高中数学

高中数学的所有对数计算公式 急啊

定义:   若a^n=b(a>0且a≠1)   则n=log(a)(b)   基本性质:   1、a^(log(a)(b))=b   2、log(a)(MN)=log(a)(M)+log(a)(N);   3、log(a)(M÷N)=log(a)(M)-log(a)(N);   4、log(a)(M^n)=nlog(a)(M)   推导   1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。   2、MN=M×N   由基本性质1(换掉M和N)   a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]   由指数的性质   a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}   又因为指数函数是单调函数,所以   log(a)(MN) = log(a)(M) + log(a)(N)   3、与(2)类似处理   MN=M÷N   由基本性质1(换掉M和N)   a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]   由指数的性质   a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}   又因为指数函数是单调函数,所以   log(a)(M÷N) = log(a)(M) - log(a)(N)   4、与(2)类似处理   M^n=M^n   由基本性质1(换掉M)   a^[log(a)(M^n)] = {a^[log(a)(M)]}^n   由指数的性质   a^[log(a)(M^n)] = a^{[log(a)(M)]*n}   又因为指数函数是单调函数,所以   log(a)(M^n)=nlog(a)(M)  基本性质4推广  log(a^n)(b^m)=m/n*[log(a)(b)]  推导如下:  由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]   log(a^n)(b^m)=ln(b^m)÷ln(a^n)  由基本性质4可得  log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}  再由换底公式  log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完) 编辑本段函数图象  1.对数函数的图象都过(1,0)点.  2.对于y=log(a)(n)函数,   ①,当0<a<1时,图象上函数显示为(0,+∞)单减.随着a 的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1.  ②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1.  3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称. 编辑本段其他性质  性质一:换底公式  log(a)(N)=log(b)(N)÷log(b)(a)  推导如下:  N = a^[log(a)(N)]  a = b^[log(b)(a)]  综合两式可得  N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}  又因为N=b^[log(b)(N)]  所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}  所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}  所以log(a)(N)=log(b)(N) / log(b)(a)  公式二:log(a)(b)=1/log(b)(a)  证明如下:  由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数  log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)×log(b)(a)=1   在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进伯制整数或小数的对数。例如lg10=1,lg100=lg102=2,lg4000=lg(103×4)=3+lg4,可见只要对某一范围的数编制出对数表,便可利用来计算其他十进制数的对数的近似值。在数学理论上一般都用以无理数e=2.7182818……为底的对数,并将记号 loge。简写为ln,称为自然对数,因为自然对数函数的导数表达式特别简洁,所以显出了它比其他对数在理论上的优越性。历史上,数学工作者们编制了多种不同精确度的常用对数表和自然对数表。但随着电子技术的发展,这些数表已逐渐被现代的电子计算工具所取代。
meira2023-07-13 09:30:431

【高中数学!】设计1x2x3x4x5x6x7x8x9x10…x100的算法,和程序框图

拌三丝2023-07-13 09:23:571

参数值什么(高中数学)

所以说想问的是什么。。。
此后故乡只2023-07-11 08:29:322

高中数学

丙最多,甲乙是一样的 因为((p+q)/2)^2>pxq
凡尘2023-07-11 08:02:301

高中数学,两平行线间的距离公式怎么推导的?

等面积法,取一点,横纵方向画线,得到一个直角三角形,斜边上的高就是距离。用一般式按这个过程推导就可以了,取的点是特殊情况,图画出来就知道了。
瑞瑞爱吃桃2023-07-10 09:11:235

高中数学充分条件和必要条件是什么?

一、充分条件u20021、概述u2002充分条件一定能保证结果的出现。u2002u20022、定义u2002如果有事物情况A,则必然有事物情况B;如果没有事物情况A而未必没有事物情况B,A就是B的充分而不必要的条件,简称充分条件。u2002u2002简单地说,满足A,必然B;不满足A,不必然B,则A是B的充分条件。例如:u2002u20021、A下雨;B地湿。u2002u20022、A烧柴;B会产生二氧化碳。u2002u2002例子中A都是B的充分条件,确切地说,A是B的充分而不必要的条件:其一,A必然导致B;其二,A不是B发生必需的。二、必要条件u20021、概述u2002如果没有事物情况A,则必然没有事物情况B;如果有事物情况A而未必有事物情况B,A就是B的必要而不充分的条件,简称必要条件。u2002u20022、定义u2002简单地说,不满足A,必然不B;满足A,不必然B,则A是B的必要条件。例如:u2002u20021.A不断呼吸;B人能活着。u2002u2002u2002u20022.A认识26个字母;B能看懂英文。u2002u2002u2002u20023.A听过京剧;B能体会到京剧的美。u2002u2002例子中A都是B的必要条件,确切地说,A是B的必要而不充分的条件:其一,A是B发生必需的;其二,A不必然导致B。
可桃可挑2023-07-10 08:58:431

高中数学期望和方差公式分别是什么?

方差公式:S^2=〈(M-x1)^2+(M-x2)^2+(M-x3)^2+…+(M-xn)^2〉╱n平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)。期望的公式:E=X1*P1+X2*P2+X3*P3+.+Xn*Pn扩展资料需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
真颛2023-07-10 08:50:121

高中数学棱柱的体积公式

(三)表面积1、直棱柱和正棱锥的表面积设棱柱高为h、底面多边形的周长为c、则得到直棱柱侧面面积计算公式:s=ch、即直棱柱的侧面积等于它的底面周长和高的乘积、正棱锥的侧面展开图是一些全等的等腰三角形、底面是正多边形、如果设它的底面边长为a、底面周长为c、斜高为h"、则得到正n棱锥的侧面积计算公式s=1/2*nah"=1/2*ch"、即正棱锥的侧面积等于它的底面的周长和斜高乘积的一半、2、正棱台的表面积正棱台的侧面展开图是一些全等的等腰梯形、设棱台下底面边长为a、周长为c、上底面边长为a"、周长为c"、斜高为h"则得到正n棱台的侧面积公式:s=1/2*n(a+a")h"=1/2(c+c")h"、3、球的表面积s=4πr^2、即球面面积等于它的大圆面积的四倍、编辑本段(四)体积1、长方体体积v=abc=sh2、棱柱体积柱体v=sh、即柱体的体积等于它的底面积s和高h的积、圆柱v=πr^2h、3、棱锥v=1/3*sh4、圆锥v=1/3*πr^2h5、棱台v=1/3*h(s+(√ss")+s")6、圆台v=1/3*πh(r^2+rr"+r"^2)7、球v=4/3*πr^3
此后故乡只2023-07-09 08:38:222

高中数学复合函数的值域,求学霸解答!

你的解法是对的,错误的产生是由于函数中u的范围错误,它的范围是[0,+oo]
mlhxueli 2023-07-09 08:15:372

高中数学学习

额。。这个,其实文科的数学还是比较简单的,一轮复习的时候跟上老师的节奏,题必须多做,一定要多做,这样各种类型的题见得多了,高考时候做题会很快,而且更准确,能让你更多的时间来攻破那些稍微难些的题,总之多在数学上花些精力,如果在数学的思维没有那么好的话只有多做题,各种类型的题。。。
LuckySXyd2023-07-09 08:10:5015

求高中数学总复习的练习册

三维设计啊!里面还有解题方法归纳。不错的。
墨然殇2023-07-09 08:10:313

高中数学:根号三约等于多少

【 #高考# 导语】根号三约等于多少?约等于1.732。根号是用来表示对一个数或一个代数式进行开方运算的符号。若au207f=b,那么a是b开n次方的n次方根或a是b的1/n次方。以下是由 整理的相关信息,希望对大家有所帮助! 根号三约等于多少   根号三约等于1.73205080756888,保留四位小数就是1.732。根号3是一个无理数,无理数里的小数部分是无限不循环的,所以算出大致的结果就好。   根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若au207f=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。   古时候,埃及人用记号“┌”表示平方根。印度人在开平方时,在被开方数的前面写上ka。   与此同时,有人采用“根”字的拉丁文radix中第一个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q,或“立方”的第一个字母c,来表示开的是多少次方。例如,中古有人写成R。q。4352。数学家邦别利(1526~1572年)的符号可以写成R。c。?7p。R。q。14╜,其中“?╜”相当于括号,P(plus)相当于用的加号(那时候,连加减号“+”“-”还没有通用)。   直到十七世纪,法国数学家笛卡尔(1596~1650年)第一个使用了现今用的根号“√ ̄”。在一本书中,笛卡尔写道:“如果想求n的平方根,就写作,如果想求n的立方根,则写作。”   有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√ ̄(不过,它比路多尔夫的根号多了一个小钩)就为现时根号形式。   立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号的使用,比如25的立方根用表示。以后,诸如√ ̄等等形式的根号渐渐使用开来。   由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数学家们集体智慧的结晶,而不是某一个人凭空臆造出来的,也绝不是从天上掉下来的。 √3计算过程   1.8×1.8=3.24(大于3)。   1.7×1.7=2.89(小于而且接近3)。   1.74×1.74=3.02(大于3,舍去)。   ……   1.73×1.73=2.9929。   不停代数进去,越接近3的数就是越精确的结果。   逐步逼近法在解决问题的过程中,使后步比前一步更接近探索目标,其一般有三种结果。   1、通过有限步逐步逼近最终达到目标。   2、通过无限逼近的极限,最终达到目标。   3、不能最终达到目标,但可以通过多次的逼近,取得对目标的接近而达到一定的要求。 根号数值计算   √2=1.414   √3=1.732   √5=2.236   √6=2.450   √7=2.646   √8=2.828   √10=3.162
可桃可挑2023-07-07 15:12:421

什么是垂直平分线?高中数学都有哪些重要公式?

垂直平分线   垂直平分线,简称“中垂线”,是初中几何学科中非常重要的一部分。  垂直平分线的概念:经过线段中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。  垂直平分线的性质:1.垂直平分线垂直且平分其所在线段。  2.垂直平分线上任意一点,到线段两端点的距离相等。  3.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。  垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。  如图:直线MN即为线段AB的垂直平分线。  注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明  通常来说,垂直平分线会与全等三角形来使用。   垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。  巧计方法:点到线段两端距离相等。  可以通过全等三角形证明  垂直平分线的尺规作法:  方法一:  1、取线段的中点。  2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到一个交点。  3、连接这两个交点。  原理:等腰三角形的高垂直等分底边。  方法二:  1、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线,得到两个交点。原理:圆的半径处处相等。  2、连接这两个交点。原理:两点成一线。   等腰三角形的性质:  1、三线和一  2、等角对等边
北营2023-07-07 15:12:311

高中数学中sin、cos、tan(90°)分别是多少

sin90°=1 cos90°=0 tan90°无意义
大鱼炖火锅2023-07-07 06:59:533

这个怎么读?高中数学集合真子集符号

读作“真包含”。
凡尘2023-07-07 06:57:194

高中数学的真子集和子集是什么

真子集不包括自己
苏州马小云2023-07-07 06:57:183

高中数学必修3 中,如何区分互斥和对立事件

对立事件,就是这两个事件的概率加起来是为1的,就是这两个事件囊括了所有的情况,不是这个事件发生,就是另外一个事件发生互斥事件,是指这两个事件,如果一个事件发生了,另外的一个事件就不会发生。当然也有可能两个事件都不发生。(但对立事件就一定会发生其中的一个)总的来说,对立事件就一定是互斥事件,但互斥事件就不一定是对立事件。即对立事件是更强的结论。举例:抛一个骰子,事件1:点数为单数;事件2:点数为双数;事件3:点数为1或2;事件4:点数为5则事件1跟事件2就是一对立事件啦事件3跟事件4就是互斥事件啦对于你补充的题目,是选C的。。。。“恰好有一个黑球”与“恰好有两个黑球”是互斥的,你看“恰好有一个黑球”就是{“一个黑球跟一个红球”}“恰好有两个黑球”就是{“两个黑球”}两个集合里的东西是不同的,所以是互斥的,但是这两个集合又不能包含所有的情况,因为两个都是红球的情况没有,所以这不是对立事件
北营2023-07-07 06:57:021

高中数学,ln是多少?

你好,ln是对数符号:以e为底的对数的简写形式loge(e是底数,下标),以e为底的对数简称自然对数。e是无理数,等于2.718281…
gitcloud2023-07-06 08:20:592

高中数学ln是什么意思 举个例子 比如ln1

自然对数
再也不做站长了2023-07-06 08:20:364

高中数学(不等式)

x<0
墨然殇2023-07-06 08:19:467

高中数学,数学期望D(X),E(X)怎么算

期望就是一种均数,可以类似理解为加权平均数,X相应的概率就是它的权,所以Ex就为各个Xi×Pi的和。Dx就是一种方差,即是X偏差的加权平均,各个(Xi-Ex)的平方再乘以相应的Pi之总和。Dx与Ex之间还有一个技巧公式需要记住,就是Dx=E(X的平方)-(Ex)的平方。
北境漫步2023-07-06 08:07:241

高中数学函数的值域怎么计算?

求函数的值域,没有固定的方法,通常是把问题转化为求它的反函数的定义域。(具体求法祥见例题)。
豆豆staR2023-07-05 06:47:554

高中数学。三角形ABC中,A.B.C对边分别为abc

cosB=-2/3<0,所以B是钝角,A、C是锐角。sinB=√5/3.4b=5csinB,根据正弦定理得:4sinB=5 sinC sinB,所以sinC=4/5,cosC=3/5.cosA=-cos(B+C)=- cosB cosC+ sinB sinC=(6+4√5)/15.
此后故乡只2023-07-05 06:41:271

高中数学圆锥曲线椭圆的第二定义的应用和练习

u3002u3002u3002u3002
北有云溪2023-07-04 07:09:453

说句实话高中数学知识点太多了整了这里丢了哪里好烦躁哦!

高中数学重点知识与结论分类解析一、与简易逻辑1.的元素具有确定性、无序性和互异性.2.对 , 时,必须注意到“极端”情况: 或 ;求的子集时是否注意到 是任何的子集、 是任何非空的真子集.3.对于含有 个元素的有限 ,其子集、真子集、非空子集、非空真子集的个数依次为 4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”.5.判断命题的真假 关键是“抓住关联字词”;注意:“不‘或"即‘且",不‘且"即‘或"”.6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.7.四种命题中“‘逆"者‘交换"也”、“‘否"者‘否定"也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论"所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” ?.8.充要条件二、函 数1.指数式、对数式,2.(1)映射是“‘全部射出"加‘一箭一雕"”;映射中第一个 中的元素必有像,但第二个 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.3.单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: .(2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件.(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.(4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集).(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)4.对称性与周期性(以下结论要消化吸收,不可强记)(1)函数 与函数 的图像关于直线 ( 轴)对称.推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.推广二:函数 , 的图像关于直线 (由 确定)对称.(2)函数 与函数 的图像关于直线 ( 轴)对称.(3)函数 与函数 的图像关于坐标原点中心对称.推广:曲线 关于直线 的对称曲线是 ;曲线 关于直线 的对称曲线是 .(5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .如果 是R上的周期函数,且一个周期为 ,那么 .特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 .三、数 列1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前 项和公式的关系: (必要时请分类讨论).注意: ; .2.等差数列 中:(1)等差数列公差的取值与等差数列的单调性.(2) ; .(3) 、 也成等差数列.(4)两等差数列对应项和(差)组成的新数列仍成等差数列.(5) 仍成等差数列.(8)“首正”的递等差数列中,前 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前 项和的最小值是所有非正项之和;(9)有限等差数列中,奇数项和与偶数项和的存在必然,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).3.等比数列 中:(1)等比数列的符特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.(3) 、 、 成等比数列; 成等比数列 成等比数列.(4)两等比数列对应项积(商)组成的新数列仍成等比数列.(8)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积;(9)有限等比数列中,奇数项和与偶数项和的存在必然,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.(10)并非任何两数总有等比中项.仅当实数 同时,实数 存在等比中项.对同两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同时),如果有,必有一对(同时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.(11)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).4.等差数列与等比数列的(1)如果数列 成等差数列,那么数列 ( 总有意义)必成等比数列.(2)如果数列 成等比数列,那么数列 必成等差数列.(3)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法.5.数列求和的常用方法:(1)公式法:①等差数列求和公式(三种形式),②等比数列求和公式(三种形式),(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前 和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前 和公式的推导方法之一).(5)裂项相消法:如果数列的通项可“成两项差”的形式,且相邻项后相关联,那么常选用裂项相消法求和.常用裂项形式有:特别声明:?运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论.(6)通项转换法。四、三角函数1. 终边与 终边相同( 的终边在 终边所在射线上) .终边与 终边共线( 的终边在 终边所在直线上) .终边与 终边关于 轴对称 .终边与 终边关于 轴对称 .终边与 终边关于原点对称 .一般地: 终边与 终边关于角 的终边对称 .与 的终边关系由“两等分各象限、一二三四”确定.2.弧长公式: ,扇形公式: ,1弧度(1rad) .3.三角函数符特征是:一是全正、二正弦正、三是切正、四余弦正.注意: ,4.三角函数线的特征是:正弦线“站在 轴上(起点在 轴上)”、余弦线“躺在 轴上(起点是原点)”、正切线“站在点 处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦" ‘纵坐标"、‘余弦" ‘横坐标"、‘正切" ‘纵坐标除以横坐标之商"”;务必记住:单位圆中角终边的变化与 值的大小变化的关系. 为锐角 .5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定”;6.三角函数诱导公式的本质是:奇变偶不变,符看象限.7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”! 角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.常值变换主要指“1”的变换:等.三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化).解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.注意:和(差)角的函数结构与符特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符特征.“正余弦‘三兄妹— "的”(常和三角换元法在一起 ).辅助角公式中辅助角的确定: (其中 角所在的象限由a, b的符确定, 角的值由 确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为 的情形. 有实数解 .8.三角函数性质、图像及其变换:(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如 的周期都是 , 但 的周期为 , y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗?(2)三角函数图像及其几何性质:(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.9.三角形中的三角函数:(1)内角和定理:三角形三角和为 ,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形 三内角都是锐角 三内角的余弦值为正值 任两角和都是钝角 任意两边的平方和大于第三边的平方.(2)正弦定理: (R为三角形外接圆的半径).注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.(3)余弦定理: 等,常选用余弦定理鉴定三角形的类型.(4)公式: .五、向 量1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2.几个概念:零向量、单位向量(与 共线的单位向量是 ,特别: )、平行(共线)向量(无传递性,是因为有 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影( 在 上的投影是 ).3.两非零向量平行(共线)的充要条件 .两个非零向量垂直的充要条件 . 特别:零向量和任何向量共线. 是向量平行的充分不必要条件!4.平面向量的基本定理:如果e1和e2是同面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 、 ,使a= e1+ e2.5.三点 共线 共线;向量 中三终点 共线 存在实数 使得: 且 .6.向量的数量积: , ,,.注意: 为锐角 且 不同向;为直角 且 ;为钝角 且 不反向;是 为钝角的必要非充分条件.向量运算和实数运算有类似的地方也有区别:一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用;对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量;向量的“乘法”不满足结合律,即 ,切记两向量不能相除(相约).7. 注意: 同向或有 ;反向或有 ;不共线 .(这些和实数集中类似)8.中点坐标公式 , 为 的中点.中, 过 边中点; ;. 为 的重心;特别 为 的重心.为 的垂心;所在直线过 的内心(是 的角平分线所在直线); 的内心..六、不等式1.(1)解不等式是求不等式的解集,最后务必有的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(2)解分式不等式 的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.2.利用重要不等式 以及变式 等求函数的最值时,务必注意a,b (或a ,b非负),且“等成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).3.常用不等式有: (根据目标不等式左右的运算结构选用)a、b、c R, (当且仅当 时,取等)4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、法5.含绝对值不等式的性质:同或有 ;异或有 .注意:不等式恒成立问题的常规处理方式?(常应用方程函数思想和“分离变量法”转化为最值问题).6.不等式的恒成立,能成立,恰成立等问题(1).恒成立问题若不等式 在区间 上恒成立,则等价于在区间 上 若不等式 在区间 上恒成立,则等价于在区间 上 (2).能成立问题若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上 若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上的 .(3).恰成立问题若不等式 在区间 上恰成立, 则等价于不等式 的解集为 .若不等式 在区间 上恰成立, 则等价于不等式 的解集为 ,七、直线和圆1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义( 或 )及其直线方程的向量式( ( 为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?2.知直线纵截距 ,常设其方程为 或 ;知直线横截距 ,常设其方程为 (直线斜率k存在时, 为k的倒数)或 .知直线过点 ,常设其方程为 或 .注意:(1)直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式、向量式.以及各种形式的局限性.(如点斜式不适用于斜率不存在的直线,还有截矩式呢?)与直线 平行的直线可表示为 ;与直线 垂直的直线可表示为 ;过点 与直线 平行的直线可表示为:;过点 与直线 垂直的直线可表示为:.(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是 ,而其到角是带有方向的角,范围是 .注:点到直线的距离公式.特别: ;;.4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.5.圆的方程:最简方程 ;标准方程 ;一般式方程 ;参数方程 为参数);直径式方程 .注意:(1)在圆的一般式方程中,圆心坐标和半径分别是 .(2)圆的参数方程为“三角换元”提供了样板,常用三角换元有:, ,, .6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”(1)过圆 上一点 圆的切线方程是: ,过圆 上一点 圆的切线方程是: ,过圆 上一点 圆的切线方程是: .如果点 在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”方程.如果点 在圆内,那么上述直线方程表示与圆相离且垂直于 ( 为圆心)的直线方程, ( 为圆心 到直线的距离).7.曲线 与 的交点坐标 方程组 的解;过两圆 、 交点的圆(公共弦)系为 ,当且仅当无平方项时, 为两圆公共弦所在直线方程.八、圆锥曲线1.圆锥曲线的两个定义,及其“括”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.(1)注意:①圆锥曲线第一定义与配方法的综合运用;②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于1.③圆锥曲线的焦半径公式如下图:2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,椭圆中 、双曲线中 .重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质"”,尤其是双曲线中焦半径最值、焦点弦最值的特点.注意:等轴双曲线的意义和性质.3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式( , , )或“小小直角三角形”.④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.九、直线、平面、简单多面体1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理, ),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等 斜线在平面上射影为角的平分线.3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.特别声明:①证明计算过程中,若有“中点”等特殊点线,则常借助于“中位线、重心”等知识转化.②在证明计算过程中常将运用转化思想,将具体问题转化 (构造) 为特殊几何体(如三棱锥、正方体、长方体、三棱柱、四棱柱等)中问题,并获得去解决.③如果根据已知条件,在几何体中有“三条直线两两垂直”,那么往往以此为基础,建立空间直角坐标系,并运用空间向量解决问题.4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.如长方体中:对角线长 ,棱长总和为 ,全(表)为 ,(结合 可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式), ;如三棱锥中:侧棱长相等(侧棱与底面所成角相等) 顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直) 顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内 顶点在底上射影为底面内心.如正四面体和正方体中: 5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥 三棱柱 平行六面体 分割:三棱柱中三棱锥、四三棱锥、三棱柱的体积关系是 .6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种, 即正四面体、正六面体、正八面体、正十二面体、正二十面体.9.球体积公式 ,球表公式 ,是两个关于球的几何度量公式.它们都是球半径及的函数.十、导 数1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数). , (C为常数), , .2.多项式函数的导数与函数的单调性:在一个区间上 (个别点取等) 在此区间上为增函数.在一个区间上 (个别点取等) 在此区间上为减函数.3.导数与极值、导数与最值:(1)函数 在 处有 且“左正右负” 在 处取极大值;函数 在 处有 且“左负右正” 在 处取极小值.注意:①在 处有 是函数 在 处取极值的必要非充分条件.②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑 ,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.③单调性与最值(极值)的研究要注意列表!(2)函数 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”;函数 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;注意:利用导数求最值的步骤:先找定义域 再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小
NerveM 2023-07-04 07:09:441

高中数学知识点总结

这个数学题目还是有点难度的,你看看书吧
Ntou1232023-07-04 07:09:423

高中数学知识点详细总结

你在百度 百科上看一下,我曾经传过一份
u投在线2023-07-04 07:09:403

高中数学知识点总结

山东省本科一批录取最低控制分数线乘以北京电影学院表演专业60%的结果就是分数线
人类地板流精华2023-07-04 07:09:394

高中数学分哪几个板块呢?

高中数学重点知识与结论分类解析一、集合与简易逻辑1.集合的元素具有确定性、无序性和互异性.2.对集合 , 时,必须注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集.3.对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为 4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”.5.判断命题的真假 关键是“抓住关联字词”;注意:“不‘或"即‘且",不‘且"即‘或"”.6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.7.四种命题中“‘逆"者‘交换"也”、“‘否"者‘否定"也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论"所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” uf04c.8.充要条件二、函 数1.指数式、对数式, , , , , , , , , , .2.(1)映射是“‘全部射出"加‘一箭一雕"”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.3.单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: .(2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件.(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.(4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集).(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)4.对称性与周期性(以下结论要消化吸收,不可强记)(1)函数 与函数 的图像关于直线 ( 轴)对称.推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.推广二:函数 , 的图像关于直线 (由 确定)对称.(2)函数 与函数 的图像关于直线 ( 轴)对称.(3)函数 与函数 的图像关于坐标原点中心对称.推广:曲线 关于直线 的对称曲线是 ;曲线 关于直线 的对称曲线是 .(5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .如果 是R上的周期函数,且一个周期为 ,那么 .特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 .三、数 列1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前 项和公式的关系: (必要时请分类讨论).注意: ; .2.等差数列 中:(1)等差数列公差的取值与等差数列的单调性.(2) ; .(3) 、 也成等差数列.(4)两等差数列对应项和(差)组成的新数列仍成等差数列.(5) 仍成等差数列.(6) , , , , .(7) ; ; .(8)“首正”的递减等差数列中,前 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前 项和的最小值是所有非正项之和;(9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).3.等比数列 中:(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.(2) ; .(3) 、 、 成等比数列; 成等比数列 成等比数列.(4)两等比数列对应项积(商)组成的新数列仍成等比数列.(5) 成等比数列.(6) .特别: .(7) .(8)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积;(9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.(10)并非任何两数总有等比中项.仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.(11)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).4.等差数列与等比数列的联系(1)如果数列 成等差数列,那么数列 ( 总有意义)必成等比数列.(2)如果数列 成等比数列,那么数列 必成等差数列.(3)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法.5.数列求和的常用方法:(1)公式法:①等差数列求和公式(三种形式),②等比数列求和公式(三种形式),③ , , , .(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前 和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前 和公式的推导方法之一).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:① ,② ,特别声明:uf04c运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论.(6)通项转换法。四、三角函数1. 终边与 终边相同( 的终边在 终边所在射线上) . 终边与 终边共线( 的终边在 终边所在直线上) . 终边与 终边关于 轴对称 . 终边与 终边关于 轴对称 . 终边与 终边关于原点对称 .一般地: 终边与 终边关于角 的终边对称 . 与 的终边关系由“两等分各象限、一二三四”确定.2.弧长公式: ,扇形面积公式: ,1弧度(1rad) .3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.注意: , , .4.三角函数线的特征是:正弦线“站在 轴上(起点在 轴上)”、余弦线“躺在 轴上(起点是原点)”、正切线“站在点 处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦" ‘纵坐标"、‘余弦" ‘横坐标"、‘正切" ‘纵坐标除以横坐标之商"”;务必记住:单位圆中角终边的变化与 值的大小变化的关系. 为锐角 .5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”! 角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.如 , , , , 等.常值变换主要指“1”的变换: 等.三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化).解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符号特征.“正余弦‘三兄妹— "的联系”(常和三角换元法联系在一起 ).辅助角公式中辅助角的确定: (其中 角所在的象限由a, b的符号确定, 角的值由 确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为 的情形. 有实数解 .8.三角函数性质、图像及其变换:(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如 的周期都是 , 但 的周期为 , y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗?(2)三角函数图像及其几何性质:(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.9.三角形中的三角函数:(1)内角和定理:三角形三角和为 ,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形 三内角都是锐角 三内角的余弦值为正值 任两角和都是钝角 任意两边的平方和大于第三边的平方.(2)正弦定理: (R为三角形外接圆的半径).注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.(3)余弦定理: 等,常选用余弦定理鉴定三角形的类型.(4)面积公式: .五、向 量1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2.几个概念:零向量、单位向量(与 共线的单位向量是 ,特别: )、平行(共线)向量(无传递性,是因为有 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影( 在 上的投影是 ).3.两非零向量平行(共线)的充要条件 . 两个非零向量垂直的充要条件 . 特别:零向量和任何向量共线. 是向量平行的充分不必要条件!4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 、 ,使a= e1+ e2.5.三点 共线 共线;向量 中三终点 共线 存在实数 使得: 且 .6.向量的数量积: , , , .注意: 为锐角 且 不同向; 为直角 且 ; 为钝角 且 不反向; 是 为钝角的必要非充分条件.向量运算和实数运算有类似的地方也有区别:一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用;对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量;向量的“乘法”不满足结合律,即 ,切记两向量不能相除(相约).7. 注意: 同向或有 ; 反向或有 ; 不共线 .(这些和实数集中类似)8.中点坐标公式 , 为 的中点. 中, 过 边中点; ; . 为 的重心;特别 为 的重心. 为 的垂心; 所在直线过 的内心(是 的角平分线所在直线); 的内心. .六、不等式1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(2)解分式不等式 的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.2.利用重要不等式 以及变式 等求函数的最值时,务必注意a,b (或a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).3.常用不等式有: (根据目标不等式左右的运算结构选用)a、b、c R, (当且仅当 时,取等号)4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法5.含绝对值不等式的性质: 同号或有 ; 异号或有 .注意:不等式恒成立问题的常规处理方式?(常应用方程函数思想和“分离变量法”转化为最值问题).6.不等式的恒成立,能成立,恰成立等问题(1).恒成立问题若不等式 在区间 上恒成立,则等价于在区间 上 若不等式 在区间 上恒成立,则等价于在区间 上 (2).能成立问题若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上 若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上的 .(3).恰成立问题若不等式 在区间 上恰成立, 则等价于不等式 的解集为 .若不等式 在区间 上恰成立, 则等价于不等式 的解集为 ,七、直线和圆1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义( 或 )及其直线方程的向量式( ( 为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?2.知直线纵截距 ,常设其方程为 或 ;知直线横截距 ,常设其方程为 (直线斜率k存在时, 为k的倒数)或 .知直线过点 ,常设其方程为 或 .注意:(1)直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式、向量式.以及各种形式的局限性.(如点斜式不适用于斜率不存在的直线,还有截矩式呢?)与直线 平行的直线可表示为 ;与直线 垂直的直线可表示为 ;过点 与直线 平行的直线可表示为: ;过点 与直线 垂直的直线可表示为: .(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是 ,而其到角是带有方向的角,范围是 .注:点到直线的距离公式 .特别: ; ; .4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.5.圆的方程:最简方程 ;标准方程 ;一般式方程 ;参数方程 为参数);直径式方程 .注意:(1)在圆的一般式方程中,圆心坐标和半径分别是 .(2)圆的参数方程为“三角换元”提供了样板,常用三角换元有: , , , .6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”(1)过圆 上一点 圆的切线方程是: ,过圆 上一点 圆的切线方程是: ,过圆 上一点 圆的切线方程是: .如果点 在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”方程.如果点 在圆内,那么上述直线方程表示与圆相离且垂直于 ( 为圆心)的直线方程, ( 为圆心 到直线的距离).7.曲线 与 的交点坐标 方程组 的解;过两圆 、 交点的圆(公共弦)系为 ,当且仅当无平方项时, 为两圆公共弦所在直线方程.八、圆锥曲线1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.(1)注意:①圆锥曲线第一定义与配方法的综合运用;②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于1.③圆锥曲线的焦半径公式如下图:2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,椭圆中 、双曲线中 .重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质"”,尤其是双曲线中焦半径最值、焦点弦最值的特点.注意:等轴双曲线的意义和性质.3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式( , , )或“小小直角三角形”.④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.九、直线、平面、简单多面体1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理, ),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等 斜线在平面上射影为角的平分线.3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.特别声明:①证明计算过程中,若有“中点”等特殊点线,则常借助于“中位线、重心”等知识转化.②在证明计算过程中常将运用转化思想,将具体问题转化 (构造) 为特殊几何体(如三棱锥、正方体、长方体、三棱柱、四棱柱等)中问题,并获得去解决.③如果根据已知条件,在几何体中有“三条直线两两垂直”,那么往往以此为基础,建立空间直角坐标系,并运用空间向量解决问题.4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.如长方体中:对角线长 ,棱长总和为 ,全(表)面积为 ,(结合 可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式), ;如三棱锥中:侧棱长相等(侧棱与底面所成角相等) 顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直) 顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内 顶点在底上射影为底面内心.如正四面体和正方体中: 5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥 三棱柱 平行六面体 分割:三棱柱中三棱锥、四三棱锥、三棱柱的体积关系是 .6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种, 即正四面体、正六面体、正八面体、正十二面体、正二十面体.9.球体积公式 ,球表面积公式 ,是两个关于球的几何度量公式.它们都是球半径及的函数.十、导 数1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数). , (C为常数), , .2.多项式函数的导数与函数的单调性:在一个区间上 (个别点取等号) 在此区间上为增函数.在一个区间上 (个别点取等号) 在此区间上为减函数.3.导数与极值、导数与最值:(1)函数 在 处有 且“左正右负” 在 处取极大值;函数 在 处有 且“左负右正” 在 处取极小值.注意:①在 处有 是函数 在 处取极值的必要非充分条件.②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑 ,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.③单调性与最值(极值)的研究要注意列表!(2)函数 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”;函数 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;注意:利用导数求最值的步骤:先找定义域 再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小值.4.应用导数求曲线的切线方程,要以“切点坐标”为桥梁,注意题目中是“处uf04c”还是“过uf04c”,对“二次抛物线”过抛物线上一点的切线 抛物线上该点处的切线,但对“三次曲线”过其上一点的切线包含两条,其中一条是该点处的切线,另一条是与曲线相交于该点.5.注意应用函数的导数,考察函数单调性、最值(极值),研究函数的性态,数形结合解决方程不等式等相关问题希望你能满意
阿啵呲嘚2023-07-04 07:09:355

高中数学有哪些重要的知识点需要掌握,高考大问答题又会考哪些知识点

高中数学重点知识与结论分类解析一、集合与简易逻辑1.集合的元素具有确定性、无序性和互异性.2.对集合 , 时,必须注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集.3.对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为 4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”.5.判断命题的真假 关键是“抓住关联字词”;注意:“不‘或"即‘且",不‘且"即‘或"”.6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.7.四种命题中“‘逆"者‘交换"也”、“‘否"者‘否定"也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论"所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” uf04c.8.充要条件二、函 数1.指数式、对数式, , , , , , , , , , .2.(1)映射是“‘全部射出"加‘一箭一雕"”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.3.单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: .(2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件.(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.(4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集).(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)4.对称性与周期性(以下结论要消化吸收,不可强记)(1)函数 与函数 的图像关于直线 ( 轴)对称.推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.推广二:函数 , 的图像关于直线 (由 确定)对称.(2)函数 与函数 的图像关于直线 ( 轴)对称.(3)函数 与函数 的图像关于坐标原点中心对称.推广:曲线 关于直线 的对称曲线是 ;曲线 关于直线 的对称曲线是 .(5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .如果 是R上的周期函数,且一个周期为 ,那么 .特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 .三、数  列1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前 项和公式的关系: (必要时请分类讨论).注意: ; .2.等差数列 中:(1)等差数列公差的取值与等差数列的单调性.(2) ; .(3) 、 也成等差数列.(4)两等差数列对应项和(差)组成的新数列仍成等差数列.(5) 仍成等差数列.(6) , , , , .(7) ; ; .(8)“首正”的递减等差数列中,前 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前 项和的最小值是所有非正项之和;(9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).3.等比数列 中:(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.(2) ; .(3) 、 、 成等比数列; 成等比数列 成等比数列.(4)两等比数列对应项积(商)组成的新数列仍成等比数列.(5) 成等比数列.(6) .特别: .(7) .(8)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积;(9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.(10)并非任何两数总有等比中项.仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.(11)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).4.等差数列与等比数列的联系(1)如果数列 成等差数列,那么数列 ( 总有意义)必成等比数列.(2)如果数列 成等比数列,那么数列 必成等差数列.(3)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法.5.数列求和的常用方法:(1)公式法:①等差数列求和公式(三种形式),②等比数列求和公式(三种形式),③ , , , .(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前 和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前 和公式的推导方法之一).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:① ,② ,特别声明:uf04c运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论.(6)通项转换法。四、三角函数1. 终边与 终边相同( 的终边在 终边所在射线上) . 终边与 终边共线( 的终边在 终边所在直线上) . 终边与 终边关于 轴对称 . 终边与 终边关于 轴对称 . 终边与 终边关于原点对称 .一般地: 终边与 终边关于角 的终边对称 . 与 的终边关系由“两等分各象限、一二三四”确定.2.弧长公式: ,扇形面积公式: ,1弧度(1rad) .3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.注意: , , .4.三角函数线的特征是:正弦线“站在 轴上(起点在 轴上)”、余弦线“躺在 轴上(起点是原点)”、正切线“站在点 处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦" ‘纵坐标"、‘余弦" ‘横坐标"、‘正切" ‘纵坐标除以横坐标之商"”;务必记住:单位圆中角终边的变化与 值的大小变化的关系. 为锐角 .5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”! 角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.如 , , , , 等.常值变换主要指“1”的变换: 等.三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化).解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符号特征.“正余弦‘三兄妹— "的联系”(常和三角换元法联系在一起 ).辅助角公式中辅助角的确定: (其中 角所在的象限由a, b的符号确定, 角的值由 确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为 的情形. 有实数解 .8.三角函数性质、图像及其变换:(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如 的周期都是 , 但 的周期为 , y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗?(2)三角函数图像及其几何性质:(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.9.三角形中的三角函数:(1)内角和定理:三角形三角和为 ,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形 三内角都是锐角 三内角的余弦值为正值 任两角和都是钝角 任意两边的平方和大于第三边的平方.(2)正弦定理: (R为三角形外接圆的半径).注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.(3)余弦定理: 等,常选用余弦定理鉴定三角形的类型.(4)面积公式: .五、向 量1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2.几个概念:零向量、单位向量(与 共线的单位向量是 ,特别: )、平行(共线)向量(无传递性,是因为有 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影( 在 上的投影是 ).3.两非零向量平行(共线)的充要条件 . 两个非零向量垂直的充要条件 . 特别:零向量和任何向量共线. 是向量平行的充分不必要条件!4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 、 ,使a= e1+ e2.5.三点 共线 共线;向量 中三终点 共线 存在实数 使得: 且 .6.向量的数量积: , , , .注意: 为锐角 且 不同向; 为直角 且 ; 为钝角 且 不反向; 是 为钝角的必要非充分条件.向量运算和实数运算有类似的地方也有区别:一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用;对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量;向量的“乘法”不满足结合律,即 ,切记两向量不能相除(相约).7. 注意: 同向或有 ; 反向或有 ; 不共线 .(这些和实数集中类似)8.中点坐标公式 , 为 的中点. 中, 过 边中点; ; . 为 的重心;特别 为 的重心. 为 的垂心; 所在直线过 的内心(是 的角平分线所在直线); 的内心. .六、不等式1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(2)解分式不等式 的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.2.利用重要不等式 以及变式 等求函数的最值时,务必注意a,b (或a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).3.常用不等式有: (根据目标不等式左右的运算结构选用)a、b、c R, (当且仅当 时,取等号)4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法5.含绝对值不等式的性质: 同号或有 ; 异号或有 .注意:不等式恒成立问题的常规处理方式?(常应用方程函数思想和“分离变量法”转化为最值问题).6.不等式的恒成立,能成立,恰成立等问题(1).恒成立问题若不等式 在区间 上恒成立,则等价于在区间 上 若不等式 在区间 上恒成立,则等价于在区间 上 (2).能成立问题若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上 若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上的 .(3).恰成立问题若不等式 在区间 上恰成立, 则等价于不等式 的解集为 .若不等式 在区间 上恰成立, 则等价于不等式 的解集为 ,七、直线和圆1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义( 或 )及其直线方程的向量式( ( 为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?2.知直线纵截距 ,常设其方程为 或 ;知直线横截距 ,常设其方程为 (直线斜率k存在时, 为k的倒数)或 .知直线过点 ,常设其方程为 或 .注意:(1)直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式、向量式.以及各种形式的局限性.(如点斜式不适用于斜率不存在的直线,还有截矩式呢?)与直线 平行的直线可表示为 ;与直线 垂直的直线可表示为 ;过点 与直线 平行的直线可表示为: ;过点 与直线 垂直的直线可表示为: .(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是 ,而其到角是带有方向的角,范围是 .注:点到直线的距离公式 .特别: ; ; .4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.5.圆的方程:最简方程 ;标准方程 ;一般式方程 ;参数方程 为参数);直径式方程 .注意:(1)在圆的一般式方程中,圆心坐标和半径分别是 .(2)圆的参数方程为“三角换元”提供了样板,常用三角换元有: , , , .6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”(1)过圆 上一点 圆的切线方程是: ,过圆 上一点 圆的切线方程是: ,过圆 上一点 圆的切线方程是: .如果点 在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”方程.如果点 在圆内,那么上述直线方程表示与圆相离且垂直于 ( 为圆心)的直线方程, ( 为圆心 到直线的距离).7.曲线 与 的交点坐标 方程组 的解;过两圆 、 交点的圆(公共弦)系为 ,当且仅当无平方项时, 为两圆公共弦所在直线方程.八、圆锥曲线1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.(1)注意:①圆锥曲线第一定义与配方法的综合运用;②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于1.③圆锥曲线的焦半径公式如下图:2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,椭圆中 、双曲线中 .重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质"”,尤其是双曲线中焦半径最值、焦点弦最值的特点.注意:等轴双曲线的意义和性质.3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式( , , )或“小小直角三角形”.④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.九、直线、平面、简单多面体1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理, ),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等 斜线在平面上射影为角的平分线.3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.特别声明:①证明计算过程中,若有“中点”等特殊点线,则常借助于“中位线、重心”等知识转化.②在证明计算过程中常将运用转化思想,将具体问题转化 (构造) 为特殊几何体(如三棱锥、正方体、长方体、三棱柱、四棱柱等)中问题,并获得去解决.③如果根据已知条件,在几何体中有“三条直线两两垂直”,那么往往以此为基础,建立空间直角坐标系,并运用空间向量解决问题.4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.如长方体中:对角线长 ,棱长总和为 ,全(表)面积为 ,(结合 可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式), ;如三棱锥中:侧棱长相等(侧棱与底面所成角相等) 顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直) 顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内 顶点在底上射影为底面内心.如正四面体和正方体中: 5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥 三棱柱 平行六面体 分割:三棱柱中三棱锥、四三棱锥、三棱柱的体积关系是 .6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种, 即正四面体、正六面体、正八面体、正十二面体、正二十面体.9.球体积公式 ,球表面积公式 ,是两个关于球的几何度量公式.它们都是球半径及的函数.十、导 数1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数). , (C为常数), , .2.多项式函数的导数与函数的单调性:在一个区间上 (个别点取等号) 在此区间上为增函数.在一个区间上 (个别点取等号) 在此区间上为减函数.3.导数与极值、导数与最值:(1)函数 在 处有 且“左正右负” 在 处取极大值;函数 在 处有 且“左负右正” 在 处取极小值.注意:①在 处有 是函数 在 处取极值的必要非充分条件.②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑 ,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.③单调性与最值(极值)的研究要注意列表!(2)函数 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”;函数 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;注意:利用导数求最值的步骤:先找定义域 再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小值.4.应用导数求曲线的切线方程,要以“切点坐标”为桥梁,注意题目中是“处uf04c”还是“过uf04c”,对“二次抛物线”过抛物线上一点的切线 抛物线上该点处的切线,但对“三次曲线”过其上一点的切线包含两条,其中一条是该点处的切线,另一条是与曲线相交于该点.5.注意应用函数的导数,考察函数单调性、最值(极值),研究函数的性态,数形结合解决方程不等式等相关问题.十一、概率、统计、算法(略) 赞同
hi投2023-07-04 07:09:321

高中数学奇函数+奇函数=?(偶函数+偶函数=?……)求普及

奇函数*奇函数=偶函数奇函数*偶函数=奇函数偶函数*偶函数=偶函数你可以这样记的: 奇函数为-,偶函数为+负负得正正正也得正正负得负
善士六合2023-07-03 11:29:205

高中数学设集合A所组成问题

LuckySXyd2023-07-03 11:22:003

高中数学方差公式 方差怎么计算

1、方差公式:S^2=〈(M-x1)^2+(M-x2)^2+(M-x3)^2+…+(M-xn)^2〉╱n。 2、方差的概念与计算公式,例如 两人的5次测验成绩如下:X: 50,100,100,60,50,平均值E(X)=72;Y:73, 70,75,72,70 平均值E(Y)=72。平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为E(X):直接计算公式分离散型和连续型。推导另一种计算公式得到:“方差等于各个数据与其算术平均数的离差平方和的平均数”。其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。
黑桃花2023-07-03 11:19:551

高中数学立体几何表面积的所有公式?

长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积 =长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体) 的体积=底面积×高 平面图形 名称 符号 周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形 d,D-对角线长 α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长 h-a边的高 α-两边夹角 S=ah =absinα 菱形 a-边长 α-夹角 D-长对角线长 d-短对角线长 S=Dd/2 =a2sinα 梯形 a和b-上、下底长 h-高 m-中位线长 S=(a+b)h/2 =mh 圆 r-半径 d-直径 C=πd=2πr S=πr2 =πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数 S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3 圆环 R-外圆半径 r-内圆半径 D-外圆直径 d-内圆直径 S=π(R2-r2) =π(D2-d2)/4 椭圆 D-长轴 d-短轴 S=πDd/4 立方图形 名称 符号 面积S和体积V 正方体 a-边长 S=6a2 V=a3 长方体 a-长 b-宽 c-高 S=2(ab+ac+bc) V=abc 棱柱 S-底面积 h-高 V=Sh 棱锥 S-底面积 h-高 V=Sh/3 棱台 S1和S2-上、下底面积 h-高 V=h[S1+S2+(S1S1)1/2]/3 拟柱体 S1-上底面积 S2-下底面积 S0-中截面积 h-高 V=h(S1+S2+4S0)/6 圆柱 r-底半径 h-高 C—底面周长 S底—底面积 S侧—侧面积 S表—表面积 C=2πr S底=πr2 S侧=Ch S表=Ch+2S底 V=S底h =πr2h 空心圆柱 R-外圆半径 r-内圆半径 h-高 V=πh(R2-r2) 直圆锥 r-底半径 h-高 V=πr2h/3 圆台 r-上底半径 R-下底半径 h-高 V=πh(R2+Rr+r2)/3 球 r-半径 d-直径 V=4/3πr3=πd2/6 球缺 h-球缺高 r-球半径 a-球缺底半径 V=πh(3a2+h2)/6 =πh2(3r-h)/3 a2=h(2r-h) 球台 r1和r2-球台上、下底半径 h-高 V=πh[3(r12+r22)+h2]/6 圆环体 R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径 V=2π2Rr2 =π2Dd2/4 桶状体 D-桶腹直径 d-桶底直径 h-桶高 V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形)
铁血嘟嘟2023-07-03 11:06:272

高中数学立体几何表面积的所有公式?

高中数学合集百度网盘下载链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ?pwd=1234提取码:1234简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
无尘剑 2023-07-03 11:06:271

高中数学配方法的方法

没有题?来几个具体的题啊
大鱼炖火锅2023-07-03 11:03:173

帮我找几个高中数学难题。。。

http://wenku.baidu.com/list/609上面很多。还有可以去天利38套的网上找。
苏州马小云2023-07-03 10:58:265

高中数学 我们学定积分那块,知道了导函数怎么求原函数,例如指数函数、幂函数、对数函数怎么求原

积分即可
瑞瑞爱吃桃2023-07-03 10:57:093

高中数学,如图中位数怎么求?

666我们初中学的
tt白2023-07-01 13:07:034

高中数学频率直线分布图众数,平均数,中位数分别怎么求

中位数就是频率分布直方图面积的一半所对应的值 众数就是频率最高的中间值 平均数则是每组频率的中间值乘频数再相加 众数即出现频率最大的数,平均数就不用说了,中位数即把所有数从小到大排列,若总个数是偶数位则取正中间的两个数之和除以二,若总个数是奇数位则直接取中间的数即可
肖振2023-07-01 13:07:021

高中数学八个基础初等函数

y=kxy=x^ay=a^xy=sinxy=cosxy=lnxy=tanxy=c这几种函数的图像。奇偶性。增减性。有限次复合
铁血嘟嘟2023-07-01 13:06:584

高中数学

设重心G(X,Y),则M(1/3X,1/3Y),把M点坐标代入椭圆方程,化简得X^2/36+Y^2/9=1
陶小凡2023-07-01 13:06:564

高中数学里面的函数部分是不是都有一定的联系? 幂函数,指数函数,二次函数,三角函数。它们和导数的关系

每个函数都有自己的基本表达式和基本性质啊,这些性质是需要花时间去好好研究的。导数就是研究函数在其区间内的增长还是下降吧,我记得不太齐了
凡尘2023-07-01 13:06:454

高中数学必修一的知识点

高中高一数学必修1各章知识点总结第一章 集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1.元素的确定性; 2.元素的互异性; 3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特性使集合本身具有了确定性和整体性。3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集 含有有限个元素的集合2.无限集 含有无限个元素的集合3.空集 不含任何元素的集合 例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B① 任何一个集合是它本身的子集。AíA②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)③如果 AíB, BíC ,那么 AíC④ 如果AíB 同时 BíA 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作: CSA 即 CSA ={x | x?S且 x?A}SCsAA(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。)构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。(2) 画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。发现解题中的错误。4.快去了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.5.什么叫做映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B”给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。常用的函数表示法及各自的优点:1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值补充一:分段函数 (参见课本P24-25)在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.补充二:复合函数如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。例如: y=2sinX y=2cos(X2+1)7.函数单调性(1).增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;2 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) 。(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)-f(x2)的正负);5 下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)_(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:函数 单调性u=g(x) 增 增 减 减y=f(u) 增 减 增 减y=f[g(x)] 增 减 减 增注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?8.函数的奇偶性(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)10.函数最大(小)值(定义见课本p36页)1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);第二章 基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *.当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand).当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。注意:当 是奇数时, ,当 是偶数时, 2.分数指数幂正数的分数指数幂的意义,规定:, 0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(1) · ;(2) ;(3) .(二)指数函数及其性质1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>1 0<a<1图象特征 函数性质向x、y轴正负方向无限延伸 函数的定义域为R图象关于原点和y轴不对称 非奇非偶函数函数图象都在x轴上方 函数的值域为R+函数图象都过定点(0,1)自左向右看,图象逐渐上升 自左向右看,图象逐渐下降 增函数 减函数在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1图象上升趋势是越来越陡 图象上升趋势是越来越缓 函数值开始增长较慢,到了某一值后增长速度极快; 函数值开始减小极快,到了某一值后减小速度较慢;注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上, 值域是 或 ;(2)若 ,则 ; 取遍所有正数当且仅当 ;(3)对于指数函数 ,总有 ;(4)当 时,若 ,则 ;二、对数函数(一)对数1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)说明:1 注意底数的限制 ,且 ;2 ;3 注意对数的书写格式.两个重要对数:1 常用对数:以10为底的对数 ;2 自然对数:以无理数 为底的对数的对数 .对数式与指数式的互化对数式 指数式对数底数 ← → 幂底数对数 ← → 指数真数 ← → 幂(二)对数的运算性质如果 ,且 , , ,那么:1 · + ;2 - ;3 .注意:换底公式 ( ,且 ; ,且 ; ).利用换底公式推导下面的结论(1) ;(2) .(二)对数函数1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.2 对数函数对底数的限制: ,且 .2、对数函数的性质:a>1 0<a<1图象特征 函数性质函数图象都在y轴右侧 函数的定义域为(0,+∞)图象关于原点和y轴不对称 非奇非偶函数向y轴正负方向无限延伸 函数的值域为R函数图象都过定点(1,0)自左向右看,图象逐渐上升 自左向右看,图象逐渐下降 增函数 减函数第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0(三)幂函数1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.3、函数零点的求法:求函数 的零点:1 (代数法)求方程 的实数根;2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数 .1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
豆豆staR2023-07-01 13:06:411

高中数学中的六大类函数

一次函数二次函数幂函数指数函数对数函数三角函数
北有云溪2023-07-01 13:06:383

高中数学必修五公式总结(人教版)

人教版高中数学必修五主要学习三大块内容,分别为解三角形,数列和不等式,这三项在高考中占的分数比较大,所以考生应该多练习、勤复习,下面是我为大家整理的人教版高中数学必修五公式,希望大家喜欢。人教版高中数学必修五---解三角形 1.人教版必修五正弦定理:a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,R是此三角形外接圆的半径)。 变形公式: (1)a=2RsinA,b=2RsinB,c=2RsinC (2)sinA:sinB:sinC=a:b:c (3)asinB=bsinA,asinC=csinA,bsinC=csinB (4)sinA=a/2R,sinB=b/2R,sinC=c/2R (5)S=1/2bcsinA=1/2acsinB=1/2absinC 2.人教版必修五余弦定理: a2=b2+c2-2bccosA b2=a2+c2-2accosB c2=a2+b2-2abcosC 注:勾股定理其实是余弦定理的一种特殊情况。 3.人教版必修五变形公式: cosC=(a2+b2-c2)/2ab cosB=(a2+c2-b2)/2ac cosA=(c2+b2-a2)/2bc 4.人教版必修五三角形面积公式:S=absinC/2=bcsinA/2=acsinB/2 人教版高中数学必修五---数列 1.人教版必修五等差数列: 通项公式:an=a1+(n-1)d,Sn=(2a1+(n-1)d)*n/2=n*a1+n*(n-1)*d/2 前n项和:Sn=na1+n(n-1)d/2 或 Sn=n(a1+an)/2 前n项积:Tn=a1^n + b1a1^(n-1)×d + …… + bnd^n 其中b1…bn是另一个数列,表示1…n中1个数、2个数…n个数相乘后的积的和。 2.人教版必修五等比数列: 通项公式:An=A1*q^(n-1) 前n项和:Sn=[A1(1-q^n)]/(1-q) 前n项积:Tn=A1^n*q^(n(n-1)/2) 等比数列: 若q=1,则S=n*a1 若q≠1,则 S=a1+a1*q+a1*q^2+……+a1*q^(n-1) 等式两边同时乘q ,S=a1*(1-q^n)/(1-q) 3.人教版必修五利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn-1,同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1). 注意:(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0. (2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误. 等比数列的判断方法有: (1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N*),则{an}是等比数列. (2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N*),则数列{an}是等比数列. (3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N*),则{an}是等比数列. 人教版高中数学必修五---不等式 1.人教版必修五等式的概念:一般的,用符号“=”连接的式子叫做等式。一般的,用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式。 不等式中可以含有未知数,也可以不含)。用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式。 2.人教版必修五不等式的性质: ①不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。 ②不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。 ③不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 ④不等式的两边都乘以0,不等号变等号。 3.人教版必修五不等式的基本性质: ①如果a>b,那么a±c>b±c ②性质2:如果a>b,c>0,那么ac>bc(或a/c>b/c) ③性质3:如果a>b,c<0,那么ac<BC(或A c<b c)< p> 4.解一元一次不等式的一般方法顺序:①去分母 (运用不等式性质2,3);②去括号;③移项 (运用不等式性质1);④合并同类项;⑤将未知数的系数化为1 (运用不等式性质2,3);⑥有些时候需要在数轴上表示不等式的解集。 5.人教版必修五一元一次不等式的解法及解集 解一元一次不等式的步骤:(1)去分母,(2)去括号,(3)移项,(4)合并同类项,(5)求得解集。 一元一次不等式的解集:将不等式化为aχ>b的形式 (1)若a>0,则解集为χ>b/a (2)若a<0,则解集为χ<B p a<> 6.人教版必修五不等式的解集: (1) 能使不等式成立的未知数的值,叫做不等式的解。 (2)一个有未知数的不等式的所有解,组成这个不等式的解集。例如,不等式x-5≤-1的解集为x≤4;不等式x2>0的解集是所有非零实数。求不等式解集的过程叫做不等式。 7.人教版必修五解不等式的五个步骤:(在运算中,根据不同情况来使用) (1)去分母; (2)去括号; (3)移项; (4)合并同类项; (5)两边同时除以x的系数。 8.一元一次不等式: 这些不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。 9.一元一次不等式组: (1) 一般的,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。 (2)一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。 10.人教版必修五一元一次不等式的定义: (1) 不等式左右两边都是整式; (2) 不等式中只含一个未知数; (3) 未知数最高次数是1。 注:一元一次不等式的解集不是具体的几个数,而是一个范围,集合。 一元一次不等式与一次函数的综合运用:一般先求出函数表达式,再化简不等式求解。 解一元一次不等式组的步骤: (1) 求出每个不等式的解集; (2) 求出每个不等式的解集的公共部分;(一般利用数轴) (3) 用代数符号语言来表示公共部分。(也可以说成是下结论) 几种常见的不等式组的解集: (1) 关于x不等式组{x>a} {x>b}的解集是:x>b (2) 关于x不等式组{x<A} {x a (3) 关于x不等式组{x>a} {x<B}的解集是:A<X<B< p> (4) 关于x不等式组{x b}的解集是空集。 几种特殊的不等式组的解集: (1) 关于x不等式(组):{x≥a} { x≤a}的解集为:x=a (2) 关于x不等式(组):{x>a} {x<A}的解集是空集。< p>
余辉2023-07-01 13:00:451

高一数学 高中数学

k为-1/2,因为平行向量的斜率相同,1/k=2/(-1)画图 两点之间距离的等式列出来可以解
人类地板流精华2023-07-01 13:00:413

高中数学 奇函数和偶函数的区别是什么?详细的说一下 最好举几个例子 或者画图解释下 谢谢亲们!

阿啵呲嘚2023-07-01 12:54:577

新课改下高中数学教学方式方法

常用的教学方法有:1)讲授法讲授法是教师通过口头语言向学生传授知识的方法。讲授法包括讲述法、讲解法、讲读法和讲演法。教师运用各种教学方法进行教学时,大多都伴之以讲授法。这是当前我国最经常使用的一种教学方法。2)谈论法谈论法亦叫问答法。它是教师按一定的教学要求向学生提出问题,要求学生回答,并通过问答的形式来引导学生获取或巩固知识的方法。谈论法特别有助于激发学生的思维,调动学习的积极性,培养他们独立思考和语言表述的能力。初中,尤其是小学低年级常用谈论法。谈论法可分复习谈话和启发谈话两种。复习谈话是根据学生已学教材向学生提出一系列问题,通过师生问答形式以帮助学生复习、深化、系统化已学的知识。启发谈话则是通过向学生提出来思考过的问题,一步一步引导他们去深入思考和探取新知识。3)演示法演示教学是教师在教学时,把实物或直观教具展示给学生看,或者作示范性的实验,通过实际观察获得感性知识以说明和印证所传授知识的方法。演示教学能使学生获得生动而直观的感性知识,加深对学习对象的印象,把书本上理论知识和实际事物联系起来,形成正确而深刻的概念;能提供一些形象的感性材料,引起学习的兴趣,集中学生的注意力,有助于对所学知识的深入理解、记忆和巩固;能使学生通过观察和思考,进行思维活动,发展观察力、想象力和思维能力。4)练习法练习法是学生在教师的指导下,依靠自觉的控制和校正,反复地完成一定动作或活动方式,借以形成技能、技巧或行为习惯的教学方法。从生理机制上说,通过练习使学生在神经系统中形成一定的动力定型,以便顺利地、成功地完成某种活动。练习在各科教学中得到广泛的应用,尤其是工具性学科(如语文、外语、数学等)和技能性学科(如体育、音乐、美术等)。练习法对于巩固知识,引导学生把知识应用于实际,发展学生的能力以及形成学生的道德品质等方面具有重要的作用。5)读书指导法读书指导法是教师指导学生通过阅读教科书、参考书以获取知识或巩固知识的方法。学生掌握书本知识,固然有赖于教师的讲授,但还必须靠他们自己去阅读、领会,才能消化、巩固和扩大知识。特别是只有通过学生独立阅读才能掌握读书方法,提高自学能力,养成良好的读书习惯。6)课堂讨论法课堂讨论法是在教师的指导下,针对教材中的基础理论或主要疑难问题,在学生独立思考之后,共同进行讨论、辩论的教学组织形式及教学方法,可以全班进行,也可分大组进行。7)实验法实验法是学生在教师的指导下,使用一定的设备和材料,通过控制条件的操作过程,引起实验对象的某些变化,从观察这些现象的变化中获取新知识或验证知识的教学方法。在物理、化学、生物、地理和自然常识等学科的教学中,实验是一种重要的方法。一般实验是在实验室、生物或农业实验园地进行的。有的实验也可以在教室里进行。实验法是随着近代自然科学的发展兴起的。现代科学技术和实验手段的飞跃发展,使实验法发挥越来越大的作用。通过实验法,可以使学生把一定的直接知识同书本知识联系起来,以获得比较完全的知识,又能够培养他们的独立探索能力、实验操作能力和科学研究兴趣。它是提高自然科学有关学科教学质量不可缺少的条件。8)启发法启发教学可以由一问一答、一讲一练的形式来体现;也可以通过教师的生动讲述使学生产生联想,留下深刻印象而实现。所以说,启发性是一种对各种教学方法和教学活动都具有的指导意义的教学思想,启发式教学法就是贯彻启发性教学思想的教学法。也就是说,无论什么教学方法,只要是贯彻了启发教学思想的,都是启发式教学法,反之,就不是启发式教学法。
左迁2023-06-30 09:17:481

高中数学,指数函数,对数函数怎么区别,它们分别有什么特征或者说性质

帮你搜了下,希望对你有帮助。1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am·an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①若a<0,则N的某些值不存在,例如log-28 ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1 (1)将下列指数式写成对数式: ①54=625;②2-6=164;③3x=27;④13m=573. (2)将下列对数式写成指数式: ①log1216=-4;②log2128=7; ③log327=x;④lg0.01=-2; ⑤ln10=2.303;⑥lgπ=k. 解析由对数定义:ab=NlogaN=b. 解答(1)①log5625=4.②log2164=-6. ③log327=x.④log135.73=m. 解题方法 指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=NlogaN=b.(2)①12-4=16.②27=128.③3x=27. ④10-2=0.01.⑤e2.303=10.⑥10k=π. 2 根据下列条件分别求x的值: (1)log8x=-23;(2)log2(log5x)=0; (3)logx27=31+log32;(4)logx(2+3)=-1. 解析(1)对数式化指数式,得:x=8-23=? (2)log5x=20=1. x=? (3)31+log32=3×3log32=?27=x? (4)2+3=x-1=1x. x=? 解答(1)x=8-23=(23)-23=2-2=14. (2)log5x=20=1,x=51=5. (3)logx27=3×3log32=3×2=6, ∴x6=27=33=(3)6,故x=3. (4)2+3=x-1=1x,∴x=12+3=2-3. 解题技巧 ①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化. ②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3 已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值. 解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值; 思路二,对指数式的两边取同底的对数,再利用对数式的运算求值 解答解法一∵logax=4,logay=5, ∴x=a4,y=a5, ∴A=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1. 解法二对所求指数式两边取以a为底的对数得 logaA=loga(x512y-13) =512logax-13logay=512×4-13×5=0, ∴A=1. 解题技巧 有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4 设x,y均为正数,且x·y1+lgx=1(x≠110),求lg(xy)的取值范围. 解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数? 解答∵x>0,y>0,x·y1+lgx=1, 两边取对数得:lgx+(1+lgx)lgy=0. 即lgy=-lgx1+lgx(x≠110,lgx≠-1). 令lgx=t, 则lgy=-t1+t(t≠-1). ∴lg(xy)=lgx+lgy=t-t1+t=t21+t. 解题规律 对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解. ∴Δ=S2+4S≥0,解得S≤-4或S≥0, 故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞). 5 求值: (1)lg25+lg2·lg50+(lg2)2; (2)2log32-log3329+log38-52log53; (3)设lga+lgb=2lg(a-2b),求log2a-log2b的值; (4)求7lg20·12lg0.7的值. 解析(1)25=52,50=5×10.都化成lg2与lg5的关系式. (2)转化为log32的关系式. (3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢? (4)7lg20·12lg0.7是两个指数幂的乘积,且指数含常用对数, 设x=7lg20·12lg0.7能否先求出lgx,再求x? 解答(1)原式=lg52+lg2·lg(10×5)+(lg2)2 =2lg5+lg2·(1+lg5)+(lg2)2 =lg5·(2+lg2)+lg2+(lg2)2 =lg102·(2+lg2)+lg2+(lg2)2 =(1-lg2)(2+lg2)+lg2+(lg2)2 =2-lg2-(lg2)2+lg2+(lg2)2=2. (2)原式=2log32-(log325-log332)+log323-5log59 =2log32-5log32+2+3log32-9 =-7. (3)由已知lgab=lg(a-2b)2 (a-2b>0), ∴ab=(a-2b)2, 即a2-5ab+4b2=0. ∴ab=1或ab=4,这里a>0,b>0. 若ab=1,则a-2b<0, ∴ab=1( 舍去). ∴ab=4, ∴log2a-log2b=log2ab=log24=2. (4)设x=7lg20·12lg0.7,则 lgx=lg20×lg7+lg0.7×lg12 =(1+lg2)·lg7+(lg7-1)·(-lg2) =lg7+lg2=14, ∴x=14, 故原式=14. 解题规律 ①对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式,运用法则进行对数变形时要注意对数的真数的范围是否改变,为防止增根所以需要检验,如(3). ②对一个式子先求它的常用对数值,再求原式的值是代数运算中常用的方法,如(4).6
黑桃花2023-06-29 09:29:481

高中数学方差的计算公式

高中数学方差的计算公式是样本方差和总体方差的计算公式相同,只是用的数据不同。下面按照不同的知识点展开详细描述。1、方差的定义方差是衡量一组随机变量值偏离其平均值的程度,是各个数据与平均值差值的平方和除以数据个数。方差越大,说明各个数据值之间的离散程度越大,方差越小则说明各个数据值之间的离散程度越小。2、样本方差的计算公式样本方差是针对样本数据计算的方差,其计算公式为:S^2=∑(Xu2212{X})^2/n-1,其中,X是样本数据集,{X}是样本平均数,n是样本数据集的容量。3、总体方差的计算公式总体方差是针对整个总体计算的方差,其计算公式为:σ^2=∑(Xu2212μ)^2/N,其中,X是总体数据集,μ是总体均值,N是总体数据集的容量。4、不同样本大小下的方差计算在实际应用中,有时候需要将不同样本大小下的方差进行比较。此时需要用到方差的标准化,即计算样本标准差和总体标准差。综上所述,方差是描述随机变量分散程度的重要指标,其计算公式包括样本方差和总体方差。在实际应用中需要注意方差的标准化以及样本大小对方差计算的影响。
此后故乡只2023-06-28 09:46:461

高中数学方差的计算公式?

高中数学方差的计算公式是样本方差和总体方差的计算公式相同,只是用的数据不同。下面按照不同的知识点展开详细描述。1、方差的定义方差是衡量一组随机变量值偏离其平均值的程度,是各个数据与平均值差值的平方和除以数据个数。方差越大,说明各个数据值之间的离散程度越大,方差越小则说明各个数据值之间的离散程度越小。2、样本方差的计算公式样本方差是针对样本数据计算的方差,其计算公式为:S^2=∑(X−{X})^2/n-1,其中,X是样本数据集,{X}是样本平均数,n是样本数据集的容量。3、总体方差的计算公式总体方差是针对整个总体计算的方差,其计算公式为:σ^2=∑(X−μ)^2/N,其中,X是总体数据集,μ是总体均值,N是总体数据集的容量。4、不同样本大小下的方差计算在实际应用中,有时候需要将不同样本大小下的方差进行比较。此时需要用到方差的标准化,即计算样本标准差和总体标准差。综上所述,方差是描述随机变量分散程度的重要指标,其计算公式包括样本方差和总体方差。在实际应用中需要注意方差的标准化以及样本大小对方差计算的影响。
Ntou1232023-06-28 09:46:431

高中数学等比数列公式

高中等比数列公式是An=A1q^(n-1),等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示,An为常数列。等比数列公式就是在数学上求一定数量的等比数列的和的公式。等比数列在生活中也是常常运用的,在等比数列中,当q≠-1,或q=-1且k为奇数时,依次每 k项之和仍成等比数列。等比数列{an}的常用性质:(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),则am·an=ap·aq=a.  特别地,a1an=a2an-1=a3an-2=….  (2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m
墨然殇2023-06-28 09:45:261

高中数学等比数列公式

等比数列的通项公式代入就行了~再有问题给我发私信哦~
左迁2023-06-28 09:45:224

高中数学常用逻辑用语符号有哪些

1、几何符号  ⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △  2、代数符号  ∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶  3、运算符号  如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。  4、集合符号  ∪ ∩ ∈  5、特殊符号  ∑ π(圆周率)  6、推理符号  |a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←  ↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨  &; §  ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩  Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω  α β γ δ ε ζ η θ ι κ λ μ ν  ξ ο π ρ σ τ υ φ χ ψ ω  Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ  ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ  ∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮  ∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ⊕ ⊙ ⊥  ⊿ ⌒ ℃  指数0123:o123  7、数量符号  如:i,2+i,a,x,自然对数底e,圆周率π。  8、关系符号  如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。  9、结合符号  如小括号“()”中括号“[]”,大括号“{}”横线“—”  10、性质符号  如正号“+”,负号“-”,绝对值符号“| |”正负号“±”  11、省略符号  如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),  ∵因为,(一个脚站着的,站不住)  ∴所以,(两个脚站着的,能站住) 总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。  12、排列组合符号  C-组合数  A-排列数  N-元素的总个数  R-参与选择的元素个数  !-阶乘 ,如5!=5×4×3×2×1=120  C-Combination- 组合  A-Arrangement-排列  13、离散数学符号  ├ 断定符(公式在L中可证)  ╞ 满足符(公式在E上有效,公式在E上可满足)  ┐ 命题的“非”运算  ∧ 命题的“合取”(“与”)运算  ∨ 命题的“析取”(“或”,“可兼或”)运算  → 命题的“条件”运算  A<=>B 命题A 与B 等价关系  A=>B 命题 A与 B的蕴涵关系  A* 公式A 的对偶公式  wff 合式公式  iff 当且仅当  ↑ 命题的“与非” 运算( “与非门” )  ↓ 命题的“或非”运算( “或非门” )  □ 模态词“必然”  ◇ 模态词“可能”  φ 空集  ∈ 属于(??不属于)  P(A) 集合A的幂集  |A| 集合A的点数  R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”  (或下面加 ≠) 真包含  ∪ 集合的并运算  ∩ 集合的交运算  - (~) 集合的差运算  〡 限制  [X](右下角R) 集合关于关系R的等价类  A/ R 集合A上关于R的商集  [a] 元素a 产生的循环群  I (i大写) 环,理想  Z/(n) 模n的同余类集合  r(R) 关系 R的自反闭包  s(R) 关系 的对称闭包  CP 命题演绎的定理(CP 规则)  EG 存在推广规则(存在量词引入规则)  ES 存在量词特指规则(存在量词消去规则)  UG 全称推广规则(全称量词引入规则)  US 全称特指规则(全称量词消去规则)  R 关系  r 相容关系  R○S 关系 与关系 的复合  domf 函数 的定义域(前域)  ranf 函数 的值域  f:X→Y f是X到Y的函数  GCD(x,y) x,y最大公约数  LCM(x,y) x,y最小公倍数  aH(Ha) H 关于a的左(右)陪集  Ker(f) 同态映射f的核(或称 f同态核)  [1,n] 1到n的整数集合  d(u,v) 点u与点v间的距离  d(v) 点v的度数  G=(V,E) 点集为V,边集为E的图  W(G) 图G的连通分支数  k(G) 图G的点连通度  △(G) 图G的最大点度  A(G) 图G的邻接矩阵  P(G) 图G的可达矩阵  M(G) 图G的关联矩阵  C 复数集  N 自然数集(包含0在内)  N* 正自然数集  P 素数集  Q 有理数集  R 实数集  Z 整数集  Set 集范畴  Top 拓扑空间范畴  Ab 交换群范畴  Grp 群范畴  Mon 单元半群范畴  Ring 有单位元的(结合)环范畴  Rng 环范畴  CRng 交换环范畴  R-mod 环R的左模范畴  mod-R 环R的右模范畴  Field 域范畴  Poset 偏序集范畴 + plus 加号;正号  - minus 减号;负号  ± plus or minus 正负号  × is multiplied by 乘号  ÷ is divided by 除号  = is equal to 等于号  ≠ is not equal to 不等于号  ≡ is equivalent to 全等于号  ≌ is approximately equal to 约等于  ≈ is approximately equal to 约等于号  < is less than 小于号  > is more than 大于号  ≤ is less than or equal to 小于或等于  ≥ is more than or equal to 大于或等于  % per cent 百分之…  ∞ infinity 无限大号  √ (square) root 平方根  X squared X的平方  X cubed X的立方  ∵ since; because 因为  ∴ hence 所以  ∠ angle 角  ⌒ semicircle 半圆  ⊙ circle 圆  ○ circumference 圆周  △ triangle 三角形  ⊥ perpendicular to 垂直于  ∪ intersection of 并,合集  ∩ union of 交,通集  ∫ the integral of …的积分  ∑ (sigma) summation of 总和  ° degree 度  ′ minute 分  〃 second 秒  # number …号  @ at 单价
可桃可挑2023-06-28 09:43:211

高中数学:在平面直角坐标系xoy中,动点P到两点(-√3,0),(√3,0)的距离之和等于4, 设点P的轨迹为曲线C,

C是椭圆 轨迹方程就是x^2/4+y^2/1=1
Chen2023-06-27 08:24:121

在高中数学的二分法求方程近似解中,什么叫精确度

算法分析:二分法求方程近似解的基本思想是将方程的有解区间平分为两个小区间,然后判断解在哪个小区间;继续把有解的区间一分为二进行判断,如此周而复始,直到求出满足精确要求的近似解。二分法求方程近似解的计量泵算法步骤:⑴确定区间[a,b],验证f(a).f(b) < 0,给定精确度e⑵求区间(a, b)的中点mid⑶计算f(mid)若f(mid) = 0,则mid就是函数的建设零点若f(a).f(mid) < 0,则令b = mid(此时零点a < x0 < mid)若f(mid).f(b) < 0,则令a = mid(此时零点mid < x0 < b)⑷判断是否达到精确度e:即若|a-b| < e,则得到零点近似值a(或b);否则重复⑵-⑷。代码如下:double F(double a, double b, double c, double d, double x)//函数妇联表达式{return (((a * x + b) * x) * x + d) / c;}double Function(double a, double b, double c, double d, double low, double high, double e){double mid = (low + high) / 2;if (F(a, b, c, d, mid) == 0)return mid;while ((high-low) = e){mid = (low + high) / 2;if (F(a, b, c, d, mid) == 0)return mid;if (F(a, b, c, d, low)*F(a, b, c, d, mid) < 0)high = mid;elselow = mid;}return low;}正文到此结束关键词:电阀应用 旋盖机方程 二分法计量泵相关信息请访问
mlhxueli 2023-06-26 09:18:292

高中数学必修3算法初步中二分法是什么意思

二分法是一种解方程的方法,是把一个方程转化成一个函数f(x)=0的形式,然后利用图像找出方程解的近似值的方法.大致步骤为: 1.把方程转化成f(x)=0; 2.画出方程的图像,找出方程的根所在的大致范围.通常把方程的根的范围定在(a,b)这样的一个整数范围内,a,b差值越小越好.判定的标准就是函数零点的存在性定理,需要使这个区间两个端点的函数值符号相反,也就是f(a)f(b)
拌三丝2023-06-26 09:18:092

高中数学,为什么复数的平方和复数模的平方不同?

最简单的举例 i^2=-1 |i|^2=1 因为复数的平方是整体 而复数模的平方只是对里面的数字,不带虚数i就比如(a+bi)^2=a^2+2abi+(bi)^2 |a+bi| =a^2+b^2 对比上面和下面有什么不同就清楚了
凡尘2023-06-22 16:31:011

高中数学复数模相减问题

这是从几何意义角度来考虑的,也可以用代数代数方法来计算,设Z1=a+bi, Z2=x+yix^2+y^2=1 ---(1)a^2+b^2=1 ---(2)a+x=1/2 ---(3)b+y=√3/2 ---(4)可以解出a,b,x.y的值。
阿啵呲嘚2023-06-22 16:31:011

高中数学,为什么复数的平方和复数模的平方不同?

最简单的举例i^2=-1|i|^2=1因为复数的平方是整体而复数模的平方只是对里面的数字,不带虚数i就比如(a+bi)^2=a^2+2abi+(bi)^2|a+bi|=a^2+b^2对比上面和下面有什么不同就清楚了
余辉2023-06-22 16:30:391

2道高中数学题 复数

(1)0.5(2)-2i
真颛2023-06-22 10:18:001

复数的范围是最大的吗?《高中数学范围内

在中学阶段,复数集范围最大,包涵实数,虚数
真颛2023-06-22 10:18:002

高中数学,纯虚数是不是复数啊。谢了

复数包括实数和虚数,虚数又包括纯虚数和虚数
hi投2023-06-22 10:18:004

高中数学,为什么复数的平方和复数模的平方不同?

最简单的举例i^2=-1|i|^2=1因为复数的平方是整体而复数模的平方只是对里面的数字,不带虚数i就比如(a+bi)^2=a^2+2abi+(bi)^2|a+bi|=a^2+b^2对比上面和下面有什么不同就清楚了
豆豆staR2023-06-22 10:17:591

复数的运算,高中数学。写下过程。

Ntou1232023-06-22 10:17:591

高中数学复数中ω是什么?

1/2+根号3/2i
hi投2023-06-22 10:17:593

高中数学计算复数数列一条问题

此题给出了一个二项式的展开根据展开,我们可以知道,本来应该是(1-a)^16也就是(1-2-i)^16也就是(1+i)^16根据棣莫佛原理,上式结果为B
真颛2023-06-22 10:17:591

高中数学复数满足复平面内对应点问题

因为-i到i的距离是2,所以使|z-i|+|z+i|=2的z只能在-i和i之间的线段上。
九万里风9 2023-06-22 10:17:591

我2014年高中毕业,现在我兄弟的高中数学中有个复数的概念,我好像没有学过?

所以你想问什么
大鱼炖火锅2023-06-22 10:17:582

高中数学复数a=b=问题

这个数字是复数,复数的基本形式是A+Bi,i是一个虚数,它的意义是 i 的平方等于 -1(具体的大学会学的),现在你只要知道基本形式中A叫实部,B叫虚部题目中等号成立说明前后两数实部相等,虚部也相等,也就是3a+2b=19 ; 5a-b=10 ,解这个二元一次方程组就可以得到a=3 ,b=5
NerveM 2023-06-22 10:17:571

高中数学常用公式

高中数学常用公式有复数、函数、空间几何体等。1、复数。复数,是数的概念扩展。我们把形如z=a+bi(a、b均为实数)的数称为复数。其中,a称为实部,b称为虚部,i称为虚数单位。当z的虚部b=0时,则z为实数;当z的虚部b≠0时,实部a=0时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。复数是由意大利米兰学者卡当在16世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。2、函数。函数(function),数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。3、空间几何体。在我们周围存在着各种各样的物体,它们都占据着空间的一部分。如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。
meira2023-06-22 10:17:571

高中数学复数k等于多少问题

解:显然x1x2=25即(3+4i)(3-4i)=25那么x1+x2=6=-b/a=-(k+3)/2故k=-15点评:利用一对共轭复根的性质巧妙利用韦达定理得到k值,属于基础题目
gitcloud2023-06-22 10:17:561

高中数学,复数z=a+bi,为什么不是 z=a-bi

b可以是任意实数加和减没什么区别,只是为了规定而已,回答满意么?
wpBeta2023-06-22 10:17:564

高中数学复数化简问题,2/-2i+2i

z= (1-i)/(1+i) +2i= (1/2)(1-i)^2 +2i=(1/2)(-2i) + 2i=-i +2i=i|z| =1ans : C
tt白2023-06-22 10:17:562

高中数学复数a+b等于多少问题

先化简z,z=(1+2i+i^2+3-3i)/(2+i) 因为i^2=-1;所以z=(3-i)/(2+i) 分子分母同乘(2-i);得到z=1+i;带入方程得到;a+b-ai=1+3i。因为a,b为实数;所以a+b=1.
北境漫步2023-06-22 10:17:551

高中数学有关复数i的运算

[(1+i)/(1-i)] +i^2 =[(1+i)(1+i)/(1-i)(1+i)] +i^2 =(1-1+2i)/(1+1) +i^2 =i-1 如果你的题目确实如此的话.你的答案是对的.
NerveM 2023-06-22 10:17:551

高中数学--复数问题

(z^2-a^2)(z^2+a^2)=z^4-a^4=(x+yi)^4-a^4=(x^2-y^2+2xyi)^2-a^4=(x^2-y^2)^2-4(xy)^2+4xy(x^2-y^2)i-a^4=x^4+y^4-6(xy)^2-a^4+4xy(x^2-y^2)i 因为(z^2-a^2)/(z^2+a^2)是纯虚数,所以 x^4+y^4-6(xy)^2-a^4=0即x,y满足关系式 x^4+y^4-6(xy)^2=a^4
苏州马小云2023-06-22 10:17:552

高中数学平行四边形ABCD复数问题

根据平行四边形计算法则C点对应的复数是(3+2i)+(2-4i)=5-2i
韦斯特兰2023-06-22 10:17:541

高中数学复数问题求过程

乘出来合并啊
FinCloud2023-06-22 10:17:533
 首页 上一页  1 2 3 4 5 6 7 8  下一页  尾页