高中数学三角函数计算
两角和与差的正弦、余弦、正切公式及倍角公式: 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有: ①巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角 ②三角函数名互化(切割化弦), ③公式变形使用 ④三角函数次数的降升 ⑤ 常值变换主要指“1”的变换辅助角公式中辅助角的确定:CarieVinne 2023-08-14 16:50:002
高中数学
cos50°(tan10°-√3)=cos50°(sin10°/cos10°-√3)=2cos50°(sin10°*1/2-cos10°√3/2)/cos10°=2cos50°sin(10°-60°)/cos10°=-2cos50°sin50°/cos10°=-sin100°/cos10°=-1苏萦2023-08-14 16:49:583
求解,高中数学
用三角公式展开化简,第一个式子要切化弦苏萦2023-08-14 16:49:581
求高中数学的知识点
其实用的数学不多...只要你的逻辑思维清楚就行LuckySXyd2023-08-14 16:49:564
跪求..高中数学排列组合以及概率的所有计算方法以及公式..
1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-mNtou1232023-08-14 16:43:291
高中数学排列组合公式Cnm(n为下标,m为上标)=n!/m!(n-m)!是怎么来...
表示在n不同的元素里取m个元素不限顺序有几种取法要取m次第一次可以取的元素有n种情况第二次可以取的元素有n-1种情况...第m次可以取的元素有n-m+1种情况根据乘法原理得取m次的情况有n*(n-1)*(n-2)...*(n-m+1)=n!/(n-m)!因为是无序组合所以要除去重复计算的种类就是m!种得到的公式就是Cnm=n!/[(n-m)!*m!]西柚不是西游2023-08-14 16:43:291
高中数学排列组合公式
排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合与古典概率论关系密切。 排列组合定义 从n个不同元素中,任取m(m≤n,m与n均为自然数)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。 排列组合公式 A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)! C-Combination 组合数 A-Arrangement 排列数 n-元素的总个数 m-参与选择的元素个数 !-阶乘 排列组合基本计数原理 加法原理与分布计数法 1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。 2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。 3、分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。 乘法原理与分布计数法 1、乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。 2、合理分步的要求:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。hi投2023-08-14 16:43:291
高中数学的排列组合有哪些公式
公式如图所示Chen2023-08-14 16:43:291
.高中数学排列组合以及概率的所有计算方法以及公式..
1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1).(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-mmlhxueli 2023-08-14 16:43:291
高中数学排列组合公式Cnm(n为下标,m为上标)=n!/m!(n-m)!是怎么来的
表示在n不同的元素里取m个元素不限顺序有几种取法要取m次第一次可以取的元素有n种情况第二次可以取的元素有n-1种情况...第m次可以取的元素有n-m+1种情况根据乘法原理得取m次的情况有n*(n-1)*(n-2)...*(n-m+1)=n!/(n-m)!因为是无序组合所以要除去重复计算的种类就是m!种得到的公式就是cnm=n!/[(n-m)!*m!]豆豆staR2023-08-14 16:43:282
高中数学排列组合公式Cnm(n为下标,m为上标)=n!/m!(n-m)!是怎么来的
Cnm= Anm/m!= n(n-1)(n-2)……(n-m+1)/m(m-1)(m-2)……3*2*1=n(n-1)(n-2)……(n-m+1)(n-m)*……*3*2*1/(n-m)!m!=n!/m!(n-m)!墨然殇2023-08-14 16:43:283
高中数学 有几大模块 重点是哪些
建议买本真题自己分析,自己的弱点自己知道mlhxueli 2023-08-13 09:27:371
高中数学圆锥曲线解题技巧
解答数学圆锥曲线试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整。下面我给你分享高中数学圆锥曲线解题技巧,欢迎阅读。 高中数学圆锥曲线解题技巧 1.充分利用几何图形的策略 解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,往往能减少计算量。 例:设直线3x+4y+m=0与圆x+y+x-2y=0相交于P、Q两点,O为坐标原点,若OPu22a5OQ,求m的值。 2.充分利用韦达定理的策略 我们经常设出弦的端点坐标但不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。 例:已知中心在原点O,焦点在y轴上的椭圆与直线y=x+1相交于P、Q两点,且OPu22a5OQ,|PQ|=,求此椭圆方程。 3.充分利用曲线方程的策略 例:求经过两已知圆C:x+y-4x+2y=0和C:x+y-2y-4=0的交点,且圆心在直线l:2x+4y-1=0上的圆的方程。 4.充分利用椭圆的参数方程的策略 椭圆的参数方程涉及正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题。这也就是我们常说的三角代换法。 例:P为椭圆+=1上一动点,A为长轴的右端点,B为短轴的上端点,求四边形OAPB面积的最大值及此时点P的坐标。 5.线段长的几种简便计算策略 (1)充分利用现成结果,减少运算过程。 求直线与圆锥曲线相交的弦AB长:把直线方程y=kx+b代入圆锥曲线方程中,得到型如ax+bx+c=0的方程,方程的两根设为x,x,判别式为△,则|AB|=u2022|x-x|=u2022,若直接用结论,能减少配方、开方等运算过程。 例:求直线x-y+1=0被椭圆x+4y=16所截得的线段AB的长。 (2)结合图形的特殊位置关系,减少运算。 在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。 例:F、F是椭圆+=1的两个焦点,AB是经过F的弦,若|AB|=8,求|FA|+|FB|的值。 (3)利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离。 例:点A(3,2)为定点,点F是抛物线y=4x的焦点,点P在抛物线y=4x上移动,若|PA|+|PF|取得最小值,求点P的坐标。 高中数学圆锥曲线题型 1.中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x,y),(x,y),代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 例:给定双曲线x-=1,过A(2,1)的直线与双曲线交于两点P和P,求线段PP的中点P的轨迹方程。 2.焦点三角形问题 椭圆或双曲线上一点P,与两个焦点F、F构成的三角形问题,常用正、余弦定理。 例:设P(x,y)为椭圆+=1上任一点,F(-c,0),F(c,0)为焦点,u2220PFF=u03b1,u2220PFF=u03b2。 (1)求证:离心率e=; (2)求|PF|+|PF|的最值。 3.直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法。 例:抛物线方程y=p(x+1)(p>0),直线x+y=t与x轴的交点在抛物线准线的右边。 (1)求证:直线与抛物线总有两个不同交点。 (2)设直线与抛物线的交点为A、B,且OAu22a5OB,求p关于t的函数f(t)的表达式。 4.圆锥曲线的有关最值问题 圆锥曲线中的有关最值问题,常用代数法和几何法解决。若命题的条件和结论具有明显的几何意义,一般可用图像性质来解决。若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。下题中的(1),可先设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围。对于(2),首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即“最值问题,函数思想”。 例:已知抛物线y=2px(p>0),过M(a,0)且斜率为1的直线L与抛物线交于不同的两点A、B,|AB|u22642p,(1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。 5.求曲线的方程问题 (1)曲线的形状已知,这类问题一般可用待定系数法解决。 例:已知直线L过原点,抛物线C的顶点在原点,焦点在x轴正半轴上。若点A(-1,0)和点B(0,8)关于L的对称点都在C上,求直线L和抛物线C的方程。 (2)曲线的形状未知,求轨迹方程。 例:已知直角坐标平面上点Q(2,0)和圆C:x+y=1,动点M到圆C的切线长与|MQ|的比等于常数u03bb(u03bb>0),求动点M的轨迹方程,并说明它是什么曲线。 6.存在两点关于直线对称问题 在曲线上两点关于某直线对称问题,可按如下方法解题:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。当然也可利用韦达定理并结合判别式来解决。 例:已知椭圆C的方程+=1,试确定m的取值范围,使得对于直线y=4x+m,椭圆C上有不同两点关于直线对称。 7.两线段垂直问题 圆锥曲线两焦半径互相垂直问题,常用ku2022k==-1来处理或用向量的坐标运算来处理。tt白2023-08-13 09:27:331
求高中数学书4-4目录!
选修4-4坐标系与参数方程第一讲:坐标系第1节平面直角坐标系第2节极坐标第3节简单曲线的极坐标方程第4节柱坐标系与球坐标系简介第二讲参数方程第1节曲线的参数方程第2节圆锥曲线的参数方程第3节直线的参数方程第4节渐开线与摆线FinCloud2023-08-13 09:27:321
高中数学 《圆锥曲线》解题技巧归纳
1、数列问题(1)熟练掌握等差、等比数列的性质、通项公式和求和公式;(2)深刻理解课本上等差和等比数列求和公式是怎么推导出来的,其中蕴含的如“倒序相加”等解题思想是解题中经常用到的;(3)熟练掌握将分母代数式连乘的分数转化成单项分式差,实现“消去中间,剩下两头”的题型;(4)熟练掌握从现有数列(如{An})中抽取满足某个条件的若干项,组成一个新数列(如{Ank}),然后求新数列的通项和前多少项和的题型;(5)熟练掌握通过化简或待定系数法,将不规则数列“凑”成等差或等比数列来解题的题型;(6)熟练掌握数学归纳法的原理并应用它解决个别“先猜测再证明”的探究类题型。(7)熟练掌握数列求极限的题型,尤其是通过化简让分母的指数比分子的指数高,以便n无穷大的时候分式等于02、圆锥曲线问题(1)熟练掌握圆锥曲线的几何定义和准线定义,深刻理解“数形结合”的思想,这是解析几何的灵魂和精髓:用代数思想研究几何问题,实现定量求解;(2)熟练运用圆锥曲线(椭圆、双曲线和抛物线)的普通方程求解线段、点到线的距离和两条线的夹角等问题;(3)熟练运用圆锥曲线的参数方程辅助解题,尤其是椭圆和双曲线的参数方程跟三角函数结合非常紧密,而且三角函数的有界性又跟不等式求最大最小值关系密切。(4)由于平面解析几何解决的是平面内的问题,如果在求解立体几何中的问题中,我们能确证点到面的距离或二面角可以在某个平面内解决,但从纯几何角度不容易记计算,这时候我们可以在立体图的某个面建立坐标系,把立体几何中的问题转化成平面解析几何的问题(点到线的距离,线的夹角)来求解,有时候这样效果很好。顺便说一下,下面几个“数学思想”在平时考试和高考中尤为重要:(1)方程的思想:从形式上变未知为已知,然后找出关系,求出这个形式上的已知得解;(2)不等式的思想:利用不等式进行放大和缩小来判断变量或表达式的极限,求解最大、最小值;(3)函数的思想:把现实问题抽象成代数问题,根据变量的范围动态考察函数规律的变化规律;(4)数形结合的思想:充分利用图像的直观、形象性辅助分析和计算;(5)分类讨论的思想:体现理性思维的严密性,具体情况具体分析。(6)反证法的思想:逆向思维,从相反的角度看问题;(7)数学归纳思想:根据有限的数据试图探寻总体的规律,然后用归纳法验证猜测的正确性。铁血嘟嘟2023-08-13 09:27:322
高中数学圆锥曲线公式定理
1.离心率0-1是椭圆,1是抛物线,大于1是双曲线。离心率是标准方程中的c/a,也是图像上某点到焦点的距离比该点到准线的距离。(有些灵活的小题需要这样转化)2.标准方程中的字母关系(这个不用多说了吧)3.圆锥曲线与直线方程联立的综合运用主要就是消去一个字母,再用韦达定理(这里要灵活应用,多做题多总结)。这里还可以引伸出“弦长公式”(不过就是由两点间的距离公式+直线斜率共同推导的)。值得注意的是垂直问题转化为向量方便计算,转化为圆有时候会比较简捷(这种不常用)。这些还都是要学好知识后,做题总结(或者说找到感觉)。无非就是两种方向,一是死算,一是技巧。死算就没啥可说的了,学好课本就行了。技巧也可分为两个方向,一是运用概念来转化问题,一是把代数问题转化为几何问题或解析几何。以上都是本人的观点,仅供参考。ardim2023-08-13 09:27:302
高中数学圆锥曲线的所有有用公式
圆锥曲线 圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。 ·圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e·cosθ) 其中e表示离心率,p为焦点到准线的距离。 双曲线 数学上指一动点移动于一个平面上,与平面上两个定点的距离的差始终为一定值时所成的轨迹叫做双曲线(Hyperbola)。两个定点叫做双曲线的焦点(focus)。 ● 双曲线的第二定义: 到定点的距离与到定直线的距离之比=e , e∈(1,+∞) ·双曲线的一般方程为(x^2/a^2)-(y^2/b^2)=1 其中a>0,b>0,c^2=a^2+b^2,动点与两个定点之差为定值2a ·双曲线的参数方程为: x=X+a·secθ y=Y+b·tanθ (θ为参数) ·几何性质: 1、取值区域:x≥a,x≤-a 2、对称性:关于坐标轴和原点对称。 3、顶点:A(-a,0) A"(a,0) AA"叫做双曲线的实轴,长2a; B(0,-b) B"(0,b) BB"叫做双曲线的虚轴,长2b。 4、渐近线: y=±(b/a)x 5、离心率: e=c/a 取值范围:(1,+∞] 6 双曲线上的一点到定点的距离和到定直线的距离的比等于双曲线的离心率 椭圆 目录·定义 ·标准方程 ·公式 ·相关性质 ·历史 定义 椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义: 1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距); 2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的 标准方程 高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程为:x^2/a^2+y^2/b^2=1 其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们分别叫椭圆的长半轴和短半轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,准线方程是x=a^2/c和x=-a^2/c 椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ 公式 椭圆的面积公式: S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长). 椭圆的周长公式: C=2Bπ(圆周率)/A×根号下(2A的平方-2B的平方)(其中A,B分别是椭圆的长半轴和短半轴) 相关性质 由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。 例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义): 将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。 设两点为F1、F2 对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2 则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2 由定义1知:截面是一个椭圆,且以F1、F2为焦点 用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆 椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明) 历史 关于圆锥截线的某些历史:圆锥截线的发现和研究起始于古希腊。 Euclid, Archimedes, Apollonius, Pappus 等几何学大师都热衷于圆锥截线的研究,而且都有专著论述其几何性质,其中以 Apollonius 所著的八册《圆锥截线论》集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲线的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲线;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler 行星运行三定律的发现才知道行星绕太阳运行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler 三定律乃是近代科学开天劈地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。由此可见,圆锥截线不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。 抛物线 1.什么是抛物线? 平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线. 另外,F称为"抛物线的焦点",l称为"抛物线的准线". 定义焦点到抛物线的距离为"焦准距",用p表示.p>0. 以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面 直至与其一边平行,就可以做一条抛物线。 2.抛物线的标准方程 右开口抛物线:y^2=2px 左开口抛物线:y^2=-2px 上开口抛物线:y=x^2/2p 下开口抛物线:y=-x^2/2p 3.抛物线相关参数(对于向右开口的抛物线) 离心率:e=1 焦点:(p/2,0) 准线方程l:x=-p/2 顶点:(0,0) 4.它的解析式求法:三点代入法 5.抛物线的光学性质:经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴. 抛物线:y = ax* + bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x-h)* + k 就是y等于a乘以(x-h)的平方+k h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2pyFinCloud2023-08-13 09:27:302
高中数学圆锥曲线公式定理
圆锥曲线包括椭圆,双曲线,抛物线1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P||PF1|+|PF2|=2a,(2a>|F1F2|)}。2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a,(2a<|F1F2|)}。3.抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。4.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。·圆锥曲线的参数方程和直角坐标方程:1)直线参数方程:x=X+tcosθy=Y+tsinθ(t为参数)直角坐标:y=ax+b2)圆参数方程:x=X+rcosθy=Y+rsinθ(θ为参数)直角坐标:x^2+y^2=r^2(r为半径)3)椭圆参数方程:x=X+acosθy=Y+bsinθ(θ为参数)直角坐标(中心为原点):x^2/a^2+y^2/b^2=14)双曲线参数方程:x=X+asecθy=Y+btanθ(θ为参数)直角坐标(中心为原点):x^2/a^2-y^2/b^2=1(开口方向为x轴)y^2/a^2-x^2/b^2=1(开口方向为y轴)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)直角坐标:y=ax^2+bx+c(开口方向为y轴,a>0)x=ay^2+by+c(开口方向为x轴,a>0)圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e·cosθ)其中e表示离心率,p为焦点到准线的距离。Chen2023-08-13 09:27:271
高中数学 圆锥曲线的参数方程
1、椭圆斜率为3的弦中点的运动轨迹一定是在椭圆内啊,2、如果这个轨迹你求出来的是直线方程l,那么应该是该直线l在椭圆内的一段,即线段ab3、把该直线l与椭圆c联立,就是求这个线段ab的两个端点,实际上只要求出a<x<b,就可以由l确定ab了kikcik2023-08-13 09:27:272
高中数学值域怎么求
一、观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。例1求函数y=3+√(2-3x) 的值域。点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。∴函数的知域为[3,+∞]。点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5})二、反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。例2:求函数y=(x+1)/(x+2)的值域。点拨:先求出原函数的反函数,再求出其定义域。解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。练习:求函数y=(10∧x+10∧-x)/(10∧x-10∧-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})wpBeta2023-08-12 08:46:491
高中数学值域怎么求
这个题目的范围有点广,没有具体的题目,所以解答起来比较宽泛,我就举一个具体的例子来进行解答。比如说函数y=2x,x的取值范围是【5,10】值域代表的意思是指函数的取值范围,每一个x就对应一个y的值,也就是函数的取值,因为x有个定义域,所以对应的y有一个值域。我举例的函数,是一个一次函数,并且是在x的取值范围内单调递增,也就是当x=5,y=10,这是y的最小值,当x=10,y=20,这是y的最大值,所以函数y=2x的值域是【10,20】这是一次函数的求解,另外还有二次函数,三次函数等,很多很多的函数,只要有一个x的定义域范围,也就会对应一个y的值域范围。瑞瑞爱吃桃2023-08-12 08:46:491
高中数学值域怎么求
一、观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。例1求函数y=3+√(2-3x) 的值域。点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。∴函数的知域为[3,+∞]。点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5})二、反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。例2:求函数y=(x+1)/(x+2)的值域。点拨:先求出原函数的反函数,再求出其定义域。解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y_y≠1,y∈R}。点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。练习:求函数y=(10∧x+10∧-x)/(10∧x-10∧-x)的值域。(答案:函数的值域为{y_y<-1或y>1})meira2023-08-12 08:46:431
高中数学奇偶性说课稿
高中数学奇偶性说课稿 导语:奇偶性是函数的基本性质之一。以下是我整理高中数学奇偶性说课稿的资料,欢迎阅读参考。 高中数学奇偶性说课稿1 一、说教学内容及农远资源说明。 《数的奇偶性》是北师大版教材五年级上册第一单元《倍数与因数》最后一课时;是在学生掌握奇数、偶数特点等知识基础之上的一次延伸;是让学生学会用数学策略解决生活问题的一次尝试。因此,本课时教学资源的使用目的主要是帮助学会解决问题的策略,体验猜想结果—举例验证—得出结论这种数学研究方式。农远资源我主要应用于课前的情境创设;教学中对学生体验猜想结果—举例验证—得出结论数学研究方式的辅助;以及学生应用数学模型解决问题中的游戏等环节。 二、说教学目标。 我从知识与技能角度确立目标一:尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。从过程与方法角度确立目标二:通过活动让学生经历猜想结果—举例验证—得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。从情感、态度和价值观角度确立目标三:让学生在活动中体验研究方法,感悟解决问题的不同策略,提高推理能力。 三、说设计理念及农远资源的辅助使用。 本课我是四个方面进行设计的。 第一,我从故事引入,创设一个以摆渡为生的船夫想请学生们帮他解决一个问题这一情境。学生遇到这样一个以前从未见过的问题,便产生认知上的冲突,激发了学生的学习兴趣,也调动了学生学习的积极性,在情境创设中,多媒体资源的辅助使用,有效的调动了学生的求知欲,牢牢地把学生吸引在对未知内容的探究之上了。 第二,我组织学生分小组合作,动手操作,感受数的奇偶性,理解解决问题的不同策略,经历猜想结果—举例验证—得出结论这一数学研究方式。 这部分内容是本课教学的重点也是难点,我安排三个活动,层层推进,帮助学生学习。 活动一:对于船夫提出的划11次船在南岸还是北岸这一问题,我组织学生讨论,寻找解决问题的办法。引导学生尝试用不同的方法来解决,全班汇报交流时,利用媒体展示“列表”、“画示意图”等方式让学生理解解决问题的不同策略。 活动二:让学生翻动自己准备的纸杯子,通过动手操作进一步发现数的奇偶性规律,同时让学生想若把“杯子”换成“硬币”你能提出怎样的问题,并试着回答这些问题,再用硬币操作验证。安排这一活动目的是培养学生提出假设问题—猜想结果—再实践验证的数学研究习惯,发展学生主动探究能力。 活动三:是让学生合作探究加法中数的奇偶性,让学生体验猜想结果—举例验证—得出结论的数学研究方式。本活动主要是让学生相互之间加强交流,形成自主、合作、探究的数学学习课堂。的使用有效的帮助学生建构出数学模型。 第三,运用数学模型,解决实际问题。 这一部分我安排三个内容。第一个内容是出示几个算式,让学生判断结果是奇数还是偶数。这一内容在学生已有数的奇偶性特征这一数学模型经验之后,独立完成已经没有障碍。第二个内容是有3个杯子全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转使得3个杯子全部杯口朝下。这一内容是对前面同一问题的拓展,目的是让学生进一步理解奇偶性,同时培养学生动手实践能力。第三个内容,我安排的是一个游戏,也是一个实际问题,游戏是用骰子掷一次得到一个点数,从A点开始,连续走两次,走到哪一格,那一格的奖品归你。通过这个游戏让学生明白无论掷几,走两次都是偶数,而奖品都在奇数区域里,所以不论怎样都不能获得奖品。让学生运用学过的数学知识解开其中的奥秘,获得情感体验。 第四,总结反思,交流收获,同时进一步拓展知识视野,让学生将学习的知识与生活实际联系起来,培养学生初步的数学应用能力。 以上四步骤,让学生经历从情境创设到建构数学模型,再到运用模型解决解决问题三个阶段,三种层次。学生学会用自己的策略解决问题。媒体资源的辅助使用,让学生的体验更深刻,教学效果更显著,完全实现了课前确立的教学目标。 高中数学奇偶性说课稿2 一.内容和内容分析 “函数的奇偶性”是人教版数学必修教材必修一第一章第三节的内容,本节的主要内容是研究函数的一个性质—函数的奇偶性,学习奇函数和偶函数的概念.奇偶性是函数的一条重要性质,教材从学生熟悉的两个特殊函数入手,从特殊到一般,从具体到抽象,从感性到理性比较系统地介绍了函数的奇偶性.从知识结构看,它既是函数概念的拓展和深化,又为后续研究指数函数、对数函数、幂函数、三角函数的基础,因此,本节课起着承上启下的重要作用。 本节课的教学重点:函数奇偶性的概念及判定。 二.目标和目标分析 (1)知识目标:从形和数两个方面进行引导,使学生理解奇偶性的概念,学会利用定义判断 简单函数的奇偶性。 (2)能力目标:通过设置问题情境培养学生判断、推理的能力,同时渗透数形结合和由特殊 到一般的数学思想方法. (3)情感目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。 三.教学问题诊断分析 导入有点慢,讲的有点细,导致时间上没有完成教学任务,感觉还是自己讲的太多,不能充分调动学生的积极性。 四.教学支持条件分析 用了多媒体,使用ppt,使得奇偶性函数概念的探究过程更形象更直观,是学生理解更深刻。 五.教学过程设计 为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了四个主要的教学程序是: 1.设疑导入、观图激趣: 使用幻灯片展示图片蝴蝶、雪花等让学生感受生活中的美,从而引入对称在函数中的体现。 2.指导观察、形成概念: 作出函数y=x的图象,并观察这两个函数图象的对称性如何? 借助课件演示,让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况?借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。根据以上特点,请学生用完整的语言叙述定义,同时给出板书: 函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数,类比探究2 偶函数的过程,得到奇函数的概念,又通过具体的例子说明了定义域关于原点对称是研究奇偶性的前提。 3.学生探索、发展思维。 接着通过学案上的例一,总结函数奇偶性的"判断方法及步骤: (1)求出函数的定义域,并判断是否关于原点对称 (2)验证f(-x)=f(x)或f(-x)=-f(x) (3)得出结论 由学生小结判断奇偶性的步骤之后,提出新的问题:函数按奇偶性如何分类?既奇又偶的函数是不是只有一个?试举例说明。 4.布置作业: 六.目标检测设计 学案上的题型主要包括奇偶性函数的判断及应用 七.教学反思:(从两方面) 1.思成功 一:是通过设计富有挑战性的问题来呈现背景,通过问题的探究和自主学习来获取相关概念,实现了 “教学逻辑”与“学习逻辑”的连通、“知识逻辑”与“认知逻辑”的连通;二:是在老师创设的情境中,每个学生都积极投入探究过程,学生在疑惑中探索,在探索中思考,在思考中发现,大部分学生积极性高涨,通过看别人怎样观察, 听别人怎样介绍,也学到了知识. 2.思不足 学生练习:在教学过程中应多注意学生的活动,由单一的问答式转化为多方位的考察,以采用 学生板演或者把学生练习投影到屏幕上让全班学生纠正等方式,更好的考察学生掌握情况。 语言组织: 在讲授过程中还要注意到说话语速,语言组织等讲授技巧,应该用平缓的语气讲授,语言描述要简练易懂,不能拖泥带水。 教学环节(的完整): 在授课过程中要注意到教学环节设计,我们的教学过程有复习引入、讲授新课、例题讲解、学生练习、课时小结、布置作业等几个重要的环节,由于时间的关系没有来得及小结造成教学设计不完善。在以后的教学过程中要注意这些环节。 以上是我对这节课以后的教学反思,还有很多地方做的还不完善,我要在以后的教学中努力改进这些错误,以便更好的适应教学,努力使自己的教学更上一层楼。 ;瑞瑞爱吃桃2023-08-12 08:41:101
高中数学的数列问题
他 写得 太复杂了 记住几个公式 1 等差 等比的 通项公式 和求和公式an=a1+(n-1)d Sn=n(a1+an)/2=n*a1+n(n-1)d/2 an=a1q^(n-1) (2)求和公式:Sn=nA1(q=1) Sn=A1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n) (前提:q不等于 1) 还有 形如1/n*(n+1)求和Sn=An-An-1 还有 An =n【(X)n次方】的求和 这几点 掌握 了 高考没问题此后故乡只2023-08-10 10:15:242
人教版-高中数学A版必修二的所有立体几何公式
立方图形立体几何公式名称符号面积S体积V正方体a--边长S=6a^2V=a^3长方体a--长S=2(ab+ac+bc)V=abcb--宽c--高棱柱S--底面积V=Shh--高棱锥S--底面积V=Sh/3h--高棱台S1和S2--上、下底面积V=h〔S1+S2+√(S1^2)/2〕/3h--高拟柱体S1--上底面积V=h(S1+S2+4S0)/6S2--下底面积S0--中截面积h--高圆柱r--底半径C=2πrV=S底h=∏rhh--高C--底面周长S底--底面积S底=πR^2S侧--侧面积S侧=ChS表--表面积S表=Ch+2S底S底=πr^2空心圆柱R--外圆半径r--内圆半径h--高V=πh(R^2-r^2)直圆锥r--底半径h--高V=πr^2h/3圆台r--上底半径R--下底半径h--高V=πh(R^2+Rr+r^2)/3球r--半径d--直径V=4/3πr^3=πd^2/6球缺h--球缺高r--球半径a--球缺底半径a^2=h(2r-h)V=πh(3a^2+h^2)/6=πh2(3r-h)/3球台r1和r2--球台上、下底半径h--高V=πh[3(r12+r22)+h2]/6圆环体R--环体半径D--环体直径r--环体截面半径d--环体截面直径V=2π^2Rr^2=π^2Dd^2/4桶状体D--桶腹直径d--桶底直径h--桶高V=πh(2D^2+d2^)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D^2+Dd+3d^2/4)/15(母线是抛物线形)再也不做站长了2023-08-08 09:24:221
高中数学立体几何等积公式
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。(1)判定直线在平面内的依据(2)判定点在平面内的方法公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线。(1)判定两个平面相交的依据(2)判定若干个点在两个相交平面的交线上公理3:经过不在一条直线上的三点,有且只有一个平面。(1)确定一个平面的依据(2)判定若干个点共面的依据推论1:经过一条直线和这条直线外一点,有且仅有一个平面。(1)判定若干条直线共面的依据(2)判断若干个平面重合的依据(3)判断几何图形是平面图形的依据推论2:经过两条相交直线,有且仅有一个平面。推论3:经过两条平行线,有且仅有一个平面。立体几何直线与平面空间二直线平行直线公理4:平行于同一直线的两条直线互相平行等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。异面直线空间直线和平面位置关系(1)直线在平面内——有无数个公共点(2)直线和平面相交——有且只有一个公共点(3)直线和平面平行——没有公共点立体几何直线与平面直线与平面所成的角(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角(2)一条直线垂直于平面,定义这直线与平面所成的角是直角(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角三垂线定理在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直三垂线逆定理在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直空间两个平面两个平面平行判定性质(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行(2)垂直于同一直线的两个平面平行(1)两个平面平行,其中一个平面内的直线必平行于另一个平面(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面相交的两平面二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角平面角是直角的二面角叫做直二面角两平面垂直判定性质如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内立体几何多面体、棱柱、棱锥多面体定义由若干个多边形所围成的几何体叫做多面体。棱柱斜棱柱:侧棱不垂直于底面的棱柱。直棱柱:侧棱与底面垂直的棱柱。正棱柱:底面是正多边形的直棱柱。棱锥正棱锥:如果棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。球到一定点距离等于定长或小于定长的点的集合。欧拉定理简单多面体的顶点数v,棱数e及面数f间有关系:v+f-e=2善士六合2023-08-08 09:24:051
高中数学直线的斜率怎么求?
已知过两点(x1,y1)(x2,y2),则斜率k=(y1-y2)/(x1-x2)。直线的斜率可理解为倾斜的程度,它是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。我为大家整理了相关内容,大家接着往下看吧。 直线的斜率怎么求 三种方法:(斜率存在时) 1.已知倾斜角a,斜率k=tana 2.已知过两点(x1,y1)(x2,y2),则斜率k=(y1-y2)/(x1-x2) 3.已知直线的方向向量(a,b)则斜率k=b/a 直线的斜率是什么 可理解为倾斜的程度,它是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。直线斜率公式:k=(y2-y1)/(x2-x1)。 如果直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率。当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像(直线)的斜率。Chen2023-08-08 09:12:521
高中数学!!必好评!已知函数f x是定义在r上的奇函数 f(x+1)是偶函数, 当X∈(2,4
点击[http://pinyin.cn/1vSMhXtOyaC] 查看这张图片。[访问验证码是:478913请妥善保管]CarieVinne 2023-08-08 09:02:122
高中数学排列组合公式Cnm(n为下标,m为上标)=n!/m!(n-m)!是怎么来的
表示在n不同的元素里取m个元素不限顺序有几种取法要取m次第一次可以取的元素有n种情况第二次可以取的元素有n-1种情况...第m次可以取的元素有n-m+1种情况根据乘法原理得取m次的情况有n*(n-1)*(n-2)...*(n-m+1)=n!/(n-m)!因为是无序组合所以要除去重复计算的种类就是m!种得到的公式就是Cnm=n!/[(n-m)!*m!]u投在线2023-08-08 08:59:013
求高中数学联赛必须会的公式 (代数几何都要)
http://wenku.baidu.com/view/e07b9daad1f34693daef3e90.html希望你能取得好成绩u投在线2023-08-08 08:56:082
求高中数学三维设计必修2 的答案
必修二三维设计答案meira2023-08-08 08:50:032
请问高中数学三维设计必修5在哪有得卖啊?人教版A
在复习时,由于解题量很大,这就要求我们将解题活动组织得生动活泼、情趣盎然,让学生领略到数学的优美、奇异和魅力,这样才能变苦役为享受,有效防止智力疲劳,保持解题的“好胃口”。一组好的数学题,即便具有相当的难度,它却像一段引人入胜的故事,又像一情节曲折的电视剧,那迭起的悬念、丛生的疑窦正是它的诱人之处,“山重水复”的困惑被“柳暗花明”的喜悦取代之后,学生又怎能不赞叹自己智能?要使学生由“要我学”转化为“我要学”。课堂上要想方设法调动学生的学习积极性,创设情境,激发热情,有一些比较成功的做法:一是运用情感原理,激起学生学习数学的热情;二是运用成功原理,变苦学为乐学;三是在学法上,教学生施展“点金术”等等左迁2023-08-08 08:49:581
高中数学一轮复习用金版新学案,三维设计,创新学案哪个好
金版学案是比较系统的。1知识梳理(这个很重要,上课之前自己先填了)2难点讲解。金版归纳的很好,我们老师常常直接用上面的讲,偶尔补充一下。3习题。习题难度适宜,题量也可以。总之,金版是不错的复习资料,学校订了,就跟着老师的步伐走就好。至于5 3.5 3里面题比较多,都是高考题,也是很好的,而且分专题,你可以买一本,根据自己的需要,选择性的做一些题。比如你数学的立体几何不太好,就可以只做那个专题。 另外 上面的讲解也很好。只是我感觉有些冗杂,不容易找到重点。总之,认真的做好金版学案,可以买一本5 3增加做题量。做题不在多,重要的是做懂。祝你高三顺利,一年后取得理想成绩。Jm-R2023-08-08 08:49:572
高中数学53复习资料是不是每道题都有详细答案解释?学校用的三维设计很多都没有答案解释的。
53书真的很好 。每道题都是详解答案 ,题目道道都是精题 ,内容的讲解也很详细 。备考推荐用53Jm-R2023-08-08 08:49:471
高中数学练习册不会做怎么办 如何学好高中数学
题海,绝对有用………………豆豆staR2023-08-07 09:17:459
高中数学弧度制公式是什么?
高中数学弧度制公式是1°=π/180 rad。弧度制是指用弧长与半径之比度量对应圆心角角度的方式,用符号rad表示,读作弧度。等于半径长的圆弧所对的圆心角叫做1弧度的角。正角的弧度数:正数(正实数)。负角的弧度数:负数(负实数)。零角的弧度数:零。分正负(看∠a的终边旋转方向)。弧长等于半径,该弧的圆心角为1的弧度角。角a的大小与所在圆的半径无关,由比值确定且唯一。弧度的表示方法可以省略。小白2023-08-06 10:58:341
高中数学方程题
设轮船X趟,飞机Y趟300X+150Y=2000250X+100Y=1500康康map2023-08-06 10:54:255
高中数学虚数i的运算
-i1i拌三丝2023-08-05 17:39:415
高中数学中的虚数i应该怎么读?
直接按英文字母发音来读就行了无尘剑 2023-08-05 17:39:347
高中数学常用的数学符号中i 指的是什么?
虚数单位。i的平方=-1真颛2023-08-05 17:39:225
高中数学指数化简公式
首先我们先了解一下对数和指数的概念。对数函数的表达式为:y=loga x,(其中a>0且a≠1,x>0),a为底数,x为真数。指数函数的表达式为:y=a^x,(其中a>0且a≠1),a为底数,x为指数。常见的高中指数化简公式有:am×an=a9(m+n)、am÷an=a(m+n) (am)n=amn=(an)m a0=1 (b/a)=an/bn (ab)n=an×bn a-p=1/ap等等Ntou1232023-08-05 17:38:181
高中数学指数运算公式是什么
指数运算公式是:1、a^log(a)(b)=b2、log(a)(a)=13、log(a)(MN)=log(a)(M)+log(a)(N)4、log(a)(M÷N)=log(a)(M)-log(a)(N)5、log(a)(M^n)=nlog(a)(M)6、log(a)[M^(1/n)]=log(a)(M)/n注意:和对数相比,指数及指数运算要简单得多。但是还是有些基础不是很好的高中同学,对指数运算不够熟练,导致影响后面知识的学习。如对数、指数函数、数列、二项式定理等都需要用到指数及指数运算。指数运算法则是一种数学运算规律。两个或者两个以上的数、量合并成一个数、量的计算叫加法。(如:a+b=c)。两个数相加,交换加数的位置,和不变。 a+b=b+a。三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 (a+b)+c=a+(b+c)。铁血嘟嘟2023-08-05 17:38:041
高中数学排列组合中的c和a有什么区别?什么时候用c,什么时候用a?两者的具体含义是什么?
A是排列A(n,m)=m*(m-1)(m-2)*.....n例如A(2,3)=3*2*1=6是有顺序时用C是组合无序是用C(n,m)=A(n,m)/A(n,n)举个例子甲、乙、丙三个人排队有几种情况。甲、乙、丙 个体有区别为排列问题为A(3,3)=3*2*1=6阿啵呲嘚2023-08-05 17:33:011
高中数学:设函数f(x)=ax+b/x(a,b∈R),若f(x)在点(1,f(1))处的切线的斜率为1, .用a表示b。
1.f"(x)=a-b/x^2由f"(1)=a-b=1 ==>b=a-12.g(x)=lnx- ax-(a-1)/x (x>0)若g(x)≤-1对定义域内的x恒成立需g(x)max≤-1g"(x)=1/x-a+(a-1)/x^2=[-ax^2+x+(a-1)]/x^2 = (x-1)[-ax-(a-1)]/x^2a=0时,g"(x)=(x-1)/x^2, x∈(0,1),g"(x)<0,g(x)递减,x∈(1,+∞),g"(x)>0,g(x)递增g(x)无最大值a≠0时,g"(x)=-a(x-1)[x-(1/a-1)]/x^2 当a<0时,1/a-1<-1 ,x>1时,g"(x)>0, g(x)递增,g(x)无最大值 当0<a<1/2时,1/a-1 >1, x∈(0,1),g"(x)<0,g(x)递减,x∈(1,1/a -1),g"(x)> 0,g(x)递增 x∈(1/a-1,+∞),g"(x)<0 ,g(x)递减 g(x)max=g(1/a-1)=ln(1/a-1)-a(1/a-1)-(a-1)/(1/a-1) =ln(1/a-1)-1+2a>0 不合题意当a=1/2时,g"(x)=-(x-1)^2/(2x^2)≤0 ,g(x)递减,不合题意当1>a>1/2时, 0<1/a-1<1 0<1/a-1<1, (0,1/a-1) 减,(1/a-1,1)增,(1,+∞)减 g(x)max=g(1)=-2a+1≤-1 ==>a≥1 与1/2 <a<1交为空集a≥1时,1/a-1≤0 (0,1)增,(1,+∞)减 g(x)max=g(1)=-2a+1≤-1 ==> a≥1 符合题意 ∴符合条件的 实数a的取值范围是a≥1 。wpBeta2023-08-05 17:26:533
一道高中数学几何题,有图像
高为根号6除3ABC所在圆半径为 根号3除3,面积为 兀|3体积为 二十七分之根号6乘兀tt白2023-08-05 17:14:422
高中数学 错位相减法
错位相减就是 二式减一式,且写的规范些,来找规律,不要着急,其实数学挺简单的。西柚不是西游2023-08-04 11:24:264
高中数学数列错位相减。这一步是怎么来的?
rt,这样看是不是更清楚?肖振2023-08-04 11:24:252
高中数学数列错位相减怎么解
错位相减较常用在数列的通项表现为一个等差数列与一个等比数列的乘积,如an=(2n-1)*2^(n-1),其中2n-1部分可以理解为等差数列,2^(n-1)部分可以理解为等比数列.例如:求和sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,sn=1+3+5+…+(2n-1)=n^2;当x不等于1时,sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);xsn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;两式相减得(1-x)sn=1+2x[1+x+x^2+x^3+…+x^(n-1)]-(2n-1)*x^n;化简得sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2苏萦2023-08-04 11:24:031
高中数学中椭圆和双曲线的离心率e和形状有什么关系?
离心率大于1是双曲线小于1是椭圆肯定对!!!人类地板流精华2023-08-04 11:16:213
高中数学双曲线准线是什么 高中数学双曲线准线解释
1、平面内到一个定点与一条定直线的距离之比是一个大于1的常数的动点的轨迹是双曲线,这个常数即该双曲线的离心率,定点是双曲线的焦点,定直线是双曲线的准线。 2、双曲线上任意一点P与双曲线焦点的连线段,叫做双曲线的焦半径。 3、设双曲线的焦点在x轴上。设F1,F2为双曲线的左右焦点,x为P的横坐标,则P在左支上时:PF1=-(a+ex)PF2=-(ex-a)。P在右支上时:PF1=a+ex, PF2=ex-a。韦斯特兰2023-08-04 11:03:211
高中数学中怎么构造拉格朗日方程求最值?
条件极值问题设Xi>0,对任意i∈(1,2,3,.......n)已知X1X2......Xn=a求1/X1+1/X2+......+1/Xn最小值构造F(x)=1/X1+1/X2+......+1/Xn +t(X1X2......Xn-a)分别对Xi求导i∈(1,2,3,.......n)由FXi"(x)=-1/Xi^2+tX1X2....Xi-1*Xi+1.....Xn令偏导数为0有tX1X2....Xi-1*Xi+1.....Xn=1/Xi^2同时乘以Xi左边就是t*a=右边1/Xi 对任意i∈(1,2,3,.......n)均成立所以显然有Xi均相等所以Xi=a^1/n倒数之和最小为n/a^1/n左迁2023-08-04 10:59:211
高中数学——弧度制
1rad(即1弧度)=π÷180度 1rad×(180÷π)=角度 等于半径长的圆弧所对的圆心角叫做1弧度的角,用弧度作单位来度量角的制度叫做弧度制. 以已知角a的顶点为圆心,以任意值R为半径作圆弧,则a角所对的弧长与R之比是一个定值〔与R无关〕,我们称L=R时的正角为1弧度的角.以1弧度角为量角大小的单位,称此度量制为弧度制,以示与角的另一种度量制——角度制区别. 这个是弧度与度的换算关系 因为360度=2*3.14(弧度) 即180度=3.14(弧度) 两边同除3.14,180/3.14度=1rad(弧度) 两边同除180,1度=3.14/180rad 例如:3.14/6rad=(3.14/6)rad*(180/3.14)=180/6=30度 30度=30*(3.14/180rad)=3.14/6rad 注意:3.14为圆周率大鱼炖火锅2023-08-03 10:50:421
高中数学必修4《任意角和弧度制》教案
高中数学必修4《任意角和弧度制》教案【一】 教学准备 教学目标 一、知识与技能 (1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集 之间建立的一一对应关系.(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系. 二、过程与方法 创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器. 三、情态与价值 教学重难点 重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用. 难点: 理解弧度制定义,弧度制的运用. 教学工具 投影仪等 教学过程 一、 创设情境,引入新课 师:有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里) 显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里. 在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制. 二、讲解新课 1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等. 弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本,自行解决上述问题. 2.弧度制的定义 长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写). (师生共同活动)探究:如图,半径为的圆的圆心与原点重合,角的终边与轴的正半轴重合,交圆于点,终边与圆交于点.请完成表格. 我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-u03c0,-2u03c0等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定. 角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应. 四、课堂小结 度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad sinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。 五、作业布置 作业:习题1.1 A组第7,8,9题. 课后小结 度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad sinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。 课后习题 作业:习题1.1 A组第7,8,9题. 板书 高中数学必修4《任意角和弧度制》教案【二】 教学准备 教学目标 1、知识与技能 (1)推广角的概念、引入大于 角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与 角终边相同的角(包括 角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识. 2、过程与方法 通过创设情境:“转体 ,逆(顺)时针旋转”,角有大于 角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习. 3、情态与价值 通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物. 教学重难点 重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法. 难点: 终边相同的角的表示. 教学工具 投影仪等. 教学过程 【创设情境】 思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25 小时,你应当如何将它校准?当时间校准以后,分针转了多少度? [取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角. 【探究新知】 1.初中时,我们已学习了角的概念,它是如何定义的呢? [展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置OB,就形成角a.旋转开始时的射线叫做角的始边,OB叫终边,射线的端点o叫做叫a的顶点. 2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体” (即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢? [展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle). 8.学习小结 (1) 你知道角是如何推广的吗? (2) 象限角是如何定义的呢? (3) 你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直 线上的角的集合. 五、评价设计 1.作业:习题1.1 A组第1,2,3题. 2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示, 进一步理解具有相同终边的角的特点. 课后小结 (1) 你知道角是如何推广的吗? (2) 象限角是如何定义的呢? (3) 你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直 线上的角的集合. 课后习题 作业: 1、习题1.1 A组第1,2,3题. 2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示, 进一步理解具有相同终边的角的特点. 板书 略苏州马小云2023-08-03 10:50:371
王后雄学案,教材完全解读,高中数学必修一和必修二有没有书后练习答案??急!!!
16版,也就是2015年出版印刷的《教材完全解读》有课后习题的答案。它是单独成册的,夹在书里。而之前出的,其实也有,但没有单独成册,是分散地列在每个章节每一课后面的。mlhxueli 2023-08-03 10:39:061
跪求高中数学新课标人教版必修一B版课后习题答案
不知道mlhxueli 2023-08-03 10:39:032
高中数学必修2课后练习答案(人教版)
不忙大鱼炖火锅2023-08-03 10:39:022
人教B版高中数学必修一课后题答案
百度文库里我见过。苏萦2023-08-03 10:39:022
高中数学人教B版必修1课本课后练习题的答案
哈哈,这个有点困难kikcik2023-08-03 10:39:015
高中数学 选修2-2 课后习题答案(unit 2)
把问题列出来,没问题,怎么算啊西柚不是西游2023-08-03 10:39:013
高中数学人教版必修一课后习题答案
第一章习题1.1一.1、属于 2、属于 3、不属于 4、属于 5、属于 6、属于二.1、属于 2、不属于 3、属于三.1、{2,3,4,5} 2、A={1,-2} 3、B={0,1,2}四.1、{y︱y=x平方—4,x属于R}={y︱y≥-4} 2、{x属于R︱y=2/x(x≠0)}={x︱x≠0} 3、{x︱x≥4/5}五.1、不属于 不属于 真子集 真子集 2、属于 真子集 真子集 等于 3、真子集 真子集六.A={x︱2≤x<4} B={x︱3x—7≥8—2x}={x︱x≥3} ∴A∪B={x︱2≤x<4}∪{x︱x≥3}={x︱x≥2}A∩B={x︱2≤x<4}∩{x︱x≥3}={x︱3≤x<4}七.A={1,2,3,4,5,6,7,8} B={1,2,3} C={3,4,5,6} ∴A∩B={1,2,3},A∩C={3,4,5,6}又B∪C={1,2,3,4,5,6},B∩C={3}A∩(B∪C)={1,2,3,4,5,6},A∪(B∩C)={1,2,3,4,5,6,7,8}打数字好费劲啊。明天给你发另外的苏萦2023-08-03 10:38:571
高中数学必修五等差数列
1.A1=3,An=2n+1;2.n(3n+5)/4(n+1)(n+2)韦斯特兰2023-08-03 10:38:553
北师大版的高中数学必修五课后复习题答案
你最好拍成照片发上来 大家都可以看得到再也不做站长了2023-08-03 10:38:531
高中数学必修五总结
看目录拌三丝2023-08-03 10:38:515
高中数学必修五——数列
你早点补充啊余辉2023-08-03 10:38:502
求,人教版 新课标 高中数学教材的课后练习题答案,全部高中数学,谢谢
王后雄的教材完全解读,里面有教材课后习题答案,希望能帮到你gitcloud2023-08-03 10:38:495
高中数学必修一的全部课后习题答案
弱逼一个,什么问题嘛。忽悠人呢mlhxueli 2023-08-03 10:38:493
谁有苏教版高中数学教材必修2至5的练习题答案
苏教版高中数学教材必修2练习题答案人教版 高中数学 必修二 教材课后习题答案及解析【精品】http://www.docin.com/p-688814703.htmlmeira2023-08-03 10:38:472
高中数学必修五B版课后习题答案
题目呢?小白2023-08-03 10:38:451
人教B版高中数学必修五教材课后习题答案在网上哪里找???
教师用书 每章后都有2011年北有云溪2023-08-03 10:38:442
高中数学必修1-5课后习题答案(人教版)
没有,这位同学抄作业是不好的,嘿嘿如果你不想考大学的话可以不交啊,何必呢大鱼炖火锅2023-08-03 10:38:442
高中数学课本必修五答案
问具体的我帮你解决,我今年刚高中毕业,学的物化选修瑞瑞爱吃桃2023-08-03 10:38:432
北师大版高中数学必修四 必修五 所有复习题的答案
复习题那么简单就不需要答案了啊...hi投2023-08-03 10:38:434
高中数学必修五综合练习题
什么意思 ?hi投2023-08-03 10:38:413
高中数学必修五的课后习题,求用必修五知识解答的过程。第一题。
平方苏萦2023-08-03 10:38:404
高中数学人教版 必修五习题2.2 A组40页 1 2 3 4题答案及详细过程!
1.(1)a10=2+(10-1)d=29(2)an=a1+(n-1)d=3+2n-2=2n+1=21 n=10(3)a6=a1+5d 即27=12+5d 所以d=3(4)a1=a7-6d=8+2=10 3.设中间的角是x度。那么另外2个角分别是x-d x+d(x-d)+x+(x+d)=180x=60度 4.a1=8.5 a5=-17.5 所以4d=a5-a1=-26 d=-13/2a2=a1+d=8.5-13/2=2a4=a1+3d=8.5-39/2=-11a8=a1+7d=8.5-91/2=-37第二题没法做啊!希望对你有帮助,还希望你好好学习啊!这些都是基础!墨然殇2023-08-03 10:38:401
高中数学参数方程知识点
圆的参数方程x=a+rcosθ,y=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数。椭圆的参数方程x=acosθ,y=bsinθa为长半轴长b为短半轴长θ为参数。双曲线的参数方程x=asecθ(正割,)y=btanθa为实半轴长b为虚半轴长θ为参数。抛物线的参数方程x=2pt2,y=2ptp表示焦点到准线的距离t为参数。直线的参数方程 x=x"+tcosa,y=y"+tsina,x",y"和a表示直线经过(x",y"),且倾斜角为a,t为参数。曲线的极坐标参数方程:p =f(t),θ=g(t)。坐标系定义:1、平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。2、空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x轴、y轴、z轴,这样就建立了一个空间直角坐标系Oxyz。极坐标的定义:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。凡尘2023-08-03 10:38:271
高中数学 求函数的值域
那两个顶点对应的y值应该就是值域了,所以答案应该就只有两个了,因为x∈{0,2}Ntou1232023-08-03 10:31:592
高中数学函数求值域的常用方法
1.观察法用于简单的解析式。y=1-√x≤1,值域(-∞, 1]y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).2.配方法多用于二次(型)函数。y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1, +∞)y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)3. 换元法多用于复合型函数。通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。特别注意中间变量(新量)的变化范围。y=-x+2√( x-1)+2令t=√(x-1),则t≤0, x=t^2+1.y=-t^2+2t+1=-(t-1)^2+2≤1,值域(-∞, 1].4. 不等式法用不等式的基本性质,也是求值域的常用方法。y=(e^x+1)/(e^x-1), (0<x<1).0<x<1,1<e^x<e, 0<e^x-1<e-1,1/(e^x-1)>1/(e-1),y=1+2/(e^x-1)>1+2/(e-1).值域(1+2/(e-1),+∞).5. 最值法如果函数f(x)存在最大值M和最小值m.那么值域为[m,M].因此,求值域的方法与求最值的方法是相通的.6. 反函数法有的又叫反解法.函数和它的反函数的定义域与值域互换.如果一个函数的值域不易求,而它的反函数的定义域易求.那么,我们通过求后者而得出前者.7. 单调性法若f(x)在定义域[a, b]上是增函数,则值域为[f(a), f(b)].减函数则值域为[f(b), f(a)].kikcik2023-08-03 10:31:571
田忌赛马田忌赢的概率有多少,高中数学
答案是1/3吗无尘剑 2023-08-02 10:32:286
求高中数学必修的三角函数的全部公式
三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAue718cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)ue117cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))ue657和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B))2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB康康map2023-08-02 10:30:233