指数分布

为什么指数分布服从参数为1/2的卡方分布?

不是的,只是根据各自定义,“X服从参数为1/2的指数分布,则X服从参数为2的卡方分布”是特殊的不是对n普遍适用的。只是把1/2和2分别代进两个式子里面,正好结果是一样的而已。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。指数分布指数分布虽然不能作为机械零件功能参数的分布规律,但是,它可以近似地作为高可靠性的复杂部件、机器或系统的失效分布模型,特别是在部件或机器的整机试验中得到广泛的应用。每单位时间内发生某事件的次数。指数分布的区间是[0,∞)。 如果一个随机变量X呈指数分布,则可以写作:X~ E(λ)。指数分布的图形表面上看与幂律分布很相似,实际两者有极大不同,指数分布的收敛速度远快过幂律分布。
真颛2023-08-10 10:32:241

为什么指数分布是对称的?

不是的,只是根据各自定义,“X服从参数为1/2的指数分布,则X服从参数为2的卡方分布”是特殊的不是对n普遍适用的。只是把1/2和2分别代进两个式子里面,正好结果是一样的而已。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。指数分布指数分布虽然不能作为机械零件功能参数的分布规律,但是,它可以近似地作为高可靠性的复杂部件、机器或系统的失效分布模型,特别是在部件或机器的整机试验中得到广泛的应用。每单位时间内发生某事件的次数。指数分布的区间是[0,∞)。 如果一个随机变量X呈指数分布,则可以写作:X~ E(λ)。指数分布的图形表面上看与幂律分布很相似,实际两者有极大不同,指数分布的收敛速度远快过幂律分布。
人类地板流精华2023-08-10 10:32:241

问一个数学的问题什么是服从指数分布

指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t≥0时有P(T>s+t|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
人类地板流精华2023-08-10 10:32:241

如何求指数分布的ex和dx?

指数分布的ex和dx求:当X,Y无关时,E(XY)=E(X)E(Y),D(X)=E(X^2)-(E(X))^2,此时,E(X(X+Y-2))=E(X^2+XY-2X)=E(X^2)+E(XY)-2E(X)。D(x)指方差,E(x)指期望。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。在概率理论和统计学中指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。
CarieVinne 2023-08-10 10:32:241

参数为5的指数分布是什么

据查询官方网站暂无参数为5的指数分布是什么相关信息。指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t≥0时有P(T>s+t|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。希望我的回答对你有所帮助。
北营2023-08-10 10:32:241

一个概率问题。“X服从参数为1/2的指数分布,则X服从参数为2的卡方分布”是如何得出的?n的指数

不是的,只是根据各自定义,“X服从参数为1/2的指数分布,则X服从参数为2的卡方分布”是特殊的不是对n普遍适用的。只是把1/2和2分别代进两个式子里面,正好结果是一样的而已。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。扩展资料:指数分布虽然不能作为机械零件功能参数的分布规律,但是,它可以近似地作为高可靠性的复杂部件、机器或系统的失效分布模型,特别是在部件或机器的整机试验中得到广泛的应用。每单位时间内发生某事件的次数。指数分布的区间是[0,∞)。如果一个随机变量X呈指数分布,则可以写作:X~E(λ)。指数分布的图形表面上看与幂律分布很相似,实际两者有极大不同,指数分布的收敛速度远快过幂律分布。参考资料来源:百度百科——指数分布
北境漫步2023-08-10 10:32:241

为什么指数分布有两种表示方法?

在概率理论和统计学中,指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
可桃可挑2023-08-10 10:32:231

负指数分布,位移负指数分布,M3分布的区别和联系?

负指数分布、位移负指数分布和M3分布是三种不同的概率分布。下面简要介绍这三种分布的定义、性质和联系。负指数分布(Exponential Distribution):负指数分布是一种连续概率分布,用于描述在恒定平均速率下的独立随机事件之间的时间间隔。其概率密度函数为:f(x; λ) = λe^(-λx),其中x ≥ 0,λ > 0。这里,λ表示事件的平均发生速率。负指数分布具有无记忆性,即过去的事件不会影响未来事件的发生。位移负指数分布(Shifted Exponential Distribution):位移负指数分布是负指数分布的一个变种,其概率密度函数可以表示为:f(x; λ, δ) = λe^(-λ(x-δ)),其中x ≥ δ,λ > 0, δ ≥ 0。这里,δ表示位移参数,它使得分布在x轴上平移δ个单位。当δ = 0时,位移负指数分布就是普通的负指数分布。M3分布(M3 Distribution):M3分布是一种更复杂的连续概率分布,它是由Hawkes过程生成的。Hawkes过程是一种自激励点过程,即事件的发生会影响未来事件发生的概率。M3分布的密度函数具有以下形式:f(x) = a * e^(-bx) * (1 + c * e^(-dx)),其中x > 0,a > 0,b > 0,c > 0, d > 0。M3分布的参数较多,使得它可以描述更丰富的事件发生模式。联系:负指数分布和位移负指数分布在形式上类似,后者可以看作是前者的一个变种,只是多了一个位移参数δ。这使得位移负指数分布在实际应用中更具灵活性。而M3分布则是一种更复杂的分布,可以描述更丰富的事件发生模式。虽然这三种分布在某些情况下可能具有相似的性质,但它们分别适用于不同的应用场景和问题。
北境漫步2023-08-10 10:32:221

指数分布与相关分布的关系

我思考一下啊,很多东西不是记得那么清楚了:你的问题我一个个来回答:(1)“possion分布表示的是一个状态更新的过程,那么t1时间来的人和t2时间来的人之间是独立的,是否是一个累加的过程,例如t1时间是1个人,t2时间来了2个人” 我举的排队的例子,同一时间是不会出现两个人的,也就是说每个人到的时间都不同的,不存在t2的时候到达两个人的情况。 也就是说t2时间只能来1个人,但是加上t1时间来的那个人,在t2时间段内就是来了两个人(如果按你说的t2来2个人的话t2时间段内就来了3个人了,这不符合泊松分布的假设) (2)“那么实际上在这点的possion分布的对应概率值是什么呢?”你的问题可以翻译成:t1来了1个人t2来了1个人所对应的概率是什么?也就是P(t1来了1个人t2来了1个人) 如果写的规范点,记t1为第一个人来的时间,t2为第二个人来的时间,这个t1不是固定的值,有可能t1=1,也有可能t1=2 那t1到底等于多少呢?它是一个服从参数为λ的指数分布,也就是P(t1=t)=e^-λt ,同样的由假设的独立增量性,在(t1,t2)阶段也是服从参数为λ的指数分布的,且有独立性 具体来说就是P(t1来了1个人t2来了1个人) =P(t1=t,t2=s)=P(t1=t,t2-t1=s-t)=P(t1=t)P(t2-t1=s-t)=e^-λt*e^-λ(s-t)=e^-λs 这是一个指数分布 ,所以并没有这点的possion分布这一说法。那么在排队模型里什么东西服从泊松分布呢?是在单位时间内排队的人数服从了泊松分布……如果你初学概率的话可能比较难以理解,因为这个算是随机过程里面的东西了,初学概率论只要知道有泊松分布这个东西就好了,具体怎么出来的,等你学到后面的东西了自然会知道的。(3)"其中的λ是怎么转换为指数分布的呢?"其实是先有指数分布的λ然后才推出泊松也是满足这个λ的。具体推导我这里不说,查任意一本随机过程的书都会有的。(4)"指数分布可不可以理解为是很多分布的“原型”不可以,这里只是正好和泊松分布有关系,因为指数分布有无记忆性,正好对应了泊松分布的独立增量,其他分布是没有这样的性质的。需要注意的是,指数分布是一种特殊的Γ分布,所以你可以研究一下Γ分布。而研究最多的是高斯分布,因为它最标准,正如之前那位说的有各向同性。(5)“有哪些分布可以这样联系起来呢”?首先说了指数分布和Γ分布,之后,二项分布是独立的伯努利分布之和,而卡方分布,t分布,F分布都是统计量,属于数理统计方面的概念,因此你可以查阅任意一本数理统计的书都能得到他们的推导。(6)“有没有推荐比较系统的比较便于理解的基础些的教材等资料” 这方面我可能没有,感觉都差不多吧,可以先看一下测度论的相关知识,因为概率空间和概率测度还是很重要的。测度论或者实变函数。具体的我不知道哪本最通俗易懂(7)"怎么理解固定的平均瞬时速率λ" 平均瞬时速率就相当于物理中的平均速度: 比如排队的时候,时间T内来了N个人,那么瞬时速率就是N/T ,但是这个N是不固定的,所以说瞬时速率也不固定,但是有个平均,平均出来是λ,也就是说,在固定的T时间段内,大概会有λT个人来排队,这其实就是期望的概念。如果去T为单位时间1 ,那么大概会有λ个人排队,正好就是泊松分布的期望。这也就是(2)中最后我提到的“在单位时间内排队的人数服从了泊松分布”
tt白2023-08-10 10:32:221

如何证明指数分布的无记忆性

见图。
ardim2023-08-10 10:32:221

随机变量的指数分布无记忆性?

是的,这是指在t的间隔内其概率之差是相等的!书上有详细解答!
苏萦2023-08-10 10:32:221

如何理解指数分布的无记忆性

这个概念其实是说lambda不是时间的函数而是常数这个物理量代表瞬时失效率等于密度函数除以(1-分布函数)等于lambda
bikbok2023-08-10 10:32:221

指数分布和卡方分布的关系是什么?

学科间紧密联系的关系。在概率理论和统计学中,指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
黑桃花2023-08-10 10:32:221

寻求指数分布的历史介绍,或者相关指数分布的发展史之类的资料

上市少于两年的大型股获纳入恒生指数指引于检讨指数时大型股平均市值排名最少上市时间第五或以上3个月第六至十五6个月第十六至二十12个月第二十一至二十五18个月第二十五以下24个月 其中λ > 0是分布的一个参数,常被称为率参数(rate parameter)。指数分布的区间是[0,∞)。 如果一个随机变量X呈指数分布,则可以写作:X~ Exponential(λ)。比方说:如果你平均每个小时接到2次电话,那么你预期等待每一次电话的时间是半个小时。若随机变量x服从参数为λ的指数分布,则记为 X~ e(λ).指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布当s,t≥0时有P(T>s+t|T>t)=P(T>s)率参数λ的四分位数函数(Quartile function)是:F^-1(P;λ)= -LN(1-P)λ第一四分位数:ln(4/3)λ中位数: ln(2)λ第三四分位数:ln(4)/λ在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。在电子元器件的可靠性研究中,通常用于描述对发生的缺陷数或系统故障数的测量结果。这种分布表现为均值越小,分布偏斜的越厉害。指数分布应用广泛,在日本的工业标准和美国军用标准中,半导体器件的抽验方案都是采用指数分布。此外,指数分布还用来描述大型复杂系统(如计算机)的平均故障间隔时间MTBF的失效分布。但是,由于指数分布具有缺乏“记忆”的特性.因而限制了它在机械可靠性研究中的应用,所谓缺乏“记忆”,是指某种产品或零件经过一段时间t0的工作后,仍然如同新的产品一样,不影响以后的工作寿命值,或者说,经过一段时间t0的工作之后,该产品的寿命分布与原来还未工作时的寿命分布相同,显然,指数分布的这种特性,与机械零件的疲劳、磨损、腐蚀、蠕变等损伤过程的实际情况是完全矛盾的,它违背了产品损伤累积和老化这一过程。所以,指数分布不能作为机械零件功能参数的分布形式。指数分布虽然不能作为机械零件功能参数的分布规律,但是,它可以近似地作为高可靠性的复杂部件、机器或系统的失效分布模型,特别是在部件或机器的整机试验中得到广泛的应用。指数分布比幂分布趋近0的速度慢很多,所以有一条很长的尾巴。指数分布很多时候被认为是长尾分布。互联网网页链接的出度入度符合指数分布指数分布的参数为λ,则指数分布的期望为1/λ,方差为(1/λ)的平方。
黑桃花2023-08-10 10:32:221

指数分布公式

指数分布公式为f(x)=λexp(-λx)。指数分布的ex和dx求:当X,Y无关时,E(XY)=E(X)E(Y),D(X)=E(X^2)-(E(X))^2,此时,E(X(X+Y-2))=E(X^2+XY-2X)=E(X^2)+E(XY)-2E(X)。D(x)指方差,E(x)指期望。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。在概率理论和统计学中:指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。指数分布的可加性公式:f(x)=λe^(-λx)。正态分布是所有分布趋于极限大样本的分布,属于连续分布。二项分布与泊松分布,则都是离散分布,二项分布的极限分布是泊松分布、泊松分布的极限分布是正态分布。即np=λ,当n很大时,可以近似相等。指数函数的一个重要特征:是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
Ntou1232023-08-10 10:32:221

指数分布ex和dx怎么求?

指数分布的ex和dx求:当X,Y无关时,E(XY)=E(X)E(Y),D(X)=E(X^2)-(E(X))^2,此时,E(X(X+Y-2))=E(X^2+XY-2X)=E(X^2)+E(XY)-2E(X)。D(x)指方差,E(x)指期望。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。在概率理论和统计学中指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。
kikcik2023-08-10 10:32:221

n个指数分布相加还是指数分布吗

f(z)=(αβ/(β-α))(exp(-αz)-exp(-βz))分布相加得到的分布还是原来的分布。因为n个均匀分布随机变量相加得到的新的随机变量符合高斯分布,这叫中心极限定理。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性。这表示如果一个随机变量呈指数分布,当s、t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
瑞瑞爱吃桃2023-08-10 10:32:221

指数分布为什么可以用来表示独立随机事件发生的时间间隔

在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。   许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。   指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。
无尘剑 2023-08-10 10:32:222

指数分布的ex和dx求是什么意思?

指数分布的ex和dx求:当X,Y无关时,E(XY)=E(X)E(Y),D(X)=E(X^2)-(E(X))^2,此时,E(X(X+Y-2))=E(X^2+XY-2X)=E(X^2)+E(XY)-2E(X)。D(x)指方差,E(x)指期望。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。在概率理论和统计学中指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。
西柚不是西游2023-08-10 10:32:221

求这个证明题,指数分布的无记忆性。万分感谢!

8538382738
人类地板流精华2023-08-10 10:32:202

指数分布的优点有

您好,您是不是想问指数分布的优点有哪些?指数分布是一种常见的概率分布,具有以下几个优点:1、数学性质简单:指数分布具有简单的数学形式和性质,使得计算和推导都相对容易。其概率密度函数在非负实数范围内单调递减,且具有连续性,使得在分析和建模过程中更加方便。2、无记忆性:指数分布具有无记忆性质,也就是说,假设一个事件发生的时间符合指数分布,那么无论该事件已经发生了多长时间,发生下一个事件的时间间隔仍然服从相同的指数分布。这一特性在许多实际问题中具有重要意义,比如在可靠性分析、排队论、风险评估等领域。3、应用广泛:指数分布在许多实际问题中都有广泛的应用。例如,在可靠性工程中,指数分布常用于描述产品的寿命。在排队论中,到达和离开服务系统的时间间隔常被假设为指数分布。此外,指数分布还在金融学、统计学、信号处理等领域中得到广泛运用。4、可解释性强:由于其简单的数学形式,指数分布具有较强的可解释性。通过调整分布的参数,我们可以对事件的发生模式进行直观的解释。例如,指数分布的期望值和方差可以用于描述事件发生的平均间隔和波动程度,从而帮助我们了解事件序列的特征。需要注意的是,指数分布的一些限制包括其只适用于非负实数、不具有厚尾特性等。在使用指数分布时,应对问题的具体情况进行充分分析,并结合其他概率分布和统计方法进行综合考虑。
黑桃花2023-08-10 10:32:201

为什么说电子元件的寿命服从指数分布?

电子元件的寿命服从指数分布原因:指数分布的无记忆性。假设某元件使用了t小时,a小时到a+t小时的条件概率和从b小时到b+t小时的条件概率相等。也就是经过一段时间的工作之后,该产品的寿命分布与原来还未工作时的寿命分布相同。电子元件的基本性能指标高,其可靠性不一定高。如果产品可靠性低,即使其初始技术性能再好也得不到发挥。例如,陶瓷贴片电容器的介质击穿电压较高的产品,很可能在高温负载加速寿命试验中失效率较高。可靠性可以综合反映产品的质量。电子元件的可靠性是电子设备可靠性的基础,要提高设备或系统的可靠性必须提高电子元件的可靠性。可靠性是电子元件重要质量指标,须加以考核和检验。首先,我们来了解什么是产品寿命,百度百科中介绍“任何产品都有其自然寿命和经济寿命,自然寿命是指产品从研究设计开始,经过生产制造、市场销售、用户使用,直到没有使用价值,完全报废为止所经历的全部时间。经济寿命是从经济方面考虑产品的寿命,随着经济的发展和科学技术的进步,原有产品的技术性能。后了,经济效益低下,虽然还没有达到它的自然寿命周期,如果连续使用已经很不经济了,就必须淘汰停止使用。”
LuckySXyd2023-08-10 10:32:201

指数分布为什么可以用来表示独立随机事件发生的时间间隔

这主要是因为指数函数有一个非常重要的特征,就是“无记忆性”.这个性质比较抽象,就拿百度百科的回答数来举例子好了.我们现在假设百度知道的回答数增长这一事件遵循指数分布,不妨假设从某个时间t0开始,经过“del(t)”天(del(t)为正整数),知道的回答数就是对指数分布概率密度【入exp(-入x)】从t0开始到t0+del(t)进行积分,这就是从t0开始,在del(t)时间间隔内知道回答数的增长事件的发生概率;很显然可以通过积分计算得到,该概率与从百度知道诞生开始(即假设彼时时刻为0),到时刻del(t)为止的时间段进行积分所得概率数值相等,也就是说,在同等时间间隔内,百度知道回答数增加的事件发生概率都是相等的.
水元素sl2023-08-10 10:32:201

设总体X服从参数为1的指数分布,X1,X2,...Xn是取自总体X的简单随机样本,当n趋于无穷时,Yn=1/n∑Xi^2依

墨然殇2023-08-10 10:32:203

高分指数分布和几何分布的比较从无记忆性,独立和,可靠性分析,寿险 这几个方面分析。

用特征函数做
无尘剑 2023-08-10 10:32:203

指数分布的无记忆性是什么意思?

指数函数的无记忆性来自于泊松过程k=0时的“时间指数性”,而泊松过程k=0时的“时间指数性”来自于泊松分布时 lambda的恒定性,也就是离散情况下,二项分布的n*p的恒定性。以投硬币的例子来说,根据上面公式来理解,投硬币这个重复动作已经投了a 秒,你第一次投到正面朝上还需要x秒的概率与你重新做实验需要x秒投到正面朝上的概率是一样的。延伸来说,第一次正面朝上所需的时间x的概率与实验所在的时间点没有关系。无论是时间已经过了3分钟,还是时间已经过了8分钟,还是刚开始做实验,第一次正面朝上所需的时间x的概率都是一样的。也就是说,过去的实验不影响未来事件发生的概率。前面用的所需时间是针对指数分布来说的。如果用投硬币次数 (几何分布)来理解,对于同一个硬币,硬币正面朝上,还要投x次的概率与你已经投了多少次硬币是没有关系的。以客服电话的例子来理解无记忆性。假设该客服8点开始上班接客服电话。她在刚上班时要等x秒才接到下一个客服电话的概率与已经等了半小时、或者1小时,或者 2小时后,还要等待x秒,才接到下一个客服电话的概率是一样的。
FinCloud2023-08-10 10:32:191

指数分布具有无记忆性,这如何形象理解?

可以从任何一个地方开始,规律性和长度无关
康康map2023-08-10 10:32:194

指数分布无记忆性

=1-P〔x>a+1|x>a〕=1-P〔x>1〕=P〔x≦1〕
北境漫步2023-08-10 10:32:194

概率论 指数分布的无记忆性 说明什么 怎么运用?

例如有一种电池标称可以充放电500次(平均寿命),但实际上,很多充放电次数数倍于500次的电池仍然在正常使用,也用很多电池没有使用几次就坏了——这是正常的,不是厂方欺骗你,是因为方差太大的缘故。
u投在线2023-08-10 10:32:192

如何理解指数分布的无记忆性

这个概念其实是说lambda不是时间的函数而是常数这个物理量代表瞬时失效率等于密度函数除以(1-分布函数)等于lambda
墨然殇2023-08-10 10:32:192

简述指数分布的无记忆性与马尔科夫链的无后效性的关系

马尔科夫链无后效性,也就是取决于你当前的状态。所以在分布中,只有指数分布能满足这一点,因为指数分布的无记忆性,不管你之前在某个状态停留了多少时间,并不影响你是否继续停留或者转移。可以通过积分证明的
西柚不是西游2023-08-10 10:32:191

概率论的关于指数分布无记忆得出的问题

=.=这个也是分布的自有的性质……possion的无记忆性……意思就是:之前工作了多久与之后还能工作多久是没有关系的,也就是没有影响……于是你现在要知道已经无故障8小时,求再无故障8小时的概率,可以直接求其无故障8小时就可以了,因为之前是否已经无故障多久与之后再无故障多久是没有影响的……于是直接求P(t》8)就可以了,这里还告诉你了t是满足possion的,对于possion……P(t》8)=1-F(x《8)=1-(1-e^(-8t))=e^(-8t)
水元素sl2023-08-10 10:32:191

蝴蝶效应与指数分布的无记忆性是一个意思吗

蝴蝶效应是系统的放大作用。指数分布的无记忆性,是条件概率。不是一个东西
拌三丝2023-08-10 10:32:191

如何理解指数分布的无记忆性

记忆力的好坏是和脑蛋白数量成正比 脑蛋白数量越多 记忆力越好所以及时补充脑蛋白数量是记忆好的关键可以试试天天向上片 富含多种氨基酸 可以有效的帮助促进脑蛋白数量的合成改善记忆
左迁2023-08-10 10:32:191

指数分布的无记忆性是什么?

指数分布的无记忆性是指数函数的无记忆性来自于泊松过程k=0时的 时间指数性,而泊松过程k=0时的 时间指数性 来自于泊松分布时 lambda的恒定性,也就是离散情况下,二项分布的n*p的恒定性。分布:在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。
北营2023-08-10 10:32:171

python中如何生成符合爱尔朗分布、负指数分布的随机数?

官方的random库中有gamma分布的接口可用来生成erlang分布. 同时也有指数分布的接口.numpy跟scipy应该也有对应的接口
善士六合2023-07-18 14:03:331

设随机变量X服从参数为0.5的指数分布,用切比雪夫不等式估计P(|X-2|≥3)≤

P(|X-2|u22653)u2264(1/0.5)^2/3^2=4/9
苏州马小云2023-07-11 08:32:041

X服从参数为1的指数分布,Y=max(X,2)求Y的数学期望,

由定义,求F(y)=P(Y
kikcik2023-07-09 08:24:481

某种电子元件的寿命(以年计)服从数学期望为2的指数分布,各元件的寿命相互独立。随机取100只元件

tt白2023-07-09 08:24:484

指数分布的数学期望 已知X服从参数为1的指数分布 Y=X+e^(-2X) 求EY与DY 求大神们帮帮忙啊

提示:EY=E(X+e^(-2X))=EX+E(e^-2X)前面的EX=1,后面的式子根据期望的定义式。求出不理解,可以继续提问
小菜G的建站之路2023-07-09 08:24:471

设随机变量X服从指数分布,若其期望为λ,则X的概率密度是____?求详细解答

若X服从指数分布,则其期望为该指数分布参数的倒数,即若EX=λ,则X~E(1/λ),密度就很容易了:f(x)=1/λe^{-x/λ }, x>=0.
Chen2023-07-09 08:24:471

已知随机变量X服从参数为2的指数分布,则随机变量X的期望为

1/2。例如一批注入某种毒物的动物,在一定时间内死亡的只数;某地若干名男性健康成人中,每人血红蛋白量的测定值;等等。另有一些现象并不直接表现为数量,例如人口的男女性别、试验结果的阳性或阴性等,但可以规定男性为1,女性为0,则非数量标志也可以用数量来表示。这些例子中所提到的量,尽管它们的具体内容是各式各样的,但从数学观点来看,它们表现了同一种情况,这就是每个变量都可以随机地取得不同的数值,而在进行试验或测量之前,我们要预言这个变量将取得某个确定的数值是不可能的。按照随机变量可能取得的值,可以把它们分为两种基本类型:扩展资料在研究随机变量的性质时,确定和计算它取某个数值或落入某个数值区间内的概率是特别重要的。因此,随机变量取某个数值或落入某个数值区间这样的基本事件的集合,应当属于所考虑的事件域。根据这样的直观想法,利用概率论公理化的语言,取实数值的随机变量的数学定义可确切地表述如下:概率空间(Ω,F,p)上的随机变量x是定义于Ω上的实值可测函数,即对任意ω∈Ω,X(ω)为实数,且对任意实数x,使X(ω)≤x的一切ω组成的Ω的子集{ω:X(ω)≤x}是事件,也即是F中的元素。事件{ω:X(ω)≤x}常简记作{x≤x},并称函数F(x)=p(x≤x),-∞<x<∞ ,为x的分布函数。
北营2023-07-09 08:24:471

设随机变量X服从参数为1的指数分布,则数学期望E(X+e^(-2X))=?

苏萦2023-07-09 08:24:472

指数分布可以表示独立随机事件的间隔么

指数分布,可以用来表示独立随机事件发生的时间间隔。指数分布的参数为λ,则指数分布的期望为1/λ,方差为(1/λ)的平方。
北境漫步2023-07-09 08:24:461

为什么用指数分布计算概率时要求平均值?

1.因为LAMAT的指数分布的数学期望为1/LAMAT,也就是平均值为1/LAMAT. 记住一些特殊分布的期望,方差是有好处的,比如正态分布,平均分布,指数分布,泊松分布等等 2.因为根据题目YOUROU的分布率为P{YOUROU=k}=1/(2^k) k=1,2.,所以 YOUROU=k,为整数,即后面的n,那么sin(YOUROU*PI/2)=sin(nPI/2) 所以只能取-1,0,1 就是说YOUROU是服从离散分布.且YOUROU取1,2,3,4,5,6..时对应的概率是1/1^2,1/2^2...那么YOUROU只能取整数1,2,3,4,5..k. 而可得后面的sin(YOUROU*PI/2)中.因为YOUROU只能取整数1,2,3,4,5..k,所以YOUROU*PI/2只能是kPI,(K+1)PI/2, 而sin(2kPI)=0,sin,(K+1)PI/2=1或者-1 还有不明白的吗?
LuckySXyd2023-07-09 08:24:461

设随机变量X服从λ=6的指数分布,则数学期望E(3X)=? 设X服从二项分布B(n,p),且已知E(X)=2D(X),则p=?

指数分布E(X)=1/λ=1/6,E(3X)=3E(X)=3/6=1/2二项分布记作ξ~B(n,p)期望:Eξ=np方差:Dξ=npq其中q=1-pE(X)=np=2D(x)=2npq1=2q,q=1/2,p=1-q=1/2
墨然殇2023-07-09 08:24:451

请问两个指数分布相加得到什么分布?新的分布的期望值和前两者的期望值的关系是什么啊?

gamma分布. 因为对于指数分布M(t)=β/(β-t) 多个指数分布相加相当于M(t)的乘积 gamma分布的M(t)=(β/(β-t))^α 两个指数分布相加的话那就是说明α=2 由于gamma分布的E(x)=α/β 而指数分布的E(x)=1/β α=2所以新分布的期望值是前两者期望值的2倍
bikbok2023-07-09 08:24:441

X服从指数分布,Y服从二点分布,求X-Y的期望,

设X~N(μ,σ) , Y~[P(Y=1)=p,P(Y=0)=1-p] 则 E(X)=μ , E(Y)=p 那么 E(X-Y)=E(X)-E(Y) = μ-p
真颛2023-07-09 08:24:441

设随机变量X服从参数为1的指数分布,则数学期望E{X+e-2X}= ___ .

解题思路:首先将X的期望和方差写出来,然后利用数学期望的性质,将E{X+e -2X}化成两个期望之和,分别计算即可. />∵X服从参数为1的指数分布, ∴X的概率密度函数f(x)= e-x,x>0 0,x≤0, 且EX=1,DX=1, ∴Ee-2x= ∫+∞0e-2xu2022e-xdx=- 1 3e-3x |+∞0= 1 3, 于是:E(X+e-2X)=EX+Ee-2X=1+ 1 3= 4 3. 点评: 本题考点: 指数分布. 考点点评: 此题考查指数分布的概率密度函数及其期望,以及期望的性质.对于常见的分布函数,其期望和方差要熟记.
铁血嘟嘟2023-07-09 08:24:431

如随机变量服从指数分布,x的n次方的期望

你好!答案与参数有关,可以如图借用Γ函数计算比较方便。经济数学团队帮你解答,请及时采纳。谢谢!
北境漫步2023-07-09 08:24:421

指数分布f(x)=入e(-入x)(-入x是指数)x>0 0 其他 证明指数分布的数学期望是1/入

是的,选这个是正确的指数分布的密度函数为f(x)=λe^(-λx),x≥00x<0分布函数为f(x)=1-e^(-λx),x≥00x<0所以参数λ=1的时候就是你给的式子
kikcik2023-07-09 08:24:411

指数分布随机变量的数学期望怎么求

微积分变换,fx"gx=(gxfx)"-gx"fx
tt白2023-07-09 08:24:373

指数分布的期望是什么?

指数分布的期望:可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔,在排队论中,一个顾客接受服务的时间长短(等待时间等)就是指数分布的期望。因为参数λ表示的是每单位时间内发生某事件的次数,即时间的发生强度,所以其倒数 1/λ(实际上是指数分布期望)可以表示为事件发生之间的间隔,即等待时间。如果平均每个小时接到2次电话(λ=2),那么预期等待每一次电话的时间是0.5个小时。特征:指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
瑞瑞爱吃桃2023-07-09 08:24:351

指数分布的数学期望是什么,为什么服从参数为θ的数学期望为θ,服从λ的数学期望为1/λ

数学是什么从来没有人能说清楚
阿啵呲嘚2023-07-09 08:24:342

指数分布的数学期望积分怎样计算

用洛比达法则啊-[ye^(-xy)]在0到无穷算等于-{y/[e^(xy)]}在0到正无穷算分子分母都趋于无穷大。。用洛比达法则分子分母都求导分子=1,分母=无穷大结果就是0
真颛2023-07-09 08:24:332

设随机变量X服从参数为1的指数分布,令Y=max(X,2),求Y的数学期望.求详解.

积分不知道怎么打 积0-2就这么表示了(∫0-2) 能看明白就行 X的分布函数 f(x)=e^(-x) (x>0) 0 (x2) (指数分布) ∫f(x)dx/2(积分区间0-2) =(1-1/e^2)/2 (2>y>0) (均匀分布) =0 (y
铁血嘟嘟2023-07-09 08:24:331

某电器元件的寿命服从参数λ为100的指数分布,E(X)数学期望多少?

第一题 均值就是期望E(X)=100D(X)=100001-P=Φ[(1920-1600)/4*100]=1-0.2119P=0.2119和我书后答案一样第二题好像要用大数法则什么的,我还没有学= =
阿啵呲嘚2023-07-09 08:24:333

指数分布的数学期望 已知X服从参数为1的指数分布 Y=X+e^(-2X) 求EY与DY

提示:EY=E(X+e^(-2X))=EX+E(e^-2X) 前面的EX=1,后面的式子根据期望的定义式.求出 不理解,可以继续提问
ardim2023-07-09 08:24:311

已知X是参数为2的指数分布的随机变量,则X^2的期望是多少?

X是参数为2的指数分布的随机变量---> EX=1/2,DX=1/4 EX^2-(EX)^2=DX-->EX^2=DX+(EX)^2=1/2
康康map2023-07-09 08:24:311

指数分布期望可以是负数吗

指数分布期望可以是负数。期望等于随机变量乘以相应的概率,随机变量可以取负,因此期望就可能为负。
FinCloud2023-07-09 08:24:291

为什么指数分布的期望为1/指数分布?

1.因为LAMAT的指数分布的数学期望为1/LAMAT,也就是平均值为1/LAMAT. 记住一些特殊分布的期望,方差是有好处的,比如正态分布,平均分布,指数分布,泊松分布等等 2.因为根据题目YOUROU的分布率为P{YOUROU=k}=1/(2^k) k=1,2.,所以 YOUROU=k,为整数,即后面的n,那么sin(YOUROU*PI/2)=sin(nPI/2) 所以只能取-1,0,1 就是说YOUROU是服从离散分布.且YOUROU取1,2,3,4,5,6..时对应的概率是1/1^2,1/2^2...那么YOUROU只能取整数1,2,3,4,5..k. 而可得后面的sin(YOUROU*PI/2)中.因为YOUROU只能取整数1,2,3,4,5..k,所以YOUROU*PI/2只能是kPI,(K+1)PI/2, 而sin(2kPI)=0,sin,(K+1)PI/2=1或者-1 还有不明白的吗?
小菜G的建站之路2023-07-09 08:24:281

如果x服从指数分布,那么x平方的期望如何计算

Ex 2=Dx+E2x
此后故乡只2023-07-09 08:24:281

设随机变量X服从参数为1的指数分布,则数学期望E{X+e-2X}=[4/3][4/3].

解题思路:首先将X的期望和方差写出来,然后利用数学期望的性质,将E{X+e -2X}化成两个期望之和,分别计算即可. ∵X服从参数为1的指数分布, ∴X的概率密度函数f(x)= eu2212x,x>0 0,x≤0, 且EX=1,DX=1, ∴Eeu22122x= ∫+∞0eu22122xu2022eu2212xdx=u2212 1 3eu22123x |+∞0= 1 3, 于是:E(X+eu22122X)=EX+Eeu22122X=1+ 1 3= 4 3. 点评: 本题考点: 指数分布. 考点点评: 此题考查指数分布的概率密度函数及其期望,以及期望的性质.对于常见的分布函数,其期望和方差要熟记.
人类地板流精华2023-07-09 08:24:271

指数分布的数学期望 已知X服从参数为1的指数分布 Y=X+e^(-2X) 求EY与DY

提示:EY=E(X+e^(-2X))=EX+E(e^-2X) 前面的EX=1,后面的式子根据期望的定义式.求出 不理解,可以继续提问
肖振2023-07-09 08:24:261

指数分布的期望是什么?

简单计算一下即可,答案如图所示
余辉2023-07-09 08:24:212

为什么书上指数分布期望是是θ

因为λ=1/θ 只是表示方式不同,通常课本用的1/θ,但是考研大纲写的是λ,考研大纲一直没修改过,所以网上搜的时候很多都是考研的用λ。其实都一样的,现在更倾向于θ用着更方便,直接报数就行了不用再转倒数。
大鱼炖火锅2023-07-09 08:24:202

指数分布的期望是什么?

指数分布的期望:可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔,在排队论中,一个顾客接受服务的时间长短(等待时间等)就是指数分布的期望。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。指数函数的一个重要特征是无记忆性:这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
人类地板流精华2023-07-09 08:24:181

如果x,y都是独立的指数分布概率函数,P{max(x,y)

您好,看到您的问题很久没有人来回答,但是问题过期无人回答会被扣分的并且你的悬赏分也会被没收!所以我给你提几条建议,希望对你有所帮助:一,你可以选择在正确的分类和问题回答的高峰时段(中午11:00-3:00 晚上17:00-24:00)去提问,这样知道你问题答案的人才会多一些,回答的人也会多些。二,你可以请教老师,问问同学,共同学习互相进步三,您可以到与您问题相关专业网站论坛里去看看,那里聚集了许多专业人才,一定可以为你解决问题的。四,网上很多专业论坛以及知识平台,(如作业帮)上面也有很多资料,我遇到专业性的问题总是上论坛求解决办法的。五,将你的问题问的细一些,清楚一些!让人更加容易看懂明白是什么意思!~(^o^)/~祝学习进步~~~希望对你有帮助,你的采纳就是我们回答的动力!帅气又萌萌哒你不要忘了采纳哦!!!
余辉2023-07-06 08:14:461

为什么正态分布服从指数分布?

正态分布的可加性是X+Y-N(3,8)。相互立的正态变量之线性组合服从正态分布,即X~N(u1,(q1)^2),Y~N(u2,(q2)^)则Z=aX+bY~N(a*u1+b*u2,(a^2)*(q1)^2+(b^2)*(q2)^2)。正态分布的曲线特点:正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
Ntou1232023-07-06 08:14:461

设X与Y是相互独立的两个随机变量,且均服从参数为λ的指数分布,试求随机变量Z1=4X-3Y与Z2=3X+Y的协方差

由于X~E(λ),所以密度函数为f(x)=λe?λx,x>0 0,x≤0 ,分布函数为F(x)=1?e?λx,x>0 0,x≤0 ?EX=1 λ ,DX=1 λ2 ,所以A,B,C都不对.因为E(X+Y)=2 λ ,E(X?Y)=0,而max(X,Y)的分布函数不是F2(x)=1?e?2λx,x>0 0,x≤0 ,所以D对.事实上,min(X,Y)的分布函数为 P{min(X,Y)}≤x}=1-P{min(X,Y)}>x}=1?P{X>x,Y>x}=1?P{X>x}P{Y>x}=1?[1?F(x)]2=1?e?2λx,x>0 0,x≤0 .故选择:D.
铁血嘟嘟2023-07-06 08:14:461

高数 指数分布族证明?

咱们分两个步骤来证明,第一步是找出指数分布的参数λ的极大似然估计是什么;第二步是证明该估计值是λ的相合估计
meira2023-07-06 08:14:4515

如何推导指数分布的期望?为什么是 E(X)=1/λ 最好还能告诉我如何推导它的方差?

f(x)=λe^(-λx) E(X),对xf(x)积分,从0到正无穷. 积出的结果就是1/λ. 方差,对x^2f(x)积分.
Jm-R2023-07-06 08:14:441

x~E(a),参数为a的指数分布,期望和方差为多少?

E(x)=1/a;D(X)=1/(a^2).
tt白2023-07-06 08:14:441

指数分布e(入)的数学期望和方差分别是

数学期望是入方差是入http://baike.baidu.com/view/743082.htm?fr=ala0_1
瑞瑞爱吃桃2023-07-06 08:14:442

X1,X2…Xn服从指数分布exp(λ),问总体方差的1-α置信区间怎么算?谢谢大神指导!

由于X~E(λ),所以密度函数为f(x)=λe?λx,x>00,x≤0,分布函数为F(x)=1?e?λx,x>00,x≤0?EX=1λ,DX=1λ2,所以A,B,C都不对.因为E(X+Y)=2λ,E(X?Y)=0,而max(X,Y)的分布函数不是F2(x)=1?e?2λx,x>00,x≤0,所以D对.事实上,min。
此后故乡只2023-07-06 08:14:441

指数分布期望方差是怎么证明的 指数分布期望方差证明方法

1、首先知道EX=1/a DX=1/a^2 2、指数函数概率密度函数:f(x)=a*e^(ax),x>0,其中a>0为常数。 f(x)=0,其他 3、有连续行随机变量的期望有E(X)==∫|x|*f(x)dx,(积分区间为负无穷到正无穷) 则E(X)==∫|x|*f(x)dx,(积分区间为0到正无穷),因为负无穷到0时函数值为0. EX)==∫x*f(x)dx==∫ax*e^(-ax)dx=-(xe^(-ax)+1/a*e^(-ax))|(正无穷到0)=1/a 而E(X^2)==∫x^2*f(x)dx=∫x^2*a*e^(ax)dx=-(2/a^2*e^(-ax)+2x*e^(-ax)+ax^2*e^(-ax))|(正无穷到0)=2/a^2, DX=E(X^2)-(EX)^2=2/a^2-(1/a)^2=1/a^2 即证!
meira2023-07-06 08:14:431

指数分布期望与方差的证明

首先知道ex=1/adx=1/a^2指数函数概率密度函数:f(x)=a*e^(ax),x>0,其中a>0为常数。f(x)=0,其他有连续行随机变量的期望有e(x)==∫|x|*f(x)dx,(积分区间为负无穷到正无穷)则e(x)==∫|x|*f(x)dx,(积分区间为0到正无穷),因为负无穷到0时函数值为0.ex)==∫x*f(x)dx==∫ax*e^(-ax)dx=-(xe^(-ax)+1/a*e^(-ax))|(正无穷到0)=1/a而e(x^2)==∫x^2*f(x)dx=∫x^2*a*e^(ax)dx=-(2/a^2*e^(-ax)+2x*e^(-ax)+ax^2*e^(-ax))|(正无穷到0)=2/a^2,dx=e(x^2)-(ex)^2=2/a^2-(1/a)^2=1/a^2即证!!主要是求积分的问题,证明只要按照连续型随机变量的期望与方差的求法公式就行啦!
黑桃花2023-07-06 08:14:421

求参数为λ的指数分布的期望与方差

【答案】:指数函数概率密度函数:f(x)=a*e^(ax),x>0,其中a>0为常数.f(x)=0,其他有连续行随机变量的期望有E(X)==∫|x|*f(x)dx,(积分区间为负无穷到正无穷)则E(X)==∫|x|*f(x)dx,(积分区间为0到正无穷),因为负无穷到0时函数值为0.EX)==∫x*f(x)dx==∫ax*e^(-ax)dx=-(xe^(-ax)+1/a*e^(-ax))|(正无穷到0)=1/a而E(X^2)==∫x^2*f(x)dx=∫x^2*a*e^(ax)dx=-(2/a^2*e^(-ax)+2x*e^(-ax)+ax^2*e^(-ax))|(正无穷到0)=2/a^2,DX=E(X^2)-(EX)^2=2/a^2-(1/a)^2=1/a^2
kikcik2023-07-06 08:14:421

设随机变量X服从参数为λ的指数分布(λ>0),求X的数学期望EX和方差DX

EX=DX =u03bb
西柚不是西游2023-07-06 08:14:411

设总体x服从指数分布,密度函数为 1x是否为θ的有效估计2求θd的无偏估计的方差

由已知得:N1~B(n,1-θ),N2~B(n,θ-θ2),N3~B(n,θ2),因为:E(T)=E(3i=1aiNi)=a1E(N1)+a2E(N2)+a3E(N3)=a1n(1-θ)+a2n(θ-θ2)+a3nθ2 =na1+n(a2-a1)θ+n(a3?a2)θ2,由:E(T)=θ,得:a1=0,a2=1n,a3=1n
瑞瑞爱吃桃2023-07-06 08:14:401
 1 2 3 4  下一页  尾页