汉邦问答 / 问答 / 问答详情

求初中生中考实用高中数学公式

2023-05-19 11:01:10

马上中考了,急需些高中好用的数学公式,几何、代数的都要,比如点到线距离公式,两点间距离公式等等,越多越好,老师说可以用的,所以,请大家帮帮忙,谢谢!!!

meira

1.集合元素具有①确定性②互异性③无序性

2.集合表示方法①列举法 ②描述法

③韦恩图 ④数轴法

3.集合的运算

⑴ A∩(B∪C)=(A∩B)∪(A∩C)

⑵ Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

4.集合的性质

⑴n元集合的子集数:2n

真子集数:2n-1;非空真子集数:2n-2

高中数学概念总结

一、 函数

1、 若集合A中有n 个元素,则集合A的所有不同的子集个数为 ,所有非空真子集的个数是 。

二次函数 的图象的对称轴方程是 ,顶点坐标是 。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即 , 和 (顶点式)。

2、 幂函数 ,当n为正奇数,m为正偶数,m<n时,其大致图象是

3、 函数 的大致图象是

由图象知,函数的值域是 ,单调递增区间是 ,单调递减区间是 。

二、 三角函数

1、 以角 的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,点P到原点的距离记为 ,则sin = ,cos = ,tg = ,ctg = ,sec = ,csc = 。

2、同角三角函数的关系中,平方关系是: , , ;

倒数关系是: , , ;

相除关系是: , 。

3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如: , = , 。

4、 函数 的最大值是 ,最小值是 ,周期是 ,频率是 ,相位是 ,初相是 ;其图象的对称轴是直线 ,凡是该图象与直线 的交点都是该图象的对称中心。

5、 三角函数的单调区间:

的递增区间是 ,递减区间是 ; 的递增区间是 ,递减区间是 , 的递增区间是 , 的递减区间是 。

6、

7、二倍角公式是:sin2 =

cos2 = = =

tg2 = 。

8、三倍角公式是:sin3 = cos3 =

9、半角公式是:sin = cos =

tg = = = 。

10、升幂公式是: 。

11、降幂公式是: 。

12、万能公式:sin = cos = tg =

13、sin( )sin( )= ,

cos( )cos( )= = 。

14、 = ;

= ;

= 。

15、 = 。

16、sin180= 。

17、特殊角的三角函数值:

0

sin 0 1 0

cos 1 0 0

tg 0 1 不存在 0 不存在

ctg 不存在 1 0 不存在 0

18、正弦定理是(其中R表示三角形的外接圆半径):

19、由余弦定理第一形式, =

由余弦定理第二形式,cosB=

20、△ABC的面积用S表示,外接圆半径用R表示,内切圆半径用r表示,半周长用p表示则:

① ;② ;

③ ;④ ;

⑤ ;⑥

21、三角学中的射影定理:在△ABC 中, ,…

22、在△ABC 中, ,…

23、在△ABC 中:

24、积化和差公式:

① ,

② ,

③ ,

④ 。

25、和差化积公式:

① ,

② ,

③ ,

④ 。

三、 反三角函数

1、 的定义域是[-1,1],值域是 ,奇函数,增函数;

的定义域是[-1,1],值域是 ,非奇非偶,减函数;

的定义域是R,值域是 ,奇函数,增函数;

的定义域是R,值域是 ,非奇非偶,减函数。

2、当 ;

对任意的 ,有:

当 。

3、最简三角方程的解集:

四、 不等式

1、若n为正奇数,由 可推出 吗? ( 能 )

若n为正偶数呢? ( 均为非负数时才能)

2、同向不等式能相减,相除吗 (不能)

能相加吗? ( 能 )

能相乘吗? (能,但有条件)

3、两个正数的均值不等式是:

三个正数的均值不等式是:

n个正数的均值不等式是:

4、两个正数 的调和平均数、几何平均数、算术平均数、均方根之间的关系是

6、 双向不等式是:

左边在 时取得等号,右边在 时取得等号。

五、 数列

1、等差数列的通项公式是 ,前n项和公式是: = 。

2、等比数列的通项公式是 ,

前n项和公式是:

3、当等比数列 的公比q满足 <1时, =S= 。一般地,如果无穷数列 的前n项和的极限 存在,就把这个极限称为这个数列的各项和(或所有项的和),用S表示,即S= 。

4、若m、n、p、q∈N,且 ,那么:当数列 是等差数列时,有 ;当数列 是等比数列时,有 。

5、 等差数列 中,若Sn=10,S2n=30,则S3n=60;

6、等比数列 中,若Sn=10,S2n=30,则S3n=70;

六、 复数

1、 怎样计算?(先求n被4除所得的余数, )

2、 是1的两个虚立方根,并且:

3、 复数集内的三角形不等式是: ,其中左边在复数z1、z2对应的向量共线且反向(同向)时取等号,右边在复数z1、z2对应的向量共线且同向(反向)时取等号。

4、 棣莫佛定理是:

5、 若非零复数 ,则z的n次方根有n个,即:

它们在复平面内对应的点在分布上有什么特殊关系?

都位于圆心在原点,半径为 的圆上,并且把这个圆n等分。

6、 若 ,复数z1、z2对应的点分别是A、B,则△AOB(O为坐标原点)的面积是 。

7、 = 。

8、 复平面内复数z对应的点的几个基本轨迹:

① 轨迹为一条射线。

② 轨迹为一条射线。

③ 轨迹是一个圆。

④ 轨迹是一条直线。

⑤ 轨迹有三种可能情形:a)当 时,轨迹为椭圆;b)当 时,轨迹为一条线段;c)当 时,轨迹不存在。

⑥ 轨迹有三种可能情形:a)当 时,轨迹为双曲线;b) 当 时,轨迹为两条射线;c) 当 时,轨迹不存在。

七、 排列组合、二项式定理

1、 加法原理、乘法原理各适用于什么情形?有什么特点?

加法分类,类类独立;乘法分步,步步相关。

2、排列数公式是: = = ;

排列数与组合数的关系是:

组合数公式是: = = ;

组合数性质: = + =

= =

3、 二项式定理: 二项展开式的通项公式:

八、 解析几何

1、 沙尔公式:

2、 数轴上两点间距离公式:

3、 直角坐标平面内的两点间距离公式:

4、 若点P分有向线段 成定比λ,则λ=

5、 若点 ,点P分有向线段 成定比λ,则:λ= = ;

=

=

若 ,则△ABC的重心G的坐标是 。

6、求直线斜率的定义式为k= ,两点式为k= 。

7、直线方程的几种形式:

点斜式: , 斜截式:

两点式: , 截距式:

一般式:

经过两条直线 的交点的直线系方程是:

8、 直线 ,则从直线 到直线 的角θ满足:

直线 与 的夹角θ满足:

直线 ,则从直线 到直线 的角θ满足:

直线 与 的夹角θ满足:

9、 点 到直线 的距离:

10、两条平行直线 距离是

11、圆的标准方程是:

圆的一般方程是:

其中,半径是 ,圆心坐标是

思考:方程 在 和 时各表示怎样的图形?

12、若 ,则以线段AB为直径的圆的方程是

经过两个圆

的交点的圆系方程是:

经过直线 与圆 的交点的圆系方程是:

13、圆 为切点的切线方程是

一般地,曲线 为切点的切线方程是: 。例如,抛物线 的以点 为切点的切线方程是: ,即: 。

注意:这个结论只能用来做选择题或者填空题,若是做解答题,只能按照求切线方程的常规过程去做。

14、研究圆与直线的位置关系最常用的方法有两种,即:

①判别式法:Δ>0,=0,<0,等价于直线与圆相交、相切、相离;

②考查圆心到直线的距离与半径的大小关系:距离大于半径、等于半径、小于半径,等价于直线与圆相离、相切、相交。

15、抛物线标准方程的四种形式是:

16、抛物线 的焦点坐标是: ,准线方程是: 。

若点 是抛物线 上一点,则该点到抛物线的焦点的距离(称为焦半径)是: ,过该抛物线的焦点且垂直于抛物线对称轴的弦(称为通径)的长是: 。

17、椭圆标准方程的两种形式是: 和

18、椭圆 的焦点坐标是 ,准线方程是 ,离心率是 ,通径的长是 。其中 。

19、若点 是椭圆 上一点, 是其左、右焦点,则点P的焦半径的长是 和 。

20、双曲线标准方程的两种形式是: 和

21、双曲线 的焦点坐标是 ,准线方程是 ,离心率是 ,通径的长是 ,渐近线方程是 。其中 。

22、与双曲线 共渐近线的双曲线系方程是 。与双曲线 共焦点的双曲线系方程是 。

23、若直线 与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 ;

若直线 与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 。

24、圆锥曲线的焦参数p的几何意义是焦点到准线的距离,对于椭圆和双曲线都有: 。

25、平移坐标轴,使新坐标系的原点 在原坐标系下的坐标是(h,k),若点P在原坐标系下的坐标是 在新坐标系下的坐标是 ,则 = , = 。

九、 极坐标、参数方程

1、 经过点 的直线参数方程的一般形式是: 。

2、 若直线 经过点 ,则直线参数方程的标准形式是: 。其中点P对应的参数t的几何意义是:有向线段 的数量。

若点P1、P2、P是直线 上的点,它们在上述参数方程中对应的参数分别是 则: ;当点P分有向线段 时, ;当点P是线段P1P2的中点时, 。

3、圆心在点 ,半径为 的圆的参数方程是: 。

3、 若以直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系,点P的极坐标为 直角坐标为 ,则 , , 。

4、 经过极点,倾斜角为 的直线的极坐标方程是: ,

经过点 ,且垂直于极轴的直线的极坐标方程是: ,

经过点 且平行于极轴的直线的极坐标方程是: ,

经过点 且倾斜角为 的直线的极坐标方程是: 。

5、 圆心在极点,半径为r的圆的极坐标方程是 ;

圆心在点 的圆的极坐标方程是 ;

圆心在点 的圆的极坐标方程是 ;

圆心在点 ,半径为 的圆的极坐标方程是 。

6、 若点M 、N ,则 。

十、 立体几何

1、求二面角的射影公式是 ,其中各个符号的含义是: 是二面角的一个面内图形F的面积, 是图形F在二面角的另一个面内的射影, 是二面角的大小。

2、若直线 在平面 内的射影是直线 ,直线m是平面 内经过 的斜足的一条直线, 与 所成的角为 , 与m所成的角为 , 与m所成的角为θ,则这三个角之间的关系是 。

3、体积公式:

柱体: ,圆柱体: 。

斜棱柱体积: (其中, 是直截面面积, 是侧棱长);

锥体: ,圆锥体: 。

台体: , 圆台体:

球体: 。

4、 侧面积:

直棱柱侧面积: ,斜棱柱侧面积: ;

正棱锥侧面积: ,正棱台侧面积: ;

圆柱侧面积: ,圆锥侧面积: ,

圆台侧面积: ,球的表面积: 。

5、几个基本公式:

弧长公式: ( 是圆心角的弧度数, >0);

扇形面积公式: ;

圆锥侧面展开图(扇形)的圆心角公式: ;

圆台侧面展开图(扇环)的圆心角公式: 。

经过圆锥顶点的最大截面的面积为(圆锥的母线长为 ,轴截面顶角是θ):

十一、比例的几个性质

1、比例基本性质:

2、反比定理:

3、更比定理:

5、 合比定理;

6、 分比定理:

7、 合分比定理:

8、 分合比定理:

9、 等比定理:若 , ,则 。

十二、复合二次根式的化简

当 是一个完全平方数时,对形如 的根式使用上述公式化简比较方便。

⑵并集元素个数:

n(A∪B)=nA+nB-n(A∩B)

5.N 自然数集或非负整数集

Z 整数集 Q有理数集 R实数集

6.简易逻辑中符合命题的真值表

p 非p

真 假

假 真

二.函数

1.二次函数的极点坐标:

函数 的顶点坐标为

2.函数 的单调性:

在 处取极值

3.函数的奇偶性:

在定义域内,若 ,则为偶函数;若 则为奇函数。

Chen

大于0的数叫正数,前面加上负号的数叫负数 0既不是负数也不是正数

整数可以看作分母为1的分数.正整数,0"负整数"正分数,负分数 写成分数的形式称为有理数. 在直线上任取一个点表示数0,这个点叫做原点

只有负号不同的两个数叫做互为相反数一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作IaI 一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0 (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.

有理数加法法则:1.同号相加,取相同负号.并把绝对值相加 2.绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. 3.一个数同0相加,仍得这个数

有理数减法法则:减去一个数,等于加上这个数的相反数

有理数乘法法则:两数相乘,同号得正,负号得负,并把绝对值相乘. 任何数同0相乘都得0

有理数除发法则:除以一个不为0的数,等于乘以这个数的相反数

都是数字或字母的积,叫做单项式 单独的一个数或一个字母也叫单项式 单项式中的数字因数叫做这个单项式的积 一个单项式中,所有字母的指数的和叫做这个单项式的次数. 几个单项式的和叫做多项式 其中每个单项式叫做多项式的项 不含字母的叫做常数项 多项式里次数最高项的次数,叫做这个多项式的次数

1.皮克公式 S=a+1/2b-1

2.等和数列之一: 5+6*(n-1)

几何公式和定理(初中)

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第

三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它

的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应

线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平

分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

145扇形面积公式:S扇形=n兀R^2/360=LR/2

实用工具:常用数学公式

公式分类 公式表达式

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

康康map
Jm-R

我高中刚毕业,对于数学经常140+。但据我搜索,初中是平面几何,高中时立体几何。所以在几何方面,没什么可以用的。

对于代数,解析几何,也没什么可以给你使用。

所以我建议你在后期,不要去钻高中数学。应该分类地去复习初中的一些基础知识。如:二次函数,圆,反比例函数,平面几何公式(内错角,同位角,中位线...

也可以采用薄弱复习法,具体就是查看以前的试卷\练习,归纳出自己经常错的,然后先复习知识点,再做大量同类的题目.

相信你一定能成功的!!

韦斯特兰

有一个高中常用的公式,任意三角形的面积公式,S=1/2*a*bsinC

以下是高一常用公式:

一)两角和差公式

(写的都要记)

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

?

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

二)用以上公式可推出下列二倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2

-1=1-2(sina)^2

(上面这个余弦的很重要)

sin2A=2sinA*cosA

三)半角的只需记住这个:

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

四)用二倍角中的余弦可推出降幂公式

(sinA)^2=(1-cos2A)/2

(cosA)^2=(1+cos2A)/2

五)用以上降幂公式可推出以下常用的化简公式

1-cosA=sin^(A/2)*2

1-sinA=cos^(A/2)*2

三角函数公式很多,而且很乱,记牢基础的几个是关键,其他都是可以推出来的,打好了基础上层才会稳固!

小白

可以,不过要说清楚

大鱼炖火锅

g

等比性质和合比性质

等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
2023-05-18 19:08:153

合比的性质是什么?

在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这称为比例中的合比定理,这种性质称为合比性质。   用字母表达为:若a/b=c/d,则(a+b)/b=(c+d)/d(b≠0、d≠0)
2023-05-18 19:08:244

请问什么是更比性质,反比性质,合比性质

更比:是把一个比例的一个比的前项与另一个比的后项互调后,所得结果仍是比例.如果a/b=c/d那么a/c=b/d(b、d≠0)反比:把一个比的前项作为后项,后项作为前项,所构成的比和原来的比互为反比。A:B和B:A成反比合比:在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比.如果a/b=c/d,那么(a+b)/b=(c+d)/d(b、d≠0)
2023-05-18 19:08:371

相似性的合比性质和等比性质有哪些

自相似性是指一个系统的整体与其局部在结构形态上看起来相同吧?分形就是自相似的。同构是指不同系统咋看是不搭的,但在某种逻辑关系上或因果关系上却像是一样的,比如人口与浴缸就有某种同构关系的。人口的出生率、死亡率和人口总数与浴缸的水龙头的自来水流入速率,落水处的水流出速率和浴缸的水位是同构的。
2023-05-18 19:08:455

分式的合比性质

合比性质定义 在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比 的前后项的和与它的后项的比,这叫做比例中的合比定理。字母表达式:若a/b=c/d,则(a+b)/b=(c+d)/d(b≠0、d≠0)
2023-05-18 19:09:011

相似三角形的合比性质和等比性质是什么意思啊怎么应用啊

等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d,a/(b±a)=c/(d±c)如果a/b=c/d=…=m/n(b±d±…±n≠0),那么(a±c±…±m)/(b±d±…±n)=a/b证明:设a/b=c/d=…=m/n=k则a=bk,c=dk,…m=nk则(a+c+…+m)/(b+d+…+n)=(bk+dk+...+nk)/(b+d+…+n)=k=a/b合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d,a/(b±a)=c/(d±c)证明:当b≠0且d≠0时a/b=c/da/b+1=c/d+1a/b+b/b=c/d+d/d(a+b)/b=(c+d)/d
2023-05-18 19:09:071

怎样推导等比性质以及合比性质

等比:a/b=c/d=...=m/n (b+d+...+n不等于0) 则 a/b=(a+c+...+m)/(b+d+...+n) 合比: a/b=c/d 则(a+b)/b=(c+d)/d 或(a-b)/b=(c-d)/d
2023-05-18 19:09:172

推理一下合分比性质 说清楚

合分比 合比定理:如果a/b=c/d,那么(a+b)/b=(c+d)/d 分比定理:如果a/b=c/d那么(a-b)/b=(c-d)/d 【合比定理】 在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这叫做比例中的合比定理. 【分比定理】 在一个比例里,第一个比的前后项的差与它的后项的比,等于第二个比的前后项的差与它们的后项的比,这叫做比例中的分比定理. 【合分比定理】 一个比例里,第一个前后项之和与它们的差的比,等于第二个比的前后项的和与它们的差的比.这叫做比例中的合分比定理
2023-05-18 19:09:231

比例线段中的等比性质和合比性质怎么记忆

解释如下:a/b=c/d=e/f=(a+c+e)/(b+d+f)……这是等比性质;a/b=c/d可得(a/b)+1=(c/d)+1,即(a+b)/a=(c+d)/d……这是合比性质
2023-05-18 19:09:303

如何推导出合比性质

a/b=c/d=…=m/n(b,d,…,m均不为0且b±d±…±n≠0),那么(a±c±…±m)/(b±d±…±n)=a/b你设a/b=c/d=…=m/n=t则a=bt c=dt …m=nt则:(a±c±…±m)/(b±d±…±n)=(bt±dt±…±nt))/(b±d±…±n)=t=a/b
2023-05-18 19:09:381

比例的意义和基本性质

比例的意义是:表示两个比相等的式子叫做比例。要想判断两个比式子能不能组成比例,要看它们的比例是不是相等。比例有四个基本性质:1.合比性质:在一个比例等式中,第一个比例的前后项之和与第一个比例的后项的比,等于第二个比例的后项之和与第二个比例的后项的比。例:已知a,b,c,d∈C,且有b≠0,d≠0,如果则有2.分比性质:在一个比例等式中,第一个比例的前后项之差与第一个比例的后项的比,等于第二个比例的前后项之差与第二个比例的后项的比。例:已知a,b,c,d∈C,且有b≠0,d≠0,如果则有3.合分比性质:在一个比例等式中,第一个比例的前后项之和与第一个比例的前后项之差的比,等于第二个比例的前后项之和与第二个比例的前后项之差的比。例:已知a,b,c,d∈C,且有b≠0,d≠0,如果则有4.等比性质:在一个比例等式中,前两项之和与后两项之和的比例与原比例相等。例:已知a,b,c,d∈C,且有b≠0,d≠0,如果则有
2023-05-18 19:09:571

比例的合分比基本性质

合比性质:第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这称为比例中的合比定理,这种性质称为合比性质; 合分比性质:指在一个比例等式中,第一个比例的前后项之和与第一个比例的前后项之差的比,等于第二个比例的前后项之和与第二个比例的前后项之差的比。
2023-05-18 19:10:471

甲乙两列火车同时从a.b两地相向开出。已知甲车每小时行驶120千米,乙车每小时行驶150千米。

2023-05-18 19:10:542

合比性质证明过程。

a/b=c/d a/b±1=c/d±1a/b±b/b=c/d±d/da±b/b=c±d/d
2023-05-18 19:11:081

什么是合分比性质

合比若a/b=c/d,且b+d≠0则a/b=c/d=(a+c)/(b+d)分比 若a/b=c/d,且b-d≠0则a/b=c/d=(a-c)/(b-d)
2023-05-18 19:11:163

比例的性质9个公式是什么?

比例的性质9个公式:若a:b=c:d(b.d≠0),则有:1)ad=bc;2)b:a=d:c(a,c≠0);3)a:c=b:d,c:a=d:b;4)(a+b):b=(c+d):d;5)a:(a+b)=c:(c+d)(a+b≠0,c+d≠0);6)(a-b):(a+b)=(c-d):(c+d)(a+b≠0,c+d≠0)。比例的性质:比例的性质是指组成比例的四个数,合分比性质、等比性质以及它们的推广。这四条性质多用于分式的计算和证明,以及三角函数、相似三角形、平行线分线段成比例定理的应用中。其中尤其以等比性质的应用最为广泛。
2023-05-18 19:11:231

请问合分比性质是怎么来的?

∵a-b/b=a/b-1 c-d/d=c/d-1∴a-b/b=c-d/d
2023-05-18 19:11:382

高中选修数学公式? 主要内容解释详细

十一、比例的几个性质 1、比例基本性质: 2、反比定理: 3、更比定理: 5、 合比定理; 6、 分比定理: 7、 合分比定理: 8、 分合比定理: 9、 等比定理:若 , ,则 . 十二、复合二次根式的化简 当 是一个完全平方数时,对形如 的根式使用上述公式化简比较方便. ⑵并集元素个数: n(A∪B)=nA+nB-n(A∩B) 5.N 自然数集或非负整数集 Z 整数集 Q有理数集 R实数集 6.简易逻辑中符合命题的真值表 p 非p 真 假 假 真 二.函数 1.二次函数的极点坐标: 函数 的顶点坐标为 2.函数 的单调性: 在 处取极值 3.函数的奇偶性: 在定义域内,若 ,则为偶函数;若 则为奇函数. 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ? 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)×180° -------------------------------------------------------------------------------- 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d wc呁/S∕? 84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94 判定定理3 三边对应成比例,两三角形相似(SSS) 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值 -------------------------------------------------------------------------------- 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线 109定理 不在同一直线上的三点确定一个圆. 110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理 一条弧所对的圆周角等于它所对的圆心角的一半 117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径 119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 121①直线L和⊙O相交 d<r ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r ? 122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线的直线必经过切点 125推论2 经过切点且垂直于切线的直线必经过圆心 126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等 128弦切角定理 弦切角等于它所夹的弧对的圆周角 129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等 131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134如果两个圆相切,那么切点一定在连心线上 135①两圆外离 d>R+r ②两圆外切 d=R+r ③两圆相交 R-r<d<R+r(R>r) ? ④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r) 136定理 相交两圆的连心线垂直平分两圆的公*弦 137定理 把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139正n边形的每个内角都等于(n-2)×180°/n 140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141正n边形的面积Sn=pnrn/2 p表示正n边形的周长 142正三角形面积√3a/4 a表示边长 143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144弧长计算公式:L=n兀R/180 145扇形面积公式:S扇形=n兀R^2/360=LR/2 146内公切线长= d-(R-r) 外公切线长= d-(R+r) 乘法与因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2)  a^3-b^3=(a-b(a^2+ab+b^2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b^2-4ac=0 注:方程有两个相等的实根 b^2-4ac>0 注:方程有两个不等的实根 ? b^2-4ac
2023-05-18 19:11:461

合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d /这个表是除法还是表示

a/b就表示b分之a,也可以说是a除以b
2023-05-18 19:12:042

比的性质是什么啊?

比例的性质是指组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项,是代数学中常用的比例性质,主要包括合比性质,分比性质,合分比性质,等比性质以及推广。1.合比性质,在一个比例等式中,第一个比例的前后项之和与第一个比例的后项的比,等于第二个比例的前后项之和与第二个比例的后项的比。2.分比性质,在一个比例等式中,第一个比例的前后项之差与第一个比例的后项的比,等于第二个比例的前后项之差与第二个比例的后项的比。3.合分比性质,在一个比例等式中,第一个比例的前后项之和与第一个比例的前后项之差的比,等于第二个比例的前后项之和与第二个比例的前后项之差的比。4.等比性质,在一个比例等式中,两前项之和与两后项之和的比例与原比例相等。5.比的基本性质,比的前项和后项同时乘或除以相同的数,0除外,比值不变。
2023-05-18 19:12:101

初中数学比例基本性质的推论中合比性质是怎样推出的?

解:设a/b=c/d=k,则 a=bk,c=dk所以a+b/b=bk/b=d c+d/d=dk/d=k 所以a+b/b=c+d/d
2023-05-18 19:12:262

比例的基本性质是什么?

初中数学比例的六个定理,合比,分比,合分比,更比,等比,反比:比例基本性质:如果a:b=c:d,a×d=b×c。合比定理:如果a:b=c:d,(a±b):b=(c±d)/d。如果a:b=c:d,且存在b+a≠0,d+c≠0,a:(b+a)=c:(d+c)如果a:b=c:d,且存在b-a≠0,d-c≠0,a:(b-a)=c:(d-c)。如果a:b=c:d,且存在b-na≠0,d-nc≠0,a:(b-na)=c:(d-nc)。等比定理(等比性质):如果a:b=c:d=m:n(b+d+…+n≠0),(a+c+m):(b+d++n)=a:b。定理合比定理:如果a/b=c/d,(a+b)/b=(c+d)/d(b、d≠0)。分比定理:如果a/b=c/d,(a-b)/b=(c-d)/d(b、d≠0)。合分比定理:如果a/b=c/d,(a+b)/(a-b)=(c+d)/(c-d)(b、d、a-b、c-d≠0)。等比定理:如果a/b=c/d,a/c=b/d(a、b、c、d≠0)。
2023-05-18 19:12:341

合比性质的习题举例

如图,在△ABC中,AD为∠BAC的角平分线,EF是AD的垂直平分线且交AB于E,交BC的延长线于F,求证:DC·DF=BD·CF分析:欲证:DC·DF=BD·CF即证:DC/CF=BD/DF即证:(DC+CF)/CF=(BD+DF)/DF (等式两边加上1)若连结AF,则AF=DF故即证:AF/CF=BF/AF只需证△FAB∽△FCA证明:连结AF,则AF=DF,∠FAD=∠FDA∵AD平分∠BAC∴∠BAD=∠CAD∴AF=DF∴∠FDA=∠FAD又∵∠FAD=∠CAD+∠CAF,∠FDA=∠B+∠BAD∴∠B=∠CAF∴△FAB∽△FCA。
2023-05-18 19:12:491

证明比例性质。

(1)如果a/b=c/d 在等式两边同时乘上bd (≠0) 即得ad=bc 如果ad=bc 在等式两边同时乘上1/bd(≠0) 即得a/b=c/d(2)如果a/b=c/d 那么在等式两边同时加上1,并通分即得(a+b)/b=(c+d)/d(3)指什么???
2023-05-18 19:13:163

比例的性质是什么

简单分析一下,详情如图所示
2023-05-18 19:13:254

比例的性质

比例的基本性质比例的基本性质:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。在比例里,两个外项积与两内项积相等。根据比例的基本性质可以解比例。几个常用的性质1.内项之积等于外项之积若a/b=c/d则ad=bc2.合比性质若a/b=c/d则(a+b)/b=(c+d)/d3.分比性质若a/b=c/d则(a-b)/b=(c-d)/d4.合分比性质若a/b=c/d则(a+b)/(a-b)=(c+d)/(c-d)5.更比性质若a/b=c/d则a/c=b/d6.反比性质若a/b=c/d则b/a=d/c7.等比性质 若a/b=c/d=…=m/n(b+d+…+n≠0),则(a+c+…+m)/(b+d+…+n)=a/b=c/d…=m/n证明:设a/b=c/d=…=m/n=k则a=bk,c=dk,…m=nk则(a+c+…+m)/(b+d+…+n)=(bk+dk+...+nk)/(b+d+…+n)=k=a/b
2023-05-18 19:13:503

等比性质 更比性质 合比性质 反比性质的证明

"5"=根号5。线段ABC,AC=1,AB>BC,AB=x,BC=1-x。黄金定义:长:短=全长:长,x/(1-x)=1/x。交叉乘,x^2=1-x。移项,x^2+x=1。同加2/4,x^2+x+(1/4)=1+(1/4),[x+(1/2)]"5"/^2=5/4。开平方,x+(1/2)=±"5"/2。x=("5"/2)-(1/2)=("5"-1)/2≈(2.236-1)/2=1.236/2=0.618。(已舍负值)
2023-05-18 19:14:051

初中数学

(1)(-4,4) 12(*2)(3,-3)求采纳
2023-05-18 19:14:254

一种盐水按照1:9的比利配制而成,要配制这种盐水400g,需要盐多少克?

1:(1+9)=x:400x=40
2023-05-18 19:14:355

比例的性质

比例的性质:比例的性质是指组成比例的四个数,合分比性质、等比性质以及它们的推广。 这四条性质多用于分式的计算和证明,以及三角函数、相似三角形、平行线分线段成比例定理的应用中。其中尤其以等比性质的应用最为广泛。比例:在数学中,比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。两种相关联的量,一种量变化,另一种量也随着变化。要想判断两个比式子能不能组成比例,要看它们的比值是否相等。在一个比例等式中,第一个比例的前后项之和与第一个比例的后项的比,等于第二个比例的前后项之和与第二个比例的后项的比。在一个比例等式中,第一个比例的前项乘以第二个比例的后项,等于第一个比例的后项乘以第二个比例的前项。
2023-05-18 19:15:252

合比定理以后有用么

有用。合比定理在我们日常生活中也经常会用到,属于实用型的定理,在一个比例里,第一个比的前后项的和与后项的比,等于第二个比的前后项的和与后项的比,这称为比例中的合比定理,这种性质称为合比性质。
2023-05-18 19:15:561

比和比例的意义和基本性质

表示两个比相等的式子叫做比例,是比的意义比例有4项,前项后项各2个.在比例里,两个外项的即等於两个内项的积,这叫做比的基本性质.比表示两个数相除;只有两个项:比的前项和后项。比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。比的性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。
2023-05-18 19:16:032

关于等比性质

这个可以利用数形结合来说明先说明一下,图中那些线都是平行于jk的由三角形相似可以得到ab/ac=db/ce=df/eg=……=(ab+db+df+……)/(ac+ce+eg……)=ab/ac这个就是证明的过程啊,你在做题时就跟我一样画个图,过程跟我一样就行了
2023-05-18 19:16:122

给个初中几何定理大全

123456789
2023-05-18 19:16:224

比例线段的比例性质

比例的基本性质:如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/b=c/d;如果a/b=c/d,那么(a+b)/b=(c+d)/d。谁都不能为0。为0无意义。证明过程:令a:b=c:d=k,∵a:b=c:d∴a=bk;c=dk1)∴ad=bk*d=kbd;bc=b*dk=kbd∴ad=bc2)显然b:a=d:c=1/k3)a:c=bk:dk=b:d;结合性质2有c:a=d:b4)∵a:b=c:d∴(a/b)+1=(c/d)+1∴(a+b)/b=(c+d)/d=1+k;即(a+b):b=(c+d):da+b≠0,c+d≠0时,结合性质2有b:(a+b)=d:(c+d)且b/(a+b)=d/(c+d)=1/(k+1)……①5)∵b/(a+b)=d/(c+d)∴1-b/(a+b)=1-d/(c+d)=1-1/(k+1)∴a/(a+b)=c/(c+d)=k/k+1……②即a:(a+b)=c:(c+d)a+b≠0,c+d≠0时,结合性质2有(a+b):a=(c+d):c6)②-①,等式两边同时相减得(a-b)/(a+b)=(c-d)/(c+d)=(k-1)/(k+1)
2023-05-18 19:16:303

求 小学 初中 所有数学公式。方便的话麻烦发邮箱895228968@qq.com

....不好意思,任务
2023-05-18 19:16:394

如何理解合比性质?

在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这称为比例中的合比定理,这种性质称为合比性质。字母表达:若a/b=c/d,则(a-b)/b=(c-d)/d (b≠0、d≠0)字母表达:若a/b=c/d,则(a+b)/(a-b)=(c+d)/(c-d)(a≠b,c≠d,b≠0,d≠0)等比性质:若a1/b1=a2/b2=a3/b3=...=an/bn则a1/b1=a2/b2=...=(a1+a2+a3+...+an)/(b1+b2+b3+...+bn)=an/bn扩展资料:一个比的前项与另一个比的后项互调后,所得结果仍是比例。推论:若a1/b1=a2/b2=a3/b3=....=an/bn则a1/b1=a2/b2=...=(a1+a2+a3+...+an)/(b1+b2+b3+...+bn)
2023-05-18 19:17:151

合比性质是什么?

等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
2023-05-18 19:17:283

合比性质怎样表达?

在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这称为比例中的合比定理,这种性质称为合比性质。字母表达:若a/b=c/d,则(a-b)/b=(c-d)/d (b≠0、d≠0)字母表达:若a/b=c/d,则(a+b)/(a-b)=(c+d)/(c-d)(a≠b,c≠d,b≠0,d≠0)等比性质:若a1/b1=a2/b2=a3/b3=...=an/bn则a1/b1=a2/b2=...=(a1+a2+a3+...+an)/(b1+b2+b3+...+bn)=an/bn扩展资料:一个比的前项与另一个比的后项互调后,所得结果仍是比例。推论:若a1/b1=a2/b2=a3/b3=....=an/bn则a1/b1=a2/b2=...=(a1+a2+a3+...+an)/(b1+b2+b3+...+bn)
2023-05-18 19:17:411

等比性质和合比性质是什么?

合比性质:在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这称为比例中的合比定理,这种性质称为合比性质。合比性质是数学分数计算中常用的性质之一,主要运用于三角函数等计算。等比性质:在一个比例等式中,两前项之和与两后项之和的比例与原比例相等,这个性质称为等比性质。等比性质是成比例线段以及相似的一条重要性质,在学科中有广泛的应用。等比性质的应用举例:若a、b、c为有理数,abc≠0,且(b+c)/a=(a+c)/b=(a+b)/c=k,求k的值。解:当a+b+c≠0时,∵(b+c)/a=(a+c)/b=(a+b)/c=k∴(b+c+a+c+a+b)/(a+b+c)=2(a+b+c)/(a+b+c)=k∴k=2当a+b+c=0时,∵a+b+c=0∴b+c=-a,代入(b+c)/a=k得:-a/a=-1∴k=-1
2023-05-18 19:17:531

合比的性质是什么?

合比性质是数学分数计算中常用的性质之一,属于合分比性质中的三大性质之一(包括合比性质、分比性质和合分比性质)。主要运用于三角函数等计算。原理简介  在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这称为比例中的合比定理,这种性质称为合比性质。  用字母表达为:若a/b=c/d,则(a+b)/b=(c+d)/d(b≠0、d≠0)
2023-05-18 19:18:082

合比性质是什么

合比性质是数学分数计算中常用的性质之一,属于合分比性质中的三大性质之一。主要运用于三角函数等计算。 原理简介: 在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这称为比例中的合比定理,这种性质称为合比性质。
2023-05-18 19:18:141

合比的性质是什么?

合比性质是数学分数计算中常用的性质之一,属于合分比性质中的三大性质之一(包括合比性质、分比性质和合分比性质).主要运用于三角函数等计算.原理简介  在一个比例里,第一个比的前后项的和与它后项的比,等于第二...
2023-05-18 19:18:211

什么是合比定理

合比定理是:若 a/b=c/d ,则 (a+b)/b=(c+d)/d;a/(a+b)=c/(c+d)。
2023-05-18 19:18:294

等比性质和合比性质

等比性质是分子分母和的比;合比性质是两边加1造成的。解释如下:a/b=c/d=e/f=(a+c+e)/(b+d+f)……这是等比性质;a/b=c/d可得(a/b)+1=(c/d)+1,即(a+b)/a=(c+d)/d……这是合比性质。
2023-05-18 19:19:111

合比性质(要带有讲解)

在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这称为比例中的合比定理,这种性质称为合比性质。   用字母表达为:若a/b=c/d,则(a±kb)/b=(c±kd)/d(b≠0、d≠0)推导过程 当b≠0且d≠0时   a/b=c/d   (a/b)±k=(c/d)±k    (a/b)±k(b/b)=(c/d)±k(d/d)   (a±kb)/b=(c±kd)/d
2023-05-18 19:19:182

什么是更比性质,反比性质,合比性质rt

几个常用的性质1.内项之积等于外项之积若 a/b=c/d 则 ad=bc2.合比性质若 a/b=c/d 则 (a+b)/b=(c+d)/d3.分比性质若 a/b=c/d 则 (a-b)/b=(c-d)/d4.合分比性质若 a/b=c/d 则 (a+b)/(a-b)=(c+d)/(c-d)5.更比性质若 a/b=c/d 则 c/a=d/b6.反比性质若 a/b=c/d 则 b/a=d/c7.等比性质若 a/b=c/d=…=m/n(b+d+…+n≠0),则 (a+c+…+m)/(b+d+…+n)=a/b=c/d…=m/n证明:设a/b=c/d=…=m/n = k则a = bk, c = dk,…m = nk则(a+c+…+m)/(b+d+…+n) = (bk + dk +...+ nk)/(b+d+…+n) = k = a/b
2023-05-18 19:19:352

请问什么是更比性质,反比性质,合比性质

更比:是把一个比例的一个比的前项与另一个比的后项互调后,所得结果仍是比例. 如果a/b=c/d那么a/c=b/d(b、d≠0)反比:把一个比的前项作为后项,后项作为前项,所构成的比和原来的比互为反比。A:B和B:A成反比合比:在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比.如果a/b=c/d,那么(a+b)/b=(c+d)/d (b、d≠0)
2023-05-18 19:19:441

合比性质(要带有讲解)

在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这称为比例中的合比定理,这种性质称为合比性质。  用字母表达为:若a/b=c/d,则(a+b)/b=(c+d)/d(b≠0、d≠0)你什么不明白,可以问我的。
2023-05-18 19:19:521

比例线段中的等比性质和合比性质怎么记忆

等比性质是分子分母和的比;合比性质是两边加1造成的. 解释如下:a/b=c/d=e/f=(a+c+e)/(b+d+f)……这是等比性质;a/b=c/d可得(a/b)+1=(c/d)+1,即(a+b)/a=(c+d)/d……这是合比性质.
2023-05-18 19:19:591