函数极限

请问证明函数极限唯一性最后的a=b是怎么得出的?我看不懂

那要先说一下反证法:通过断定与论题相矛盾的判断(即反论题)的虚假来确立论题的真实性的论证方法。真实性:函数极限若存在,只有一个数a。现在有人怀疑,说不正确,说应该有两个数a,b。那我们不和他争辩,假设他的是正确的。然后推出结果:①f(x)<(a+b)/2②f(x)>(a+b)/2①,②两个不等式同时成立。因为①,②两个不等式同时成立,也就是说f(x)即要大于一个数,同时又要小于一个数,不可能的事情。那么问题出在哪儿?肯定是他的说法是错的,推出了错误的结论,其实极限只有一个数a,他所说的另外的极限b其实就是原来那个a。得出:a=b。
康康map2023-08-06 10:57:271

高等数学 函数极限 划线的那里是不是错了 应该和x的m+n次幂为同阶无穷小吧

题目没错
康康map2023-07-25 13:07:143

二元函数极限基本定理

二元函数极限基本定理:就是二元函数无限接近的那个数,而且二元函数极限是高等数学最基本的概念之一,并且二元函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限。函数是发生在集合之间的一种对应关系,而且函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示。二元函数的极限,定义法求极限:利用性质计算极限:利用二重极限的四则运算和复合运算性质来求极限。用简化运算法求解极限:当函数里含有根式时,要先进行分子或分母有理化,约去分子或分母中为零的部分。用取对数法求解极限:如果极限是1^∞,0^0 等不定型时,往往通过取对数的办法求得结果。用变量代换法求解极限:利用变量变换可以把二重极限化为一个易求解的二重极限,或是化为一元函数的极限来求解。两边夹法求解极限:通过放缩法使二元函数夹在两个极限均存在且相等的函数之间,再利用两边夹定理即可。等价代换法求解极限:利用无穷小量的性质作等价代换求得结果。利用无穷小量与有界量的乘积还是无穷小量求解极限
Jm-R2023-06-10 07:46:521

函数在某点是否可导与函数极限有什么关系

函数在某点可导说明函数在此点一定有函数极限.函数在某点有极限不一定在此点可导,比如说|x|函数在x=0处有极限,但是在此点不可导.
mlhxueli 2023-06-03 14:32:501

请问函数极限值和函数的二阶导有什么关系

我记得好像是这样的,在学习尾猿软件里,有讲过:因为一阶导数必存在:(f(x)-f(0))/(x-0)=(f(x)-a)/x x-->0-时,上式极限=0,故f"(0)=0. 所以x-->0+时,上式极限也为0, 从而可知sinbx/x当x-->0+时极限为a,于是b=a. 接着考虑二阶导数 | -2bx,x<0 因为f"(x)= | 0, x=0 | (bxcosbx-sinbx)/x^2 x>0 x=0时二阶导数存在所以 x-->0时,(f"(x)-f"(0))/x=f"(x)/x极限存在。 当x-->0-时,上式极限为:-2b,所以当x-->0+时,上式极限也应该等于-2b. 也就是(bxcosbx-sinbx)/x^3当x-->0+时极限为-2b,利用洛必达法则可得: -b^3/3=-2b, 由于b>0,所以b=sqrt(6),再由a=b,可知(a,b)=(sqrt(6),sqrt(6)) 注:sqrt(6)就是根号6.
北有云溪2023-06-03 14:32:491

函数在某点是否可导与函数极限有什么关系?

函数在某点可导说明函数在此点一定有函数极限。函数在某点有极限不一定在此点可导,比如说|x|函数在x=0处有极限,但是在此点不可导。
Jm-R2023-06-03 14:32:331

函数极限存在的条件与函数导数存在的条件

函数极限存在的充要条件是在该点左右极限均存在且相等; 函数导数存在的充要条件是在该点左右导数均存在且相等; 从导数的定义式可以看出,导数实际上也是求极限.
北营2023-06-03 14:26:381

函数极限存在的条件与函数导数存在的条件

函数极限存在的充要条件是在该点左右极限均存在且相等; 函数导数存在的充要条件是在该点左右导数均存在且相等; 从导数的定义式可以看出,导数实际上也是求极限.
瑞瑞爱吃桃2023-06-03 14:26:291

如何判断一个函数极限存在?

当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x。时的极限。极限存在准则:有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A。不但能证明极限存在,还可以求极限,主要用放缩法。2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。3.柯西准则。数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。
苏萦2023-05-25 18:51:511

函数极限存在的这个准则是什么意思?

有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。1.夹逼定理:(1)当(这是的去心邻域,有个符号打不出)时,有成立(2),那么,f(x)极限存在,且等于A不但能证明极限存在,还可以求极限,主要用放缩法。2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数,并且要满足极限是趋于同一方向,从而证明或求得函数的极限值。3.柯西准则数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有成立。
可桃可挑2023-05-25 18:51:501

用函数极限存在准则证明

因为1<√(1+1/n)<√2,所以√(1+1/n)有界因为√[1+1/(n+1)]/√(1+1/n)=√[n(n+2)/(n+1)^2]=√[(n^2+2n)/(n^2+2n+1)]<1所以√[1+1/(n+1)]<√(1+1/n),即√(1+1/n)单调递减综上,√(1+1/n)单调有界,所以极限存在当n->∞时,1/n->0,所以原极限=1
韦斯特兰2023-05-25 18:51:501

如何判断一个函数极限是否存在?

判断极限是否存在的方法是:分别考虑左右极限。极限存在的充分必要条件是左右极限都存在且相等。用数学表达式表示为:极限不存在的条件:1、当左极限与右极限其中之一不存在或者两个都不存在;2、左极限与右极限都存在,但是不相等。扩展资料求具体数列的极限,可以参考以下几种方法:1、利用单调有界必收敛准则求数列极限首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值。2、利用函数极限求数列极限如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。3、求N项和或项积数列的极限,主要有以下几种方法:(1)利用特殊级数求和法如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。(2)利用幂级数求和法若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。(3)利用定积分定义求极限若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。(4)利用夹逼定理求极限若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。(5)求N项数列的积的极限一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。参考资料来源:百度百科-函数极限
人类地板流精华2023-05-25 18:51:501

极限存在的条件 函数极限存在的条件是什么

1、单调有界准则。函数在某一点存在极限的必要条件是函数的左极限和右极限在某一点都同等存在。左右界限不同,或者不存在的话。那么函数在当时极限不存在。也就是说,从左侧求点时的极限值和从右侧求点时的极限值相等。 2、夹逼准则,如果目标的版的数列或函数权比大极限的数列或函数可以有另外的目标,而且数列或函数比小的数列或函数极限可以找到,那么目标的数列或函数是一定会存在极限。
Ntou1232023-05-25 18:51:481

求函数极限的具体方法是什么?

有以下几种方法:函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x。时的极限。   问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。
肖振2023-05-25 18:51:411

用极限运算法则求函数极限

1、利用函数连续性:lim f(x) = f(a) x->a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)2、恒等变形当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零。第二:若分母出现根号,可以配一个因子使根号去除。第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)当然还会有其他的变形方式,需要通过练习来熟练。3、通过已知极限特别是两个重要极限需要牢记。
人类地板流精华2023-05-25 18:51:411

函数极限怎么求?详细过程

如图
FinCloud2023-05-25 18:51:411

函数极限的求法

可以利用单调有界必有极限来求;利用函数连续的性质求极限;也可以通过已知极限来求,特别是两个重要极限需要牢记。 第一种:利用函数连续性:limf(x)=f(a)x->a (就是直接将趋向值带出函数自变量中,此时要要求分母不能为0) 第二种:恒等变形 当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决: 第一:因式分解,通过约分使分母不会为零。 第二:若分母出现根号,可以配一个因子使根号去除。 第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
北营2023-05-25 18:51:401

求函数极限的正确步骤

一、利用极限四则运算法则求极限函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则 lim[f(x)±g(x)]=limf(x)±limg(x)=A±B lim[f(x)?g(x)]=limf(x)?limg(x)=A?B lim==(B≠0)(类似的有数列极限四则运算法则)现以讨论函数为例。对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有: 1.直接代入法对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。 2.无穷大与无穷小的转换法在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。 3.除以适当无穷大法对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。 4.有理化法适用于带根式的极限。二、利用夹逼准则求极限函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)利用夹逼准则关键在于选用合适的不等式。 三、利用单调有界准则求极限单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。四、利用等价无穷小代换求极限常见等价无穷小量的例子有:当x0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。五、利用无穷小量性质求极限在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。六、利用两个重要极限求极限使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。七、利用洛必达法则求极限如果当xa(或x∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。
陶小凡2023-05-25 18:51:391

函数极限的求法

①利用函数连续性:lim f(x) = f(a) x->a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)②恒等变形 因式分解等③通过已知极限特别是两个重要极限需要牢记。
hi投2023-05-25 18:51:381

求函数极限有什么方法

1、利用定义求极限。  2、利用柯西准则来求。  柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于  任意的自然数m有|xn-xm|<ε.  3、利用极限的运算性质及已知的极限来求。  如:lim(x+x^0.5)^0.5/(x+1)^0.5  =lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5  =1.  4、利用不等式即:夹挤定理。  5、利用变量替换求极限。  例如lim (x^1/m-1)/(x^1/n-1)  可令x=y^mn  得:=n/m.  6、利用两个重要极限来求极限。  (1)lim sinx/x=1    x->0  (2)lim (1+1/n)^n=e    n->∞   7、利用单调有界必有极限来求。  8、利用函数连续得性质求极限。  9、用洛必达法则求,这是用得最多的。  10、用泰勒公式来求,这用得也很经常。
mlhxueli 2023-05-25 18:51:381

求函数极限的方法总结

1、利用定义求极限。  2、利用柯西准则来求。  柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数n,使得当n>n时,对于  任意的自然数m有|xn-xm|<ε.  3、利用极限的运算性质及已知的极限来求。  如:lim(x+x^0.5)^0.5/(x+1)^0.5  =lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5  =1.  4、利用不等式即:夹挤定理。  5、利用变量替换求极限。  例如lim(x^1/m-1)/(x^1/n-1)  可令x=y^mn  得:=n/m.  6、利用两个重要极限来求极限。  (1)limsinx/x=1    x->0  (2)lim(1+1/n)^n=e    n->∞   7、利用单调有界必有极限来求。  8、利用函数连续得性质求极限。  9、用洛必达法则求,这是用得最多的。  10、用泰勒公式来求,这用得也很经常。
余辉2023-05-25 18:51:381

函数极限的求法

①利用函数连续性:limf(x)=f(a)x->a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)②恒等变形因式分解等③通过已知极限特别是两个重要极限需要牢记。
北营2023-05-25 18:51:381

求24种函数极限的定义

x趋近于以下六种情况中的每一种时:{①x0+0②x0-0③x0④∞⑤+∞⑥-∞}f(x)分别趋于以下四种情况:{①a②+∞③-∞④∞}因此共有6×4=24种极限(其中x0和a均不为∞)
再也不做站长了2023-05-25 18:51:361

根据函数极限的定义证明

使||,|证题的步骤基本为: 任意给定duε>0,要使|f(x)-A|0,使当0<|x-x0|<δ时,有|f(x)-A|0,要使|lnx-1|0,都能找到δ>0,使当0<|x-e|<δ时,有|f(x)-1|<ε . 即当x趋近于e时,函数f(x)有极限1 说明一下:1、取0<|x-e|,是不需要考虑点x=e时的函数值,它可以存在也可不存在,可为A也可不为A。2、用ε-δ语言证明函数的极限较难,通常对综合大学数学等少数专业才要求。例如:极限定义,就是ε-δ定bai义。对于任意小正du数ε,存在正数δ,只zhi要|x-x0|≤δ,都有|f(x)-A|≤ε,就说x趋近于x0时,函数有极限A。如果极限是±∞,极限定义要换一个说法:对于任意大正数M,存在正数δ,只要|x-x0|≤δ,都有f(x)>+M,或者f(x)<-M,就说函数x趋近于x0时有极限+∞或-∞。如果x趋近于无穷大,仿此换一种说法:对于任意小正数ε,存在一个正数M,对于所有x>M或者x<-M,都有|f(x)-A|≤ε,就说x趋近于+或-∞时,函数有极限A。如果此时的极限也是无穷大:对于任意大正数P,存在一个正数M,对于所有x>M或者x<-M,都有|(x)>P,或者f(x)<-P,,就说x趋近于+或-∞时,函数极限为+∞或-∞。扩展资料:在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零。第二:若分母出现根号,可以配一个因子使根号去除。第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)参考资料来源:百度百科-函数极限
苏萦2023-05-25 18:51:361

如何理解函数极限的定义?

极限存在的定义是:函数在某一点极限存在的充要条件是函数左极限和右极限在某点都存在且相等,即从左趋向于所求点时的极限值和从右趋向于所求点的极限值相等。如果左右极限不相同、或者不存在,则函数在该点极限不存在。极限的性质:和实数运算的相容性,譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列{xn+yn}也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。与子列的关系数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
u投在线2023-05-25 18:51:351

如何理解函数极限的定义

解析如下:lim(x->0)f(2x)/x=2 lim(2x->0)[f(2x)-f(0)/2x]= 2f"(0)=2“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中。逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。
无尘剑 2023-05-25 18:51:341

函数极限的定义怎么理解?

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。相关信息:当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零。第二:若分母出现根号,可以配一个因子使根号去除。第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)
小菜G的建站之路2023-05-25 18:51:341

帮我通俗地分析一下函数极限的定义

把后边的式子平方展开,然后一个一个代入就可以x->-1我就不写了lim(9-42/(x+2)+49/(x+2)平方)=9-42lim1/(-1+2)+49lim1/(-1+2)平方=9-42+49=16
CarieVinne 2023-05-25 18:51:342

函数极限定义证明是什么?

函数极限定义证明如图所示:以下是函数极限的相关介绍:函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。在求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。以上资料参考百度百科——函数极限
hi投2023-05-25 18:51:341

多元函数极限如何求

多元函数的极限通用方法有 迫敛性和化为一元函数极限,二元函数可以考虑极坐标法,去求,基本上就这些个方法了
FinCloud2023-05-24 07:49:223

函数极限存在的条件

应该是函数的(左右极限存在且相等)是函数的极限存在的充要条件
铁血嘟嘟2023-05-22 18:14:314

超越函数极限

等价无穷小。。。。
Chen2023-05-22 18:13:033

如何判断函数极限

1,当X>1时,x^n趋向正无穷,极限是正无穷 2,当/X/<1时,x^n趋向0,极限是0 3,当X=1时,极限是1 4,当X=-1时,n正数,极限为1,n负数,极限为-1 5,X<-1无极限
九万里风9 2023-05-21 12:53:231

函数极限怎么求?

求连续区间的步骤:求连续区间,按照函数连续性的定义去做即可。设函数y=f(x)在x0点附近有定义,如果有lim(x->x0) f(x)=f(x0),则称函数f在x0点连续。如果定义在区间I上的函数在每一点x∈I都连续,则说f在I上连续。 步骤 连续函数 定义 连续函数是指函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。对于这种现象,因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。 法则 定理一、在某点连续的有限个函数经有限次和,差,积,商(分母不为0)运算,结果仍是一个在该点连续的函数。 定理二、连续单调递增(递减)函数的反函数,也连续单调递增(递减)。 定理三、连续函数的复合函数是连续的。 函数极限 定义 函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的 证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以x→Xo的极限为例,f(x)在点Xo以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x。|<δ时,对应的函数值f(x)都满足不等式:|f(x)-A|<ε,那么常数A就叫做函数f(x)当x→x。时的极限。 存在准则 1.夹逼定理 (1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立 (2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A 不但能证明极限存在,还可以求极限,主要用放缩法。 2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。 在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数,并且要满足极限是趋于同一方向,从而证明或求得函数的极限值。 3.柯西准则 数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。
善士六合2023-05-21 12:53:222

求函数极限的几种方法

求函数极限是数学中的一种基本问题,有多种解法。以下是几种方法:1、替换法:将x逐渐逼近极限值进行代入计算,看随着x越来越逼近极限值函数值趋于什么,从而求出极限值。2、夹逼准则:对于一个函数f(x),如果可以找到两个函数g(x)和h(x),其中g(x)≤f(x)≤h(x),并且limx→a g(x) = limx→a h(x) = L,那么f(x)在x趋近于a时的极限也是L。3、通分化简法:通过分子有理化或分母有理化,使函数分子与分母一致,然后再求极限。4、洛必达法则:对于一类不定式情况,如果它的分子与分母都是可导函数,那么可以通过求导来求出它的极限。5、泰勒级数展开法:使用泰勒级数展开函数为一个多项式,然后求极限。6、求导数保留主要部分法:对于函数的分子分母都带有高次项的情况,将两个式子一起求导,然后保留主要部分,再求极限。函数极限的性质:1、函数极限的唯一性:若数列的极限limf(x)存在,则极限值是唯一的。2、局部有界性:若当x趋于x0,f(x)存在极限A(也就是f(x)趋向于A),则存在M大于0,以及δ大于0,当0<|x-x0|<δ时,恒有|f(x)|<M。3、局部保号性:如果函数在某一点的极限不等于零,那么在这个点的临近(就是定理中的空心邻域),函数具有保持符号(与极限的符号相同)的性质。
gitcloud2023-05-21 12:53:221

函数极限的定义是什么?

当x趋近于某一值,函数趋近于一个确定的值,这个值是确定的,可以是无穷也可以是0
北境漫步2023-05-21 12:53:225

函数极限什么意思?

最好放到坐标轴上看,一条直线,0为原点,往右越来越大为正数,往左为负数越来越小。x趋向于0正就是指在右边无限靠近于0,x趋向于0负指从左边无限接近于0。“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量。极限计算:不管是什么题,如果求极限时出现无穷,直接倒代换就行了,不用想太多。只要考虑倒代换后的0的正负。在等价无穷小的操作中,涉及到加减法一般不能用等价无穷小替换,如果分式中只有乘法除法,则可以使用等价无穷小替换。
Chen2023-05-21 12:53:221

函数极限的定义

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
北境漫步2023-05-21 12:53:222

函数极限是什么呀,有公式吗

楼主所说极限计算七种定式; 七种定式都趋势能用静止概念理解: . 例: 概念:1 任何幂都等于 1; 概念:任何趋向于 1 函数穷幂定 1 . 例二: 概念:任何数 0 幂都等于 1; 概念:任何趋向于 0 函数 0 幂定 1 概念:任何趋向于 穷 函数 0 幂定 1 . 例三: 概念:任何数乘 0 都等于 0; 概念:任何趋向于 0 函数乘趋向于 穷函数乘积定 0 . 例四: 概念: 0 等于 0; 概念:母等于 0 止境趋向于 0 . 些定式 . 定式 = indeterminable form; 定式 = determinable form; 穷 = infinity; 穷 = infinitesimal; 公式 = 中国mon factor . 若疑问欢迎
可桃可挑2023-05-21 12:53:221

函数极限的存在准则

有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。1.夹逼定理:(1)当(这是的去心邻域,有个符号打不出)时,有成立(2),那么,f(x)极限存在,且等于A不但能证明极限存在,还可以求极限,主要用放缩法。2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。3.柯西准则数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有成立。
肖振2023-05-21 12:53:221

函数极限的求法

第一种:利用函数连续性:lim f(x) = f(a) x->a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)第二种:恒等变形当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零。第二:若分母出现根号,可以配一个因子使根号去除。第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)当然还会有其他的变形方式,需要通过练习来熟练。第三种:通过已知极限特别是两个重要极限需要牢记。扩展资料有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A不但能证明极限存在,还可以求极限,主要用放缩法。2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。3.柯西准则数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。
再也不做站长了2023-05-21 12:53:221

函数极限存在的条件是什么?

简单分析一下即可,详情如图所示
善士六合2023-05-21 12:53:222

函数极限的定义公式是什么?

函数极限的定义公式:函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零。第二:若分母出现根号,可以配一个因子使根号去除。第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。
无尘剑 2023-05-21 12:53:211

函数极限怎么求

这是一个幂指函数的极限,底数的极限是1,指数的极限是∞。先取对数,考虑极限lim(x→∞)x×ln(sin(2/x)+cos(1/x)),其中ln(sin(2/x)+cos(1/x))等价于sin(2/x)+cos(1/x)-1所以lim(x→∞)x×ln(sin(2/x)+cos(1/x))=lim(x→∞)x×(sin(2/x)+cos(1/x)-1)=lim(x→∞)x×sin(2/x)-lim(x→∞)x×(1-cos(1/x))=lim(x→∞)x×(2/x)-lim(x→∞)x×1/2×(1/x)^2=2-0=2所以,原极限等于e^2,其中使用的等价无穷小是:x→0时,ln(1+x)~x,sinx~x,1-cosx~1/2×x^2二元函数的极限成一元函数的极限,即将二重极限化成累次极限,在很多情专况下方便求极限可是在某些情况下直接计算二重极限比较方便,例如:lim(x→0,y→1)[(x^2+3x)/xy]=lim(x→0,y→0)[(x+3)/y]=3这个可以在最后一步时将x,y的极限值直接代入,并且前面说了二重极限化累次极限是有限定条件的,不满足条件则不能化成累次极限。扩展资料:在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零。第二:若分母出现根号,可以配一个因子使根号去除。第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。参考资料来源:百度百科-函数极限
Chen2023-05-21 12:53:211

函数极限的定义证明是什么?

函数极限的定义证明:任意给定ε>0,要使|f(x)-A|0,使当0<|x-x0|<δ时,有|f(x)-A|0,要使|lnx-1|0,都能找到δ>0,使当0<|x-e|<δ时,有|f(x)-1|<ε。即当x趋近于e时,函数f(x)。说明:取0<|x-e|,是不需要考虑点x=e时的函数值,它可以存在也可不存在,可为A也可不为A。用ε-δ语言证明函数的极限较难,通常对综合大学数学等少数专业才要求。函数极限的性质函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
u投在线2023-05-21 12:53:211

函数极限公式汇总有哪些?

极限公式:1、e^x-1~x (x→0) 2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)9、1-cosx~1/2x^2 (x→0)10、a^x-1~xlna (x→0)11、e^x-1~x (x→0)12、ln(1+x)~x (x→0)13、(1+Bx)^a-1~aBx (x→0)14、[(1+x)^1/n]-1~1/nx (x→0)15、loga(1+x)~x/lna(x→0)求极限基本方法有:1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。2、无穷大根式减去无穷大根式时,分子有理化。3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
康康map2023-05-21 12:53:211

函数极限的概念

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。方法①利用函数连续性:(就是直接将趋向值带入函数自变量中,此时要要求分母不能为0)②恒等变形当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零。第二:若分母出现根号,可以配一个因子使根号去除。第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)当然还会有其他的变形方式,需要通过练习来熟练。③通过已知极限特别是两个重要极限需要牢记。④采用洛必达法则求极限。洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。
北营2023-05-21 12:53:211

函数极限存在的条件是什么?

函数极限存在的条件:一、单调有界准则。二、夹逼准则,如能找到比目标数列或者函数大而有极限的数列或函数,并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。函数在某一点极限存在的充要条件是函数左极限和右极限在某点相等。如果左右极限不相同、或者不存在。则函数在该点极限不存在。即从左趋向于所求点时的极限值和从右趋向于所求点的极限值相等。扩展资料:在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。第一:因式分解,通过约分使分母不会为零。第二:若分母出现根号,可以配一个因子使根号去除。第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)参考资料来源:百度百科-函数极限
瑞瑞爱吃桃2023-05-21 12:53:212

函数极限的计算方法

(1)常见函数的极限。(2)极限的运算法则,加减乘除。(3)洛必达法则。(4)夹逼法。(5)对数法。(6)连续函数代入法。
大鱼炖火锅2023-05-21 12:53:211

微积分中说函数极限的六种形式是哪六种

楼主的说法,一定是被误导了。1、如果有极限,直接代入,也就是“定式”,就是可以直接确定的极限表达式;2、如果直接代入,出现无法确定的情况没,需要经过特别处理才能确定最后结果,这样的情况有七种,七种不定式:(1)、无穷大减无穷大;(2)、无穷大乘无穷小;(3)、无穷大除无穷大;(4)、无穷小除无穷小;(5)、1的无穷大次幂;(6)、无穷大的无穷小次幂;(7)、无穷小的无穷小次幂。
韦斯特兰2023-05-21 12:53:201

用函数极限的定义证明

(1)令f(x)=(2x+3)/3x,由于|f(x)-A|=|f(x)-2/3|=|1/x|,任意ε>0,要证存在M>0,当|x|>M时,不等式|(1/x)-0|<ε成立。因为这个不等式相当于1/|x|1/ε.由此可知,如果取M=1/ε,那么当|x|>M=1/ε时,不等式|1/x-0|∞时,limf(x)=2/3.(3)小弟不才,此题不会。。。其他网友的解答:[x-2]<δ。-δ0[1/(x-1)-1]=[2-x]/[x-1]<δ/(1-δ)=ε,可以设δ=ε/(1+ε)。下面用ε-δ语言来证明x趋近2时,1/(x-1)的极限是1。对任意小的0<ε<1,取a=ε/(1+ε)。当[x-2](1+ε)时,ε>[x-2](1+ε)=[x-2]+[x-2]ε,[x-2]<ε(1-[x-2]),[1/(x-1)-1]=[x-2]/[x-2+1]<[x-2]/(1-[x-2])<ε。所以,x趋近2时,1/(x-1)的极限是1。(4)如果这题极限为2的话,可以这样证明:函数在点x=1是没有定义的,但是函数当x->1时的极限存在或不存在与它并无关系。事实上,任意ε>0,将不等式|f(x)-2|<ε约去非零因子x-1后,就化为|x-1|<ε,因此,只要取δ=ε,那么当0<|x-1|<δ时,就有|f(x)-2|<ε.所以,原极限成立。
北营2023-05-21 12:53:201

函数极限的定理

函数极限的定理如下:函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。如函数极限的唯一性(若极限存在,则在该点的极限是唯一的)
人类地板流精华2023-05-21 12:53:201

高数中关于函数极限的法则

极限是高等数学的基础,要学清楚。设f:(a,+∞)→R是一个一元实值函数,a∈R.如果对于任意给定的ε>0,存在正数X,使得对于适合不等式x>X的一切x,所对应的函数值f(x)都满足不等式. │f(x)-A│<ε , 则称数A为函数f(x)当x→+∞时的极限,记作 f(x)→A(x→+∞). 例y=1/x,x→+∞时极限为y=0 函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。 极限符号可记为lim。函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x。时的极限。 问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。详见附例1。 函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若极限 存在,则在该点的极限是唯一的)有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。 1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立 (2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A 不但能证明极限存在,还可以求极限,主要用放缩法。 2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。 在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。 3.柯西准则 数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。
豆豆staR2023-05-21 12:53:201

函数极限

一、利用极限四则运算法则求极限函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则 lim[f(x)±g(x)]=limf(x)±limg(x)=A±B lim[f(x)?g(x)]=limf(x)?limg(x)=A?B lim==(B≠0)(类似的有数列极限四则运算法则)现以讨论函数为例。对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有: 1.直接代入法对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。 2.无穷大与无穷小的转换法在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。 3.除以适当无穷大法对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。 4.有理化法适用于带根式的极限。二、利用夹逼准则求极限函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)利用夹逼准则关键在于选用合适的不等式。 三、利用单调有界准则求极限单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。四、利用等价无穷小代换求极限常见等价无穷小量的例子有:当x→0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。五、利用无穷小量性质求极限在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。六、利用两个重要极限求极限使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。七、利用洛必达法则求极限如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。
Ntou1232023-05-21 12:53:201

请给出"函数极限 "lim f(x)=A 的直观含义

直观含义就是把x=x0 代入到f(x)中,得到的f(x0)的值。不过有些x0 不在定义域中,就不能直接代入了。这个时候只能说是 在距离f(x0)这个点很近很近的一个值lim(x->0)[(1/x-1/sinx)]= lim(x->0)[(sinx-x)/xsinx]用近似替换 lim(x->0) x相似于sinx= lim(x->0)[(sinx-x)/x^2]用洛必达法则=lim(x->0)[(cosx-1)/2x]=lim(x->0) [(-1/2x^2) /2x]=lim(x->0)[-1/4x]=0
u投在线2023-05-21 12:53:202

求函数极限的方法

洛必达法则,公式,目测
mlhxueli 2023-05-21 12:53:202

函数极限定义

设函数y=f(x)在点X0的某个去心邻域中有定义,即存在ρ>0,使O(X0,ρ){X0}。如果存在实数A,对于任意给定的ε>0,都可以找到δ>0,使得当0<|x-x0|<δ时,成立│f(x)-A│<ε ,则称数A为函数f(x)当x→+∞时的极限,记作f(x)→A(x→+∞).例y=1/x,x→+∞时极限为y=0函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。极限符号可记为lim
拌三丝2023-05-21 12:53:201

函数极限的定义

函数极限的定义如下:设函数在点的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数(无论它多么小),总存在正数,使得当x满足不等式时,对应的函数值都满足不等式,那么常数A就叫做函数当时的极限。函数极限可以运用ε—δ定义,在更多的见诸已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。函数极限存在准则:1、夹逼定理:当这是的去心邻域,有个符号打不出时,有成立,那么,f(x)极限存在,且等于A。不但能证明极限存在,还可以求极限,主要用放缩法。2、单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数的极限值。
wpBeta2023-05-21 12:53:191

函数极限的定义

函数在点的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数(无论它多么小),总存在正数,使得当x满足不等式时,对应的函数值都满足不等式,那么常数A就叫做函数当时的极限。函数极限的四则运算法则:1、特别注意参与运算的函数是同一变化过程中极限都存在。2、作为分母的函数在去心邻域内函数值和极限值都不能等于零。3、乘以一个非零常数不改变函数的敛散性。4、参与运算的函数个数为有限个。函数极限的求法:1、用极限定义。此种方法在昨天发布的内容中有详细介绍,本讲不作为主要内容。2、利用极限的四则运算。这是重点,重点讲解对于0-0型,0/0型,∞-∞型,∞/∞型的极限的求法。3、利用无穷小量的性质。4、等价无穷小代换。
大鱼炖火锅2023-05-21 12:53:191

函数极限的定义

题库内容:极限的解释(1) [limit] (2) 最大的限度 一个人的忍耐的极限 (3) 自变量的值无限趋近但不等于某规定数值时,或向正向或负向增大到 一定 程度 时,与数学 函数 的数值差为无穷小的数 详细解释 最大的限度。 郑义 《迷雾》 十一:“常委会真开成了‘长尾"会, 唐可林 觉得自己的耐心实在 已经 达到极限了。” 祖慰 《被礁石划破的水流》 :“我 不知 道人 类惊愕的感情极限是什么样,我确实惊愕得发傻了。” 词语分解 极的解释 极 (极) í 顶端,最高点, 尽头 :登极(帝王即位)。 登峰造极 。 指地球的南北两端或电路、磁体的正负两端: 极地 (极圈以内的地区)。极圈。北极。阴极。 尽,达到顶点:极力。极目四望。物极必反。 最高的, 限的解释 限 à 指定的范围:期限。界限。权限。局限。限额。 指定范围: 限制 。限于。限期。限价(官方指定最高或最低价格,不得超越)。无限。 门槛:门限。 险阻:关限。 部首 :阝。
肖振2023-05-21 12:53:191

函数极限的定义是什么?

函数极限存在的条件:1、单调有界准则。函数在某一点极限存在的充要条件是函数左极限和右极限在某点都存在且相等,如果左右极限不相同、或者不存在。则函数在该点极限不存在。2、夹逼准则。如能找到比目标版数列或者函数权大而有极限的数列或函数,并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。函数极限求法介绍利用函数连续性:直接将趋向值带入函数自变量中,此时要要求分母不能为0;通过已知极限:两个重要极限需要牢记;采用洛必达法则求极限:洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的,常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。以上内容参考 百度百科—函数极限
陶小凡2023-05-21 12:53:191

函数极限存在的条件

函数极限存在的条件:一、单调有界准则。函数在某一点极限存在的充要条件是函bai数左极限和右极限在某点都存在且相等。如果左右极限不相同、或者不存在。则函数在该点极限不存在。即从左趋向于所求点时的极限值和从右趋向于所求点的极限值相等。二、夹逼准则,如能找到比目标版数列或者函数权大而有极限的数列或函数,并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。扩展资料:极限的求法有很多种:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值2、利用恒等变形消去零因子(针对于0/0型)3、利用无穷大与无穷小的关系求极限4、利用无穷小的性质求极限5、利用等价无穷小替换求极限,可以将原式化简计算6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限7、利用两个重要极限公式求极限
NerveM 2023-05-21 12:53:191

给出函数极限的两个重要极限?

第一重要极限lim(1+1/x)^x  f(x)=(1+1/x)^x,当x趋向于无穷时这个函数的极限存在,一开始我们并不知道其确切的数值,所以用e来表示,这也是自然对数,现如仅有的两个超越数(e,π)之一,的来源。  1,当x趋向于负无穷时f(x)趋向于e    2,当x趋向于从负向-1时f(x)趋向于正无穷    第二重要极限lim(sinx/x)  f(x)=sinx/x当x→0是f(x)→1,当x→∞时,由有界函数乘以无穷小仍为无穷小知道函数趋向于0
苏萦2023-05-21 12:53:191

谁能帮我举例解释一下函数极限的定义。

楼主请仔细理解,“则称”前面的句子相当于:绝对值[f(x)-A]=0,因为Y可以任意小!理解这就好说了,举个例子:f(x)=e^(-x),A=0
无尘剑 2023-05-21 12:53:193

函数极限的概念

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。方法①利用函数连续性:(就是直接将趋向值带入函数自变量中,此时要要求分母不能为0)②恒等变形当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零。第二:若分母出现根号,可以配一个因子使根号去除。第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)当然还会有其他的变形方式,需要通过练习来熟练。③通过已知极限特别是两个重要极限需要牢记。④采用洛必达法则求极限洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。
大鱼炖火锅2023-05-21 08:46:271

函数极限怎么求

第一种:利用函数连续性:lim f(x) = f(a) x->a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)第二种:恒等变形当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零。第二:若分母出现根号,可以配一个因子使根号去除。第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)当然还会有其他的变形方式,需要通过练习来熟练。第三种:通过已知极限特别是两个重要极限需要牢记。
墨然殇2023-05-21 08:46:275

函数极限的性质是什么?

函数极限的性质:1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等;2、有界性:如果一个数列收敛(有极限),那么这个数列一定有界。但是,如果一个数列有界,这个数列未必收敛。例如数列1,-1,1,-1,……(-1)n+1。3、和实数运算的相容性:譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列  {xn+yn}也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。4、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列  收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。几何意义:1、在区间(a-ε,a+ε)之外至多只有N个(有限个)点。2、所有其他的点xN+1,xN+2,(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。换句话说,如果只知道区间(a-ε,a+ε)之内有{xn}的无数项,不能保证(a-ε,a+ε)之外只有有限项,是无法得出{xn}收敛于a的,在做判断题的时候尤其要注意这一点。
康康map2023-05-21 08:46:271

什么是函数极限

函数极限的定义是某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”的过程中,此变量的变化,被人为规定为“永远靠近而不停止”,其有一个“不断地极为靠近A点的趋势”。
kikcik2023-05-21 08:46:261

函数极限的求法有哪几种方法?

可以。0/0型极限=1的例子,重要极限limsinx/x=1(x→0)∞/∞型极限=1的例子,lim(x+1)/x=1(x→+∞)注:可以运用罗比塔法则求0/0型、∞/∞型极限。扩展资料:极限的求法有很多种:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值2、利用恒等变形消去零因子(针对于0/0型)3、利用无穷大与无穷小的关系求极限4、利用无穷小的性质求极限5、利用等价无穷小替换求极限,可以将原式化简计算6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限7、利用两个重要极限公式求极限8、利用左、右极限求极限,(常是针对求在一个间断点处的极限值)9、洛必达法则求极限
苏萦2023-05-21 08:46:261

如何理解函数极限的定义?

你给出的是自变量趋于正无穷大时的函数极限概念,这个概念要与自变量趋于一点时函数极限的定义进行区分,不过其实本质没有什么不同。极限表现的是一种变化过程中的无限接近的性质,直观上理解就是函数值和极限值“任意小”的差别都可以在自变量“足够大”时实现。一个量是要求可以任意的小,另一个量是只要存在一个就可以了。
此后故乡只2023-05-21 08:46:264

函数极限公式

函数极限公式:1、e^x-1~x(x→0)。2、e^(x^2)-1~x^2(x→0)。3、1-cosx~1/2x^2(x→0)。4、1-cos(x^2)~1/2x^4(x→0)。5、sinx~x(x→0)。6、tanx~x(x→0)。7、arcsinx~x(x→0)。8、arctanx~x(x→0)。9、1-cosx~1/2x^2(x→0)。10、a^x-1~xlna(x→0)。11、e^x-1~x(x→0)。12、ln(1+x)~x(x→0)。13、(1+Bx)^a-1~aBx(x→0)。14、[(1+x)^1/n]-1~1/nx(x→0)。15、loga(1+x)~x/lna(x→0)。
LuckySXyd2023-05-21 08:46:261

求函数极限的方法有几种?具体怎么求?

还得记住两个重要极限
墨然殇2023-05-21 08:46:2510

数列极限和函数极限的概念?

我是高数的菜鸟。请问函数的极限和数列的极限有什么区别,清大家说清楚点。函数极限的一般概念:在自变量的某个变化过程中,如果对应的函数值无限接近于
韦斯特兰2023-05-21 08:46:252

如何区分函数极限与数列极限?

关系虽然数列极限与函数极限是分别独立定义的,但是两者是有联系的。海涅定理深刻地揭示了变量变化的整体与部分、连续与离散之间的关系,从而给数列极限与函数极限之间架起了一座可以互相沟通的桥梁。它指出函数极限可化为数列极限,反之亦然。在极限论中海涅定理处于重要地位。有了海涅定理之后,有关函数极限的定理都可借助已知相应的数列极限的定理予以证明。区别1、从研究的对象看区别:数列是离散型函数。 而函数极限研究的对象主要是具有(哪怕局部具有)连续性的函数。2、取值方面的区别:数列中的下标n仅取正整数,而对函数而言其自变量x取值为实数。函数极限f(X)与X的取值有关,而数列极限Xn则只是n趋向于无穷是Xn的值。3、从因变量趋近方式看区别:数列趋近于常数的方式有三种:左趋近,右趋近,跳跃趋近;而函数没有跳跃趋近。扩展资料函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的证明题中。问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。参考资料百度百科——海涅定理百度百科——函数极限
小白2023-05-21 08:46:241

函数极限不存在有哪几种情况?

不能证明存在 就可以反证不存在了简单啊
康康map2023-05-20 17:37:595

实变函数极限问题

设F(s) = ∫{0,+∞} f(t)e^(-st) dt.由f(t)非负, e^(-st)关于s单调递减 (t ≥ 0), 可知F(s)单调递减.又F(s) > 0, 可知lim{s → +∞} F(s)存在.于是lim{s → +∞} F(s) = lim{n → ∞} F(n).只需考虑数列F(n)的极限.考虑函数列fn(x) = f(x)e^(-nx), 易见0 ≤ fn(x) ≤ f(x)对任意x ≥ 0成立.又f(x)在[0,+∞)可积, 即函数列fn(x)存在可积的控制函数.易见当n → ∞时, 函数列fn(x)在(0,+∞)上逐点收敛到0, 即极限函数几乎处处为0.由Lebesgue控制收敛定理, lim{n → ∞} F(n) = lim{n → ∞} ∫{0,+∞} f(t)e^(-nt) dt= lim{n → ∞} ∫{0,+∞} fn(t) dt= ∫{0,+∞} lim{n → ∞} fn(t) dt= 0.综上lim{s → +∞} F(s) = 0.注: 其实不预先证明lim{s → +∞} F(s)存在也是可以的.只需对任意趋于∞的数列a[n], 用Lebesgue控制收敛定理证明F(a[n])都收敛到0.
u投在线2023-05-20 08:57:421

一元函数极限的定义

一元函数f(x)的极限定义是:若x在无限趋于数a时,f(x)的值无限趋于某一确定的数L,则称函数f(x)当x趋于a时的极限为L,并用记号lim(x->a) f(x) = L 来表示。其中,a为函数f(x)的极限点,L为函数f(x)的极限值。 换句话说,当函数中自变量x无限接近某一点a时,函数值f(x)无限接近某一常数L,那么这个常数L就是函数的极限。若f(x)在x=a处无限接近一个确定值L,则函数f(x)就在x=a处有极限。需要注意的是,这个定义只适用于实数,不适用于复数。在实际应用中,比如微积分中,极限的定义是十分重要的概念,它是构建微积分理论的基础。如何学习函数:1、了解数学中函数的概念,包括自变量、因变量、定义域、值域等基本术语。2、学习不同类型的函数,例如线性函数、二次函数、指数函数、对数函数、三角函数等,理解它们的图像、性质和应用。3、熟练掌握函数的运算法则,包括函数的加减、乘除、复合等运算规则。4、学习函数的极限、导数和积分等概念,这是深入理解函数的重要基础。5、多做函数相关的题目和练习,特别是与实际问题相关的应用题,这有助于加深对函数的理解和应用能力。
可桃可挑2023-05-20 08:55:471

函数极限与有界有什么区别?

定义分别如下:极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。极限的概念最终由柯西和魏尔斯特拉斯等人严格阐述。在现代的数学分析教科书中,几乎所有基本概念(连续、微分、积分)都是建立在极限概念的基础之上。有界集:设在R中有一个集合A,如果存在正数M<∞:|x-y|≤M,其中任意x,y∈A;就称A为有界集,即A是有界的。
韦斯特兰2023-05-19 11:02:142

求函数极限

lim(x趋于2)arctan√(2x-3)=arctan1=π/4
可桃可挑2023-05-18 05:43:151