点A且垂直于已知直线l,则k1*k2=-1,把A带入m,求出m,再把l和m联立,求出交点B,求A到l的距离就是点A到点B的距离再也不做站长了2023-05-25 07:24:481
点线之间的距离公式?
韦斯特兰2023-05-25 07:24:483
大学三维点到直线距离公式是什么?
点P(x0,y0,z0)到直线{A1x+B1y+C1z+D1=0 A2x+B2y+C2z+D2=0 距离的一个公式:d=|(A1x0+B1y0+C1z0+D1)n→2-(A2x0+B2y0+C2z0+D2)n→1||n→1×n→2|其中n→i={Ai,Bi,Ci},(i=1,2)空间点到直线的方程是:(x-x0)/a=(y-y0)/b=(z-z0)/c。(1)理解点到直线距离公式的推导过程,并且会使用公式求出定点到定直线的距离;(2)了解两条平行直线的距离公式,并能推导。证明方法1、函数法证:点P到直线上任意一点的距离的最小值就是点P到直线的距离。在上取任意点用两点的距离公式有,为了利用条件上式变形一下,配凑系数处理得:当且仅当时取等号所以最小值2、不等式法证:点P到直线上任意一点Q的距离的最小值就是点P到直线的距离。由柯西不等式:当且仅当时取等号所以最小值黑桃花2023-05-25 07:24:481
向量的 完全平方公式 和 平方差公式 证明方法
向量的 完全平方公式(a + b)² = (a + b)•(a + b) = a•a + a•b + b•a + b•b = a² + 2a•b + b²向量的 平方差公式(a + b)•(a - b) = a•a - a•b + b•a - b•b = a² - a•b + a•b - b² = a² - b²hi投2023-05-25 07:24:471
点到直线的距离公式
连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:│AXo+BYo+C│/√(A²+B²)。 思路如下:求出直线l的斜率k (我们假设这条直线不是平行于坐标轴的),然后与它垂直的直线斜率是 -1/k,因此可以求出过已知点与直线l垂直的那条直线l2(点斜式),然后求l和l2的交点,交点坐标和已知点的间线段的距离就是点到直线的距离。 直线外一点与直线上各点连接的所有线段中,垂线段最短。点到直线的距离叫做垂线段。点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。目标在于通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识。大鱼炖火锅2023-05-25 07:24:471
点到直线的距离有什么公式吗?
点到直线的距离公式空间向量是:平面的法向量a,点为A。找平面上一点B,以下AB为向量。空间向量到平面的距离,就是向量的两个端点到平面的距离,取最短的那一个长度,就是空间向量到一个平面的问题。点到平面向量的距离,先建立空间直角坐标系,x、y、z轴,设该平面为“平面ABC”设该点为P,然后用向量表示向量PA。两直线位置关系直线L1:A1x+B1y+C1=0与直线L2:A2x+B2y+C2=0:1、当A1B2-A2B1≠0时,相交。2、A1/A2=B1/B2≠C1/C2,平行。3、A1/A2=B1/B2=C1/C2,重合。4、A1A2+B1B2=0,垂直。u投在线2023-05-25 07:24:471
点到直线的距离公式
点到线的距离公式如下:设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:定义法证明:根据定义,点P(x_,y_)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。设点P到直线的垂线为l",垂足为Q,则l"的斜率为B/A则l"的解析式为y-y_=(B/A)(x-x_)。把l和l"联立得l与l"的交点Q的坐标为((B^2x_-ABy_-AC)/(A^2+B^2),(A^2y_-ABx_-BC)/(A^2+B^2))由两点间距离公式得:PQ^2=[(B^2x_-ABy_-AC)/(A^2+B^2)-x0]^2+[(A^2y_-ABx_-BC)/(A^2+B^2)-y0]^2=[(-A^2x_-ABy_-AC)/(A^2+B^2)]^2豆豆staR2023-05-25 07:24:473
什么是向量投影公式,有何意义?
向量投影公式为:向量a·向量b=| a |*| b |*cosΘ (Θ为两向量夹角)。平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。相关信息:物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。LuckySXyd2023-05-25 07:24:461
b向量在a向量上的投影 公式?
投影矩阵啊a在b向量上的投影=(bb"/b"b)a,其中b"是b的转置这个公式不仅适用于向量,还适用于子空间水元素sl2023-05-25 07:24:461
向量平方的公式
该公式为(a+b)2=(a+b)x(a+b)。根据今日头条资料显示,向量的平方公式:(a+b)2=(a+b)x(a+b)。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量,它可以形象化地表示为带箭头的线段。利用的向量平方公式,可以轻松解决一类向量数量积的范围问题。公式在数学、物理学、化学、生物学等自然科学中用数学符号表示几个量之间关系的式子,具有普遍性,适合于同类关系的所有问题。在数理逻辑中,公式是表达命题的形式语法对象,除了这个命题可能依赖于这个公式的自由变量的值之外。拌三丝2023-05-25 07:24:461
向量可以用完全平方公式平方差之类的公式吗
向量的 完全平方公式(a + b)² = (a + b)•(a + b) = a•a + a•b + b•a + b•b= a² + 2a•b + b²向量的 平方差公式(a + b)•(a - b) = a•a - a•b + b•a - b•b= a² - a•b + a•b - b²= a² - b²瑞瑞爱吃桃2023-05-25 07:24:461
向量的投影是什么意思。我知道公式
| a |*cosΘ叫做向量a在向量b上的投影向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。扩展资料设两个非零向量a与b的夹角为θ,则将|b|·cosθ 叫做向量b在向量a方向上的投影或称标投影。在式中引入a的单位矢量a(A),可以定义b在a上的矢投影由定义可知,一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。设单位向量e是直线m的方向向量,向量AB=a,作点A在直线m上的射影A",作点B在直线m上的射影B",则向量A"B" 叫做AB在直线m上或在向量e方向上的正射影,简称射影。令投射线通过点或其他物体,向选定的投影面投射,并在该面上得到图形的方法称为投影法。投影法分为中心投影法和平行投影法。工程中常用的投影图有:多面正投影图、轴测投影图、标高投影图、透视投影图。其中多面正投影图是工程中最常用、最重要的投影图。CarieVinne 2023-05-25 07:24:453
向量cos夹角公式计算方法
向量cos夹角公式是cos(a,b)=a*b/|a|*|b|。在数学中,向量指具有大小和方向的量。可以形象化地表示为带箭头的线段。箭头所指代表向量的方向,线段长度代表向量的大小。在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。北有云溪2023-05-25 07:24:431
向量的夹角公式是什么?
ab=丨a丨|b|cose可桃可挑2023-05-25 07:24:424
高中平面向量的夹角公式
A(a,b)B(c,d)cos<A,B>=(ac+bd)/(根号a*a+b*b)(根号c*c+d*d)两向量夹角余弦等于向量数量积除以两向量模的乘积mlhxueli 2023-05-25 07:24:421
旋转60度的坐标公式
X"=x*cos(n)+y*sin(n) Y"=-x*sin(n)+y*cos(n) n是旋转的角度.将原坐标系旋转角度n后,形成新的坐标系.X"和Y"为新坐标系下点的坐标. 供您参考!谢谢!北境漫步2023-05-25 07:24:411
向量的模长公式是什么?
坐标平方和的平方根。空间向量(x,y,z),其中x,y,z分别是三轴上的坐标,模长是:平面向量(x,y),模长是:在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。善士六合2023-05-25 07:24:414
向量的模长的计算公式是什么?
向量的模的计算公式:空间向量模长是²√x²+y²+z²;平面向量模长是²√x²+y²。模长是指向量的长度,只有大小数值,没有向量带有的方向性。模是实数,且恒大于等于0。向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。箭头所指的方向表示向量的方向。向量的模长的运算规则向量的模的运算没有专门的法则,一般都是通过余弦定理计算两个向量的和、差的模。多个向量的合成用正交分解法,如果要求模一般需要先算出合成后的向量。模是绝对值在二维和三维空间的推广,可以认为就是向量的长度。推广到高维空间中称为范数。北境漫步2023-05-25 07:24:411
求平面直角坐标系中所有旋转公式
任意点(x,y),绕一个坐标点(rx0,ry0)逆时针旋转a角度后的新的坐标设为(x0, y0),公式:x0= (x - rx0)*cos(a) - (y - ry0)*sin(a) + rx0 ;y0= (x - rx0)*sin(a) + (y - ry0)*cos(a) + ry0 ;mlhxueli 2023-05-25 07:24:401
三维坐标旋转公式
VC++程序公式:void __fastcall TFormMain::Normal()这个是在C++BUILD 6.0里面的声明格式在VC里面只要void Normal()就可以了void __fastcall TFormMain::Normal( float*p1,float*p2,float*p3,float*n ) //三维坐标转置矩阵{ float A[3], B[3], l;A[0] = p1[0] - p2[0];A[1] = p1[1] - p2[1];A[2] = p1[2] - p2[2];B[0] = p3[0] - p2[0];B[1] = p3[1] - p2[1];B[2] = p3[2] - p2[2];n[0] = B[1]*A[2] - B[2]*A[1];n[1] = B[2]*A[0] - B[0]*A[2];n[2] = B[0]*A[1] - B[1]*A[0];l = sqrt(n[0]*n[0] + n[1]*n[1] + n[2]*n[2]);if(l!=0){n[0]=n[0]/l;n[1]=n[1]/l;n[2]=n[2]/l;}}hi投2023-05-25 07:24:401
旋转180度的坐标公式
以平面直角坐标系为例,旋转180度:变换x轴和y轴坐标的符号,正数变成负数,负数变成正数。扩展一下顺时针旋转90度:首先要横纵坐标绝对值交换,然后分情况讨论,第一象限到第二象限x轴为负y轴为正,第二象限到第三象限x轴为正y轴为负,第三象限到第四象限x轴为正y轴为负,第四象限到第一象限x轴为正y轴为负如果点在坐标轴x正半轴上,那么顺势针会转到y轴的负半轴。同理可继续推广2.逆时针旋转90度:首先要横纵坐标绝对值交换,然后分情况讨论。wpBeta2023-05-25 07:24:401
坐标系旋转公式怎么理解
推导用复数方法比较简单:设在复平面中:原曲线上一点直角坐标(x,y),原曲线绕坐标原点旋转α角后该点对应直角坐标(x",y")则:(x,yi)*(cosα,isinα)=(x",y"i)即:(x",y"i)=(xcosα-ysinα,i(xsinα+ycosα))所以:x"=xcosα-ysinα;y"=xsinα+ycosα小菜G的建站之路2023-05-25 07:24:392
绕着某个点旋转的坐标公式是什么?
绕着某个点旋转90度的坐标公式:r=(x1-n)+(y1-m)。在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫做旋转。这个定点叫做旋转中心,旋转的角度叫做旋转角,如果一个图形上的点A经过旋转变为点A",那么这两个点叫做旋转的对应点。坐标旋转90度,点横坐标的绝对值,变成纵坐标的绝对值。旋转90度坐标的变化规律在由x,y轴构成的直角坐标系中,设a点坐标为(x,y)关于原点顺时针旋转,我们知道运动是相对的,点关于原点顺时针旋转90可以想像为点不动而坐标轴以原点为圆心逆时针旋转90。此时点a在旋转后的坐标系中的坐标恰好是将原坐标系中x与y值的对换,考虑到坐标系中存在正负值,旋转后的结果即为:(x转=y,y转=-x)。旋转90度的坐标特点是X轴与Y轴之间互换了。凡尘2023-05-25 07:24:391
求平面直角坐标系中所有旋转公式
任意点(x,y),绕一个坐标点(rx0,ry0)逆时针旋转a角度后的新的坐标设为(x0,y0),公式:x0=(x-rx0)*cos(a)-(y-ry0)*sin(a)+rx0;y0=(x-rx0)*sin(a)+(y-ry0)*cos(a)+ry0;北境漫步2023-05-25 07:24:381
绕着某个点旋转90度坐标公式是什么?
绕着某个点旋转90度的坐标公式:r=(x1-n)+(y1-m)。在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化叫做旋转。这个定点叫做旋转中心,旋转的角度叫做旋转角,如果一个图形上的点A经过旋转变为点A",那么这两个点叫做旋转的对应点。坐标旋转90度,点横坐标的绝对值,变成纵坐标的绝对值。旋转90度坐标的变化规律在由x,y轴构成的直角坐标系中,设a点坐标为(x,y)关于原点顺时针旋转,我们知道运动是相对的,点关于原点顺时针旋转90可以想像为点不动而坐标轴以原点为圆心逆时针旋转90。此时点a在旋转后的坐标系中的坐标恰好是将原坐标系中x与y值的对换,考虑到坐标系中存在正负值,旋转后的结果即为:(x转=y,y转=-x)。旋转90度的坐标特点是X轴与Y轴之间互换了。康康map2023-05-25 07:24:381
在坐标轴中的多边形,以原点为圆心旋转一定角度,旋转公式是什么
假设此多边形上有一点为(x,y).则旋转了θ弧度后(若角度为n度,则(n/360)*π即为所对应的弧度),此点的坐标为:1.在一、二象限内. (cos(θ+arccosx/a),sin(θ+arccosy/a))*a a=(根号x平方+y平方) 2.在3,4象限内: 1中公式中的每个“arc”前加π.北营2023-05-25 07:24:381
坐标系旋转公式怎么理解
你的公式是顺时针旋转坐标轴的公式,等价于逆时针旋转某个点。在极坐标系下考虑这个问题。设点P(r,θ),原点O,将线段OP绕点O逆时针旋转α度角到线段OP"的位置,显然P"坐标就是(r,θ+α)。利用直角坐标与极坐标的转换公式,点P(x,y)中x=rcosθ,y=rsinθ。而点P"(x",y")中x"=rcos(θ+α)=r(cosθcosα-sinθsinα)=xcosα-ysinα,y"=rsin(θ+α)=r(sinθcosα+cosθsinα)=ycosα+xsinα这就是旋转公式Chen2023-05-25 07:24:371
坐标旋转公式看不懂
(X",Y")为旋转后的点的坐标(X,Y)为原来的点的坐标n表示原来的点绕原点转过的角度真颛2023-05-25 07:24:376
一个坐标系旋转成另一个坐标系,已知在两个坐标系中的两个相同点,求转换公式
平移和旋转,无缩放。以下以大写字母表示建筑坐标系:第一个点:大地坐标x=2539143.688 y=413832.093建筑坐标X=0 Y=0则平移量为X1=x-2539143.688,Y1=y-413832.093第二个点:大地坐标x=2539125.641 y=413956.794平移后X1=x-2539143.688=2539125.641-2539143.688=-18.047Y1=y-413832.093=413956.794-413832.093=124.701设坐标系再逆时针旋转θ,转换为最终建筑坐标,则X=X1cosθ+Y1sinθ 即:126.000=-18.047cosθ+124.701sinθY=Y1cosθ-X1sinθ 即:0=124.701cosθ-(-18.047)sinθ代入数值,得θ=1.716弧度,cosθ=-0.14469,sinθ=0.98948所以坐标转换公式为:X=-0.14469(x-2539143.688)+0.98948(y-413832.093)Y=-0.14469(y-413832.093)-0.98948(x-2539143.688)左迁2023-05-25 07:24:372
坐标系的旋转公式
转动矩阵元:cosa -sinasina cosa左迁2023-05-25 07:24:363
柱面坐标变换公式
fff(x~,y)dxdy=rcos0,rsin0∞。柱面坐标系是一种数据,设M(x,y,z)为空间内一点,并设点M在xoy面上的投影P的极坐标为r,θ,则这样的三个数r,θ,z就叫点M的柱面坐标,变换公式是fff(x~,y)dxdy=rcos0,rsin0∞。阿啵呲嘚2023-05-25 07:24:351
测量坐标转换施工坐标,和施工坐标转换测量坐标的公式是什么?
看你具体是什么情况了,有的时候测量坐标和施工坐标说一样的。如果不一样,那就存在一个转换,如果有转换参数,就直接根据转换参数直接根据一个坐标算出另外一个坐标。如果不知道转换参数,就要根据同一个点的测量坐标和施工坐标来计算转换参数了。小菜G的建站之路2023-05-25 07:24:353
坐标变换公式是什么?
坐标变换公式(formula of a coordinates transformation)是线性空间的向量关于不同基的坐标之间的关系式,是解析几何中(不变原点的)坐标变换公式的推广。坐标 ,数学名词。是指为确定天球上某一点的位置,在天球上建立的球面坐标系。有两个基本要素:1、基本平面;由天球上某一选定的大圆所确定;大圆称为基圈,基圈的两个几何极之一,作为球面坐标系的极。2、主点,又称原点;由天球上某一选定的过坐标系极点的大圆与基圈所产生的交点所确定。平面坐标系分为三类:绝对坐标:是以点O为原点,作为参考点,来定位平面内某一点的具体位置,表示方法为:A(X,Y)。相对坐标:是以该点的上一点为参考点,来定位平面内某一点的具体位置,其表示方法为:A(@△X,△Y)。相对极坐标:是指出平面内某一点相对于上一点的位移距离、方向及角度,具体表示方法为:A(@d<α)。gitcloud2023-05-25 07:24:341
坐标变换公式
坐标变换公式(formula of a coordinates transformation)是线性空间的向量关于不同基的坐标之间的关系式,是解析几何中(不变原点的)坐标变换公式的推广。设V是域P上n维线性空间,且ε1,ε2,…,εn与ε′1,ε′2,…,ε′n皆是V的基,于是有:ε′i=ajiεj(i=1,2,…,n).以ε′i关于基ε1,ε2,…,εn的坐标(a1i,a2i,…,ani)为第i列构成的n阶矩阵(aij)称为由基ε1,ε2,…,εn到基ε′1,ε′2,…,ε′n的过渡矩阵,若α∈V关于基ε1,ε2,…,εn与基ε′1,ε′2,…,ε′n的坐标分别为(x1,x2,…,xn)与(x′1,x′2,…,x′n),则其两坐标间的关系基变换的实质是, 将某向量空间中的元素v 由有序基 F[w1,w2...vn] v=x1w1+x2w2 +...xnwn的线性组合,表示成另一有序基E[v1,v2,...vn]即v=y1v1+y2v2+...ynvn的线性组合苏州马小云2023-05-25 07:24:341
球坐标的变换公式是什么?
球坐标变换公式是:球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ。y=rsinθsinφ。z=rcosθ。反之,直角坐标系(x,y,z)与球坐标系(r,θ,φ)的转换关系为:r= sqrt(x*2 + y*2 + z*2)。φ= arctan(y/x)。θ= arccos(z/r)。原理:地理坐标系用两个角值,纬度与经度,来表示地球表面的地点。正如二维直角坐标系专精在平面上,二维球坐标系可以很简易的设定圆球表面上的点的位置。在这里,我们认定这圆球是个单位圆球;其半径是1。通常我们可以忽略这圆球的半径。在解析旋转矩阵问题上,这方法是非常有用的。用来描述与分析拥有球状对称性质的物理问题,最自然的坐标系,莫非是球坐标系。例如,一个具有质量或电荷的圆球形位势场。两种重要的偏微分方程式,拉普拉斯方程与亥姆霍兹方程,在球坐标里,都可以成功的使用分离变数法求得解答。这种方程式在角部分的解答,皆呈球谐函数的形式。球坐标的概念,延伸至高维空间,则称为超球坐标(n-sphere)。可桃可挑2023-05-25 07:24:341
球坐标的变换公式有哪几个?
球坐标变换公式是:球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ。y=rsinθsinφ。z=rcosθ。反之,直角坐标系(x,y,z)与球坐标系(r,θ,φ)的转换关系为:r= sqrt(x*2 + y*2 + z*2)。φ= arctan(y/x)。θ= arccos(z/r)。原理:地理坐标系用两个角值,纬度与经度,来表示地球表面的地点。正如二维直角坐标系专精在平面上,二维球坐标系可以很简易的设定圆球表面上的点的位置。在这里,我们认定这圆球是个单位圆球;其半径是1。通常我们可以忽略这圆球的半径。在解析旋转矩阵问题上,这方法是非常有用的。用来描述与分析拥有球状对称性质的物理问题,最自然的坐标系,莫非是球坐标系。例如,一个具有质量或电荷的圆球形位势场。两种重要的偏微分方程式,拉普拉斯方程与亥姆霍兹方程,在球坐标里,都可以成功的使用分离变数法求得解答。这种方程式在角部分的解答,皆呈球谐函数的形式。球坐标的概念,延伸至高维空间,则称为超球坐标(n-sphere)。北营2023-05-25 07:24:341
微分运动的坐标变换公式
dy=f"(x)dx。基本微分公式是dy=f"(x)dx。微分公式的推导设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 +Δx)_f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数,o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。kikcik2023-05-25 07:24:341
球坐标变换公式是什么?
球坐标变换公式是:球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ。y=rsinθsinφ。z=rcosθ。反之,直角坐标系(x,y,z)与球坐标系(r,θ,φ)的转换关系为:r= sqrt(x*2 + y*2 + z*2)。φ= arctan(y/x)。θ= arccos(z/r)。原理:地理坐标系用两个角值,纬度与经度,来表示地球表面的地点。正如二维直角坐标系专精在平面上,二维球坐标系可以很简易的设定圆球表面上的点的位置。在这里,我们认定这圆球是个单位圆球;其半径是1。通常我们可以忽略这圆球的半径。在解析旋转矩阵问题上,这方法是非常有用的。用来描述与分析拥有球状对称性质的物理问题,最自然的坐标系,莫非是球坐标系。例如,一个具有质量或电荷的圆球形位势场。两种重要的偏微分方程式,拉普拉斯方程与亥姆霍兹方程,在球坐标里,都可以成功的使用分离变数法求得解答。这种方程式在角部分的解答,皆呈球谐函数的形式。球坐标的概念,延伸至高维空间,则称为超球坐标(n-sphere)。黑桃花2023-05-25 07:24:331
已知两个基怎么求坐标变换公式?
这么高科技的东西,你只能找数学家吧。我看都看不懂苏州马小云2023-05-25 07:24:336
过渡矩阵与坐标变换公式有何不同?
在n维向量空间中,取定一组基a1,a2,...,an(也就是在空间中取定了一个坐标系)后,向量空间中的每个向量就可以用这组基来表示,换个说法,就是每个向量在这组坐标系下就有了一组坐标.如果我取定另外一组基b1,b2,...,bn,则向量空间中的每个向量在这组基下也有一组坐标,这样对于空间中同一个向量A来说,在两个不同的基下,就有了两组坐标,这两组坐标之间,必定有某种关系,把这个关系写出来的话,就是坐标变换公式. 但是这个公式并不是一眼能看出来的,为了得到它,我们先来看一个特殊的结果: b1由于是向量空间中的一个向量,它在基a1,a2,...,an下必定有一组坐标,同样,b2,...,bn都在基 a1,a2,...,an也都各自有一组坐标,我们把这n组坐标作为列,构造一个方阵C,这个方阵C就叫做从基a1,a2,...,an到基b1,b2,...,bn的过渡矩阵,利用这个矩阵C就能得到前面所提到的坐标变换公式.思路就是这样,矩阵在这里比较难写,所以具体再去翻翻代数书. 简单地说,过渡矩阵揭示的是两个基之间的关系,而坐标变换则是同一个向量在不同基下的坐标之间的关系.Ntou1232023-05-25 07:24:331
excel 编写坐标转换公式
首先在EX中输入=号,然后选择A1,输入计算公式,再选择B1。就这样。比如让结果格输入=,点击A1输入+100,意思就是这个格子=A1+100,明白了么?还好我也会那么点测绘,呵呵,你把一行做好了,拖动下去就会自动填充其他行黑桃花2023-05-25 07:24:333
旋转45度的坐标公式
根据旋转坐标变换公式,绕原点逆时针旋转θ之後的坐标关系为 x"=xcosθ-ysinθ y"=xsinθ+ycosθ 化简得x=y"sinθ+x"cosθ y=y"cosθ-x"sinθ 然後把x和y代入原方程 (y"sinθ+x"cosθ)^2+2(y"coxθ-x"sinθ)^2=1 θ=45°,记得把x",y"用x,y表示 化简最终得3x^2-2xy+3y^2-2=0善士六合2023-05-25 07:24:331
基变换与坐标变换公式
基变换和坐标变换是线性代数中的两个重要概念。在线性代数中,基向量是用来描述向量空间的一组基本元素。当我们切换到不同的基底下时,向量的表示会发生改变,这就是基变换。而坐标变换则是描述了在同一基底下不同坐标系之间的转换关系。通常我们采用矩阵乘法的形式来进行坐标变换。具体公式如下:设有两个坐标系 O-xyz 和 O-xyz" ,其中 x, y, z 和 x", y", z" 分别表示它们的坐标轴。如果一个点 P 在 O-xyz 坐标系下的坐标为 (x,y,z),在 O-xyz" 坐标系下的坐标为 (x",y",z"),那么它们之间的坐标变换可以表示为:[x"] [a11 a12 a13] [x] [y"] = [a21 a22 a23] * [y][z"] [a31 a32 a33] [z] 其中,a11, a12, ..., a33 表示从 O-xyz 坐标系转换到 O-xyz" 坐标系所需要的旋转、缩放等变换系数。CarieVinne 2023-05-25 07:24:321
球坐标系下散度的公式如何推导
就是球坐标系下求解散度的公式啊,教材正文或者附录中都会有这个公式的,E只和r有关系,并且只有r方向的分量,其大小随着r的增大而增大,与xita,fai都没有关系,照着球坐标系散度公式代入计算就可以了。 E=Er er+Eθ eθ+Eφ eφ=(r^3+Ar^2)er+0+0 Er=r^3+Ar^2,Eθ =Eφ=0 把Er代入到第三个式子,求导即可。北有云溪2023-05-25 07:24:311
数学:球坐标,用公式能表达么?
看数析课本,高等数课本行,物理先数.球坐标种三维坐标 设M(xyz)空间内点则点M用三序数rφθ确定其r原点O与点M间距离φ向线段与z轴向所夹角θz轴看自x轴按逆针向转向线段角P点MxOy面投影三数rφθ叫做点M球面坐标rφθ变化范围 0 ≤ r < +∞, 0 ≤φ≤ π, 0 ≤θ≤ 2π. r = 数即原点球面; φ= 数即原点顶点、z轴轴圆锥面; θ = 数即z轴半平面换直角坐标系x=rsinφ cosθy=rsinφ sinθz=rcosφ具体物理问题我太清楚wpBeta2023-05-25 07:24:311
球坐标与柱坐标 柱坐标系和球坐标系之间的变换公式
柱坐标系 x=r*cost y=r*sint z=z 球坐标系 x=r*sint*cosv y=r*sint*sinv z=r*cost 柱坐标系和球坐标系的关系用上面两式相比就可以得到拌三丝2023-05-25 07:24:271
散度公式在柱坐标下的表述是如何推导的?有什么简单的方法吗?
可以考虑一般情况,在正交曲线坐标系中的散度公式。首先,你要记住哈密顿算子▽ 他表示一个矢量算子(注意):▽≡i*d/dx+j*d/dy+k*d/dz运算规则:一、▽A=(i*d/dx+j*d/dy+k*d/dz)A=i*dA/dx+j*dA/dy+k*dA/dz这样标量场A通过▽的这个运算就形成了一个矢量场,该矢量场反应了标量场A的分布。这就是梯度!是个矢量!二、▽·A=(i*d/dx+j*d/dy+k*d/dz)·(Ax*i+Ay*j+Az*k)=dAx/dx+dAy/dy+dAz/dz这个是散度!是个标量!三、▽×A=(dAz/dy-dAy/dz)*i+(dAx/dz-dAz/dx)*j+(dAy/dx-dAx/dy)*k。这个是旋度!是个矢量!由此可见:数量(标量)场的梯度与矢量场的散度和旋度可表示为:gradA=▽A,divA=▽·A,rotA=▽×A。CarieVinne 2023-05-25 07:24:271
极坐标方程的公式
如果r(π-θ) = r(θ)x = rcos(θ),y = rsin(θ),r^2=x^2+y^2 (一般默认r>0)tan(θ)=y/x (x≠0)FinCloud2023-05-25 07:24:267
极坐标公式转换
极坐标公式转换:x=r/cos/theta,y=r/sin/theta,极坐标系中的两个坐标r和θ可以由公式转换为直角坐标系下的坐标值。极坐标系是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。Ntou1232023-05-25 07:24:251
极坐标下曲线弧长的计算公式中r和r`的含义是什么?
取极坐标曲线r=r(θ)(OA)的一个微小增量Δθ,那么可得到r(θ+Δθ)(OB),以O为圆心,r(θ)为半径作弧与r(θ+dθ)有一交点记为C,因为Δθ很小,∠OCA≈90°,AC≈rΔθ,BC≈Δr≈r"(θ)Δθ,并且可以将AB间的弧近似看作线段AB,由勾股定理可得Δs≈√[r^2(θ)+r"^2(θ)]Δθ,而当Δθ→0,上述所有约等号可以改为等号,所以有ds=√[r^2(θ)+r"^2(θ)]dθ此后故乡只2023-05-25 07:24:254