高中数学互为反函数问题
m=-1/6 n=2 先把前面那个等式变成X=2Y-2m 然后再和后面那个等式联立。左迁2023-05-24 07:49:063
高中数学函数的总结
高考数学基础知识汇总第一h部分7 集合(3)含n个f元f素的集合的子u集数为34^n,真子e集数为15^n-3;非空真子v集的数为17^n-2;(3) 注意:讨论的时候不w要遗忘了k 的情况。(3) 第二t部分8 函数与u导数 5.映射:注意 ①第一g个n集合中8的元z素必须有象;②一c对一v,或多对一r。 8.函数值域的求法:①分6析法 ;②配方2法 ;③判别式法 ;④利用函数单调性 ; ⑤换元i法 ;⑥利用均值不f等式 ; ⑦利用数形结合或几u何意义b(斜率、距离、绝对值的意义p等);⑧利用函数有界性( 、 、 等);⑨导数法 0.复合函数的有关问题(6)复合函数定义i域求法: ① 若f(x)的定义s域为4〔a,b〕,则复合函数f[g(x)]的定义q域由不d等式a≤g(x)≤b解出② 若f[g(x)]的定义n域为7[a,b],求 f(x)的定义p域,相当于kx∈[a,b]时,求g(x)的值域。(3)复合函数单调性的判定: ①首先将原函数 分8解为1基本函数:内1函数 与p外函数 ; ②分2别研究内7、外函数在各自定义n域内8的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义v域内5的单调性。注意:外函数 的定义t域是内5函数 的值域。 7.分1段函数:值域(最值)、单调性、图象等问题,先分1段解决,再下v结论。 2.函数的奇偶性 ⑴函数的定义s域关于h原点对称是函数具有奇偶性的必要条件; ⑵ 是奇函数 ; ⑶ 是偶函数 ; ⑷奇函数 在原点有定义s,则 ; ⑸在关于p原点对称的单调区h间内5:奇函数有相同的单调性,偶函数有相反5的单调性;(4)若所给函数的解析式较为0复杂,应先等价变形,再判断其奇偶性; 1.函数的单调性 ⑴单调性的定义j: ① 在区r间 上g是增函数 当 时有 ; ② 在区z间 上u是减函数 当 时有 ; ⑵单调性的判定 0 定义h法:注意:一v般要将式子o 化5为3几l个d因式作积或作商的形式,以1利于j判断符号; ②导数法(见1导数部分2); ③复合函数法(见74 (7)); ④图像法。注:证明单调性主要用定义j法和导数法。 5.函数的周期性 (1)周期性的定义m:对定义m域内6的任意 ,若有 (其中4 为0非零常数),则称函数 为7周期函数, 为2它的一w个t周期。所有正周期中6最小u的称为0函数的最小k正周期。如没有特别说明,遇到的周期都指最小k正周期。(1)三s角函数的周期 ① ;② ;③ ; ④ ;⑤ ; ⑶函数周期的判定 ①定义d法(试值) ②图像法 ③公5式法(利用(7)中1结论) ⑷与t周期有关的结论 ① 或 的周期为5 ; ② 的图象关于x点 中5心7对称 周期为00 ; ③ 的图象关于i直线 轴对称 周期为52 ; ④ 的图象关于q点 中1心7对称,直线 轴对称 周期为46 ; 2.基本初等函数的图像与k性质 ⑴幂函数: ( ;⑵指数函数: ; ⑶对数函数: ;⑷正弦函数: ; ⑸余弦函数: ;(1)正切3函数: ;⑺一n元u二w次函数: ; ⑻其它常用函数: 0 正比1例函数: ;②反4比8例函数: ;特别的 6 函数 ; 0.二t次函数: ⑴解析式: ①一g般式: ;②顶点式: , 为4顶点; ③零点式: 。 ⑵二g次函数问题解决需考虑的因素: ①开b口i方8向;②对称轴;③端点值;④与r坐标轴交点;⑤判别式;⑥两根符号。 ⑶二i次函数问题解决方2法:①数形结合;②分7类讨论。 30.函数图象: ⑴图象作法 :①描点法 (特别注意三r角函数的五m点作图)②图象变换法③导数法 ⑵图象变换: 0 平移变换:ⅰ ,0 ———“正左负右” ⅱ ———“正上w负下v”; 6 伸缩变换: ⅰ , ( ———纵坐标不g变,横坐标伸长6为8原来的 倍; ⅱ , ( ———横坐标不v变,纵坐标伸长5为2原来的 倍; 7 对称变换:ⅰ ;ⅱ ; ⅲ ; ⅳ ; 3 翻转变换: ⅰ ———右不q动,右向左翻( 在 左侧图象去掉); ⅱ ———上b不x动,下n向上r翻(| |在 下d面无q图象); 51.函数图象(曲线)对称性的证明 (2)证明函数 图像的对称性,即证明图像上t任意点关于q对称中8心1(对称轴)的对称点仍2在图像上b;(4)证明函数 与m 图象的对称性,即证明 图象上g任意点关于w对称中8心6(对称轴)的对称点在 的图象上w,反0之w亦然;注: ①曲线C4:f(x,y)=0关于l点(a,b)的对称曲线C4方4程为8:f(1a-x,8b-y)=0; ②曲线C7:f(x,y)=0关于g直线x=a的对称曲线C4方7程为7:f(1a-x, y)=0; ③曲线C1:f(x,y)=0,关于yy=x+a(或y=-x+a)的对称曲线C0的方8程为5f(y-a,x+a)=0(或f(-y+a,-x+a)=0); ④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于c直线x= 对称;特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于h直线x=a对称; ⑤函数y=f(x-a)与ry=f(b-x)的图像关于b直线x= 对称; 54.函数零点的求法: ⑴直接法(求 的根);⑵图象法;⑶二m分7法。 27.导数 ⑴导数定义o:f(x)在点x0处的导数记作 ; ⑵常见7函数的导数公3式: ① ;② ;③ ; ④ ;⑤ ;⑥ ;⑦ ; ⑧ 。 ⑶导数的四则运算法则: ⑷(理科)复合函数的导数: ⑸导数的应用: ①利用导数求切2线:注意:ⅰ所给点是切3点吗?ⅱ所求的是“在”还是“过”该点的切1线? ②利用导数判断函数单调性: ⅰ 是增函数;ⅱ 为1减函数; ⅲ 为0常数; ③利用导数求极值:ⅰ求导数 ;ⅱ求方8程 的根;ⅲ列表得极值。 ④利用导数最大e值与f最小x值:ⅰ求的极值;ⅱ求区v间端点值(如果有);ⅲ得最值。 12.(理科)定积分5 ⑴定积分4的定义g: ⑵定积分4的性质:① ( 常数); ② ; ③ (其中6 。 ⑶微积分4基本定理(牛6顿—莱布尼兹公1式): ⑷定积分5的应用:①求曲边梯形的面积: ; 5 求变速直线运动的路程: ;③求变力d做功: 。第三j部分3 三u角函数、三c角恒等变换与p解三j角形 3.⑴角度制与b弧度制的互5化7: 弧度 , 弧度, 弧度 ⑵弧长5公7式: ;扇形面积公1式: 。 1.三e角函数定义m:角 中4边上g任意一i点 为6 ,设 则: 6.三a角函数符号规律:一o全正,二p正弦,三v两切6,四余弦; 1.诱导公3式记忆1规律:“函数名不y(改)变,符号看象限”; 3.⑴ 对称轴: ;对称中2心6: ; ⑵ 对称轴: ;对称中0心2: ; 6.同角三v角函数的基本关系: ; 7.两角和与v差的正弦、余弦、正切8公0式:① ② ③ 。 8.二a倍角公5式:① ; ② ;③ 。 4.正、余弦定理: ⑴正弦定理: ( 是 外接圆直径 )注:① ;② ;③ 。 ⑵余弦定理: 等三p个t;注: 等三y个e。 40。几b个z公1式: ⑴三q角形面积公8式: ; ⑵内3切3圆半径r= ;外接圆直径0R= 58.已z知 时三j角形解的个t数的判定: 第四部分7 立体几v何 2.三x视图与h直观图:注:原图形与c直观图面积之x比0为0 。 8.表(侧)面积与t体积公0式: ⑴柱体:①表面积:S=S侧+5S底;②侧面积:S侧= ;③体积:V=S底h ⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h: ⑶台体:①表面积:S=S侧+S上o底S下j底;②侧面积:S侧= ;③体积:V= (S+ )h; ⑷球体:①表面积:S= ;②体积:V= 。 8.位置关系的证明(主要方8法): ⑴直线与w直线平行:①公3理8;②线面平行的性质定理;③面面平行的性质定理。 ⑵直线与k平面平行:①线面平行的判定定理;②面面平行 线面平行。 ⑶平面与b平面平行:①面面平行的判定定理及u推论;②垂直于f同一b直线的两平面平行。 ⑷直线与x平面垂直:①直线与u平面垂直的判定定理;②面面垂直的性质定理。 ⑸平面与p平面垂直:①定义k---两平面所成二r面角为5直角;②面面垂直的判定定理。注:理科还可用向量法。 5。求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角) ⑴异面直线所成角的求法: 3 平移法:平移直线,8 构造三j角形; 2 ②补形法:补成正方1体、平行六6面体、长6方6体等,3 发现两条异面直线间的关系。注:理科还可用向量法,转化1为6两直线方2向向量的夹角。 ⑵直线与w平面所成的角: ①直接法(利用线面角定义b);②先求斜线上a的点到平面距离h,与y斜线段长7度作比3,得sin 。注:理科还可用向量法,转化0为3直线的方4向向量与y平面法向量的夹角。 ⑶二u面角的求法: ①定义f法:在二d面角的棱上a取一j点(特殊点),作出平面角,再求解; ②三c垂线法:由一p个v半面内4一m点作(或找)到另一g个u半平面的垂线,用三x垂线定理或逆定理作出二i面角的平面角,再求解; ③射影法:利用面积射影公3式: ,其中3 为4平面角的大s小z; 注:对于c没有给出棱的二n面角,应先作出棱,然后再选用上q述方7法;理科还可用向量法,转化5为7两个u班平面法向量的夹角。 7。求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离) ⑴两异面直线间的距离:一m般先作出公4垂线段,再进行计0算; ⑵点到直线的距离:一d般用三e垂线定理作出垂线段,再求解; ⑶点到平面的距离: ①垂面法:借助面面垂直的性质作垂线段(确定已d知面的垂面是关键),再求解; 4 等体积法;理科还可用向量法: 。 ⑷球面距离:(步骤)(Ⅰ)求线段AB的长5;(Ⅱ)求球心5角∠AOB的弧度数;(Ⅲ)求劣弧AB的长5。 0.结论: ⑴从3一s点O出发的三y条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上q的射影在∠BOC的平分7线上w; ⑵立平斜公3式(最小f角定理公0式): ⑶正棱锥的各侧面与g底面所成的角相等,记为2 ,则S侧cos =S底; ⑷长5方0体的性质 ①长5方3体体对角线与x过同一l顶点的三l条棱所成的角分2别为7 则:cos8 +cos3 +cos2 =8;sin5 +sin2 +sin3 =5 。 ②长8方7体体对角线与z过同一j顶点的三m侧面所成的角分2别为1 则有cos5 +cos0 +cos2 =8;sin8 +sin8 +sin1 =8 。 ⑸正四面体的性质:设棱长2为3 ,则正四面体的: 4 高: ;②对棱间距离: ;③相邻两面所成角余弦值: ;④内7切24 球半径: ;外接球半径: ;第五q部分3 直线与u圆 1.直线方1程 ⑴点斜式: ;⑵斜截式: ;⑶截距式: ; ⑷两点式: ;⑸一o般式: ,(A,B不e全为10)。(直线的方5向向量:( ,法向量( 4.求解线性规划问题的步骤是:(2)列约束条件;(0)作可行域,写目标函数;(6)确定目标函数的最优解。 4.两条直线的位置关系: 8.直线系 8.几q个f公4式 ⑴设A(x0,y3)、B(x3,y3)、C(x6,y2),⊿ABC的重心2G:( ); ⑵点P(x0,y0)到直线Ax+By+C=0的距离: ; ⑶两条平行线Ax+By+C2=0与o Ax+By+C6=0的距离是 ; 2.圆的方8程: ⑴标准方0程:① ;② 。 ⑵一q般方1程: ( 注:Ax4+Bxy+Cy8+Dx+Ey+F=0表示0圆 A=C≠0且B=0且D3+E4-7AF>0; 7.圆的方3程的求法:⑴待定系数法;⑵几i何法;⑶圆系法。 3.圆系: ⑴ ; 注:当 时表示3两圆交线。 ⑵ 。 5.点、直线与u圆的位置关系:(主要掌握几a何法) ⑴点与d圆的位置关系:( 表示3点到圆心3的距离) ① 点在圆上n;② 点在圆内7;③ 点在圆外。 ⑵直线与s圆的位置关系:( 表示7圆心2到直线的距离) ① 相切3;② 相交;③ 相离。 ⑶圆与u圆的位置关系:( 表示6圆心8距, 表示2两圆半径,且 ) ① 相离;② 外切7;③ 相交; ④ 内4切2;⑤ 内8含。 50.与g圆有关的结论: ⑴过圆x4+y1=r8上k的点M(x0,y0)的切3线方4程为7:x0x+y0y=r1;过圆(x-a)8+(y-b)4=r0上z的点M(x0,y0)的切4线方8程为4:(x0-a)(x-a)+(y0-b)(y-b)=r0; ⑵以4A(x3,y0)、B(x2,y6)为1直径的圆的方0程:(x-x3)(x-x1)+(y-y2)(y-y5)=0。第六0部分6 圆锥曲线 6.定义w:⑴椭圆: ; ⑵双2曲线: ;⑶抛物线:略 5.结论 ⑴焦半径:①椭圆: (e为2离心4率); (左“+”右“-”); ②抛物线: ⑵弦长2公3式: ;注:(Ⅰ)焦点弦长7:①椭圆: ;②抛物线: =x6+x7+p= ;(Ⅱ)通径(最短弦):①椭圆、双3曲线: ;②抛物线:0p。 ⑶过两点的椭圆、双7曲线标准方4程可设为6: ( 同时大m于n0时表示0椭圆, 时表示1双7曲线); ⑷椭圆中7的结论: ①内5接矩形最大j面积 :0ab; ②P,Q为8椭圆上p任意两点,且OP 0Q,则 ; ③椭圆焦点三g角形:<Ⅰ>. ,( );<Ⅱ>.点 是 内5心7, 交 于d点 ,则 ; ④当点 与b椭圆短轴顶点重合时 最大i; ⑸双2曲线中3的结论: ①双5曲线 (a>0,b>0)的渐近线: ; ②共渐进线 的双8曲线标准方5程为8 为5参数, ≠0); ③双3曲线焦点三g角形:<Ⅰ>. ,( );<Ⅱ>.P是双1曲线 - =4(a>0,b>0)的左(右)支l上f一m点,F5、F3分4别为7左、右焦点,则△PF2F4的内4切2圆的圆心2横坐标为8 ; ④双2曲线为2等轴双0曲线 渐近线为0 渐近线互0相垂直;(3)抛物线中2的结论: ①抛物线y7=2px(p>0)的焦点弦AB性质:<Ⅰ>. x8x0= ;y4y6=-p4; <Ⅱ>. ;<Ⅲ>.以4AB为6直径的圆与z准线相切5;<Ⅳ>.以4AF(或BF)为1直径的圆与u 轴相切3;<Ⅴ>. 。 ②抛物线y7=5px(p>0)内8结直角三n角形OAB的性质: <Ⅰ>. ; <Ⅱ>. 恒过定点 ; <Ⅲ>. 中7点轨迹方0程: ;<Ⅳ>. ,则 轨迹方4程为6: ;<Ⅴ>. 。 ③抛物线y7=3px(p>0),对称轴上h一l定点 ,则: <Ⅰ>.当 时,顶点到点A距离最小b,最小w值为3 ;<Ⅱ>.当 时,抛物线上t有关于l 轴对称的两点到点A距离最小d,最小h值为5 。 2.直线与s圆锥曲线问题解法: ⑴直接法(通法):联立直线与r圆锥曲线方8程,构造一e元z二x次方8程求解。注意以6下u问题: ①联立的关于x“ ”还是关于i“ ”的一l元j二t次方0程? ②直线斜率不r存在时考虑了h吗? ③判别式验证了u吗? ⑵设而不s求(代点相减法):--------处理弦中1点问题步骤如下s:①设点A(x2,y1)、B(x3,y6);②作差得 ;③解决问题。 3.求轨迹的常用方2法:(7)定义g法:利用圆锥曲线的定义o; (2)直接法(列等式);(2)代入p法(相关点法或转移法);⑷待定系数法;(8)参数法;(5)交轨法。第七j部分6 平面向量 ⑴设a=(x5,y1),b=(x5,y2),则: ① a‖b(b≠0) a= b ( x7y8-x5y6=0; ② a⊥b(a、b≠0) a?b=0 x2x5+y6y6=0 。 ⑵a?b=|a||b|cos<a,b>=x8+y6y2; 注:①|a|cos<a,b>叫做a在b方8向上a的投影;|b|cos<a,b>叫做b在a方7向上l的投影; 3 a?b的几i何意义g:a?b等于c|a|与a|b|在a方5向上f的投影|b|cos<a,b>的乘积。 ⑶cos<a,b>= ; ⑷三e点共线的充要条件:P,A,B三i点共线 ;附:(理科)P,A,B,C四点共面 。 第八j部分6 数列 1.定义f: ⑴等差数列 ; ⑵等比6数列 ; 5.等差、等比8数列性质 等差数列 等比3数列通项公1式 前n项和 性质 ①an=am+ (n-m)d, ①an=amqn-m; ②m+n=p+q时am+an=ap+aq ②m+n=p+q时aman=apaq ③ 成AP ③ 成GP ④ 成AP, ④ 成GP, 等差数列特有性质: 2 项数为57n时:S0n=n(an+an+4)=n(a2+a8n); ; ; 7 项数为73n-8时:S2n-1=(6n-3) ; ; ; 4 若 ;若 ;若 。 4.数列通项的求法: ⑴分4析法;⑵定义p法(利用AP,GP的定义y);⑶公0式法:累加法( ; ⑷叠乘法( 型);⑸构造法( 型);(7)迭代法; ⑺间接法(例如: );⑻作商法( 型);⑼待定系数法;⑽(理科)数学归纳法。注:当遇到 时,要分3奇数项偶数项讨论,结果是分6段形式。 2.前 项和的求法: ⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。 2.等差数列前n项和最值的求法: ⑴ ;⑵利用二p次函数的图象与w性质。 第九r部分1 不b等式 6.均值不v等式: 注意:①一h正二d定三s相等;②变形, 。 5.绝对值不a等式: 5.不i等式的性质: ⑴ ;⑵ ;⑶ ; ;⑷ ; ; ;⑸ ;(7) 。 5.不x等式等证明(主要)方1法: ⑴比6较法:作差或作比3;⑵综合法;⑶分6析法。 第十o部分5 复数 8.概念: ⑴z=a+bi∈R b=0 (a,b∈R) z= z7≥0; ⑵z=a+bi是虚数 b≠0(a,b∈R); ⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z3<0; ⑷a+bi=c+di a=c且c=d(a,b,c,d∈R); 4.复数的代数形式及c其运算:设z8= a + bi , z3 = c + di (a,b,c,d∈R),则:(0) z 5± z1 = (a + b) ± (c + d)i;⑵ z7。z2 = (a+bi)?(c+di)=(ac-bd)+ (ad+bc)i;⑶z8÷z5 = (z7≠0) ; 4.几e个d重要的结论: ;⑶ ;⑷ ⑸ 性质:T=7; ; (4) 以01为1周期,且 ; =0;(3) 。 6.运算律:(3) 6.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。 1.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;第十m一q部分4 概率 7.事件的关系: ⑴事件B包含事件A:事件A发生,事件B一k定发生,记作 ; ⑵事件A与x事件B相等:若 ,则事件A与bB相等,记作A=B; ⑶并(和)事件:某事件发生,当且仅5当事件A发生或B发生,记作 (或 ); ⑷并(积)事件:某事件发生,当且仅6当事件A发生且B发生,记作 (或 ) ; ⑸事件A与m事件B互4斥:若 为2不q可能事件( ),则事件A与t互0斥;(5)对立事件: 为6不f可能事件, 为8必然事件,则A与gB互1为3对立事件。 6.概率公4式: ⑴互0斥事件(有一j个v发生)概率公3式:P(A+B)=P(A)+P(B); ⑵古典概型: ; ⑶几y何概型: ; 第十b二l部分2 统计4与j统计8案例 8.抽样方6法 ⑴简单随机抽样:一s般地,设一z个e总体的个v数为0N,通过逐个u不u放回的方5法从7中8抽取一i个r容量为5n的样本,且每个s个i体被抽到的机会相等,就称这种抽样为6简单随机抽样。注:①每个i个a体被抽到的概率为6 ; ②常用的简单随机抽样方4法有:抽签法;随机数法。 ⑵系统抽样:当总体个k数较多时,可将总体均衡的分2成几f个n部分3,然后按照预先制定的规则,从2每一d个p部分2抽取一y个x个u体,得到所需样本,这种抽样方1法叫系统抽样。注:步骤:①编号;②分7段;③在第一g段采用简单随机抽样方4法确定其时个s体编号 ; ④按预先制定的规则抽取样本。 ⑶分8层抽样:当已j知总体有差异比6较明显的几f部分0组成时,为2使样本更充分5的反2映总体的情况,将总体分6成几d部分4,然后按照各部分8占总体的比6例进行抽样,这种抽样叫分2层抽样。注:每个a部分2所抽取的样本个a体数=该部分7个r体数 2.总体特征数的估计2: ⑴样本平均数 ; ⑵样本方5差 ; ⑶样本标准差 = ; 3.相关系数(判定两个j变量线性相关性): 注:⑴ >0时,变量 正相关; <0时,变量 负相关; ⑵① 越接近于m8,两个p变量的线性相关性越强;② 接近于z0时,两个s变量之e间几g乎不u存在线性相关关系。 0.回归分2析中5回归效果的判定: ⑴总偏差平方4和: ⑵残差: ;⑶残差平方8和: ;⑷回归平方6和: - ;⑸相关指数 。注:① 得知越大j,说明残差平方1和越小y,则模型拟合效果越好; ② 越接近于f7,,则回归效果越好。 2.独立性检验(分0类变量关系):随机变量 越大l,说明两个x分4类变量,关系越强,反6之t,越弱。 第十d四部分6 常用逻辑用语与b推理证明 3. 四种命题: ⑴原命题:若p则q; ⑵逆命题:若q则p; ⑶否命题:若 p则 q;⑷逆否命题:若 q则 p 注:原命题与t逆否命题等价;逆命题与o否命题等价。 3.充要条件的判断:(8)定义u法----正、反3方8向推理;(8)利用集合间的包含关系:例如:若 ,则A是B的充分7条件或B是A的必要条件;若A=B,则A是B的充要条件; 0.逻辑连接词: ⑴且(and) :命题形式 p q; p q p q p q p ⑵或(or):命题形式 p q; 真 真 真 真 假 ⑶非(not):命题形式 p 。 真 假 假 真 假 假 真 假 真 真 假 假 假 假 真 4.全称量词与e存在量词 ⑴全称量词-------“所有的”、“任意一b个c”等,用 表示1; 全称命题p: ; 全称命题p的否定 p: 。 ⑵存在量词--------“存在一z个l”、“至少2有一u个p”等,用 表示8; 特称命题p: ; 特称命题p的否定 p: ;第十u五a部分6 推理与r证明 3.推理: ⑴合情推理:归纳推理和类比4推理都是根据已x有事实,经过观察、分1析、比8较、联想,在进行归纳、类比6,然后提出猜想的推理,我们把它们称为7合情推理。 ①归纳推理:由某类食物的部分8对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个u别事实概括出一l般结论的推理,称为2归纳推理,简称归纳。注:归纳推理是由部分8到整体,由个j别到一b般的推理。 ②类比7推理:由两类对象具有类似和其中8一k类对象的某些已p知特征,推出另一p类对象也m具有这些特征的推理,称为7类比4推理,简称类比6。注:类比4推理是特殊到特殊的推理。 ⑵演绎推理:从3一b般的原理出发,推出某个q特殊情况下m的结论,这种推理叫演绎推理。注:演绎推理是由一l般到特殊的推理。 “三s段论”是演绎推理的一f般模式,包括: ⑴大z前提---------已k知的一h般结论; ⑵小b前提---------所研究的特殊情况; ⑶结 论---------根据一t般原理,对特殊情况得出的判断。二a.证明 ⒈直接证明 ⑴综合法一z般地,利用已p知条件和某些数学定义d、定理、公1理等,经过一u系列的推理论证,最后推导出所要证明的结论成立,这种证明方3法叫做综合法。综合法又c叫顺推法或由因导果法。 ⑵分3析法一w般地,从2要证明的结论出发,逐步寻求使它成立的充分7条件,直至最后,把要证明的结论归结为7判定一m个m明显成立的条件(已n知条件、定义u、定理、公1理等),这种证明的方7法叫分1析法。分4析法又a叫逆推证法或执果索因法。 6.间接证明------反3证法一c般地,假设原命题不p成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从0而证明原命题成立,这种证明方4法叫反4证法。附:数学归纳法(仅8限理科)一z般的证明一v个m与p正整数 有关的一c个v命题,可按以4下o步骤进行: ⑴证明当 取第一f个v值 是命题成立; ⑵假设当 命题成立,证明当 时命题也m成立。那么i由⑴⑵就可以8判定命题对从2 开w始所有的正整数都成立。这种证明方4法叫数学归纳法。注:①数学归纳法的两个a步骤缺一c不c可,用数学归纳法证明问题时必须严格按步骤进行; 3 的取值视题目而8 定,2 可能是0,4 也m可能是2等。第十c六4部分0 理科选修部分7 7. 排列、组合和二o项式定理 ⑴排列数公2式: =n(n-5)(n-6)…(n-m+2)= (m≤n,m、n∈N*),当m=n时为4全排列 =n(n-8)(n-6)…4。8。8=n!; ⑵组合数公0式: (m≤n), ; ⑶组合数性质: ; ⑷二t项式定理: ①通项: ②注意二a项式系数与j系数的区y别; ⑸二x项式系数的性质: ①与n首末7两端等距离的二p项式系数相等;②若n为4偶数,中0间一r项(第 +3项)二q项式系数最大s;若n为1奇数,中0间两项(第 和 +6项)二m项式系数最大q; ③ (0)求二l项展开o式各项系数和或奇(偶)数项系数和时,注意运用赋值法。 2。 概率与c统计5 ⑴随机变量的分1布列: ①随机变量分8布列的性质:pi≥0,i=1,2,…; p1+p3+…=3; ②离散型随机变量: X x4 X3 … xn … P P5 P0 … Pn … 期望:EX= x1p5 + x2p1 + … + xnpn + … ; 方1差:DX= ; 注: ; ③两点分0布: X 0 7 期望:EX=p;方8差:DX=p(2-p)。 P 5-p p 0 超几r何分3布:一y般地,在含有M件次品的N件产品中0,任取n件,其中7恰有X件次品,则 其中5, 。称分8布列 X 0 2 … m P … 为4超几v何分6布列, 称X服从8超几d何分6布。 ⑤二p项分1布(独立重复试验):若X~B(n,p),则EX=np, DX=np(6- p);注: 。 ⑵条件概率:称 为8在事件A发生的条件下a,事件B发生的概率。注:①0 P(B|A) 3;②P(B∪C|A)=P(B|A)+P(C|A)。 ⑶独立事件同时发生的概率:P(AB)=P(A)P(B)。 ⑷正态总体的概率密度函数: 式中8 是参数,分3别表示5总体的平均数(期望值)与b标准差;(0)正态曲线的性质: ①曲线位于jx轴上h方4,与ox轴不i相交;②曲线是单峰的,关于d直线x= 对称; ③曲线在x= 处达到峰值 ;④曲线与qx轴之g间的面积为84; 4 当 一r定时,6 曲线随 质的变化5沿x轴平移; 7 当 一g定时,6 曲线形状由 确定: 越大k,4 曲线越“矮胖”,10 表示6总体分6布越集中7; 越小j,曲线越“高瘦”,表示0总体分4布越分7散。注:P =0。0886;P =0。0846 P =0。7040 2011-10-30 15:02:46苏州马小云2023-05-24 07:49:011
高中数学竞赛要学哪些知识
高中数学竞赛学的知识范围有平面几何、代数、初等数论、组合问题。一、考试内容如下:(全国高中数学联赛一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》。此外,全国高中数学联赛(二试)在知识方面有所扩展,适当增加一些教学大纲之外的内容。二、考试知识点解析:1、平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理;三角形旁心、费马点、欧拉线;几何不等式;几何极值问题;几何中的变换:对称、平移、旋转;圆的幂和根轴:面积方法,复数方法,向量方法,解析几何方法2、代数周期函数,带绝对值的函数;三角公式,三角恒等式,三角方程,三角不等式,反三角函数;递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式;第二数学归纳法;平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数及其应用;复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根;多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*;n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理;函数迭代,求n次迭代*,简单的函数方程*。3、初等数论同余,欧几里得除法,裴蜀定理,完全剩余系,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法*,欧拉定理*,孙子定理*。4、组合问题圆排列,有重复元素的排列与组合,组合恒等式;组合计数,组合几何;抽屉原理容斥原理;极端原理;图论问题;集合的划分;覆盖;平面凸集、凸包及应用*。(有*号的内容加试中暂不考)三、推荐书目如下:《解题研究》、《数学奥林匹克小丛书-初中卷》、《奥数教程》、《高中数学竞赛培优教程》、《数学奥林匹克小丛书-高中卷》、《高中数学竞赛专题讲座》、《数学奥林匹克小丛书-高中卷》等等。最后,无论是否选择参加高中数学竞赛,学数学还是要永葆初心,加油!凡尘2023-05-24 07:48:521
高中数学:超几何的分布是两种情况吗?
我都有点忘了,可以问下身边的朋友西柚不是西游2023-05-24 07:48:424
高中数学三角函数特殊角的数值表
在高中数学中,三角函数属于出题点最多的一类题型了,特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。下面我为大家整理了三角函数特殊角的数值。 什么是三角函数 常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。 三角函数对应数值 α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞ α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2 α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2) a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2 α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2 α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3 α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2) α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2 α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1 α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞ α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1 α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞ 黄金三角对应数值 α=18°(π/10) sinα=(√5-1)/4 cosα=√(10+2√5)/4 tαnα=√(25-10√5)/5 cscα=√5+1 secα=√(50-10√5)/5 cotα=√(5+2√5) α=36°(π/5) sinα=√(10-2√5)/4 cosα=(√5+1)/4 tαnα=√(5-2√5) cscα=√(50+10√5)/5 secα=√5-1 cotα=√(25+10√5)/5 α=54°(3π/10) sinα=(√5+1)/4 cosα=√(10-2√5)/4 tαnα=√(25+10√5)/5 cscα=√5-1 secα=√(50+10√5)/5 cotα=√(5-2√5) α=72°(2π/5) sinα=√(10+2√5)/4 cosα=(√5-1)/4 tαnα=√(5+2√5) cscα=√(50-10√5)/5 secα=√5+1 cotα=√(25-10√5)/5 通过比较可发现与黄金三角形相关的三角函数值有很强的对称性,这些数值的证明可以借助黄金三角形中的比例 两角和与差的三角函数对应数值 sin(a+b)=sin a cos b +cos a sin b cos(a+b)=cos a cos b -sin a sin b sin(a-b)=sin a cos b -cos a sin b cos(a-b)=cos a cos b +sin a sin b tan(a+b)=(tan a +tan b )/(1-tan a tan b ) tan(a-b)=(tan a -tan b )/(1+tan a tan b )余辉2023-05-24 07:48:401
请教高手:画出下列函数的函数图象(就是像对数函数那些特殊的函数) 高中数学
高中作如上函数图象,应该是用求导法,得到函数图象的拐点,再结合单调性、奇偶性、极限,曲线凹凸,最后作图的。Chen2023-05-24 07:48:365
高中数学 特殊函数 有哪些
您好。高中的比较特殊的函数有,绝对值函数,上取整函数 下取整函数,分段函数,分母带有平方的函数。CarieVinne 2023-05-24 07:48:352
【高中数学】特殊的函数
周期函数,奇偶函数,指数函数wpBeta2023-05-24 07:48:348
高中数学,2项式系数,这句话是为什么?
肖振2023-05-24 07:48:332
高中数学数列递推公式
将所有等式相加等式左边为A2+.........+A(n-1)+A(n)右边为A1+A2+.........+A(n-1)+f(1)+........+f(n-1)左右两边同时消去A2+.........+A(n-1)就得到A(n)=A1+f(1)+........+f(n-1)u投在线2023-05-24 07:48:221
高中数学~由数列递推式求通项
解:a(n+1)=1/[2-an]===>[1/a(n+1)]=2-an.===>[1/a(n+1)]-1=1-an.===>[1-a(n+1)]/a(n+1)=1-an.===>a(n+1)/[1-a(n+1)]=1/(1-an)===>[1/1-a(n+1)]-1/(1-an)=1.===>1/[1-an]=[1/(1-a1)]+(n-1).===>an=[(n-1)(1-a1)+a1]/[n-a1(n-1)]大鱼炖火锅2023-05-24 07:48:224
高中数学数列递推常用(考)方法,求详细
公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法等等。 类型一归纳—猜想—证明 由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明. 类型二“逐差法”和“积商法” (1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子: a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1), 且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”. (2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即 a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,an/an-1=f(n-1),且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”. 类型三构造法 递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解. 类型四可转化为类型三求通项 (1)“对数法”转化为类型三. 递推式为an+1=qan�k(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为类型三. (2)“倒数法”转化为类型三. 递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb). 若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为类型三. 若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况. 类型五递推式为an+1/an=qn/n+k(q≠0,k∈N) 可先将等式(n+k)an+1=qnan两边同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)�6�1nan,则bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1. 从而bn+1=qbn,因此数列{bn}是公比为q,首项为b1=k(k-1)(k-2)…2�6�11�6�1a1=k!a1的等比数列,进而可求得an. 总之,由数列的递推公式求通项公式的问题比较复杂,不可能一一论及,但只要我们抓住递推数列的递推关系,分析结构特征,善于合理变形,就能找到解决问题的有效途径.类型一�归纳—猜想—证明 由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明. �例1�设数列{an}是首项为1的正项数列,且(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…),则它的通项公式是an=______________.(2000年全国数学卷第15题) 解:将(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…)分解因式得(an+1+an)〔(n+1)an+1-nan〕=0.��由于an>0,故(n+1)an+1=nan,即an+1=n/(n+1)an.��因此a2=(1/2)a1=(1/2),a3=(2/3)a2=(1/3),….猜想an=(1/n),可由数学归纳法证明之,证明过程略. 类型二�“逐差法”和“积商法” (1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子: a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1), 且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”. 例2�已知数列{an}满足a1=1,an=3n-1+an-1(n≥2),证明:an=(3n-1)/2. (2003年全国数学卷文科第19题) 证明:由已知得an-an-1=3n-1,故 an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=3n-1+3��n-2�+…+3+1=3n-1/2. 所以得证. (2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即 a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,a��n�/an-1�=f(n-1)�,�且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”. 例3�(同例1)(2000年全国数学卷第15题) 另解:将(n+1)a2n+1-nan2+an+1an=0(n�=1,2,3,…)化简,得(n+1)an+1=nan,即 an+1/an=n/(n+1).� 故an=an/an-1�6�1an-1/an-2�6�1an-2/an-3�6�1…�6�1a2/a1�=n-1/n�6�1n-2/n-1�6�1n-3/n-2�6�1 … �6�11/2�=1/n. 类型三�构造法 递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解. 例4�(同例2)(2003年全国数学卷文科第19题) 另解:由an=3n-1+an-1得3�6�1an/3n=an-1/3n-1+1. 令bn=an/3n,则有 bn=1/3bn-1+1/3. (*) 设bn+x=1/3(bn-1+x),则bn=1/3bn-1+1/3x-x,与(*)式比较,得x=-1/2,所以bn-1/2=1/3(bn-1-1/2).因此数列{bn-1/2}是首项为b1-1=a1/3=-1/6,公比为1/3的等比数列,所以bn-1/2=-1/6�6�1(1/3)n-1,即an/3n-1/2=-1/6(1/3)n-1.故an=3n〔1/2-1/6(1/3)n-1〕=3n-1/2. 例5�数列{an}中,a1=1,an+1=4an+3n+1,求an.� 解:令an+1+(n+1)x+y=4(an+nx+y),则 an+1=4an+3nx+3y-x,与已知an+1=4an+3n+1比较,得 3x=3, 所以 x=1, 3y-x=1, y=(2/3).故数列{an+n+(2/3)}是首项为a1+1+(2/3)=(8/3),公比为4的等比数列,因此an+n+(2/3)=(8/3)�6�14n-1,即 an=(8/3)�6�14n-1-n-(2/3). 另解:由已知可得当n≥2时,an=4an-1+3(n-1)+1,与已知关系式作差,有an+1-an=4(an-an-1)+3,即an+1-an+1=4(an-an-1+1),因此数列{an+1-an+1}是首项为a2-a1+1=8-1+1=8,公比为4的等比数列,然后可用“逐差法”求得其通项an=(8/3)�6�14n-1-n-(2/3). 类型四�可转化为 类型三求通项 (1)“对数法”转化为 类型三. 递推式为an+1=qan�k(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为 类型三. 例6�已知数列{an}中,a1=2,an+1=an2,求an. 解:由an+1=an2>0,两边取对数得lgan+1=2lgan.令bn=lgan则bn+1=2bn.因此数列{bn}是首项为b1=lga1=lg2,公比为2的等比数列,故bn=2n-1lg2=lg22n-1,即an=22n-1. (2)“倒数法”转化为 类型三. 递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb). 若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为 类型三. 若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况. 例7�在数列{an}中,已知a1=2,an+1=(3an+1)/(an+3),求通项an. 解:设an+1+x=y(an+x)/an+3,则an+1=(y-x)an+(y-3)x/an+3,结合已知递推式得 y-x=3, 所以 x=1, y-3=1, y=4,则有an+1+1=4(an+1)/an+3,令bn=an+1,则bn+1=4bn/bn+2,求倒数得1/bn+1=1/2�6�11/bn+1/4,即1/bn+1-1/2=1/2(1/bn-1/2). 因此数列{1/bn-1/2}是首项为1/b1-1/2=1/a1+1-1/2=-1/6,公比为1/2的等比数列. 故1/bn-1/2=(-1/6)(1/2)n-1,从而可求得an. 类型五�递推式为an+1/an=qn/n+k(q≠0,k∈N) 可先将等式(n+k)an+1=qnan两边同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)�6�1nan,则bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1. 从而bn+1=qbn,因此数列{bn}是公比为q,首项为b1=k(k-1)(k-2)…2�6�11�6�1a1=k!a1的等比数列,进而可求得an. 例8�(同例1)(2000年全国数学卷第15题) 另解:将(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,…),化简得(n+1)an+1=nan,令nan=bn,则bn+1=bn,所以数列{bn}是常数列,由于首项b1=1�6�1a1=1,所以bn=1,即nan=1,故an=1/n. 总之,由数列的递推公式求通项公式的问题比较复杂,不可能一一论及,但只要我们抓住递推数列的递推关系,分析结构特征,善于合理变形,就能找到解决问题的有效途径.kikcik2023-05-24 07:48:201
高中数学,递推数列求范围,要过程,谢谢!
基本都可观察出来(1)首先因为a1>0a2=正数/正数>0,同理所以a3>0,...所以an>0其次,(3+an-2)/(3+an)=1-2/(3+an)<1所以an<3所以0<an<3(2)因为x1=2,x2=2+1/x1>2x3=2+1/x2>2,...所以xn>=2然后因为xn>=2,所以1/xn<=1/2所以xn=2+1/xn-1<=2+1/2=5/2所以2<=xn<=5/2不明白可追问水元素sl2023-05-24 07:48:201
高中数学 导数 凸函数
(f(x1)-f(x))/(x1-x)= (f(x)-f(x1))/(x-x1),又有x1<x<x2故可构造g(x)= (f(b)-f(a))/(b-a)其几何意义为a,b间的割线又由于f(x)的导数递增且f(x)递增(这个好像叫凹函数吧)所以g(x)为增函数又有x1<x<x2故(f(x)-f(x1))/(x-x1)≤ (f(x2)-f(x))/(x2-x)即 (f(x1)-f(x))/(x1-x) ≤ (f(x2)-f(x))/(x2-x)bikbok2023-05-23 19:25:122
高中数学:什么是凸函数?
楼上说的不对 应该是F(x)=-x^2,你学了求导没有,求两次导数之后是负的就是上突函数希望对你能有所帮助。kikcik2023-05-23 19:25:092
高中数学均值不等式部分的公式
a^2+b^2≥2ab√(ab)≤(a+b)/2≤(a^2+b^2)/2a^2+b^2+c^2≥(a+b+c)^2/3≥ab+bc+aca+b+c≥3×三次根号abc均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。扩展资料:特例⑴对实数a,b,有 (当且仅当a=b时取“=”号), (当且仅当a=-b时取“=”号)⑵对非负实数a,b,有 ,即 ⑶对非负实数a,b,有 ⑷对非负实数a,b,a≥b,有 ⑸对非负实数a,b,有 ⑹对实数a,b,有 ⑺对实数a,b,c,有 ⑻对非负数a,b,有 ⑼对非负数a,b,c,有 ;在几个特例中,最著名的当属算术—几何均值不等式(AM-GM不等式):当n=2时,上式即:;当且仅当 时,等号成立。根据均值不等式的简化,有一个简单结论,即 。北境漫步2023-05-23 19:25:031
高中数学 均值不等式
1、log(1/2)y=1/log(1/2)x=log(1/2)(1/2)/log(1/2)x=log(1/2)[(1/2)-x]即y=(1/2)-x即x+y=1/2xy≤[(x+y)/2]^2=1/16填:大1/162、因为a>b>c>d所以差值最大的是a-d左式≥3√{[1/(a-b)][1/(b-c)][1/(c-d)]}下面全换最大变最小,此时n=33、1=x^2+y^2-xy≥2xy-xy=xy即xy≤1则x^2+y^2=1+xy≤2为最大值设x=acost,y=asint左式x^2-xy+y^2=a^2-(a^2/2)sin2t=1右式=a^2a^2=2/(2-sin2t),sin2t取-1时最小值为2/34、a√(2+b^2)≤[(a^2+b^2)/2]+1又2a^+3b^2=2(a^2+b^2)+b^2=1得a^2+b^2=(1-b^2)/2代入第一式得[(1-b^2)/4]+1因b^2≥0所以原式≥5/45、因为x,y都是正数,所以乘除根号都可以,由4x+y≥mxy两边除xy可得4/y+1/x≥m再有x+y=4两边除4得x/4+y/4=14/y+1/x=(4/y+1/x)(x/4+y/4)=x/y+y/4x+5/4≥9/4m最大为9/4康康map2023-05-23 19:25:001
高中数学均值不等式
西柚不是西游2023-05-23 19:24:592
高中数学基础10:二项分布与二项式定理
1)每次试验是在同样条件下进行 2)每次试验都是只有两种结果:发生与不发生 3)各次试验中的事件是相互独立的 4)每次试验,某事件发生的概率是相同的 伯努利试验(Bernoulli experiment)是在同样的条件下重复地、相互独立地进行的一种随机试验,其特点是该随机试验只有两种可能结果:发生或者不发生。我们假设该项试验独立重复地进行了n次,那么就称这一系列重复独立的随机试验为n重伯努利试验,或称为伯努利概型。单个伯努利试验是没有多大意义的,然而,当我们反复进行伯努利试验,去观察这些试验有多少是成功的,多少是失败的,事情就变得有意义了,这些累计记录包含了很多潜在的非常有用的信息。 几何分布 (Geometric distribution)是离散型概率分布。其中一种定义为:在n次 伯努利试验 中,试验k次才得到第一次成功的机率。详细的说,是: 前k-1次皆失败,第k次成功的概率 记作X ~ G (p) 概率为p的事件A,以X记A首次发生所进行的试验次数,则X的分布列: 举例:每次投篮命中率0.7,问投篮20第1次命中(第一次命中一次就停止投篮)的概率 P(X = k) = p(1 − p)[图片上传失败...(image-a5250d-1520948688562)] 则k=1,2,3,……19,,20 k=1(表示第一次就命中的概率)P(X = 1)=0.7[图片上传失败...(image-760a66-1520948688562)] =0.7 k=2(表示第一次失败,第二次成功的概率) …… k=20(表示前次19次均失败,第20次成功的概率) 是统计学上一种离散概率分布。它描述了由有限个物件中抽出n个物件, 成功抽出指定种类的物件的次数(不归还 )。 在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k,则 参考资料 https://www.zhihu.com/question/38191693可桃可挑2023-05-23 12:57:541
考研数学会有高中数学知识吗?
会用到这里有一份最全的考研数学历年真题资料分享给你链接: https://pan.baidu.com/s/116qgdhioWPz2mPWnr7VRkw 提取码: dhpq通过不断研究和学习历年真题,为考生冲刺阶段复习提分指点迷津,做真题,做历年真题集,对照考纲查缺补漏,提高实战素养,制定做题策略,规划方向;若资源有问题欢迎追问FinCloud2023-05-23 12:57:396
高中数学二项分布
对每个正四面体而言,四个面朝下的概率均为1/4,因此朝下的一面为偶数的概率为1/2。p(x=0)=(1/2)^4=1/16,p(x=1)=C(4,1)*(1/2)^4=1/4,p(x=2)=C(4,2)*(1/2)^4=3/8,p(x=3)=C(4,3)*(1/2)^4=1/4,p(x=4)=(1/2)^4=1/16。列表如下x01234p1/161/43/81/41/16可桃可挑2023-05-23 12:57:311
高中数学二项分布公式是什么?
二项分布公式是P=p^k*p^(n-k)。在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布。满足以下三个条件的分布,就是二项分布:(1)做某件事情的次数(也叫试验次数)是固定的,用n表示。例如:抛硬币3次,求婚101次等。(2)每一次事件都有两个可能的结果(成功,或者失败)。例如每次求婚都有两种可能结果,被接受(成功),被拒绝(失败)。(3)每一次成功的概率都是相等的,成功的概率用p表示。在这试验中,事件发生的次数为一随机事件,它服从二次分布。二项分布可以用于可靠性试验,可靠性试验常常是投入n个相同的式样进行试验T小时,而只允许k个式样失败,应用二项分布可以得到通过试验的概率。陶小凡2023-05-23 12:57:281
高中数学求导公式
-15/(2-3X)Jm-R2023-05-22 18:14:2714
高中数学函数公式
高中数学函数公式是如下:1、sin(A+B) = sinAcosB+cosAsinB。2、sin(A-B) = sinAcosB-cosAsinB。3、cos(A+B) = cosAcosB-sinAsinB。4、cos(A-B) = cosAcosB+sinAsinB。5、tan(A+B) = (tanA+tanB)/(1-tanAtanB)。6、tan(A-B) = (tanA-tanB)/(1+tanAtanB)。7、cot(A+B) = (cotAcotB-1)/(cotB+cotA)。8、cot(A-B) = (cotAcotB+1)/(cotB-cotA)。1、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)2、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a3、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))三角函数简介:三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。LuckySXyd2023-05-22 18:13:081
高中数学二项式定理中,二项式系数,系数,常数项分别是什么?求解答
比如说aX的平方+bX+ca是二项式系数,c是常数项(具体数字),而a,b,c都是系数ardim2023-05-22 18:12:553
高斯函数是高中数学吗
高斯函数即向下取整,记作[x]。[3.8]=3,[-0.2]=-1高中数学有些选择题和填空题中会出现。NerveM 2023-05-22 07:48:571
高中数学复合函数求值域
高中数学复合函数求值域求函数值域的7类题型和16种方法 一、函数值域基本知识 1.定义:在函数y=f(x)中,与自变量x的值对应的因变量y的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数y=f(x)用表格给出时,函数的值域是指表格中实数y的集合; ②当函数y=f(x)用图象给出时,函数的值域是指图象在y轴上的投影所覆盖的实数y的集合; ③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f(x)由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: )例2.求函数的值域。点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。解:原函数变形为作一个长为4、宽为3的矩形ABCD,再切割成12个单位正方形。设HK=,则EK=2,KF=2,AK=,KC=。由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共线时取等号。∴原函数的知域为{y|y≥5}。例3.求函数的值域。解析:令,,则,,,原问题转化为:当直线与圆在直角坐标系的第一象限有公共点时,求直线的截距的取值范围。由图1知:当经过点时,;当直线与圆相切时,。所以,值域为例4. 求函数的值域。解:将函数变形为上式可看成定点A(3,2)到点P(x,0)的距离与定点到点的距离之差。即由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点,则构成,根据三角形两边之差小于第三边,有即(2)当点P恰好为直线AB与x轴的交点时,有综上所述,可知函数的值域为注:求两距离之和时,通常需要将函数式变形,使A、B两点在x轴的两侧,而求两距离之差时,则要使A,B两点在x轴的同侧。(12)复合函数法:对函数,先求的值域充当的定义域,从而求出的值域的方法。例1、求函数 的值域(复合函数法)设 ,则例2:求函数的值域。 (13)非负数法根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。例1、(1)求函数的值域。 (2)求函数的值域。解析:(1),故所求函数的值域为 。(2),原函数可化为 ,即 , 当时,, ,,解得又 ,所以 ,故所求函数的值域为 。(不等式性质法)例2:求下列函数的值域:(1)y=; (2)y=; (3)y=(4)y=10-; (2)y=; (3)y=(14)导数法若函数在内可导,可以利用导数求得在内的极值,然后再计算在,点的极限值.从而求得的值域.例1:求函数在内的值域.分析:显然在可导,且.由得的极值点为... 所以, 函数的值域为.(15)“平方开方法”求函数值域的方法有很多种,如:“配方法”、“单调性法”、“换元法”、“判别式法”以及“平方开方法”等等.每一种方法都适用于求某一类具有共同特征的函数的值域.本文将指出适合采用“平方开方法”的函数有哪些共同的特征以及“平方开方法”的运算步骤,并给出四道典型的例题.1.适合函数特征设()是待求值域的函数,若它能采用“平方开方法”,则它通常具有如下三个特征:(1)的值总是非负,即对于任意的,恒成立;(2)具有两个函数加和的形式,即();(3)的平方可以写成一个常数与一个新函数加和的形式,即(,为常数),其中,新函数()的值域比较容易求得.2.运算步骤若函数()具备了上述的三个特征,则可以将先平方、再开方,从而得到(,为常数).然后,利用的值域便可轻易地求出的值域.例如,则显然.3.应用四例能够应用“平方开方法”求值域的函数不胜枚举,这里仅以其中四道典型的例题来演示此法在解决具体问题时的技巧.例1 求函数(,)的值域.解:首先,当时,;其次,是函数与的和;最后,可见,函数满足了采用“平方开方法”的三个特征.于是,对平方、开方得().这里,().对根号下面的二次函数采用“配方法”,即可求得的值域为.于是,的值域为.例2 求函数(,,)的值域.解:显然,该题就是例1的推广,且此题的也满足了采用“平方开方法”的三个特征.于是,对平方、开方得().这里,().对根号下面的二次函数采用“配方法”,即可求得的值域仍为.于是,的值域也仍为.例3 求函数()的值域.解:参照例1的验证步骤,显然,此题的也满足了采用“平方开方法”的三个特征.于是,对平方、开方得().这里,().易知,的值域为.于是,的值域为.例4 求函数()的值域.解:参照例1的验证步骤,显然,此题的也满足了采用“平方开方法”的三个特征.于是,对平方、开方得().这里,().易知,的值域为.于是,的值域为.例5 求函数 的值域解:(平方法)函数定义域为:平方法)函数定义域为:(16)一一映射法原理:因为在定义域上x与y是一一对应的。故两个变量中,若知道一个变量范围,就可以求另一个变量范围。例1. 求函数的值域。解:∵定义域为由得故或解得故函数的值域为(17)其他方法其实,求解函数值域的方法,只不过是从解题过程中,对关键环节或典型步骤的一种称呼。实际上,其解法也远非上面总结的16种方法,还有倒数法等。此外我们还要明白:多种方法的配合使用,以及一题采用多种方法,在不断积累过程中,体会不同方法的长短,和练就根据实际问题选择较为简捷方法的能力。例1. 求函数的值域。解:令,则(1)当时,,当且仅当t=1,即时取等号,所以(2)当t=0时,y=0。综上所述,函数的值域为:注:先换元,后用不等式法例2. 求函数的值域。解:令,则∴当时,当时,此时都存在,故函数的值域为注:此题先用换元法,后用配方法,然后再运用的有界性。例3.求函数 的值域解:(图象法)如图,值域为例4.求函数 的值域解(复合函数法):令,则由指数函数的单调性知,原函数的值域为例5.求函数的值域解(三角代换法): 设小结:(1)若题目中含有,则可设(2)若题目中含有则可设,其中(3)若题目中含有,则可设,其中(4)若题目中含有,则可设,其中(5)若题目中含有,则可设。其中例6、求函数 的值域解法一:(逆求法)解法二:(复合函数法)设 ,则解法三:(判别式法)原函数可化为 1) 时不成立2) 时,综合1)、2)值域解法四:(三角代换法)设,则原函数的值域为小结:已知分式函数 ,如果在其自然定义域内可采用判别式法求值域;如果是条件定义域,用判别式法求出的值域要注意取舍,或者可以化为的形式,采用部分分式法,进而用基本不等式法求出函数的最大最小值;如果不满足用基本不等式的条件,转化为利用函数的单调性去解。注:此题先用换元法,后用配方法,然后再运用的有界性。总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。五、与函数值域有关的综合题例1设计一幅宣传画,要求画面面积为4840 cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8 cm的空白,左右各留5 cm空白,怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面积最小?如果要求λ∈[],那么λ为何值时,能使宣传画所用纸张面积最小?解 设画面高为x cm,宽为λx cm,则λx2=4840,设纸张面积为S cm2,则S=(x+16)(λx+10)=λx2+(16λ+10)x+160,将x=代入上式得 S=5000+44 (8+),当8=,即λ=<1)时S取得最小值 此时高 x==88 cm, 宽 λx=×88=55 cm [来源:学科网][来源:Zxxk.Com]如果λ∈[],可设≤λ1<λ2≤,则由S的表达式得 [来源:学,科,网Z,X,X,K]又≥,故8->0,∴S(λ1)-S(λ2)<0,∴S(λ)在区间[]内单调递增 从而对于λ∈[],当λ=时,S(λ)取得最小值 答 画面高为88 cm,宽为55 cm时,所用纸张面积最小 如果要求λ∈[],当λ=时,所用纸张面积最小 例2已知函数f(x)=,x∈[1,+∞(1)当a=时,求函数f(x)的最小值 (2)若对任意x∈[1,+∞,f(x)>0恒成立,试求实数a的取值范围 解 (1) 当a=时,f(x)=x++2[来源:学科网]∵f(x)在区间[1,+∞上为增函数,∴f(x)在区间[1,+∞上的最小值为f(1)= (2)解法一 在区间[1,+∞上,f(x)= >0恒成立x2+2x+a>0恒成立 设y=x2+2x+a,x∈[1,+∞[来源:学科网ZXXK]∵y=x2+2x+a=(x+1)2+a-1递增,[来源:学,科,网]∴当x=1时,ymin=3+a,当且仅当ymin=3+a>0时,函数f(x)>0恒成立,故a>-3 解法二 f(x)=x++2,x∈[1,+∞当a≥0时,函数f(x)的值恒为正;当a<0时,函数f(x)递增,故当x=1时,f(x)min=3+a,当且仅当f(x)min=3+a>0时,函数f(x)>0恒成立,故a>-3 [来源:Z#xx#k.Com]例3设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+) (1)证明 当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M (2)当m∈M时,求函数f(x)的最小值 (3)求证 对每个m∈M,函数f(x)的最小值都不小于1 (1)证明 先将f(x)变形 f(x)=log3[(x-2m)2+m+],当m∈M时,m>1,∴(x-m)2+m+>0恒成立,故f(x)的定义域为R 反之,若f(x)对所有实数x都有意义,则只须x2-4mx+4m2+m+>0,令Δ<0,即16m2-4(4m2+m+)<0,解得m>1,故m∈M (2)解 设u=x2-4mx+4m2+m+,∵y=log3u是增函数,∴当u最小时,f(x)最小 而u=(x-2m)2+m+,显然,当x=m时,u取最小值为m+,此时f(2m)=log3(m+)为最小值 (3)证明 当m∈M时,m+=(m-1)+ +1≥3,当且仅当m=2时等号成立 ∴log3(m+)≥log33=1北有云溪2023-05-22 07:48:152
高中数学函数求值域
什么问题也没有....真颛2023-05-22 07:48:155
高中数学值域怎么求
高中数学值域的求法参考如下:函数经典定义中,因变量的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。即{y∣y=f(x),x∈D}常见函数值域:y=kx+b (k≠0)的值域为Ry=k/x 的值域为(-∞,0)∪(0,+∞)y=√x的值域为x≥0y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;当a<0时,值域为(-∞,4ac-b^2/4a]y=a^x 的值域为 (0,+∞)y=lgx的值域为R在解决问题的过程中,数学家往往不是直接解决原问题,而是对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。 把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*求解,把的解得结果作用于原有问题,从而使原有问题得解,这种解决问题的方法,我们称之为化归法;解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。小菜G的建站之路2023-05-22 07:48:151
高中数学里函数的值域有哪些求法?
求 函数值域的几种常见方法 1.直接法:利用常见函数的值域来求 一次函数y=ax+b(a 0)的定义域为R,值域为R; 反比例函数 的定义域为{x|x 0},值域为{y|y 0}; 二次函数 的定义域为R, 当a>0时,值域为{ };当a<0时,值域为{ }. 例1.求下列函数的值域 ① y=3x+2(-1 x 1) ② ③ ④ 解:①∵-1 x 1,∴-3 3x 3, ∴-1 3x+2 5,即-1 y 5,∴值域是[-1,5] ②∵ ∴ 即函数 的值域是 { y| y 2} ③ ④当x>0,∴ = , 当x<0时, =- ∴值域是 [2,+ ).(此法也称为配方法) 函数 的图像为: 2.二次函数比区间上的值域(最值): 例2 求下列函数的最大值、最小值与值域: ① ; 解:∵ ,∴顶点为(2,-3),顶点横坐标为2. ①∵抛物线的开口向上,函数的定义域R, ∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y -3 }. ②∵顶点横坐标2 [3,4], 当x=3时,y= -2;x=4时,y=1; ∴在[3,4]上, =-2, =1;值域为[-2,1]. ③∵顶点横坐标2 [0,1],当x=0时,y=1;x=1时,y=-2, ∴在[0,1]上, =-2, =1;值域为[-2,1]. ④∵顶点横坐标2 [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6, ∴在[0,1]上, =-3, =6;值域为[-3,6]. 注:对于二次函数 , ⑴若定义域为R时, ①当a>0时,则当 时,其最小值 ; ②当a<0时,则当 时,其最大值 . ⑵若定义域为x [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b]. ①若 [a,b],则 是函数的最小值(a>0)时或最大值(a<0)时,再比较 的大小决定函数的最大(小)值. ②若 [a,b],则[a,b]是在 的单调区间内,只需比较 的大小即可决定函数的最大(小)值. 注:①若给定区间不是闭区间,则可能得不到最大(小)值; ②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论. 3.判别式法(△法): 判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论 例3.求函数 的值域 方法一:去分母得 (y-1) +(y+5)x-6y-6=0 ① 当 y11时 ∵x?R ∴△=(y+5) +4(y-1)×6(y+1) 0 由此得 (5y+1) 0 检验 时 (代入①求根) ∵2 ? 定义域 { x| x12且 x13} ∴ 再检验 y=1 代入①求得 x=2 ∴y11 综上所述,函数 的值域为 { y| y11且 y1 } 方法二:把已知函数化为函数 (x12) ∵ x=2时 即 说明:此法是利用方程思想来处理函数问题,一般称判别式法. 判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论. 4.换元法 例4.求函数 的值域 解:设 则 t 0 x=1- 代入得 5.分段函数 例5.求函数y=|x+1|+|x-2|的值域. 解法1:将函数化为分段函数形式: ,画出它的图象(下图),由图象可知,函数的值域是{y|y 3}. 解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,∴易见y的最小值是3,∴函数的值域是[3,+ ]. 如图 两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法. 说明:以上是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习和经验的不断积累,还有如不等式法、三角代换法等.有的题可以用多种方法求解,有的题用某种方法求解比较简捷,同学们要通过不断实践,熟悉和掌握各种解法,并在解题中尽量采用简捷解法.gitcloud2023-05-22 07:48:141
高中数学里的值域是什么意思,简单一点说明,举个例子
f(x)的值的范围就是值域。FinCloud2023-05-22 07:48:122
高中数学中的组合和排列怎么区分
看具体的题咯康康map2023-05-22 07:48:022
高中数学总结
中学数学重要数学思想一、 函数方程思想函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。二、 数形结合思想数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短。2.恩格斯是这样来定义数学的:"数学是研究现实世界的量的关系与空间形式的科学"。这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一。因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂。3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质。4.华罗庚先生曾指出:"数缺性时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。"数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系.5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题)。而以形为手段的数形结合在高考客观题中体现。6.我们要抓住以下几点数形结合的解题要领:(1) 对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可;(2) 对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点,顶点是关键点),作好知识的迁移与综合运用;(3) 对于以下类型的问题需要注意:可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点及余弦定理进行转化达到解题目的。三、 分类讨论的数学思想分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种:(1)涉及的数学概念是分类讨论的;(2)运用的数学定理、公式、或运算性质、法则是分类给出的;(3)求解的数学问题的结论有多种情况或多种可能性;(4)数学问题中含有参变量,这些参变量的不同取值导致不同的结果的;(5)较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解决的。2.分类讨论是一种逻辑方法,在中学数学中有极广泛的应用。根据不同标准可以有不同的分类方法,但分类必须从同一标准出发,做到不重复,不遗漏 ,包含各种情况,同时要有利于问题研究。四、 化归与转化思想所谓化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。一般总是将复杂的问题通过变化转化为简单的问题,将难解问题通过变换转化为容易求解的问题,将未解决的问题转化为已解决的问题。立体几何中常用的转化手段有1.通过辅助平面转化为平面问题,把已知元素和未知元素聚集在一个平面内,实现点线、线线、线面、面面位置关系的转化;2.平移和射影,通过平移或射影达到将立体几何问题转化为平面问题,化未知为已知的目的;3.等积与割补;4.类比和联想;5.曲与直的转化;6.体积比,面积比,长度比的转化;7.解析几何本身的创建过程就是"数"与"形"之间互相转化的过程。解析几何把数学的主要研究对象数量关系与几何图形联系起来,把代数与几何融合为一体。中学数学常用解题方法1. 配方法 配方法是指将一代数形式变形成一个或几个代数式平方的形式,其基本形式是:ax2+bx+c=.高考中常见的基本配方形式有:(1)a2+b2= (a + b)2- 2a b = (a -b) 2+ 2 ab; (2) a2+ b2+ ab =; (3)a2+ b2+c2= (a+b + c)2- 2 ab - 2 a c - 2 bc; (4) a2+ b2+ c2- a b - bc - a c = [ ( a - b)2 + (b - c)2 + (a - c)2]; (5) ; 配方法主要适用于与二次项有关的函数、方程、等式、不等式的讨论,求解与证明及二次曲线的讨论。2.待定系数法一 待定系数法是把具有某种确定性时的数学问题,通过引入一些待定的系数,转化为方程组来解决。待定系数法的主要理论依据是:(1)多项式f(x)=g(x)的充要条件是:对于任意一个值a,都有f(a)=g(a);(2)多项式f(x) ≡g(x)的充要条件是:两个多项式各同类项的系数对应相等;二 运用待定系数法的步骤是:(1)确定所给问题含待定系数的解析式(或曲线方程等);(2)根据恒等条件,列出一组含待定系数的方程; (3)解方程或消去待定系数,从而使问题得到解决;三 待定系数法主要适用于:求函数的解析式,求曲线的方程,因式分解等。3.换元法 换元法是指引入一个或几个新的变量代替原来的某些变量(或代数式),对新的变量求出结果之后,返回去求原变量的结果。换元法通过引入新的元素将分散的条件联系起来,或者把隐含的条件显示出来,或者把条件与结论联系起来,或者变为熟悉的问题。其理论根据是等量代换。高中数学中换元法主要有以下两类:(1)整体换元:以"元"换"式"; (2)三角换元 ,以"式"换"元";(3)此外,还有对称换元、均值换元、万能换元等;换元法应用比较广泛。如解方程,解不等式,证明不等式,求函数的值域,求数列的通项与和等,另外在解析几何中也有广泛的应用。运用换元法解题时要注意新元的约束条件和整体置换的策略。4.向量法 向量法是运用向量知识解决问题的一种方法,解题常用下列知识:(1)向量的几何表示,两个向量共线的充要条件;(2)平面向量基本定理及其理论;(3)利用向量的数量积处理有关长度、角度和垂直的问题;(4)两点间距离公式、线段的定比分点公式、平移公式;5.分析法、综合法(1)分析法是从所求证的结果出发,逐步推出能使它成立的条件,直至已知的事实为止;分析法是一种"执果索因"的直接证法。(2)综合法是从已经证明的结论、公式出发,逐步推出所要求证的结论。综合法是一种"由因导果",叙述流畅的直接证法。(3)分析法、 综合法是证明数学问题的两大最基本的方法。分析法"执果索因"的分析方法,思路清晰,容易找到解题路子,但书写格式要求较高,不容易叙述清楚,所以分析法、综合法常常交替使用。分析法、 综合法应用很广,几乎所有题都可以用这两个方法来解。6.反证法 反证法是数学证明的一种重要方法,因为命题p与它的否定非p的真假相反,所以要证一个命题为真,只要证它的否定为假即可。这种从证明矛盾命题(即命题的否定)为假进而证明命题为真的证明方法叫做反证法。一 反证法证明的一般步骤是:(1)反设:假设命题的结论不成立,即假设结论的反面成立;(2)归谬:从命题的条件和所作的结论出发,经过正确的推理论证,得出矛盾的结果;(3)结论:有矛盾判定假设不正确,从而肯定的结论正确;二 反证法的适用范围:(1)已知条件很少或由已知条件能推得的结论很少时的命题;(2)结论的反面是比原结论更具体、更简单的命题,特别是结论是否定形式("不是"、"不可能"、"不可得")等的命题;(3)涉及各种无限结论的命题;(4)以"最多(少)、若干个"为结论的命题;(5)存在性命题;(6)唯一性命题;(7)某些定理的逆定理;(8)一般关系不明确或难于直接证明的不等式等。三 反证法的逻辑依据是"矛盾律"和"排中律"。7.另外:还有数学归纳法、同一法、整体代换法等.Jm-R2023-05-21 22:10:171
高中数学解题时都涉及到那些数学思想?
主要是公式的理解变形吧!墨然殇2023-05-21 22:10:145
帮忙总结高中数学所需初中平面几何的定理、公式、知识点(简单,常用,不很常见)
百度找去水元素sl2023-05-21 16:47:335
求高中数学常用几何定理及证明的笔记整理
正弦定理;a/sinA=b/sinB=c/sinC=2r大鱼炖火锅2023-05-21 16:47:324
高中数学联赛平面几何定理和知识
塞瓦定理 在△ABC内任取一点O, 直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1梅涅劳斯定理如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1。托密勒定理是如果圆有内接四边形,则四边形对边乘积之和等于对角线的乘积。西姆松定理是一个几何定理。表述为:过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线)。西姆松定理的逆定理为:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。北有云溪2023-05-21 16:47:321
高中数学几何图形中投影定理一共有几条?
你好!三垂线定理及其逆定理:如果平面a内有一条直线和平面的斜线在平面内的射影垂直,那么这条直线和斜线垂直如果平面a内有一条直线和平面的斜线垂直,那么这条直线和斜线平面内的射影垂直希望对你有所帮助,望采纳。小白2023-05-21 16:47:322
高中数学奥赛的一些平面几何定理!
1、欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半2、九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。3、费尔马点:已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。4、海伦(Heron)公式:在△ABC中,边BC、CA、AB的长分别为a、b、c,若p=(a+b+c),则△ABC的面积S=5、塞瓦(Ceva)定理:在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则;其逆亦真6、密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点。7、葛尔刚(Gergonne)点:△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点。8、西摩松(Simson)线:已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足,则D、E、F三点共线,这条直线叫做西摩松线。9、黄金分割:把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB)与较小线段(BC)的比例中项,这样的分割称为黄金分割10、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。11、笛沙格(Desargues)定理:已知在△ABC与△A"B"C"中,AA"、BB"、CC"三线相交于点O,BC与B"C"、CA与C"A"、AB与A"B"分别相交于点X、Y、Z,则X、Y、Z三点共线;其逆亦真。12、摩莱(Morley)三角形:在已知△ABC三内角的三等分线中,分别与BC、CA、AB相邻的每两线相交于点D、E、F,则三角形DDE是正三角形,这个正三角形称为摩莱三角形。13、帕斯卡(Paskal)定理:已知圆内接六边形ABCDEF的边AB、DE延长线交于点G,边BC、EF延长线交于点H,边CD、FA延长线交于点K,则H、G、K三点共线14、托勒密(Ptolemy)定理:在圆内接四边形中,AB•CD+AD•BC=AC•BD15、阿波罗尼斯(Apollonius)圆一动点P与两定点A、B的距离之比等于定比m:n,则点P的轨迹,是以定比m:n内分和外分定线段的两个分点的连线为直径的圆,这个圆称为阿波罗尼斯圆,简称“阿氏圆”16、梅内劳斯定理17、布拉美古塔(Brahmagupta)定理:在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边人类地板流精华2023-05-21 16:47:311
高中数学立体几何定理.公式
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。 (1)判定直线在平面内的依据 (2)判定点在平面内的方法 公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线 。 (1)判定两个平面相交的依据 (2)判定若干个点在两个相交平面的交线上 公理3:经过不在一条直线上的三点,有且只有一个平面。 (1)确定一个平面的依据 (2)判定若干个点共面的依据 推论1:经过一条直线和这条直线外一点,有且仅有一个平面。 (1)判定若干条直线共面的依据 (2)判断若干个平面重合的依据 (3)判断几何图形是平面图形的依据 推论2:经过两条相交直线,有且仅有一个平面。 推论3:经过两条平行线,有且仅有一个平面。 立体几何 直线与平面 空 间 二 直 线 平行直线 公理4:平行于同一直线的两条直线互相平行 等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。 异面直线 空 间 直 线 和 平 面 位 置 关 系 (1)直线在平面内——有无数个公共点 (2)直线和平面相交——有且只有一个公共点 (3)直线和平面平行——没有公共点 立体几何 直线与平面 直线与平面所成的角 (1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角 (2)一条直线垂直于平面,定义这直线与平面所成的角是直角 (3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角 三垂线定理 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直 三垂线逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直 空间两个平面 两个平面平行 判定 性质 (1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行 (2)垂直于同一直线的两个平面平行 (1)两个平面平行,其中一个平面内的直线必平行于另一个平面 (2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行 (3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 相交的两平面 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面 二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角 平面角是直角的二面角叫做直二面角 两平面垂直 判定 性质 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 (1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面 (2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内 立体几何 多面体、棱柱、棱锥 多面体 定义 由若干个多边形所围成的几何体叫做多面体。 棱柱 斜棱柱:侧棱不垂直于底面的棱柱。 直棱柱:侧棱与底面垂直的棱柱。 正棱柱:底面是正多边形的直棱柱。 棱锥 正棱锥:如果棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。 球 到一定点距离等于定长或小于定长的点的集合。 欧拉定理 简单多面体的顶点数V,棱数E及面数F间有关系:V+F-E=2无尘剑 2023-05-21 16:47:301
高中数学几何定理
在高中数学学习中,几何问题是整体数学中分数占比很大的一部分,其在高考的解答题部分,六道题中便有两道为几何题,因此学好高中数学就必须学好数学几何。接下来我为你整理了高中数学几何定理,一起来看看吧。 高中数学几何定理(一) 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等 24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(sss) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48 定理 四边形的内角和等于360° 49 四边形的外角和等于360° 50 多边形内角和定理 n边形的内角的和等于(n-2)×180° 高中数学几何定理(二) 51 推论 任意多边的外角和等于360° 52 平行四边形性质定理1 平行四边形的对角相等 53 平行四边形性质定理2 平行四边形的对边相等 54 推论 夹在两条平行线间的平行线段相等 55 平行四边形性质定理3 平行四边形的对角线互相平分 56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60 矩形性质定理1 矩形的四个角都是直角 61 矩形性质定理2 矩形的对角线相等 62 矩形判定定理1 有三个角是直角的四边形是矩形 63 矩形判定定理2 对角线相等的平行四边形是矩形 64 菱形性质定理1 菱形的四条边都相等 65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66 菱形面积=对角线乘积的一半,即s=(a×b)÷2 67 菱形判定定理1 四边都相等的四边形是菱形 68 菱形判定定理2 对角线互相垂直的平行四边形是菱形 69 正方形性质定理1 正方形的四个角都是直角,四条边都相等 70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71 定理1 关于中心对称的两个图形是全等的 72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75 等腰梯形的两条对角线相等 76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77 对角线相等的梯形是等腰梯形 78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似(asa) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas) 94 判定定理3 三边对应成比例,两三角形相似(sss) 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 高中数学几何定理(三) 101 圆是定点的距离等于定长的点的集合 102 圆的内部可以看作是圆心的距离小于半径的点的集合 103 圆的外部可以看作是圆心的距离大于半径的点的集合 104 同圆或等圆的半径相等 105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107 到已知角的两边距离相等的点的轨迹,是这个角的平分线 108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109 定理 不在同一直线上的三点确定一个圆。 110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111 推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112 推论2 圆的两条平行弦所夹的弧相等 113 圆是以圆心为对称中心的中心对称图形 114 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116 定理 一条弧所对的圆周角等于它所对的圆心角的一半 117 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径 119 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121 ①直线l和⊙o相交 d<r p=""> </r> ②直线l和⊙o相切 d=r ③直线l和⊙o相离 d>r 122 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123 切线的性质定理 圆的切线垂直于经过切点的半径 124 推论1 经过圆心且垂直于切线的直线必经过切点 125 推论2 经过切点且垂直于切线的直线必经过圆心 126 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 127 圆的外切四边形的两组对边的和相等 128 弦切角定理 弦切角等于它所夹的弧对的圆周角 129 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等 131 推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 132 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 133 推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134 如果两个圆相切,那么切点一定在连心线上 135 ①两圆外离 d>r+r ②两圆外切 d=r+r ③两圆相交 r-r<d r)</d ④两圆内切 d=r-r(r>r) ⑤两圆内含d r) 136 定理 相交两圆的连心线垂直平分两圆的公共弦 137 定理 把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138 定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139 正n边形的每个内角都等于(n-2)×180°/n 140 定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141 正n边形的面积sn=pnrn/2 p表示正n边形的周长 142 正三角形面积√3a/4 a表示边长 143 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144 弧长计算公式:l=nπr/180 145 扇形面积公式:s扇形=nπr2/360=lr/2 146 内公切线长= d-(r-r) 外公切线长= d-(r+r) 147 等腰三角形的两个底脚相等 148 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 149 如果一个三角形的两个角相等,那么这两个角所对的边也相等 150三条边都相等的三角形叫做等边三角形陶小凡2023-05-21 16:47:291
怎么样才算是高中数学数列收敛?
收敛是数列的通项在n趋向于无穷大时数列的通项趋向于一个数,即有极限。其实高中数学很简单,数列中只学简单的递减递增。数列的收敛性与前面有限项无关:即数列去掉有限项或增加有限项不影响数列的收敛性;如果数列收敛,也不影响数列的极限值. 收敛数列的有界性:如果数列{an}收敛于a,则数列{an}有界,即存在M>0,使得| an|≤M恒成立。同时也说明:(1)如果数列{an}收敛于a,则对任意给定的正数ε,an 最多只有有限项落在以a为中心,ε为半径的邻域U(a,ε)外。(2) 如果数列{an}收敛a,则在此数列中一定有最大数或最小数,但不一定同时有最大数和最小数.(3) 数列收敛一定有界,但是有界的数列不一定收敛!收敛数列的保号性:(1)如果an≥0,数列{an}收敛于a,则a≥0。苏州马小云2023-05-21 12:53:261
高中数学解数列问题有哪些常用方法
数学是高中学习中的一门关键学科,无论是文科生还是理科生,数学对于他们来说都是富有挑战性的科目.高中阶段,时间紧、任务重,许多同学尽管花了较多时间在数学上但仍然见效甚微。看着离高考时间越来越近,和理想的成绩越来越远,刷题没效果,心中定有一百个不爽 在不认识肖博数学之前,高考数学对于很多高考生来说都是一场噩梦,既然有梦,何不破解?肖博数学是肖博老师用九年时间精研出的一套完整高中数学教学方案,致力于高中数学题型归类,技巧讲解,本套课程颠覆了传统教学模式与教学风格,完整的课程体系配合独创5秒解题思路,助力考生数学成绩飞速提升,更有数百位同学高考数学成绩130+。用了肖老师的高考数学之等差数列快速解题法,你会发现,其实高考数学题型之等差数列求解也就那么回事。高中数学,学会巧凑等差数列前n项和公式,解题思路瞬间明朗在等差数列的一些题型中,需要凑出数列的前n项和公式,特别是在给出两个等差数列前n项和的比值,求数列其中两项的比值这样的题型中,通过凑出前n项和公式会大大提高解题的效率。仔细分析下面的过程,理解如何一步一步把两个等差数列项之比凑出前11项和之比(红色部分)。本题借助了等差中项,第n项是第1项和第2n-1项的等差中项,根据等差中项的性质把第n项的比值转化为第1项与第2n-1的和的比值,然后再凑出前2n-1项和公式(红色部分)。等差数列是高中阶段极其重要的知识点,近几年也逐渐成为了高考的主要考点之一。高考中所有对等差数列的考察,其实都是在考察高中生对于知识的掌握程度以及创新思维能力。。数学是教学中的基础学科,随着学生学龄的增加,数学课程的难度也随之增加.解题较难是当前高中学生面临的主要问题,为了有效改善这一现状,教师在进行高中数学解题教学过程中应转变教学观念、教学方法,突破常规解题方法.在此背景下,构造法在高中数学解题中得到了有效应用.通过构造法的应用可将抽象问题形象化,复杂问题简单化,激发学生的解题热情,增强解题信心,最终提高解题效率.数列的题目中数据相对比较复杂,但是同学们如果学习了肖老师的方法,就会体验到学霸秒题的技巧, 相信大家看完后对高考数学等差数列有了不少的认识,用最简单的方法帮助高考生圆梦,十年磨一剑,实力今朝现,祝大家金榜题名。肖振2023-05-21 08:46:212
高中数学中的二阶等差数列的通项怎么求?最好再举个例子。
如果你说的是等比数列,通项是这样的:比如1 3 7 13 21 31……相邻两项的差分别为2,4,6,8,10……an =s(n-1)+2(n-1)a(n+1)=s(n) +2n相减,就可以得到2an +2=an +1,这是我能求的最高的了,豆豆staR2023-05-21 08:46:212
高中数学等差数列教案大全
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。接下来是我为大家整理的高中数学等差数列教案大全,希望大家喜欢! 高中数学等差数列教案大全一 “等差数列”教学设计 一、教学内容分析 等差数列是《普通高中课程标准实验教科书?数学5》(人教版)第二章数列第二节等差数列第一课时。 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,?数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种 方法 ——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。 二、教学目标 1、通过本节课的学习使学生理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列。 2、引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生观察、分析、归纳、推理的能力。 3、在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。 三、教学重难点 重点: ①等差数列的概念。 ②等差数列的通项公式的推导过程及应用。 难点: ①理解等差数列“等差”的特点及通项公式的含义。 ②理解等差数列是一种函数模型。 四、学习者分析 普通高中学生经过一年的高中的学习生活,已经慢慢习惯的高中的学习氛围,大部分学生知识 经验 已较为丰富,且对数列的知识有了初步的接触和认识,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻,应用数学公式的能力逐渐加强。他们的智力发展已到了形式运演阶段,具备了较强的 抽象思维 能力和演绎推理能力。但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。 五、教学策略选择与设计 结合本节课的特点,我设计了从教法、学法两种方法对等差数列的通项公式进行推导,让学生更好的理解。通过引入实例来启发学生,挺高学生的学习兴趣,是学生更加形象、愉快的去学习这堂课。下面是我教学设计: 1.教法 ⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。 ⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。 ⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。 2.学法 引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。 六、教学资源与工具设计 (一)学习环境:多媒体教室 (二)用到的资源: 1 查找有关等差数列的实例 2 写出上课要提到的问题 3 制作相关PPT课件 七、教学过程 教学环境 教学内容与 教师活动 学生活动 设计意图或依据 情境导入 在南北朝时期《张邱建算经》中,有一道题“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金 四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更 给,问各得金几何,及未到三人复应得金几何“。 这个问题该怎样解决呢? 由学生观察分析并得出答案: 在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,___,___,___,___,? 水库的管理人员为了保证优质鱼 类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位 为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5 思考:同学们观察一下上面的这两个数列: 0,5,10,15,20, ① 18,15.5,13,10.5,8,5.5 ② 看这些数列有什么共同特点呢? 倾听和观察分析,发表各自的意见。 课堂引入,引向课题 探索与归纳 对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上两组等差数列,它们的公差依次是5,5,-2.5。 提问:如果在a与b中间插入一个数A,使a,A,b成等差数列数列,那么A应满足什么条件? 由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b 的等差中项。 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。 如数列:1,3,5,7,9,11,13?中5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。看来, 从而可得到在一等差数列中,若m+n=p+q则 高中数学等差数列教案大全二 等差数列的教学设计 教学理念: 数学教学是思维过程的教学,如何引导学生参与到教学过程中来,尤其是在思维上深层次的 参与 ,是促进学生良好的认知结构,培养能力,全面提高素质的关键。数学教学中的探究式对培养和提高学生的自主性、能动性和创造性有着非常重要的意义。 设计思想: 本节借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。 一、教材分析:高考资源网 教学内容: 高中数学必修第五模块第二章第二节,等差数列,两课时内容,本节是第一课时,研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。 教学地位: 本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对 后续 内容的学习,无论在知识上,还是在方法上都具有积极的意义。高考资源网 教学重点: 理解等差数列概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题,体会等差数列与一次函数之间的关系。 教学难点: 对等差数列概念的理解及从函数、方程角度理解通项公式,概括通项公式推导过程中体现出的数学思想方法。 二、学习者分析: 高二学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的 逻辑思维 向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。 三、教学目标:高考资源网 知识目标: 理解等差数列定义,掌握等差数列的通项公式。 能力目标:高考资源网 培养学生观察、归纳能力,在学习过程中,体会数形结合思想、归纳思想和化归思想并加深认识;通过概念的引入与通项 公式 的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力。 情感目标: ①通过个性化的学习增强学生的自信心和意志力。 ②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。 ③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。 四、教法和学法的分析:高考资源网 通过探究式 教学方法 充分利用现实 情景 ,尽可能的增加教学过程的趣味性、实践性。利用多媒体课件和实例等丰富学生的学习资源,强调学生动手操作试验和主动参与,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。 2、 在学法上,引导学生多角度,多层面认识事物,学会探究。教师是学生的学习的组织者、促进着、合作者,在本节课的备课和教学过程中,为学生的动手实践,自主探索与合作交流的机会搭建平台,鼓励学生提出自己的见解,学会提出问题解决问题,通过恰当的教学方式让学生学会自我调适,自我选择。 五、教学媒体和教学技术的选用 多媒体计算机和几何画板 通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。本节课打破传统的一言堂的格局代之以人为本、民主、开放、特色和建立在信息网络平台上的现代教学格局。 六、教学程序: (一)设置问题,引导发现形成概念w。 师:看大屏幕。高考资源网 情景1(播放奥运会女子举重场面) 2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg): 48,53,58,63 情景2 水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m) 18,15.5,13,10.5,8,5.5 情景3 我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是: 本利和=本金 (1+利率 存期) 时间 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%,那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税) 各年末本利和(单位:元)高考资源网 10072,10144,10216,10288,10360 师:思考上述各组数据反映了什么样的信息? 每行数有何共同特点?请同学们互相讨论。 (学生纷纷议论,有的几个人在一起商量)高考资源网 (从宏观上 : 情景1 让学生体验成功申办奥运会的喜悦心情,激发勇于拼搏的坚强意志;情景2让学生认识到保护水资源,保护生态平衡的意识;情景3 倡导节约意识,纳税意识。) 从微观上,数学研究的对象是数,我们抛开具体的背景,从表格中抽象出一般数列。 48 53 58 63 18 15.5 13 10.5 8 5.5 10072 10144 10216 10288 10360 师:(启发学生)你能用数学语言来描述上述数列的共同特征吗? 学生1:后一项与它的前一项的差等于常数。 师:反例:1,3,5,6,12,这样的数列特征和上述数列的特征一样吗? 学生1:不一样,要加上同一个常数。 学生2:每一项与它的前一项的差等于同一个常数。 师:反例:1,3,4,5,6,7,这样的数列特征和上述数列的特征一样吗? 学生2:不一样,必须从第二项开始。 学生3:从第二项起,每一项与它的前一项的差等于同一个常数。 (教师把学生的回答写在黑板上,通过反例,使学生深刻理解几组数列的共同特征: = 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起) 师:能不能用数学语言表示? 学生4: 师:等价吗? 学生4:应加上(d是常数), . (让学生充分讨论,注意文字语言与数学符号语言的转化的严谨性) 师:对式子进行变形可得 。 这样的数列在生活中的例子,谁能再举几个? 学生5:某剧场前8排的座位数分别是 52,50,48,46,44,42,40,38. 学生6:全国统一鞋号中成年女鞋的各种尺码分别是 21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25 学生7:马路边的路灯,相邻两盏之间的距离构成的数列。 师:如何用数列表示? 学生8:设相邻两盏之间的距离为a,该数列为 a,a,a,a,……,为常数列,即常数列都具有这种特征。 (让学生举例,加深感性认识) 师:满足这种特征的数列很多,我们有必要为这样的数列取一个名字? 学生(共同):等差数列。 师:(学生叙述,板书定义)高考资源网 一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d为公差,a1为数列的首相。 提出课题《等差数列》 对定义进行分析,强调: = 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起。注意对概念严谨性的分析。 师:回到表格中,分别说出它们的公差。 学生9:依次是d=7,d=1,d=8,d=-6,d=5,d=-2.5,d=72. 师:在计算年末本利和的问题中求 时,能不能不按本利和=本金 (1+利率 存期) 求而按数列的特征求呢? 学生:若能求得通项公式,问题就很好解决。 (再提出问题,引导发现求通项公式的必要性) (二)启发、引导推出等差数列的通项公式 师:把问题推广到一般情况。若一个数列 是等差数列,它的公差是d,那么数列 的通项公式是什么?高考资源网 启发学生:(归纳、猜想)可用首相与公差表示数列中任意一项。 学生10: 即: 即: 即: 由此可得: 师:从第几项开始归纳的? 学生10:第二项,所以n≥2。 师:n=1时呢? 高中数学等差数列教案大全三 一.设计思想 数学是思维的 体操 ,是培养学生分析问题、解决问题的能力及创造能力的载体,新课程倡导:强调过程,强调学生探索新知识的经历和获得新知的体验,不能在让教学脱离学生的内心感受,必须让学生追求过程的体验。基于以上认识,在设计本节课时,教师所考虑的不是简单告诉学生等差数列的定义和通项公式,而是创造一些数学情境,让学生自己去发现、证明。在这个过程中,学生在课堂上的主体地位得到充分发挥,极大的激发了学生的学习兴趣,也提高了他们提出问题解决问题的能力,培养了他们的创造力。这正是新课程所倡导的数学理念。 本节课借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。 二.教材分析 高中数学必修五第二章第二节,等差数列,两课时内容,本节是第一课时。研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。通过本节课的学习要求理解等差数列的概念,掌握等差数列的通项公式,并且了解等差数列与一次函数的关系。 本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。 三.学情分析 学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。同时思维的严密性还有待加强。 四.教学目标 1.知识目标:理解等差数列概念,掌握等差数列的通项公式,了解等差数列与一次函数的关系。 2.能力目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。 3.情感目标:体验从特殊到一般,又到特殊的认知规律,提高数学猜想、归纳的能力。 五.重点、难点 教学重点:等差数列的概念及通项公式的推导。 教学难点:对等差数列概念的理解及学会通项公式的推导及应用。 六.教学策略和手段 数学教学是数学活动的教学,是师生之间、学生之间交往互动共同发展的过程,结合学生的实际情况,及本节内容的特点,我采用的是“问题教学法”,其主导思想是以探究式教学思想为主导,由教师提出一系列精心设计的问题,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。 教学手段:多媒体计算机和传统黑板相结合。通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。而保留使用黑板则能让学生更好的经历整个教学过程。 七.课前准备 学生预习,教师做好课件并安装好。 八.教学过程 创设情景,引入概念 设计意图:希望学生能通过日常生活中的实际问题的分析对比,建立等差数列模型,体验数学发现和创造的过程。 师生活动: 情景1: 师—把班上学生学号从小到大排成一列 : 学生: 师—这是数列吗?你能归纳出它的通项公式吗? 学生—是, 师—把上面的数列各项依次记为 ,填空: 学生—填空并归纳出一般规律: ,( ) 师—上面这个规律还有其他形式吗? 学生—或者写成 ,( ) 注:要对强调 ,原因在于 有意义。 师—你能用普通语言概括上面的规律吗? 学生—自由发言,选择最恰当的语言。 上面的数列已找出这一特殊规律,下面再观察一些数列并也找出它们的规律。 情景2:看幻灯片上的实例 (1)2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg): 48,53,58,63 (2)水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m) 18,15.5,13,10.5,8,5.5 (3)我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是: 本利和=本金 (1+利率 存期) 时间 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%, 那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税) 各年末本利和(单位:元) 10072,10144,10216,10288,10360 师:上面的三个数列又分别有什么规律呢? 学生—(1) , , (2) , , (3) , , 师—归纳上面数列的共同特征: (d是常数), , , 师 —满足这种特征的数列很多,我们有必要为这样的数列取一个名字? 学生(共同)—等差数列。 提出课题《等差数列》 师—给出文字叙述的定义(学生叙述,板书定义): 一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d为公差,a1为数列的首项。 对定义进行分析,强调: = 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起。 师—这样的数列在生活中的例子,谁能再举几个? 学生—某剧场前8排的座位数分别是 52,50,48,46,44,42,40,38. 学生—全国统一鞋号中成年女鞋的各种尺码分别是 21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25 抢答:观察下列数列是否为等差数列 1,2,4,6,8,10,12,…… 0,1,2,3,4,5,6,…… 3,3,3,3,3,3,3…… 2,4,7,11,16,…… -8,-6,-4,0,2,4,…… 3,0,-3,-6,-9,…… 注:常数列也是等差数列,公差是0。 推进概念,发现性质 设计意图:概括等差中项的概念。 总结 等差中项公式,用于发现等差数列的性质。 师生活动: 师—想一想,一个等差数列最少有几项?它们之间有什么关系? 学生思考后回答,至少三项,然后老师引导学生概括等差中项的概念。 设三个数 成等差数列,则A叫a与b的等差中项。同时有A-a=b-A, 说明:(1)上面式子反过来也成立。 (2)等差数列中的任意连续三项都构成等差数列 ,反之亦成立。 (三)探究通项公式 设计意图:通过具体数列的通项公式,总结一般等差数列的通项公式,体会特殊到一般的数学思想方法。 师生活动: 师—对于一个数列,我们最关心的是每一项,而这就要求我们能知道它的通项公式。下面一起来研究等差数列的通项公式。 先写出上面引例中等差数列的通项公式。再推导一般等差数列的通项公式。 师—若一个数列 是等差数列,它的公差是d,那么数列 的通项公式是什么? 启发学生:(归纳、猜想)可用首项与公差表示数列中任意一项。 学生— 即: 即: 即: 由此可得: 师—从第几项开始归纳的? 学生—第二项,所以n≥2。 师—n=1时呢? 学生—当n=1时,等式也是成立,因而等差数列的通项公式 ( ) 师—很好! 高中数学等差数列教案大全相关 文章 : 1. 高中数学等差数列知识点汇编 2. 高中数学集合教案设计 3. 高一数学等差数列练习题及答案技巧 4. 高二数学必修5等差数列知识点 5. 高中数学必修5等差数列复习 6. 高考数学集合教案大全 7. 高考数学数列基本概念及等差数列1 8. 高中数学必修4第三章等差数列复习资料 9. 高中数学教学计划 10. 高中数学教师教学工作总结善士六合2023-05-21 08:46:201
求高中数学研究性学习《数学的发展历史》总结资料,并分类。
一、中国数学的起源与早期发展据《易·系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间〔法则是:一纵十横,百立千僵,千、十相望,万、百相当〕,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理〔西方称勾股定理〕的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:「圆,一中同长也」、「平,同高也」等等。墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如「至大无外谓之大一,至小无内谓之小一」、「一尺之棰,日取其半,万世不竭」等。这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。 二、中国数学体系的形成与奠基这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》,与其同时出土的一本汉简历谱所记乃吕后二年(公元前186年),所以该书的成书年代至晚是公元前186年(应该在此前)。西汉末年〔公元前一世纪〕编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有较复杂的开方问题和分数运算等。《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年〔公元前一世纪〕。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。魏晋时期中国数学在理论上有了较大的发展。其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。赵爽还提出了用几何方法求解二次方程的新方法。263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰著《海岛算经》,发扬了古代勾股测量术----重差术。南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。约于公元四-五世纪成书的《孙子算经》给出「物不知数」问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题。 公元五世纪,祖冲之、祖暅父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。他们同时在天文学上也有突出的贡献。其著作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到3.1415926 <π< 3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值,欧洲直到十六世纪德国人鄂图(valentinus otto)和荷兰人安托尼兹(a.anthonisz)才得出同样结果;(2)祖暅在刘徽工作的基础上推导出球体体积的正确公式,并提出"幂势既同则积不容异"的体积原理,即二立体等高处截面积均相等则二体体积相等的定理。欧洲十七世纪意大利数学家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)发展了二次与三次方程的解法。同时代的天文历学家何承天创调日法,以有理分数逼近实数,发展了古代的不定分析与数值逼近算法。 三、中国数学教育制度的建立隋朝大兴土木,客观上促进了数学的发展。唐初王孝通撰《缉古算经》,主要是通过土木工程中计算土方、工程的分工与验收以及仓库和地窖计算等实际问题,讨论如何以几何方式建立三次多项式方程,发展了《九章算术》中的少广、勾股章中开方理论。隋唐时期是中国封建官僚制度建立时期,随着科举制度与国子监制度的确立,数学教育有了长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》〔包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》〕,作为算学馆学生用的课本。对保存古代数学经典起了重要的作用。由于南北朝时期的一些重大天文发现在隋唐之交开始落实到历法编算中,使唐代历法中出现一些重要的数学成果。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式,这在数学史上是一项杰出的创造,唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。唐朝后期,计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。四、中国数学发展的高峰唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪〔宋、元两代〕,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》〔11世纪中叶〕,刘益的《议古根源》〔12世纪中叶〕,秦九韶的《数书九章》〔1247〕,李冶的《测圆海镜》〔1248〕和《益古演段》〔1259〕,杨辉的《详解九章算法》〔1261〕、《日用算法》〔1262〕和《杨辉算法》〔1274-1275〕,朱世杰的《算学启蒙》〔1299〕和《四元玉鉴》〔1303〕等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有:公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚)公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式,在现在的高中立体几何中有涉猎,当然也包括他的杨辉三角。公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。五、中国数学的衰落与日用数学的发展这一时期指十四世纪中叶明王朝建立到明末的1582年。数学除珠算外出现全面衰弱的局面,当中涉及到中算的局限、十三世纪的考试制度中已删减数学内容、明代大兴八段考试制度等复杂的问题,不少中外数学史家仍探讨当中涉及的原因。明代最大的成就是珠算的普及,出现了许多珠算读本,及至程大位的《直指算法统宗》〔1592〕问世,珠算理论已成系统,标志着从筹算到珠算转变的完成。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。六、西方初等数学的传入与中西合璧十六世纪末开始,西方传教士开始到中国活动,由于明清王朝制定天文历法的需要,传教士开始将与天文历算有关的西方初等数学知识传入中国,中国数学家在“西学中源”思想支配下,数学研究出现了一个中西融合贯通的局面。十六世纪末,西方传教士和中国学者合译了许多西方数学专着。其中第一部且有重大影响的是意大利传教士利马窦和徐光启合译的《几何原本》前6卷〔1607〕,其严谨的逻辑体系和演译方法深受徐光启推崇。徐光启本人撰写的《测量异同》和《勾股义》便应用了《几何原本》的逻辑推理方法论证中国的勾股测望术。此外,《几何原本》课本中绝大部份的名词都是首创,且沿用至今。在输入的西方数学中仅次于几何的是三角学。在此之前,三角学只有零星的知识,而此后获得迅速发展。介绍西方三角学的著作有邓玉函编译的《大测》〔2卷,1631〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷,1631〕。在徐光启主持编译的《崇祯历书》〔137卷,1629-1633〕中,介绍了有关圆椎曲线的数学知识。入清以后,会通中西数学的杰出代表是梅文鼎,他坚信中国传统数学「必有精理」,对古代名著做了深入的研究,同时又能正确对待西方数学,使之在中国扎根,对清代中期数学研究的高潮是有积极影响的。与他同时代的数学家还有王锡阐和年希尧等人。 清康熙帝爱好科学研究,他「御定」的《数理精蕴》〔53卷,1723〕,是一部比较全面的初等数学书,对当时的数学研究有一定影响。七、传统数学的整理与复兴乾嘉年间形成一个以考据学为主的干嘉学派,编成《四库全书》,其中数学著作有《算经十书》和宋元时期的著作,为保存濒于湮没的数学典籍做出重要贡献。在研究传统数学时,许多数学家还有发明创造,例如有「谈天三友」之称的焦循、汪莱及李锐作出不少重要的工作。李善兰在《垛积比类》〔约1859〕中得到三角自乘垛求和公式,现在称之为「李善兰恒等式」。这些工作较宋元时期的数学进了一步。阮元、李锐等人编写了一部天文学家和数学家传记《畴人传》46卷〔1795-1810〕,开数学史研究之先河。 八、西方数学再次东进1840年鸦战争后,闭关锁国政策被迫中止。同文馆内添设「算学」,上海江南制造局内添设翻译馆,由此开始第二次翻译引进的高潮。主要译者和著作有:李善兰与英国传教士伟烈亚力合译的《几何原本》后9卷〔1857〕,使中国有了完整的《几何原本》中译本;《代数学》13卷〔1859〕;《代微积拾级》18卷〔1859〕。李善兰与英国传教士艾约瑟合译《圆锥曲线说》3卷,华蘅芳与英国传教士傅兰雅合译《代数术》25卷〔1872〕,《微积溯源》8卷〔1874〕,《决疑数学》10卷〔1880〕等。在这些译着中,创造了许多数学名词和术语,至今仍在应用。 1898年建立京师大学堂,同文馆并入。1905年废除科举,建立西方式学校教育,使用的课本也与西方其它各国相仿。 九、中国现代数学的建立这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。中国近现代数学开始于清末民初的留学活动。较早出国学习数学的有1903年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来〔1915年转留法〕,1919年留日的苏步青等人。他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学〔今南京大学〕和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵〔1927〕、陈省身〔1934〕、华罗庚〔1936〕、许宝騤〔1936〕等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素〔1920〕,美国的伯克霍夫〔1934〕、奥斯古德〔1934〕、维纳〔1935〕,法国的阿达马〔1936〕等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年〈中国数学会学报〉和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝騤在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊〔1952年改为《数学学报》〕,1951年10月《中国数学杂志》复刊〔1953年改为《数学通报》〕。1951年8月中国数学会召开建国后第一次国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。建国后的数学研究取得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》〔1953〕、苏步青的《射影曲线概论》〔1954〕、陈建功的《直角函数级数的和》〔1954〕和李俨的《中算史论丛》5集〔1954-1955〕等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论着达到世界先进水平,同时培养和成长起一大批优秀数学家。60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专着的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。铁血嘟嘟2023-05-21 08:45:081
高中数学符号有哪些啊?
1、几何符号:几何是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,常见定理有勾股定理,欧拉定理,斯图尔特定理等。常用符号有:⊥(垂直)、 ∥(平行)、 ∠(角)、 ⌒ (弧)、⊙(圆)。2、代数符号:代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常用符号有:∝(正比)、∧(逻辑和)、∨(逻辑或)、 ∫(积分)、 ≠ (不等于)、≤(小于等于)、 ≥(大于等于)、 ≈(约等于)、 ∞(无穷)。3、小于号是数学中不等式运算符号的一种。是英国数学家哈利奥特在自己的《使用分析学》(Artis Analyticae Praxis)一书中首先使用了“<”和“>”符号,但是直到他去世十年之后1631年才发表。4、除号是个数学符号,是一个由一根短横线和横线两侧的两点构成的符号,其主要用来表示数学中的除法运算。除号可运用到数学、物理学、化学等多领域。5、根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。善士六合2023-05-20 22:09:221
高中数学的二阶导数是什么意思?
dy方比dx的平方理解:dy/dx表示1阶导数;d²y/dx²表示二阶导数。dy就是在y方向趋于零的线段,dx就是在x方向趋于零的线段。d²y/d²x,只是表示二阶导数,相当于dy的导数,再对x求导。二阶导数是一阶导数的导数,从原理上,它表示一阶导数的变化率;从图形上看,它反映的是函数图像的凹凸性。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。黑桃花2023-05-20 17:38:111
高中数学参数方程知识点总结
高中数学涉及的知识点很多,今天我就来为广大高中同学们总结一下高中数学参数方程的知识点,参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。下面为具体内容,供参考。 高中数学知识点之参数方程定义 一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t)、y=g(t) 并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。 高中数学知识点之参数方程 圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数 椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数 双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数 抛物线的参数方程x=2pt²y=2ptp表示焦点到准线的距离t为参数 直线的参数方程 x=x"+tcosa y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数 高中数学知识点之参数方程的应用小菜G的建站之路2023-05-20 14:31:341
高中数学等轴双曲线题目,求解
设等轴双曲线C方程为(x/a)^2-(y/a)^2=1抛物线Y^2=-16X的准线为x=4,4^2-y^2=a^2,y=+-√(16-a^2)AB=2√(16-a^2)=4√3a^2=4,a=2C的实轴长=2a=4阿啵呲嘚2023-05-20 14:31:192
高中数学复数复平面对应点对称问题
M点对应复数z1=2-3i,∵点N和M关于x轴对称,∴点N对应复数z2=2+3i∵点P和N关于原点对称,∴点P对应复数z3=-2-3i铁血嘟嘟2023-05-20 08:57:311
高中数学:化简根式有哪些方法
简单分析一下,答案如图所示此后故乡只2023-05-20 08:56:292
关于高中数学对数问题
1 定义编辑本段 1.如果 a^x=N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作 x=logN .其中,a叫做对数的底数,N叫做真数。且a>o,a≠1,N>0 2.特别地,我们称以10为底的对数叫做常用对数(common logarithm),并把log10N 记为 lgN. 3.称以无理数e(e=2.71828...)为底的对数称为自然对数(natural logarithm),并把logeN 记为 lnN. 零没有对数. 在实数范围内,负数无对数。在复数范围内,负数有对数。如: ㏑(-5)=㏑[(-1)*5]=㏑(-1)+㏑5=iπ+㏑5. 而事实上,当θ=(2k+1)π时(k∈Z),e^[(2k+1)πi]+1=0,这样,㏑(-1)的具有周期性的多个值,㏑(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。例如:㏑(-5)=(2k+1)πi+㏑5。 loga1=0,logaa=1 2 基本性质编辑本段 如果a>0,且a≠1,M>0,N>0,那么: 1、a^log(a) N=N (对数恒等式) 证:设log(a) N=t,(t∈R) 则有a^t=N a^(log(a)N)=a^t=N. 即证.[2] 2、log(a) a=1 证:因为a^b=a^b 令t=a^b 所以a^b=t,b=log(a)(t)=log(a)(a^b) 令b=1,则1=log(a)a 3、log(a) (M·N)=log(a) M+log(a) N 公式54、log(a) (M÷N)=log(a) M-log(a) N 5、log(a) M^n=nlog(a) M 6、log(a)b*log(b)a=1 7、log(a) b=log (c) b÷log (c) a (换底公式) 基本性质5推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式 log(a^n)(b^m)=ln(b^m)÷ln(a^n) 换底公式的推导: 设e^x=b^m,e^y=a^n 则log(a^n)(b^m)=log(e^y)(e^x)=x÷y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n) 由基本性质5 log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]} 再由换底公式可得 log(a^n)(b^m)=m÷n×[log(a)(b)]苏州马小云2023-05-20 08:56:101
高中数学的所有对数计算公式 急啊
定义: 若a^n=b(a>0且a≠1) 则n=log(a)(b) 基本性质: 1、a^(log(a)(b))=b 2、log(a)(MN)=log(a)(M)+log(a)(N); 3、log(a)(M÷N)=log(a)(M)-log(a)(N); 4、log(a)(M^n)=nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)]=a^[log(a)(M)]×a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN)=log(a)(M)+log(a)(N) 3、与(2)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)]=a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)]=a^{[log(a)(M)]-[log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N)=log(a)(M)-log(a)(N) 4、与(2)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)]={a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)]=a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n) 由基本性质4可得 log(a^n)(b^m)=[m×ln(b)]÷[n×ln(a)]=(m÷n)×{[ln(b)]÷[ln(a)]} 再由换底公式 log(a^n)(b^m)=m÷n×[log(a)(b)]--------------------------------------------(性质及推导完)编辑本段函数图象 1.对数函数的图象都过(1,0)点. 2.对于y=log(a)(n)函数, ①,当0<a<1时,图象上函数显示为(0,+∞)单减.随着a的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1. ②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1. 3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称.编辑本段其他性质 性质一:换底公式 log(a)(N)=log(b)(N)÷log(b)(a) 推导如下: N=a^[log(a)(N)] a=b^[log(b)(a)] 综合两式可得 N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]} 又因为N=b^[log(b)(N)] 所以b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]} 所以log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的} 所以log(a)(N)=log(b)(N)/log(b)(a) 公式二:log(a)(b)=1/log(b)(a) 证明如下: 由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数 log(b)(b)=1=1/log(b)(a)还可变形得:log(a)(b)×log(b)(a)=1 在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进伯制整数或小数的对数。例如lg10=1,lg100=lg102=2,lg4000=lg(103×4)=3+lg4,可见只要对某一范围的数编制出对数表,便可利用来计算其他十进制数的对数的近似值。在数学理论上一般都用以无理数e=2.7182818……为底的对数,并将记号loge。简写为ln,称为自然对数,因为自然对数函数的导数表达式特别简洁,所以显出了它比其他对数在理论上的优越性。历史上,数学工作者们编制了多种不同精确度的常用对数表和自然对数表。但随着电子技术的发展,这些数表已逐渐被现代的电子计算工具所取代。北境漫步2023-05-20 08:56:091
高中数学奥赛一试的比较好的书,求
高中数学竞赛整个是一套流程,从省级初选、全国联赛(省级)、全国决赛(冬令营)直至选拔到国际比赛。具有保送资格的有全国联赛(省级)一等奖、全国决赛(冬令营)一二三等奖获得者高中数学竞赛教材大多数人一开始看的都是培优教程,这本书确实是不错,还有浙大出的配套的一些竞赛书(有一本蓝皮的,一时想不起名字,07年出的,也很好)。市面上其它的书要么华而不实,要么讲得有点太空,都不好。培优教程(一试)是面对全国联赛(省级)档次的,专题讲座则针对冬令营难度。如果你只是为了拿个联赛一等奖,主要努力去考保送生考试的话,看一试的书,做比较充足的练习就行。但如果是为了冲冬令营或者甚至去拿国际比赛奖,除了培优教程之外,可以看看金牌之路之类的高难度书。再也不做站长了2023-05-20 08:55:273
初高中数学联赛专题竞赛准备,冲刺看哪些竞赛书籍
数学:《奥赛经典》(沈文选等,湖南师大出版)、《高中奥林匹克竞赛解题方法大全(主编:周沛耕,王中峰)》、《数学奥林匹克竞赛小丛书》(华东师大出版)、《中等数学》杂志(天津师大出版)、《初等数论》(潘承洞、潘承彪著,北大出版)如果你只是想了解一些竞赛知识,建议从《奥赛经典》和《高中奥林匹克竞赛解题方法大全》中任选其一就够了。但如果你想进冬令营并且拿奖,在上述书中《初等数论》和《数学奥林匹克竞赛小丛书》最好都买,另外再学一些高等数学知识。其实课外的竞赛知识并不是最重要的,最重要的是通过做题,建立并逐步去完善一种解竞赛题的思维系统。如果你想在竞赛上大有作为,建议你从高一开始努力,先不要急于大量做竞赛题,争取在高一这一年内自学完课内高中数学知识,从高二开始大量学习竞赛知识并做题,一个专题一个专题地攻破,这样至少在联赛中拿个一等奖不成问题,能不能在冬令营出好成绩要看你的造化了。NerveM 2023-05-20 08:55:262
高中数学竞赛用什么书
去书店买《高中数学竞赛大全》无尘剑 2023-05-20 08:55:254
高中数学竞赛公式定理要用什么教材
说实话,高中的竞赛很多都是大学里的知识,碰到什么往百度里一搜,就可以得到了。建议看下大学里的“高等数学”这门课,网上也有很多的相关教程,不过是自学还是解惑都是不错的选择再也不做站长了2023-05-20 08:55:253
高中数学竞赛公式定理要用什么教材
请问你是什么教材的?北境漫步2023-05-20 08:55:2413
高中数学竞赛学习数论组合要看哪一本
一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。三角形内到三边距离之积最大的点--重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。在周长一定的简单闭曲线的集合中,圆的面积最大。在面积一定的n边形的集合中,正n边形的周长最小。在面积一定的简单闭曲线的集合中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。2、代数在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。三倍角公式,三角形的一些简单的恒等式,三角不等式。第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。5、其它抽屉原理。容斤原理。极端原理。集合的划分。覆盖。西柚不是西游2023-05-20 08:55:243
著名的高中数学定理有哪些?
买那本华东师范大学出版社的《高中数学竞赛多功能题典》,后面有重要的竞赛的定理,概念 。1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。2.代数周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角函数。递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。第二数学归纳法。平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。组合计数,组合几何。抽屉原理。容斥原理。极端原理。图论问题。集合的划分。覆盖。平面凸集、凸包及应用*。参考资料:http://www.jxllt.com/?artid=MzIxMzQ=&F=dmlldy5odG0= 望采纳谢谢kikcik2023-05-19 20:19:162
求高中数学相交弦定理证明过程
相交弦定理,经过圆内一点引两条弦,各弦被这点所分成的两线段的积相等。几何语言:若圆内任意弦AB、弦CD交于点P,则PA·PB=PC·PD(相交弦定理)。 相交弦定理证明 证明:连结AC,BD 由圆周角定理的推论,得∠A=∠D,∠C=∠B。(圆周角推论2:在同圆或等圆中,同(等)弧所对圆周角相等.) ∴△PAC∽△PDB ∴PA∶PD=PC∶PB,PA·PB=PC·PD 注:其逆定理可作为证明四边形是圆的内接四边形的方法.P点若选在圆内任意一点更具一般性。其逆定理也可用于证明四点共圆。 相交弦定理什么时候学 现在不论是人教版还是北师大版的初中教科书中,都取消了相交弦定理。在早期的人教版本中,在直线和圆的位置关系中会找的到相交弦定理。bikbok2023-05-19 11:01:383
求高中数学全部公式
求人不如求己阿 自己多记嘛余辉2023-05-19 11:01:173
高中数学公式定理归纳
正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2(c+c")h" 圆台侧面积 S=1/2(c+c")l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 图形周长 面积 体积公式 长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积 已知三角形底a,高h,则S=ah/2 已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2) 和:(a+b+c)*(a+b-c)*1/4 已知三角形两边a,b,这两边夹角C,则S=absinC/2 设三角形三边分别为a、b、c,内切圆半径为r 则三角形面积=(a+b+c)r/2 设三角形三边分别为a、b、c,外接圆半径为r 则三角形面积=abc/4r 已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶) | a b 1 | S△=1/2 * | c d 1 | | e f 1 | 【| a b 1 | | c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC | e f 1 | 选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】 秦九韶三角形中线面积公式: S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中Ma,Mb,Mc为三角形的中线长. 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积 =长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体) 的体积=底面积×高 平面图形 名称 符号 周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2?sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA)1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等 24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(sss) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)×180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即s=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m苏州马小云2023-05-19 11:01:171
求初中生中考实用高中数学公式
g大鱼炖火锅2023-05-19 11:01:107
求初中和高中数学公式,代数几何的全要,越全越好。
上学吧网站有全面的资料。。可以进去找找韦斯特兰2023-05-19 11:01:084
高中数学中…重要的公式及定理…
数学公式定理大集中 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)×180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d wc呁/S∕ ? 84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94 判定定理3 三边对应成比例,两三角形相似(SSS) 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线 109定理 不在同一直线上的三点确定一个圆. 110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理 一条弧所对的圆周角等于它所对的圆心角的一半 117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径 119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 121①直线L和⊙O相交 d<r ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r 鮂F 122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线的直线必经过切点 125推论2 经过切点且垂直于切线的直线必经过圆心 126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等 128弦切角定理 弦切角等于它所夹的弧对的圆周角 129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等 131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134如果两个圆相切,那么切点一定在连心线上 135①两圆外离 d>R+r ②两圆外切 d=R+r ③两圆相交 R-r<d<R+r(R>r) ④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r) 136定理 相交两圆的连心线垂直平分两圆的公*弦 137定理 把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139正n边形的每个内角都等于(n-2)×180°/n 140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141正n边形的面积Sn=pnrn/2 p表示正n边形的周长 142正三角形面积√3a/4 a表示边长 143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144弧长计算公式:L=n兀R/180 145扇形面积公式:S扇形=n兀R^2/360=LR/2 146内公切线长= d-(R-r) 外公切线长= d-(R+r) 乘法与因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b(a^2+ab+b^2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b^2-4ac=0 注:方程有两个相等的实根 b^2-4ac>0 注:方程有两个不等的实根 b^2-4ac0 抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c"*h 正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2(c+c")h" 圆台侧面积 S=1/2(c+c")l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2hmeira2023-05-19 11:01:041
高中数学公式定理证明
1可桃可挑2023-05-19 11:01:035
初中高中数学几何定理
初中三年数学几何公式、定理梳理,今天小编分享给大家,家长可以为孩子收藏,让孩子的几何学习更容易些。1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理:三角形两边的和大于第三边16.推论:三角形两边的差小于第三边17.三角形内角和定理:三角形三个内角的和等于180°18.推论1:直角三角形的两个锐角互余19.推论2:三角形的一个外角等于和它不相邻的两个内角的和20.推论3:三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理:有两边和它们的夹角对应相等的两个三角形全等23.角边角公理:有两角和它们的夹边对应相等的两个三角形全等24.推论:有两角和其中一角的对边对应相等的两个三角形全等25.边边边公理:有三边对应相等的两个三角形全等26.斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等初中生i学习(ID:sszzb_czb)27.定理1:在角的平分线上的点到这个角的两边的距离相等28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理:等腰三角形的两个底角相等31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32.推论2:等腰三角形的顶角平分线、底边上的中线和高互相重合33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1:三个角都相等的三角形是等边三角形36.推论2:有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1:关于某条直线对称的两个图形是全等形43.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47.勾股定理的逆定理:如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48.定理:四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论:任意多边的外角和等于360°52.平行四边形性质定理1:平行四边形的对角相等53.平行四边形性质定理2:平行四边形的对边相等54.推论:夹在两条平行线间的平行线段相等55.平行四边形性质定理3:平行四边形的对角线互相平分56.平行四边形判定定理1:两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2:两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3:对角线互相平分的四边形是平行四边形59.平行四边形判定定理4:一组对边平行相等的四边形是平行四边形60.矩形性质定理1:矩形的四个角都是直角61.矩形性质定理2:矩形的对角线相等62.矩形判定定理1:有三个角是直角的四边形是矩形63.矩形判定定理2:对角线相等的平行四边形是矩形64.菱形性质定理1:菱形的四条边都相等65.菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1:四边都相等的四边形是菱形68.菱形判定定理2:对角线互相垂直的平行四边形是菱形69.正方形性质定理1:正方形的四个角都是直角,四条边都相等70.正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1:关于中心对称的两个图形是全等的72.定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理:等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例87.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1:两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3:三边对应成比例,两三角形相似(SSS)95.定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2:相似三角形周长的比等于相似比98.性质定理3:相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107.到已知角的两边距离相等的点的轨迹,是这个角的平分线108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109.定理:不在同一直线上的三个点确定一条直线110.垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧111.推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112.推论2:圆的两条平行弦所夹的弧相等113.圆是以圆心为对称中心的中心对称图形114.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116.定理:一条弧所对的圆周角等于它所对的圆心角的一半117.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120.定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121 .①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123.切线的性质定理:圆的切线垂直于经过切点的半径124.推论1:经过圆心且垂直于切线的直线必经过切点125.推论2:经过切点且垂直于切线的直线必经过圆心126.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127.圆的外切四边形的两组对边的和相等128.弦切角定理:弦切角等于它所夹的弧对的圆周角129.推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等131.推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133.推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134.如果两个圆相切,那么切点一定在连心线上135.①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136.定理:相交两圆的连心线垂直平分两圆的公共弦137.定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138.定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139.正n边形的每个内角都等于(n-2)×180°/n140.定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141.正n边形的面积Sn=pnrn/2p表示正n边形的周长142.正三角形面积√3a/4a表示边长143.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144.弧长计算公式:L=n∏R/180145.扇形面积公式:S扇形=n∏R/360=LR/2146.内公切线长=d-(R-r)外公切线长=d-(R+r)bikbok2023-05-19 11:01:001
高中数学全部公式定理
高中数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 关于圆的公式 体积=4/3*π*r^3 面积=π*r^2 周长=2πr 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差. (二)椭圆面积计算公式 椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积. 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来.常数为体,公式为用. 椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高 三角函数 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 四倍角公式: sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4) 五倍角公式: sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4) 六倍角公式: sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1)) tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6) 七倍角公式: sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6)) cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7)) tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6) 八倍角公式: sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8) 九倍角公式: sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3)) tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8) 十倍角公式: sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1)) tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) 万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有两个不相等的个实根 b2-4ac0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c"*h 正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2(c+c")h" 圆台侧面积 S=1/2(c+c")l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长 推论及定理 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等 24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(sss) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)×180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即s=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似(asa) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas) 94 判定定理3 三边对应成比例,两三角形相似(sss) 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109定理 不在同一直线上的三点确定一个圆. 110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理 一条弧所对的圆周角等于它所对的圆心角的一半 117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径 119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121①直线l和⊙o相交 d<r ②直线l和⊙o相切 d=r ③直线l和⊙o相离 d>r 122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线的直线必经过切点 125推论2 经过切点且垂直于切线的直线必经过圆心 126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等 128弦切角定理 弦切角等于它所夹的弧对的圆周角 129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等 131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134如果两个圆相切,那么切点一定在连心线上 135①两圆外离 d>r+r ②两圆外切 d=r+r ③两圆相交 r-r<d<r+r(r>r) ④两圆内切 d=r-r(r>r) ⑤两圆内含d<r-r(r>r) 136定理 相交两圆的连心线垂直平分两圆的公共弦 137定理 把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139正n边形的每个内角都等于(n-2)×180°/n 140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141正n边形的面积sn=pnrn/2 p表示正n边形的周长 142正三角形面积√3a/4 a表示边长 143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144弧长计算公式:l=nπr/180 145扇形面积公式:s扇形=nπr2/360=lr/2 146内公切线长= d-(r-r) 外公切线长= d-(r+r) 147等腰三角形的两个底脚相等 148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 149如果一个三角形的两个角相等,那么这两个角所对的边也相等 150三条边都相等的三角形叫做等边三角形 希望能帮到你.无尘剑 2023-05-19 11:01:001
高中数学符号大全及表达意思
高中数学符号大全及表达意思:1、∞ 无穷大。2、π 圆周率。3、|x| 绝对值。4、∪ 并集。5、∩ 交集。6、≥ 大于等于。7、≤ 小于等于。8、≡ 恒等于或同余。9、ln(x) 以e为底的对数。9、lg(x) 以10为底的对数。10、floor(x) 上取整函数。11、ceil(x) 下取整函数。12、x mod y 求余数。13、x - floor(x) 小数部分。14、∫f(x)dx 不定积分。高中数学学习方法:1、熟练掌握课本知识学习高中数学一定要熟练掌握课本知识,例如高一要学习三角函数的公式推导,高二要学习的立体几何中线段的长度计算,都是要经过复杂的推导。如果没有对课本知识的掌握,只是记住公式,套用公式,题目稍微变换一下,就做不出来。根本原因是对课本知识点掌握的不透彻。掌握课本知识要预习课本知识,上课要认真听老师讲解课本知识,不懂的一定要问,课后要复习,一定要复习,如果复习之后还有不懂的,说明上课没听懂。要及时的把不懂的弄明白。2、要多动脑筋思考在上课前预习知识的时候,一定要动脑思考课本的知识,理解课本中的定义和定理。课本中的定理证明和公式推导一定要自己动手去做一做,如果做不出来,不要看课本,自己动脑思考,只有自己动脑筋想出来的,才是最宝贵的。遇到不懂的,不要总是想着问,要先动脑筋思考。做题目也是,不要直接翻看答案,要动脑筋思考,如果实在想不出来,才看答案,或者问老师解题思路。3、多做数学练习有些学生只是看书,对课本知识掌握的很好,书本内容也能举一反三,这样非常好,只是离熟练掌握知识,考取高分还有些差距。课本的内容算是概括性的知识,还不够全面,掌握课本知识可以帮助解答难题,但不等于会解难题。作为高中生,应该购买课外练习书籍,可以买纯解题型的参考书,也可以买既有练习题、又有详细解答的参考书。考试大纲在课本,可是考试题目可能千变万化。需要通过练习,增加对课本知识点的理解,通过做题对知识点知道的更全面。铁血嘟嘟2023-05-19 11:00:421
圆锥曲线高中数学题
解:由题设易知,点F(c,0),A(a²/c,0).可设点P(acost,bsint).(t∈R)∵由题设应有|PF|=|AF|,∴由两点间的距离公式可得:(acost-c)²+(bsint)²=[(a²/c)-c]²展开,整理可得:c²cost=c²+ac-a².两边同除以a²,结合e=c/a可得e²cost=e²+e-1.∴cost=(e²+e-1)/e².又∵-1≤cost≤1.∴-1≤(e²+e-1)/e²≤1.-e²≤e²+e-1≤e².∴1/2≤e<1.阿啵呲嘚2023-05-19 11:00:343
高中数学 怎样证明向量三点共线
A.B.C三点 用向量表示出AB.BC 然后证明AB=入BC黑桃花2023-05-18 15:14:246
高中数学如何求三点共线?
1,可以通过求3个点中任意2个点的斜率相等来说明3点共线2,如果知道坐标,可以求任意两点的直线方程,将第三个点的坐标代入方程中3还可以用向量法豆豆staR2023-05-18 15:14:235
高中数学三点共线公式
三点共线,数学中的一种术语,属几何类问题,指的是三点在同一条直线上 [1] 。可以设三点为A、B、C ,利用向量证明:λAB=AC(其中λ为非零实数)。公式为AC=OC-OA=λOA +μOB -OA=μOB+(λ-1)OA= μ(OB-OA),而AB=OB-OA,即AB=μAC,故 A、B、C三点共线。三点共线,数学中的一种术语,属几何类问题,指的是三点在同一条直线上。可以设三点为A、B、C ,利用向量证明:λAB=λAC(其中λ为非零实数)。此后故乡只2023-05-18 15:14:211
请问一下,有没有人知道高中数学点线距离公式,线线距离公式,线面距离公式,点面距离公式
书上都有吧,去查书,在这给你打上你也看不懂,高中好象没有学点面距离公式 线面距离公式 这两个大学才学呢NerveM 2023-05-18 13:56:162
高中数学定积分怎么算?
具体计算公式参照如图:扩展资料:定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。积分分类不定积分(Indefinite integral)即已知导数求原函数。若F′(x)=f(x),那么[F(x)+C]′=f(x).(C∈R C为常数).也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无定积分限多个原函数。定积分 (definite integral)定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。积分在实际问题中的应用 (一)经济问题 某工厂技术人员告诉他的老板某种产品的总产量关于时间的变化率为R′(t)=50+5t-0.6t2,现在老板想知道4个小时内他的工人到底能生产出多少产品。如果我们假设这段时间为[1,5],生产的产品总量为R,则总产量R在t时刻的产量,即微元dR=R′(t)dt=(50+5t-0.6t2)dt。因此,在[1,5]内总产量为 (二)压缩机做功问题 在生产生活过程中,压缩机做功问题由于关系到能源节约问题,因此备受大家关注。假设地面上有一个底半径为5 m, 高为20 m的圆柱形水池, 往里灌满了水。如果要把池中所有的水抽出,则需要压缩机做多少功?此时,由于考虑到池中的水被不间断地抽出,可将抽出的水分割成不同的水层。同时, 把每层的水被抽出时需要的功定义为功微元。这样,该问题就可通过微元法解决了。 具体操作如下: 将水面看做是原点所在的位置, 竖直向下做x轴。当水平从x处下降了dx时, 我们近似地认为厚度为dx的这层水都下降了x,因而这层水所做的功微元dw≈25πxdx(J)。当水被完全抽出, 池内的水从20 m下降为 0 m。根据微元法, 压缩机所做的功为W=25πxdx=15708(J) 。 (三)液体静压力问题 在农业生产过程中,为了保证农田的供水,常常需要建造各种储水池。因此,我们需要了解有关静压力问题。在农田中有一个宽为 4 m, 高为3 m, 且顶部在水下 5 m的闸门, 它垂直于水面放置。此闸门所受的水压力为多少?我们可以考虑将闸门分成若干个平行于水面的小长方体。此时, 闸门所受的压力可看做是小长方体所受的压力总和。 当小长方体的截面很窄的情况下, 可用其截面沿线上的压强来近似代替各个点处的压强。 任取一小长方体,其压强可表示为1・x=x, 长方体截面的面积为ΔA=4dx, 从而ΔF≈x・4dx, 利用微元法求解定积分,还可以解决很多实际工程问题,关键是要掌握好换“元” 的技巧。这就需要我们解决问题时,要特别注意思想方法。思想方法形式多种多样,如以直代曲、以均匀代不均匀、以不变代变化等。参考资料:百度百科-定积分LuckySXyd2023-05-18 05:43:391
扇形周长和面积公式高中数学是什么?
扇形周长公式为:扇形周长=扇形半径×2+弧长,即C=2r+ (n÷360) πd=2r+(n÷180)πr。扇形面积公式是S=(lR)/2 或S=(1/2)θR²。R是底圆的半径,l为扇形弧长,θ为圆心角。扇形的面积=圆形的面积*圆心角的度数/360°;扇形的周长=直径+扇形的周长*圆心角的度数/360°。扇形简介一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。显然, 它是由圆周的一部分与它所对应的圆心角围成。《几何原本》中这样定义扇形:由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形。wpBeta2023-05-17 07:53:181
高中数学,二项分布
P=0.002^2=0.000004Jm-R2023-05-17 07:53:143
高中数学余弦定理公式
高中数学余弦定理公式是a²=b²+c²-2abcosA。正余弦定理指正弦定理和余弦定理,是揭示三角形边角关系的重要定理,直接运用它可解决三角形的问题。正弦定理是用于已知三角形的两角与一边,解三角形,或是已知三角形的两边和其中一边所对的角,解三角形。余弦定理余弦定理,欧氏平面几何学基本定理。余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边的问题。余弦定理是解三角形中的一个重要定理,可应用于以下三种需求:当已知三角形的两边及其夹角,可由余弦定理得出已知角的对边。当已知三角形的三边,可以由余弦定理得到三角形的三个内角。 当已知三角形的三边,可以由余弦定理得到三角形的面积。以上内容参考:百度百科——余弦定理康康map2023-05-17 07:52:521