泊松分布的概率密度函数和累计密度函数是什么
P{X=k}= (λ“-k" e"-λ")/k! k =0,1,2… λ >0; 0 λ <0;引号内为上标。。。其余自己推。此后故乡只2023-07-17 08:41:153
设随机变量x服从参数为y的泊松分布,使用切比雪夫不等式证明p(0<x<2y)≧(1-1/y)
切比雪夫不等式是说P{|X-EX|<ε}>=1-DX/ε^2y为参数的泊松分布的期望和方差都是y,直接代入就有p(0<x<2y)≧(1-1/y)此后故乡只2023-07-11 08:32:091
泊松分布的方差证明?
如果X~P(a)那么E(x)=D(x)=a;证明过程实在不好写(很多符号)先证明E(x)=a;然后按定义展开E(x^2)=a^2+a;因为D(x)=E(x^2)-[E(x)]^2;得证。典型的有:0-1分布二项分布泊松分布几何分布超几何分布均匀分布指数分布正态分布T(tao)分布等~苏萦2023-07-06 08:14:481
泊松分布和指数分布之间有何关系
如果单位时间发生的次数(如到达的人数)服从参数为r的泊松分布,则任连续发生的两次时间的间隔时间序列服从参数为r的指数分布小白2023-07-06 08:14:381
求泊松分布和指数分布的期望和方差公式
import numpy as npx = np.random.poisson(lam=12, size=30) #lam就是均值和方差λ啦,size是产生多少个随机数print(x)bikbok2023-07-06 08:14:353
设随机变量X服从参数为2的泊松分布,E(X),D(X)=?求详细解答
1、具体回答如图:位置参数γ确定了一个分布函数取值范围的横坐标。γ改变时,相应的分布函数仅仅向左或向右移动而不发生其他变化。2、你好!X服从参数为λ的泊松分布时E(X)=λ,E(X^2)=λ+λ^2,由于E[(X-2)(X-3)]=E(X^2-5X+6)=E(X^2)-5E(X)+6=(λ^2)-4λ+6=2,所以可以解出λ=2。经济数学团队帮你解请及时采纳。3、D(X)指方差,E(X)指期望。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。4、假设你知道Poisson分布的期望E(X)和方差Var(X)都是λ0,那么E[(X-1)(X-2)]=E(X^2-3X+2)=E(X^2)-3E(X)+E(2)=Var(X)+[E(X)]^2-3E(X)+2=λ+λ^2-3λ+2=λ^2-2λ+2=1,所以λ=1。5、具体回答如图:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。6、你好!离散型随机变量x服从参数λ=3的泊松分布,则ex=λ=3,所以e(2x—5)=2ex-5=2*3-5=1。经济数学团队帮你解请及时采纳。meira2023-07-06 08:07:571
泊松分布的期望和方差公式及详细证明过程
泊松分布 正态分布 几何分布 指数分布 均匀分布 二项分布 卡方分布 超几何分布泊松分布的概率密度函数为: :P(X=k)=frac{e^{-lambda}lambda^k}{k!} 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: P(x)=(m^x/x!)*e^(-m) p ( 0 ) = e ^ (-m) 称为泊松分布。例如采用0.05J/m2紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: P(0)=e^(-3)=0.05; P(1)=(3/1!)e^(-3)=0.15; P(2)=(3^2/2!)e^(-3)=0.22; P(3)=0.22; P(4)=0.17;…… P(0)是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/m2照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此P(1),P(2)……就意味着全部死亡的概率。 在百度上搜了一下,只有这些,我们以前只学了正态分布。期望,方差就记住公式就可以了,证明的话需要一些比较深的知识,总和e有关系。求积分变换。康康map2023-07-06 08:07:376
概率论问题:若X服从参数为λ的泊松分布,则EX和DX有什么关系?求解释
D(X)指方差,E(X)指期望。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。在概率论和统计学中,数学期望(或均值,也简称期望)是最基本的数学特征之一,它是一个实验中每个可能结果的概率乘以结果的总和。它反映了随机变量的平均值。方差与期望的相关性计算公式如下:DX=E(X-E(X))^2=E{X^2-2XE(X)+(E(X))^2}=E(X^2)2(E(X))^2+(E(X))^2扩展资料:对于连续随机变量X,若定义域为(a,b),概率密度函数为F(X),则连续随机变量X的方差计算公式为:D(X)=(X-)^2f(X)dx。方篆差描述了随机变量的值与其数学期望的离散程度。(标准差和方差越大,离散程度越大)如果X值集中,D(X)的方差较小;如果X的值是分散的,那么D(X)的方差就很大。所以D(X)是对X离散程度的度量,它是对X离散程度的度量。参考资料:百度百科——数学期望参考资料:百度百科——方差Ntou1232023-07-06 08:07:351
x1,x2服从泊松分布
设X1,X2……Xn是相互独立的随机变量序列且他们服从参数λ的泊松分布,则由中心极限定理知lim n趋向无穷大P﹛ ﹜=Φ(x)拌三丝2023-06-13 07:24:258
设随机变量服从指数分布,且D(X)=0.2,则E(X)= 。 设随机变量服从泊松分布,且D(X)=0.3,则E(X)= 。
E(X)=1/√5E(x)=D(x)=0.3妥妥的,一定是这样!如有意见,欢迎讨论,共同学习;如有帮助,请选为满意回答!Ntou1232023-06-13 07:23:201
泊松分布,二项分布和双变量分布的区别
泊松分布和二项分布是讨论某单一变量分布的特点,泊松分布是二项分布n很大而P很小时的特殊形式。双变量分布是单变量分布向多维的推广,其讨论的是两个变量的分布情况。 二项分布是指统计变量中只有性质不同的两项群体的概率分布。所谓两项群体是按两种不同性质划分的统计变量,是二项试验的结果。即各个变量都可归为两个不同性质中的一个,两个观测值是对立的。因而两项分布又可说是两个对立事件的概率分布。 二项分布用符号b(x.n.p),表示在n次试验中有x次成功,成功的概率为p。 二项分布的概率函数可写作: 式中x=0、1、2、3.....n为正整数 泊松分布是一种统计与概率学里常见到的离散机率分布。 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。泊松分布适合于描述单位时间内随机事件发生的次数。 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧10,p≦0.1时,就可以用泊松公式近似得计算。凡尘2023-06-11 08:59:451
泊松分布,二项分布和双变量分布的区别
泊松分布和二项分布是两种特定的分布,双变量分布是一类分布,跟两个因素有关豆豆staR2023-06-10 09:04:233
设随机变量X服从参数为λ的泊松分布,即X~P(λ),已知P(X=1)=P(X=2),则X的期望E(X)为多少
P(X=k)=(λ^k/k!) * e^(-λ) E(X)=λP(X=1)=(λ^1/1!) * e^(-λ)=λ * e^(-λ)P(X=2)=(λ^2/2!) * e^(-λ)=0.5λ^2 * e^(-λ)λ * e^(-λ) = 0.5λ^2 * e^(-λ)λ=0或λ=2λ=0舍去,故λ=2E(X)=2康康map2023-06-10 08:09:191
设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则EX=? DX=?
随机变量X服从参数为λ的泊松分布P{X=k}=e^(-λ) * λ^k / k!P{X=1}=e^(-λ) * λ^1 / 1!P{X=2}=e^(-λ) * λ^2 / 2!若P{X=1}=P{X=2}λ=2E(x)=D(x)=2如有意见,欢迎讨论,共同学习;如有帮助,请选为满意回答!小菜G的建站之路2023-06-10 08:09:151
设随机变量X服从参数为λ的泊松分布,且p{X=1}=p{X=2},则EX=?DX=?求过程~
过程的话,有些符号不会打。但有这样的结论:泊松分布的数学期望与方差相等,都等于参数λ.因为泊松分布只含有一个参数,只要知道它的数学期望或者方差就能完全确定它的分布FinCloud2023-06-06 08:01:452
泊松分布到底是什么??麻烦说清楚,泊松事件呢?
概率论中常用的一种离散型概率分布。若随机变量 X 只取非负整数值,取k值的概率为λke-l/k!(记作P (k;λ),其中k可以等于0,1,2,则随机变量X 的分布称为泊松分布,记作P(λ)。这个分布是S.-D.泊松研究二项分布的渐近公式是时提出来的。泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差。在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率 λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布。因此泊松分布在管理科学,运筹学以及自然科学的某些问题中都占有重要的地位。 泊松分布(Poisson distribution),台译卜瓦松分布,是一种统计与概率学里常见到的离散机率分布(discrete probability distribution),由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。 泊松分布的概率密度函数为: P(X=k)=frac{e^{-lambda}lambda^k}{k!} 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。(Poisson distribution),-{zh-cn:台译卜瓦松分布;zh-tw:也译为布瓦松分布,布阿松分布,波以松分布等}-,是一种统计与概率学里常见到的离散机率分布(discrete probability distribution),由法国数学家(Siméon-Denis Poisson)在1838年时发表。泊松分布的概率密度函数为::P(X=k)=frac{e^{-lambda}lambda^k}{k!}泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: P(x)=(mx/x!)e-m 称为泊松分布。例如采用0.05J/m2紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: P(0)=e-3=0.05; P(1)=(3/1!)e-3=0.15; P(2)=(32/2!)e-3=0.22; P(3)=0.22; P(4)=0.17;…… P(0)是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/m2照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此P(1),P(2)……就意味着全部死亡的概率。一种累计随机事件发生次数的最基本的独立增量过程。例如随着时间增长累计某电话交换台收到的呼唤次数,就构成一个泊松过程。用数学语言说,满足下列三条件的随机过程X={X(t),t≥0}叫做泊松过程。①P(X(0)=0)=1。②不相交区间上增量相互独立,即对一切0≤t1<t2<…<tn,X(t1),X(t2)-X(t1),…,X(tn)-X(tn-1)相互独立。③增量X(t)-X(s) (t>s)的概率分布为泊松分布,即,式中Λ(t)为非降非负函数。若X还满足④X(t)-X(s)的分布仅依赖于t-s,则称X为齐次泊松过程;这时Λ(t)=λt,式中常数λ>0称为过程的强度,因为EX(t)=Λ(t)=λt,λ等于单位时间内事件的平均发生次数。非齐次泊松过程可通过时间尺度的变换变为齐次泊松过程。对泊松过程,通常可取它的每个样本函数都是跃度为1的左(或右)连续阶梯函数。可以证明,样本函数具有这一性质的、随机连续的独立增量过程必是泊松过程,因而泊松过程是描写随机事件累计发生次数的基本数学模型之一。直观上,只要随机事件在不相交时间区间是独立发生的,而且在充分小的区间上最多只发生一次,它们的累计次数就是一个泊松过程。在应用中很多场合都近似地满足这些条件。例如某系统在时段【0,t)内产生故障的次数,一真空管在加热t秒后阴极发射的电子总数,都可假定为泊松过程。1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来Α.Я.辛钦于50年代在服务系统的研究中又进一步发展了它。 齐次泊松过程的特征 描述随机事件累计发生次数的过程通常称为计数过程(见点过程)。一个简单而且局部有限的计数过程{X(t),t≥0},往往也可以用它依次发生跳跃(即发生随机事件)的时刻{Tn,n≥1}来规定,即取T0=0,Tn=inf{t:X(t)≥n},n≥1,而当Tn<t≤Tn+1时,X(t)=n。若以,表示X(t)发生相邻两次跳跃的时间间距,则计数过程是齐次泊松过程的充分必要条件为{τn,n≥1}是相互独立同分布的,且,其中λ为某一非负常数。齐次泊松过程的另一个特征是:固定t,X(t)是参数为λt的泊松分布随机变量,而当X(t)=k已知的条件下,X的k个跳跃时刻与 k个在[0,t)上均匀分布且相互独立的随机变量的次序统计量(见统计量)有相同的分布。泊松过程的这一特征常作为构造多指标泊松过程的出发点。从马尔可夫过程来看,齐次泊松过程是时间空间都为齐次的纯生马尔可夫链。从鞅来看,齐次泊松过程X是使{X(t)-λt,t≥0}为鞅的跃度为1的计数过程。 泊松过程的推广 较泊松过程稍为广泛的计数过程是更新过程,更新过程的跳跃时间间距是相互独立同分布的,但不一定是指数分布。这类过程常被用来描写某些设备的累计故障次数。若对跳跃时间间距不作任何假定,就成为一般的计数过程或称一维点过程。假如某设备在【0,t)时段内故障的累计次数N(t)是泊松过程,而每次故障造成的耗损不尽相同,用随机变量Yi表示第i次耗损,则在【0,t)内总的耗损为。当{N(t),t≥0}为齐次泊松过程,{Yi,i≥1}又是相互独立同分布且与{N(t)}独立时,X={X(t),t≥0}称为复合泊松过程。由于{N(t),t≥0}可以用其跳跃时刻{Ti,i≥1}来规定,因而复合泊松过程可用{(TnYn),n≥1}来规定,即。若对{(Tn,Yn),n≥1}的统计特性不作任何假定,这样规定的X 便是一种一般地描述系统跳跃变化的随机过程,常称为标值点过程,也称多变点过程或跳跃过程。 泊松过程除作为计数过程的一种重要数学模型外,又是众多重要随机过程的特例。独立增量过程的莱维-伊藤分解表明,利用它还可构成一般的独立增量过程,因而它在随机过程中占有特殊地位,也有人把它与布朗运动一起称之为随机过程的基石。ardim2023-06-06 08:01:451
泊松分布的λ和e是什么意思?公式是怎么来的?
率论中常用的一种离散型概率分布.若随机变量nbsp;Xnbsp;只取非负整数值,取k值的概率为λke-l/k!(记作Pnbsp;(k;λ),其中k可以等于0,1,2,则随机变量Xnbsp;的分布称为泊松分布,记作P(λ).这个分布是S.-D.泊松研究二项分布的渐近公式是时提出来的.泊松分布Pnbsp;(λ)中只有一个参数λnbsp;,它既是泊松分布的均值,也是泊松分布的方差.在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率nbsp;λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布.因此泊松分布在管理科学,运筹学以及自然科学的某些问题中都占有重要的地位.nbsp;nbsp;nbsp;泊松分布(Poissonnbsp;distribution),台译卜瓦松分布,是一种统计与概率学里常见到的离散机率分布(discretenbsp;probabilitynbsp;distribution),由法国数学家西莫恩·德尼·泊松(Siméon-Denisnbsp;Poisson)在1838年时发表.nbsp;泊松分布的概率密度函数为:nbsp;P(X=k)=frac{e^{-lambda}lambda^k}{k!}nbsp;泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率.nbsp;泊松分布适合于描述单位时间内随机事件发生的次数.如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等.nbsp;nbsp;(Poissonnbsp;distribution),-{zh-cn:台译卜瓦松分布;zh-tw:也译为布瓦松分布,布阿松分布,波以松分布等}-,是一种统计与概率学里常见到的离散机率分布(discretenbsp;probabilitynbsp;distribution),由法国数学家(Siméon-Denisnbsp;Poisson)在1838年时发表.nbsp;nbsp;泊松分布的概率密度函数为:nbsp;nbsp;:P(X=k)=frac{e^{-lambda}lambda^k}{k!}nbsp;nbsp;泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率.nbsp;nbsp;泊松分布适合于描述单位时间内随机事件发生的次数.如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等.nbsp;nbsp;观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示:nbsp;nbsp;nbsp;P(x)=(mx/x!)e-mnbsp;nbsp;称为泊松分布.例如采用0.05J/m2紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体.实际上每个基因组二体的分布是服从泊松分布的,将取如下形式:nbsp;nbsp;P(0)=e-3=0.05;nbsp;nbsp;P(1)=(3/1!)e-3=0.15;nbsp;nbsp;P(2)=(32/2!)e-3=0.22;nbsp;nbsp;P(3)=0.22;nbsp;nbsp;P(4)=0.17;……nbsp;nbsp;P(0)是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/m2照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的.由于该菌株每个基因组有一个二体就是致死量,因此P(1),P(2)……就意味着全部死亡的概率.真颛2023-06-06 08:01:451
设随机变量X服从参数为4的泊松分布,则DX =____________.
泊松分布的期望Ex=λ=4,Dx=λ=4 PS:泊松分布式(λ^k)/k!*e(-λ)铁血嘟嘟2023-06-06 08:01:441
概率论:随机变量X服从参数λ的泊松分布,当k取何值时概率最大?
设X=k时概率最大P(X=k)/P(X=k+1)=[λ^k*e^(-λ)/k!]/[λ^(k+1)*e^(-λ)/(k+1)!]=(k+1)/λ>=1即k>=λ-1P(X=k)/P(X=k-1)=[λ^k*e^(-λ)/k!]/[λ^(k-1)*e^(-λ)/(k-1)!]=λ/k>=1即k<=λ故当λ为整数时,k=λ或λ-1时,概率最大当λ不为整数时,k=[λ]时,概率最大tt白2023-06-06 08:01:441
设随机变量X服从参数为3的泊松分布,则X平方数学期望,
依题意可以得到λ=3,; 所以E(X)=D(X)=3; 而D(X)=E(X^2)-E(X)^2=3; 所以E(X^2)=E(X)^2+D(X)=12;肖振2023-06-06 08:01:441
设随机变量X服从参数为4的泊松分布,则DX =____________.
泊松分布的期望Ex=λ=4,Dx=λ=4 PS:泊松分布式(λ^k)/k!*e(-λ)左迁2023-06-06 08:01:441
填空 设随机变量X服从参数为1的泊松分布,则P(X〉0)=?
因为X服从参数为1的泊松分布,所以P(X=k)=[e^(-1)*1^k]/k!=e^(-1)/k!, P(X>0)=1-P(X=0)=1-e^(-1)/0!=1-e^(-1)=(e-1)/e苏萦2023-06-06 08:01:441
设随机变量X服从泊松分布,且3P{X=1}+2P{X=2}=4P{X=0},求X的期望和方差?
P(x=k)=(m^k/k!)*e^(-m)x=1,x=2,x=0分别代入3p(X=1)+2P(X=2)=4P(X=0),化简3u+u^2-4=0u=1X~P(1)E(X)=D(X)=1扩展资料在做实验时,常常是相对于试验结果本身而言,主要还是对结果的某些函数感兴趣。例如,在掷骰子时;常常关心的是两颗骰子的点和数,而并不真正关心其实际结果,就是说,我们关心的也许是其点和数为7,而并不关心其实际结果是否是(1,6)或(2,5)或(3,4)或(4,3)或(5,2)或(6,1)。我们关注的这些量,或者更形式的说,这些定义在样本空间上的实值函数,称为随机变量。因为随机变量的值是由试验结果决定的,所以我们可以给随机变量的可能值指定概率。肖振2023-06-06 08:01:433
设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则EX=? DX=?
随机变量X服从参数为λ的泊松分布 P{X=k}=e^(-λ) * λ^k / k! P{X=1}=e^(-λ) * λ^1 / 1! P{X=2}=e^(-λ) * λ^2 / 2! 若P{X=1}=P{X=2} λ=2 E(x)=D(x)=2 如有意见,欢迎讨论,共同学习;如有帮助,此后故乡只2023-06-06 08:01:431
随机变量x服从泊松分布,P(X=1)=P(X=2),E(3X-1)=?
P(X<=1 )=P(X=1)北有云溪2023-06-06 08:01:431
泊松分布:设随机变量X服从参数为5泊松分布,求P{X=10}为什么让P{X=10}=P{X大于=10}-P{X大于=11}
因P{X大于=10}=P10+P11+P12+......P{X大于=11}=P11+P12+......故P{X大于=10}-P{X大于=11}=(P10+P11+P12+......) - (P11+P12+......) = P10此后故乡只2023-06-06 08:01:431
设随机变量X服从参数为2的泊松分布,则P{X=E(X)}=?
泊松分布的期望就是参数值,所以此题就是求X=2的概率,如图代公式即得。经济数学团队帮你解答,请及时采纳。谢谢!凡尘2023-06-06 08:01:431
泊松分布公式里哪些符号和英文是什么意思
X:随机变量。P(λ):随机变量X的分布称为泊松分布,记作P(λ)。λ:是单位时间(或单位面积)内随机事件的平均发生率。它是泊松分布的均值,也是泊松分布的方差,泊松分布P(λ)中唯一的一个参数。k:单位时间内随机事件发生的次数(k=0,1,2,…),如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。e:自然对数。P.S.基本就这么理解,没明白的地方请指出来。mlhxueli 2023-06-06 08:01:421
设随机变量X服从参数为2的泊松分布,随机变量Y=2X-2,则E(Y)=?
泊松分布的期望和方差均为 λ(就是参数)。所以E(Y)=2*E(X)-2=2E(Y)=2西柚不是西游2023-06-06 08:01:421
泊松分布的参数该怎么计算
说下λ(poisson分布参数)的意义吧λ表示在一定时间(单位时间)内事件发生的平均次数。例如在一天内访问某个商场的人数服从poisson分布,并且估计出平均人数为x人,这里poisson分布的参数就是平均人数。与λ相对,1/λ为指数分布的期望,表示需要的时间(每个事件)LZ是不是要按照实际意义去计算λ?善士六合2023-06-06 08:01:425
泊松分布的特征函数
泊松分布的特征函数如下:泊松分布概率密度函数是P{X=k}=λ^k/(k!e^λ)k=0,1,2……k代表的是变量的值。泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。泊松分布的期望和方差相等,当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。分布函数:分布函数(英文Cumulative Distribution Function, 简称CDF),是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。若已知X的分布函数,就可以知道X落在任一区间上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。如果将X看成是数轴上的随机点的坐标,那么,分布函数F(x)在x处的函数值就表示X落在区间上的概率。u投在线2023-06-06 08:01:411
设随机变量 X 服从参数为 λ 的泊松分布,则特征函数() =?
Chen2023-06-06 08:01:412
设随机变量x服从参数为λ的泊松分布,求E(X+1)^-1
你好 这题的思路是把期望展开,然后利用泊松分布的概率质量公式将期望的表达式进行整理,具体步骤如下 最后的结果是(1-e^{-λ})/λ 如果发现有问题的话,再问我吧 望采纳北营2023-06-06 08:01:404
设随机变量X服从参数为2的泊松分布,E(X),D(X)=?求详细解答
泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差现在X是服从参数为2的泊松分布,所以E(X)=D(X)=2左迁2023-06-06 08:01:401
泊松分布公式里哪些符号和英文是什么意思 何谓随机变量
X:随机变量. P(λ):随机变量X的分布称为泊松分布,记作P(λ). λ:是单位时间(或单位面积)内随机事件的平均发生率.它是泊松分布的均值,也是泊松分布的方差,泊松分布P(λ)中唯一的一个参数. k:单位时间内随机事件发生的次数(k=0,1,2,…),如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等. e:自然对数. P.S.基本就这么理解,没明白的地方请指出来.豆豆staR2023-06-06 08:01:391
二项分布,泊松分布,正太分布中哪些是离散型随机变量,哪些是连续型随机变量
你好!二项分布与泊松分布是离散型随机变量,正态分布是连续型随机变量。经济数学团队帮你解答,请及时采纳。谢谢!真颛2023-06-06 08:01:392
数学实验中:”求服从以为参数的泊松分布的随机变量的函数f(x)=x^2的数学期望“,是什么意思?
这个表明,随机变量X服从泊松分布,求X的函数x^2的期望。用随机变量函数的期望公式求解即可。解答见下图:大鱼炖火锅2023-06-06 08:01:391
设随机变量X服从参数为2的泊松分布,E(X),D(X)=?求详细解答
泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差 现在X是服从参数为2的泊松分布, 所以E(X)=D(X)=2九万里风9 2023-06-06 08:01:391
概率论:设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)为
因题干条件不完整,缺少文字,不能正常作答。北境漫步2023-06-06 08:01:382
设随机变量X服从参数为2的泊松分布,则E(X^2)=? 求解答过程
X~π(2) E(x)=2 D(X)=2 D(X)=E(X^2)-[E(X)]^2 2=E(X^2)-4 E(X^2)=6肖振2023-06-06 08:01:371
设随机变量X服从参数为3的泊松分布,随机变量Y~N(1,4),则E(X^2+Y^2)=?
15西柚不是西游2023-06-06 08:01:372
设随机变量X服从参数λ=1的泊松分布,记随机变量Y= ,试求随机变量Y的分布律
P(x=k)=∑k=0~无穷1/k!*e-1P(Y=0)=P(X<=1)=P(X=0)+P(X=1)=2e-1;P(Y=1)=P(X>1)=1-P(X<=1)=1-2e-1北境漫步2023-06-06 08:01:372
为什么随机变量服从泊松分布则P{X=10}=P{X≥10}-P{X≥11
泊松分布只能取整数值,所以P(X≥10)=P(X=10)+P(X=11)+P(X=12)+...,P(X≥11)=P(X=11)+P(X=12)+...,两者相减就是P(X≥10)-P(X≥11)=P(X=10)。kikcik2023-06-06 08:01:371
设随机变量x服从参数为3的泊松分布 则p(x=2)
P(X=2)=[9e^(-3)]/2kikcik2023-06-06 08:01:361
概率论问题:若X服从参数为λ的泊松分布,则EX和DX有什么关系?求解释
都等于λ铁血嘟嘟2023-06-06 08:01:363
设随机变量x服从参数为入的泊松分布,已知p0,p12p2成等差数列求ex,dx
P(X=k)=(λ^k/k!) * e^(-λ) E(X)=λ P(X=1)=(λ^1/1!) * e^(-λ)=λ * e^(-λ) P(X=2)=(λ^2/2!) * e^(-λ)=0.5λ^2 * e^(-λ) λ * e^(-λ) = 0.5λ^2 * e^(-λ) λ=0或λ=2 λ=0舍去,故λ=2 E(X)=2u投在线2023-06-06 08:01:351
设离散型随机变量X服从参数为λ的泊松分布,已知P(X=1)=P(X=2),试求参数λ 的值 求具体过程 有图更好
P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2,λ=λ^2/2,λ=2,P{X=4}=2^4*e^-2/4!=2e^-2/3。随机变量分为离散型随机变量与 非离散型随机变量两种,随机变量的函数仍为随机变量。有些随机变量,它全部可能取到的不相同的值是有限个或可列无限多个,也可以说概率1以一定的规律分布在各个可能值上。这种随机变量称为"离散型随机变量"。扩展资料:离散型随机变量概率分布定义1:如果随机变量X只可能取有限个或至多可列个值,则称X为离散型随机变量。定义2:设X为离散型随机变量,它的一切可能取值为X1,X2,……,Xn,……,记P=P{X=xn},n=1,2...称上式为X的概率函数,又称为X的概率分布,简称分布。应用范围:自变量的变换、卷积和、傅里叶级数、傅里叶变换、Z变换。小白2023-06-06 08:01:351
设随机变量x服从参数为入的泊松分布,则P(X=m)=?
泊松分布是一种离散型概率分布,用于描述在一段时间或区间内,某一事件发生的次数。其概率质量函数为:$$P(X=m)=frac{lambda^me^{-lambda}}{m!}$$其中,$lambda$为事件发生的平均次数,m为实际发生的次数。该分布的特点是:平均值等于方差,即$E(X)=Var(X)=lambda$。举个例子,假设某商店每小时平均有5名顾客进店,那么在某一小时内,有0、1、2、3、4、5……名顾客进店的概率分别为:$$P(X=0)=frac{5^0e^{-5}}{0!}=0.0067$$$$P(X=1)=frac{5^1e^{-5}}{1!}=0.0337$$$$P(X=2)=frac{5^2e^{-5}}{2!}=0.0842$$$$P(X=3)=frac{5^3e^{-5}}{3!}=0.1404$$$$P(X=4)=frac{5^4e^{-5}}{4!}=0.1755$$$$P(X=5)=frac{5^5e^{-5}}{5!}=0.1755$$……以此类推。因为泊松分布是一个概率分布,所以所有可能的概率之和应该等于1,即:$$sum_{m=0}^{infty}frac{lambda^me^{-lambda}}{m!}=1$$这个式子其实就是泊松分布的概率质量函数的和。再也不做站长了2023-06-06 08:01:341
如何用c语言生成符合泊松分布的随机变量?
#include "stdio.h" #include "conio.h" #include "stdlib.h" #define MAXNUM 8 #define MAXTIME 10000 float p_before[MAXNUM]={0.1, 0.1, 0.1, 0.1, 0.2, 0.1, 0.2, 0.1}; //预期概率 float p_after[MAXNUM]; //计算后的概率 float cnt[MAXNUM]; //记录实际出现的概率 void init() { int i; float total=0; for(i=MAXNUM-1;i>=0;i--) { total+=p_before; p_after=p_before/total; cnt=0; } } int randp(float p) //调用本函数将以p的概率返回1,以(1-p)的概率返回0 { float rand_num ; rand_num=random(1000) ; //产生一个 0~(MAXNUM-1) 之间的整数 if (rand_num < 1000*p) return(1) ; else return(0) ; } int randnum() { int i; for(i=0;i<MAXNUM;i++) if(randp(p_after)) return(i); return(MAXNUM-1); } main() { int i,num; init(0); for(i=0;i<MAXTIME;i++) { num=randnum(); cnt[num]++; } for(i=0;i<MAXNUM;i++) printf("cnt[%d]=%.4f, p_before[%d]=%.4f ",i,cnt/MAXTIME,i,p_before); getch(); }FinCloud2023-06-06 08:01:342
设随机变量X服从参数为2的泊松分布,E(X),D(X)=?求详细解答
泊松分布P(λ)中只有一个参数λ,它既是泊松分布的均值,也是泊松分布的方差现在X是服从参数为2的泊松分布,所以E(X)=D(X)=2小白2023-06-06 08:01:341
请问泊松分布的问题: 设随机变量X~π(2),则P(X
间本来就有一种隔阂,但是有些人互相关爱,让他们更加亲近、和谐、还记得那一天发生的事…… 那天,要数学考试.离考试还有五分钟的时候,我再一次检查我的文具盒,看看文具准备好了没.中性笔,好好地躺在文具盒中;铅笔,乖乖地趴在文具盒里内;橡皮,安静地坐在文具盒里;尺子,咦?尺子跑哪去了?我再一次检查,嘴里还喃喃自语“中性笔,铅笔,橡皮……”还是不见尺子.我看了看表,糟了,快上课了,怎么办?怎肖振2023-06-06 08:01:341
随机变量 X 服从入=2的泊松分布,P(X>=1)等于?
简单计算一下,答案如图所示CarieVinne 2023-06-06 08:01:342
泊松分布随机变量可以取负值吗?
泊松分布随机变量,可以一起复制吗?也是可以去复制的没人提的黑桃花2023-06-06 08:01:337
设随机变量x服从参数为λ的泊松分布,且已知E[(x-1)(x-2)]=1,求λ
因为x服从参数为λ的泊松分布,那么可知E(X)=λ,D(X)=λ。而D(X)=E(X^2)-[E(X)]^2,那么E(X^2)=λ+λ^2又因为E[(X-1)(X-2)]=E(X^2-3X+2)=E(X^2)-E(3X)+E(2)=λ+λ^2-3λ+2=λ^2-2λ+2由题意可知,λ^2-2λ+2=1,解的λ=1。善士六合2023-06-06 08:01:333
泊松分布公式里哪些符号和英文是什么意思 何谓随机变量
X:随机变量. P(λ):随机变量X的分布称为泊松分布,记作P(λ). λ:是单位时间(或单位面积)内随机事件的平均发生率.它是泊松分布的均值,也是泊松分布的方差,泊松分布P(λ)中唯一的一个参数. k:单位时间内随机事件发生的次数(k=0,1,2,…),如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等. e:自然对数. P.S.基本就这么理解,没明白的地方请指出来.余辉2023-06-06 08:01:311
二项分布,泊松分布,正太分布中哪些是离散型随机变量,哪些是连续型随机变量
离散型随机变量:二项分布与泊松分布。连续型随机变量:正态分布。1、离散变量是指其数值只能用自然数或整数单位计算的,则为离散变量。例如,企业个数、职工人数、设备台数等。只能按计量单位数计数,这种变量的数值一般用计数方法取得。2、连续随机变量,在一定区间内可以任意取值的变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。例如, 生产零件 的 规格尺寸 , 人体测量 的身高、体重、胸围等为连续变量,其数值只能用测量或计量的方法取得。扩展资料:区别离散型随机变量只可能出现可数型的实现值,比如自然数集,{0,1}等等,常见的有二项随机变量,泊松随机变量等。连续型随机变量的实现值是属于不可数集合的,比如(0,1],实数集,常见的有正态分布,指数分布,均匀分布等。参考资料:百度百科-离散型随机变量参考资料:百度百科-连续型随机变量肖振2023-06-06 08:01:311
设随机变量X与Y相互独立,X服从二项分布,n=2,p=0.5,Y服从参数为1的泊松分布,则
u投在线2023-06-06 07:58:441
正态分布、泊松分布、二项分布、负二项分布、指数分布、幂律分布的生物信息学应用,举例说明
泊松分布和二项分布是讨论某单一变量分布的特点,泊松分布是二项分布n很大而P很小时的特殊形式。双变量分布是单变量分布向多维的推广,其讨论的是两个变量的分布情况。 二项分布是指统计变量中只有性质不同的两项群体的概率分布。Chen2023-06-06 07:58:261
对于参数为y的泊松分布,证明若y为一整数,当k=y时,p(x=k)为最大值
将参数看作自变量,即求y为何值时,泊松方程最大.两边取ln,然后求极值即可.由于n阶可导,所以一阶导数==0时,y的取值即为p(x=k)的最大值,此时y==k.真颛2023-05-25 22:20:341
几何分布、二项分布和泊松分布
1.几何分布适用条件: 1)进行一系列相互独立的试验。 2)每一次试验都既有成功的可能,也有失败的可能,且单次试验的成功概率相同。 3)为了取得第一次成功需要进行的试验次数。 满足以上3个条件,即为几何分布。 2.几何分布概率公式: 其中p为成功概率,q=1-p为失败概率。公式表达的意思是:为了在第r次试验时取得成功,首先要失败r-1次。 3.几何分布适用于不等式: P(X>r)指的是为了取得第一次成功需要试验r次以上的概率。即前r次试验必须以失败告终。 P(X<=r)指的是为了取得一次成功而需要试验r次或r次的以下概率。 如果一个变量X的概率符合几何分布,且单次试验的成功概率为p,则可以写作: 4.几何分布的期望: 5.几何分布的方差: 6.举例: 一位滑雪者不出意外顺利滑至坡底的概率是0.4,算出以下概率 1)第一次滑雪失败,第二次成功的概率 P(X=2)=p*q=0.4*(1-0.4)=0.24 2)第4次或不足4次就滑雪成功的概率 P(X<=4)=1-q的4次方=1-0.6的4次方=0.8704 3)需要滑雪4次以上才能成功的概率 P(X>4)=q的4次方=0.6的4次方=0.1296 4)期望获得成功而需要滑行的次数 E(X)=1/p=1/0.4=2.5 5)试滑次数的方差 Var(X)=q/p的平方=0.6/(0.4*0.4)=3.75 1.二项分布适用条件: 1)进行一系列独立试验。 2)每一次试验都存在成功和失败的可能,且每次成功的概率相同。 3)试验次数有限。 2.二项分布概率公式: 其中:组合公式 3.二项分布可以写成: 其中p是每一次试验成功的概率,n为试验次数。 4.二项分布的期望: 5.二项分布的方差: 6.二项分布与几何分布的区别: 两者的差别在于实际上要求的结果。如果试验次数固定,求成功一定次数的概率,则使用二项分布;如果你想要知道在取得第一次成功之前需要试验多少次,则需要使用几何分布。 7.举例: 某游戏中共有5个问题,每一题有4个选项,每题答对的概率是0.25。 1)答对2题的概率是多少 P(X=2)=5!/(3!*2!)*(0.25*0.25)*(0.75*0.75*0.75)=0.264 2)答对3题的概率是多少 P(X=3)=5!/(2!*3!)*(0.25*0.25*0.25)*(0.75*0.75)=0.0879 3)答对2题或3题的概率 P(X=2或X=3)=P(X=2)+P(X=3)=0.264+0.0879=0.3519 4)一题也答不对的概率是多少 P(X=0)=0.75*0.75*0.75*0.75*0.75=0.237 5)期望和方差是多少 E(X)=np=5*0.25=1.25 Var(X)=npq=5*0.25*0.75=0.9375 1.泊松分布适用条件: 1)单独事件在给定区间内随机、独立的发生,给定区间可以是时间也可以是空间。 2)已知该区间内的事件平均发生次数,且为有限数值。该事件平均发生次数通常用 表示。 2.泊松分布可以写成: X表示给定区间内的事件发生次数,如果X符合泊松分布,且每个给定区间内平均发生 次,可写成:4.泊松分布的期望: 5.泊松分布的方差: 6.泊松分布与其他概率分布的区别: 泊松分布不需要做一系列试验,但它描述了事件在特定区间内的发生次数。 7.泊松分布代替二项分布: 当n很大(>50),p很小(<0.1),这时可以使用泊松分布代替二项分布,因为大的阶乘不方便计算,而泊松分布与二项分布近似相等。其中 =np。Jm-R2023-05-23 12:57:491
泊松分布和指数分布之间有何关系
一、联系伯松分布是单位时间内,独立事件发生次数的概率分布。指数分布是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 二、区别1、分类不同分布指数祖是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。2、特性不同指数函数的一个重要特征是无记忆性。这表示如果一个随机变量呈指数分布当时有即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。分位数参数λ的四分位数函数(Quartile function)是:第一四分位数:中位数:第三四分位数:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。泊松分布的期望和方差均为:扩展资料:在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。参考资料:百度百科-泊松分布参考资料:百度百科-指数分布左迁2023-05-23 12:57:361
指数分布和泊松分布的区别是什么?
一、指数分布的特点1、指数分布的失效率是与时间t无关的常数。2、指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔等。3、指数函数的一个重要特点是无记忆性。二、泊松分布的特点1、泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。2、泊松分布适合于描述单位时间内随机事件发生的次数。3、泊松分布的期望和方差均为λ。扩展资料泊松分布的应用:泊松分布考虑的是在连续时间或空间单位上发生随机事件次数的概率,简而言之就是基于过去某个随机事件在某段时间或某个空间内发生的平均次数,预测该随机事件在未来同样长的时间或同样大的空间内发生n次的概率。由于泊松分布适用于描述单位时间(或空间)内随机事件发生的次数,因此它常用于预测某些事件的发生,例如某家医院在一定时间内到达的人数;超市收银台在某段时间内的结账人数;公交车站在某个时间段的候车人数等。中国人口众多,就业问题一直是政府重点需要解决的问题。在经济发展较为落后的城乡区域,夫妻老婆店很多时候是一家人赖以生存的谋生方式,商品库存总是这类小店特别需要注意的地方,因为稍有不慎就会导致亏本,而泊松分布是用于这类小店库存管理的工具。参考资料来源:百度百科-泊松分布 百度百科-指数分布FinCloud2023-05-23 12:57:361
泊松分布和指数分布的特点
一、指数分布的特点1、指数分布的失效率是与时间t无关的常数。2、指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔等。3、指数函数的一个重要特点是无记忆性。二、泊松分布的特点1、泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。2、泊松分布适合于描述单位时间内随机事件发生的次数。3、泊松分布的期望和方差均为λ。扩展资料泊松分布的应用:泊松分布考虑的是在连续时间或空间单位上发生随机事件次数的概率,简而言之就是基于过去某个随机事件在某段时间或某个空间内发生的平均次数,预测该随机事件在未来同样长的时间或同样大的空间内发生n次的概率。由于泊松分布适用于描述单位时间(或空间)内随机事件发生的次数,因此它常用于预测某些事件的发生,例如某家医院在一定时间内到达的人数;超市收银台在某段时间内的结账人数;公交车站在某个时间段的候车人数等。中国人口众多,就业问题一直是政府重点需要解决的问题。在经济发展较为落后的城乡区域,夫妻老婆店很多时候是一家人赖以生存的谋生方式,商品库存总是这类小店特别需要注意的地方,因为稍有不慎就会导致亏本,而泊松分布是用于这类小店库存管理的工具。参考资料来源:百度百科-泊松分布 百度百科-指数分布北境漫步2023-05-23 12:57:351
指数分布和泊松分布有何异同点?
一、指数分布的特点1、指数分布的失效率是与时间t无关的常数。2、指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔等。3、指数函数的一个重要特点是无记忆性。二、泊松分布的特点1、泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。2、泊松分布适合于描述单位时间内随机事件发生的次数。3、泊松分布的期望和方差均为λ。扩展资料泊松分布的应用:泊松分布考虑的是在连续时间或空间单位上发生随机事件次数的概率,简而言之就是基于过去某个随机事件在某段时间或某个空间内发生的平均次数,预测该随机事件在未来同样长的时间或同样大的空间内发生n次的概率。由于泊松分布适用于描述单位时间(或空间)内随机事件发生的次数,因此它常用于预测某些事件的发生,例如某家医院在一定时间内到达的人数;超市收银台在某段时间内的结账人数;公交车站在某个时间段的候车人数等。中国人口众多,就业问题一直是政府重点需要解决的问题。在经济发展较为落后的城乡区域,夫妻老婆店很多时候是一家人赖以生存的谋生方式,商品库存总是这类小店特别需要注意的地方,因为稍有不慎就会导致亏本,而泊松分布是用于这类小店库存管理的工具。参考资料来源:百度百科-泊松分布 百度百科-指数分布拌三丝2023-05-23 12:57:351
泊松分布表怎么查??
首先要求的是先打开泊松分布表,然后按照方法进行查找。 首先,泊松分布表的分布函数为 F(x)=P{X<=x}=(k=0~x)Σ[λ^k*e^(-λ)]/k!,也就是泊松分布的分布率从0加到x的和 如何在泊松分布表中找到 P{X=x}=? 知道P{X=x}=P{X<=x}-P{X<=x-1}(因为泊松分布是离散型的) 所以如果知道λ的值,在列表中找到对应的P{X<=x}与P{X<=x-1},相减就得到P{X=x}。举个例子: 参数λ=3.5时,P{X=8}是多少。我们可以在泊松分布表中找到 P{X<=8}=0.9901,P{X<=7}=0.9733 那么P{X=8}= P{X<=8}-P{X<=7}=0.9901-0.9733=0.0168 如果通过公式计算得到P{X=8}=0.16865,与查表得到的值完美吻合,即问题解决。NerveM 2023-05-23 12:57:333
泊松分布的参数?怎么读
λ(poisson分布参数)的意义λ表示在一定时间(单位时间)内事件发生的平均次数。例如在一天内访问某个商场的人数服从poisson分布,并且估计出平均人数为x人,这里poisson分布的参数就是平均人数。与λ相对,1/λ为指数分布的期望,表示需要的时间(每个事件)LuckySXyd2023-05-23 12:57:332
泊松分布
泊松分布的概率公式是 P(λ=K)=e^(-λ)*λ^(k)/k! 你带λ=10进去算就可以了啥,算出P(λ=0), P(λ=1), P(λ=3)。。。。 直到加起来超过0.95。 首先你要弄明白P(λ=K)是什么意思,它就是销量X=K (K=0,1,2。。。)这个事件发生的概率,当加起来超过0.95时,就可以保证货物够卖的的概率为0.95。苏州马小云2023-05-23 12:57:331
泊松分布参数取值范围
泊松分布的参数λ是指单位时间(或单位面积)内随机事件的平均发生率!取值范围是大于0的实数。苏州马小云2023-05-23 12:57:331
何为泊松分布(Poisson分布)?
泊松分布表有现成数据,就如查汉语字典,根据横竖撇捺即可查到表中相应位置。根据X=5 (表中为m), λ=5,可知泊松分布值为0.17547.人类地板流精华2023-05-23 12:57:321
正态分布,泊松分布,伽玛分布,对数正态分布偏度由高到低分别是
依照偏度由高到低分别是对数正态分布、伽玛分布、泊松分布、正态分布。偏度是利用3阶矩定义的,偏度的计算公式为:其中,Sk为偏度;μ3为3阶中心矩;σ为标准差。在一般情形下,当统计数据为右偏分布时,Sk>0,且Sk值越大,右偏程度越高;当统计数据为左偏分布时,Sk<0,且Sk值越小,左偏程度越高。当统计数据为对称分布时,显然有Sk=0。扩展资料对数正态分布具有如下性质:(1)正态分布经指数变换后即为对数正态分布;对数正态分布经对数变换后即为正态分布。(2)γ,t是正实数,X是参数为(μ,σ)的对数正态分布,则Y=γXᵗ仍是对数正态分布,参数为(tμ+ln(γ),tσ)。(3)对数正态总是右偏的。(4)对数正态分布的均值和方差是其参数(μ,σ)的增函数。(5)对给定的参数μ,当σ趋于零时,对数正态分布的均值趋于exp(μ),方差趋于零。参考资料来源:百度百科--偏度参考资料来源:百度百科--对数正态分布参考资料来源:百度百科--伽马分布参考资料来源:百度百科--泊松分布参考资料来源:百度百科--正态分布Jm-R2023-05-22 22:50:171
泊松分布的现实意义是什么,为什么现实生活多数服从于泊松分布?
泊松分布是指某段连续的时间内某件事情发生的次数,而且“某件事情”发生所用的时间是可以忽略的。例如,在五分钟内,电子元件遭受脉冲的次数,就服从于泊松分布。因为二项分布其实就是一个最最简单的“发生”与“不发生”的分布,它可以描述非常多的随机的自然界现象,因此其极限形式泊松分布自然也是非常有用的。在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位。(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性。)泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。人类地板流精华2023-05-18 05:43:212
二项分布与泊松分布的区别
二项分布即重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。泊松分布(Poisson distribution),台译卜瓦松分布,是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布的概率函数为:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 泊松分布适合于描述单位时间内随机事件发生的次数。泊松分布与二项分布的关系:当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。大鱼炖火锅2023-05-18 05:43:213
指数分布和泊松分布特点
泊松分布和指数分布的关系是:泊松店过程任意两点间的距离是服从指数分布的。meira2023-05-18 05:43:213
泊松分布有何用途?
如下:应用示例泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。泊松分布与二项分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。水元素sl2023-05-18 05:43:211
泊松分布求积分的步骤和结果怎么算
{(-∞到∞)∫e^(-x²)dx}²。= {(-∞到∞)∫e^(-x²)dx}*{(-∞到∞)∫e^(-y²)dy}。= (θ,0到2π)(r,0到∞)∫∫re^(-r²)drdθ。= {(θ,0到2π)∫dθ}*(r,0到∞)∫2e^(-r²)dr²。= 2π。所以(-∞到∞)∫e^(-x²)dx = √(2π)。所以(-∞到∞)∫e^(-x²/2)dx =2 √(π)。这个就是泊松积分,并不是泊松积分的一半,其结果等于π^(1/2)/2,建议直接记结果。相关内容解释:泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。水元素sl2023-05-18 05:43:211
指数分布和泊松分布的区别?
其实没啥联系,硬要说区别的话:指数分布是连续型随机变量的分布泊松分布是离散型随机变量的分布人类地板流精华2023-05-18 05:43:213
泊松分布表怎么查的!求大神帮忙!求具体步骤! 比如x=5 λ=5时 答案应该是多少!!!
行为x,列为λ,交叉得到的表格内的数字就是得到的答案。CarieVinne 2023-05-18 05:43:216
泊松分布的参数该怎么计算
单位衡量。泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。扩展资料:1、泊松分布与二项分布:当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n_20,p_0.05时,就可以用泊松公式近似得计算。事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。2、阶乘特点以及泰勒公式使得一类期望的计算十分简便:参考资料来源:百度百科-泊松分布wpBeta2023-05-18 05:43:211
泊松分布方差是什么?
方差D(X)=λ。泊松分布的期望和方差均是λ,λ表示总体均值;P(X=0)=e^(-λ)。X~P(λ) 期望E(X)=λ,方差D(X)=λ。利用泊松分布公式P(x=k)=e^(-λ)*λ^k/k!P表示概率,x表示某类函数关系,k表示数量,等号的右边,λ 表示事件的频率。应用泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。bikbok2023-05-18 05:43:201
泊松分布公式
泊松分布公式:P{X=k}=λ^k/(k!e^λ)。 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。 泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。韦斯特兰2023-05-18 05:43:201