- 无尘剑
-
函数极限的定义公式:
函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:
第一:因式分解,通过约分使分母不会为零。
第二:若分母出现根号,可以配一个因子使根号去除。
第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。
什么是函数极限
函数极限的定义是某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”的过程中,此变量的变化,被人为规定为“永远靠近而不停止”,其有一个“不断地极为靠近A点的趋势”。2023-05-21 08:41:131
函数的极限
这里我不会去讨论什么是函数,下面是《托马斯微积分》中给出的对函数的定义。值得声明的是,定义中的集合Y和集合D都是数的集合,比如自然数集、整数集或者实数集等。 为了搞清楚函数极限是什么?我将思考以下六个问题: 1.什么是函数极限? 2.为什么是函数极限? 3.函数极限有什么性质? 4.极限在什么情况下存在? 5.函数极限有什么用以及怎么用? 6.为什么函数极限会有这些用处? 先来看第一个问题:函数极限是什么? 这其实是一个头脑风暴或者借助书籍和网络查询的过程,我们会收集到大量函数极限的例子。 函数极限是这样的: 这样的: 这个时候我们发现,函数极限是一个数,而且是一个常数。 除了知道函数极限是一个数之外,我们还可以总结到:函数极限是函数的自变量趋近于某个值的时候,因变量的渐近性质。也就是说,当自变量趋近于某个特定数值C的时候,因变量也会相应地趋近于某个特定数值L(当它存在的时候)。C和L具有一一对应的关系,并且都是常数(这里我们将∞理解为广义的常数)。也就是说函数极限就是研究函数在某个点的性质,但值得注意的是,函数并不需要取到这个点,也就是说函数在点x=C处是否有极限跟函数在x=C处是否有定义没有任何关系。 好了,到了这里我们对什么是函数极限已经有了底了,虽然暂时不能一口气说出函数极限到底是什么,但至少我们能举出一些函数极限的例子。 下面来看第二个问题:为什么以上列出的例子是函数极限? 这是分类的自我提问,目的是将函数极限这类东西与其他东西分离开来,也就是需要给它下个定义。给任何东西下定义都不是一件容易的事情,尤其是那些我们不熟悉的东西。来看看同济第七版《高等数学》怎么定义极限的。 再看一下《托马斯微积分》中给出的正式的极限定义。 第三个要思考的问题是:函数极限有哪些性质? 1.函数极限是一个常数 2.函数极限具有唯一性 3.函数极限的局部有界性 4.函数极限的局部保号性 5.极限与函数关系定理2023-05-21 08:41:201
函数极限的求法有哪几种方法?
可以。0/0型极限=1的例子,重要极限limsinx/x=1(x→0)∞/∞型极限=1的例子,lim(x+1)/x=1(x→+∞)注:可以运用罗比塔法则求0/0型、∞/∞型极限。扩展资料:极限的求法有很多种:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值2、利用恒等变形消去零因子(针对于0/0型)3、利用无穷大与无穷小的关系求极限4、利用无穷小的性质求极限5、利用等价无穷小替换求极限,可以将原式化简计算6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限7、利用两个重要极限公式求极限8、利用左、右极限求极限,(常是针对求在一个间断点处的极限值)9、洛必达法则求极限2023-05-21 08:41:281
如何理解函数极限的定义?
你给出的是自变量趋于正无穷大时的函数极限概念,这个概念要与自变量趋于一点时函数极限的定义进行区分,不过其实本质没有什么不同。极限表现的是一种变化过程中的无限接近的性质,直观上理解就是函数值和极限值“任意小”的差别都可以在自变量“足够大”时实现。一个量是要求可以任意的小,另一个量是只要存在一个就可以了。2023-05-21 08:41:384
函数极限公式
函数极限公式:1、e^x-1~x(x→0)。2、e^(x^2)-1~x^2(x→0)。3、1-cosx~1/2x^2(x→0)。4、1-cos(x^2)~1/2x^4(x→0)。5、sinx~x(x→0)。6、tanx~x(x→0)。7、arcsinx~x(x→0)。8、arctanx~x(x→0)。9、1-cosx~1/2x^2(x→0)。10、a^x-1~xlna(x→0)。11、e^x-1~x(x→0)。12、ln(1+x)~x(x→0)。13、(1+Bx)^a-1~aBx(x→0)。14、[(1+x)^1/n]-1~1/nx(x→0)。15、loga(1+x)~x/lna(x→0)。2023-05-21 08:43:201
函数极限的概念
函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。方法①利用函数连续性:(就是直接将趋向值带入函数自变量中,此时要要求分母不能为0)②恒等变形当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零。第二:若分母出现根号,可以配一个因子使根号去除。第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)当然还会有其他的变形方式,需要通过练习来熟练。③通过已知极限特别是两个重要极限需要牢记。④采用洛必达法则求极限洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。2023-05-21 08:43:271
函数有极限的条件是?
极限存在的充要条件:左极限存在,右极限存在,左右极限相等。可以概括为左右极都限存在且相等。左极限,就是从这个点的左边无穷趋向于这个数时,整个函数趋向于某个特定的数;右极限则是从这个点的右边无穷趋向于它时的极限。极限存在的充要条件是左右极限存在且相等。左极限就是函数从一个点的左侧无限靠近该点时所取到的极限值,且误差可以小到我们任意指定的程度,只需要变量从坐标充分靠近于该点。右极限就是函数从一个点的右侧无限靠近该点时所取到的极限值,且误差可以小到我们任意指定的程度,只需要变量从坐标充分靠近于该点。左极限与右极限只要有其中有一个极限不存在,则函数在该点极限不存在。分别考虑左右极限。极限存在的充分必要条件是左右极限都存在,且相等。极限不存在的条件:当左极限与右极限其中之一不存在或者两个都不存在;左极限与右极限都存在,但是不相等。2023-05-21 08:43:401
函数极限怎么求
第一种:利用函数连续性:lim f(x) = f(a) x->a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)第二种:恒等变形当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零。第二:若分母出现根号,可以配一个因子使根号去除。第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)当然还会有其他的变形方式,需要通过练习来熟练。第三种:通过已知极限特别是两个重要极限需要牢记。2023-05-21 08:44:065
函数极限的性质是什么?
函数极限的性质:1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等;2、有界性:如果一个数列收敛(有极限),那么这个数列一定有界。但是,如果一个数列有界,这个数列未必收敛。例如数列1,-1,1,-1,……(-1)n+1。3、和实数运算的相容性:譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列 {xn+yn}也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。4、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。几何意义:1、在区间(a-ε,a+ε)之外至多只有N个(有限个)点。2、所有其他的点xN+1,xN+2,(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。换句话说,如果只知道区间(a-ε,a+ε)之内有{xn}的无数项,不能保证(a-ε,a+ε)之外只有有限项,是无法得出{xn}收敛于a的,在做判断题的时候尤其要注意这一点。2023-05-21 08:45:481
函数极限的定义
函数极限的定义如下:设函数在点的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数(无论它多么小),总存在正数,使得当x满足不等式时,对应的函数值都满足不等式,那么常数A就叫做函数当时的极限。函数极限可以运用ε—δ定义,在更多的见诸已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。函数极限存在准则:1、夹逼定理:当这是的去心邻域,有个符号打不出时,有成立,那么,f(x)极限存在,且等于A。不但能证明极限存在,还可以求极限,主要用放缩法。2、单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数的极限值。2023-05-21 08:46:331
函数求极限的方法总结
函数求极限的方法总结:1、简单代值:利用函数的连续性求函数的极限。如果是初等函数,且点在的定义区间内。计算该函数此时的极限,只要计算对应的函数值就可以了。2、幂指函数转化:当函数形式为幂指数形式时,用对数法进行求解。3、有理化:在函数形式含有根号时,一般选择通过分子分母有理化去根号。4、取大头:取大头法是在 x 趋近于∞时看x最高次幕前面的系数, 因为分子分母要同时除以x的最高次幂, 有的项由于变为除以x的最高次幕后就变成0了。2023-05-21 08:47:151
函数极限的定义
函数在点的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数(无论它多么小),总存在正数,使得当x满足不等式时,对应的函数值都满足不等式,那么常数A就叫做函数当时的极限。函数极限的四则运算法则:1、特别注意参与运算的函数是同一变化过程中极限都存在。2、作为分母的函数在去心邻域内函数值和极限值都不能等于零。3、乘以一个非零常数不改变函数的敛散性。4、参与运算的函数个数为有限个。函数极限的求法:1、用极限定义。此种方法在昨天发布的内容中有详细介绍,本讲不作为主要内容。2、利用极限的四则运算。这是重点,重点讲解对于0-0型,0/0型,∞-∞型,∞/∞型的极限的求法。3、利用无穷小量的性质。4、等价无穷小代换。2023-05-21 08:47:421
怎么求函数的极限啊
方法一:都是幂指数的形式,可以提出最高次项,极限值就是最高次项的系数之比,如下图所示。方法二:可以用洛必达法则求极限。具体做法是同时对分子分母求导,然后借助方法一或者直接代入,可以得到答案。扩展资料必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法 。众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。参考资料:百度百科洛必达法则2023-05-21 08:48:051
函数的极限
函数的极限中exp代表指数函数,exp(u)=e^u,这里就是先取对数后求极限,再进行指数运算。【附】函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。函数极限可以分成 ,而运用ε-δ定义更多的见诸已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以 的极限为例,f(x) 在点 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x满足不等式 时,对应的函数值f(x)都满足不等式: ,那么常数A就叫做函数f(x)当 x→x。时的极限。问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。如函数极限的唯一性(若极限存在,则在该点的极限是唯一的)2023-05-21 08:48:544
极限函数公式怎么写啊?
lim极限函数公式总结:lim((sinx)/x)=1(x->0)。两个重要极限:设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn}收敛于a。如果上述条件不成立,即存在某个正数ε,无论正整数N为多少,都存在某个n>N,使得|xn-a|≥a,就说数列{xn}不收敛于a。如果{xn}不收敛于任何常数,就称{xn}发散。极限函数的来源极限函数是高等数学中基本的概念之一,它是判定函数列一致收敛的一个重要条件。极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。极限一词源于拉丁文“limitem”,缩写为“lim”。1786年瑞士数学家鲁易理(Lhuillier)首次引入,后人不断完善,发展了长达132年之久,由英国数学家哈代(Haddy)的完善极限符号才成为今天通用的符号。2023-05-21 08:49:571
如何求函数的极限?(高中)
二元函数的极限成一元函数的极限,即将二重极限化成累次极限,在很多情况下方便求极限(但是有个限制条件,必须是二重极限和累次极限都存在的情况下才能这么做)可是在某些情况下直接计算二重极限比较方便,例如lim(x→0,y→1)[(x^2+3x)/xy]=lim(x→0,y→0)[(x+3)/y]=3这个可以在最后一步时将x,y的极限值直接代入并且前面说了二重极限化累次极限是有限定条件的,不满足条件则不能化成累次极限2023-05-21 08:50:142
怎样求函数的极限?
lim(x→+∞)(x^(1/x))=e^(lim(x→+∞)((lnx)/x))=e^0=1极限的求法有很多种:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。2、利用恒等变形消去零因子(针对于0/0型)。3、利用无穷大与无穷小的关系求极限。4、利用无穷小的性质求极限。5、利用等价无穷小替换求极限,可以将原式化简计算。6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。2023-05-21 08:50:231
极限函数lim重要公式16个
极限函数lim重要公式16个如下:1、e^x-1~x(x→0)。2、e^(x^2)-1~x^2(x→0)。3、1-cosx~1/2x^2(x→0)。4、1-cos(x^2)~1/2x^4(x→0)。5、sinx~x(x→0)。6、tanx~x(x→0)。7、arcsinx~x(x→0)。8、arctanx~x(x→0)。9、1-cosx~1/2x^2(x→0)。10、a^x-1~xlna(x→0)。11、e^x-1~x(x→0)。12、ln(1+x)~x(x→0)。13、(1+Bx)^a-1~aBx(x→0)。14、[(1+x)^1/n]-1~1/nx(x→0)。15、loga(1+x)~x/lna(x→0)。16、limα→0(1+α)1α=e。“极限”是数学中的分支微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。微积分中的极限是基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。2023-05-21 08:50:321
函数极限的定义
题库内容:极限的解释(1) [limit] (2) 最大的限度 一个人的忍耐的极限 (3) 自变量的值无限趋近但不等于某规定数值时,或向正向或负向增大到 一定 程度 时,与数学 函数 的数值差为无穷小的数 详细解释 最大的限度。 郑义 《迷雾》 十一:“常委会真开成了‘长尾"会, 唐可林 觉得自己的耐心实在 已经 达到极限了。” 祖慰 《被礁石划破的水流》 :“我 不知 道人 类惊愕的感情极限是什么样,我确实惊愕得发傻了。” 词语分解 极的解释 极 (极) í 顶端,最高点, 尽头 :登极(帝王即位)。 登峰造极 。 指地球的南北两端或电路、磁体的正负两端: 极地 (极圈以内的地区)。极圈。北极。阴极。 尽,达到顶点:极力。极目四望。物极必反。 最高的, 限的解释 限 à 指定的范围:期限。界限。权限。局限。限额。 指定范围: 限制 。限于。限期。限价(官方指定最高或最低价格,不得超越)。无限。 门槛:门限。 险阻:关限。 部首 :阝。2023-05-21 08:50:471
函数极限的定义是什么?
函数极限存在的条件:1、单调有界准则。函数在某一点极限存在的充要条件是函数左极限和右极限在某点都存在且相等,如果左右极限不相同、或者不存在。则函数在该点极限不存在。2、夹逼准则。如能找到比目标版数列或者函数权大而有极限的数列或函数,并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。函数极限求法介绍利用函数连续性:直接将趋向值带入函数自变量中,此时要要求分母不能为0;通过已知极限:两个重要极限需要牢记;采用洛必达法则求极限:洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的,常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。以上内容参考 百度百科—函数极限2023-05-21 08:50:541
极限的公式是什么?
两个特殊的极限公式如下:一个是当x趋向于0时,sinx/x=1;另一个是当x趋向于0时, (1+x)^ (1/x)=e。极限在数学上的定义:某一个函数中某个变量,此变量在变化的永远的过程中,逐渐向某一个确定的数值不断逼近,而永远不能够重合到的过程中,此变量的变化被人为规定为永远靠近而不停止。极限是一种变化状态的描述。函数极限的一般概念:在自变量的某个变化过程中,如果对应的函数值无限接近于某个确定的数,那么这个确定的数就叫做在这一变化过程中函数的极限。函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹逼定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。2023-05-21 08:51:091
函数有极限的条件是什么?
如果函数在某点的左右极限存在并且相等,那么该函数在该点的极限存在. 例如,分段函数f(x)=x^2+2x-3 x2 在x=2这一点极限存在,等于52023-05-21 08:51:321
函数极限存在的条件
函数极限存在的条件:一、单调有界准则。函数在某一点极限存在的充要条件是函bai数左极限和右极限在某点都存在且相等。如果左右极限不相同、或者不存在。则函数在该点极限不存在。即从左趋向于所求点时的极限值和从右趋向于所求点的极限值相等。二、夹逼准则,如能找到比目标版数列或者函数权大而有极限的数列或函数,并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。扩展资料:极限的求法有很多种:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值2、利用恒等变形消去零因子(针对于0/0型)3、利用无穷大与无穷小的关系求极限4、利用无穷小的性质求极限5、利用等价无穷小替换求极限,可以将原式化简计算6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限7、利用两个重要极限公式求极限2023-05-21 08:51:401
求函数的极限
lim [(x²-kx)+(x-k)]/(x-k)x→k=lim [x(x-k)+(x-k)]/(x-k)x→k=lim (x-k)(x+1)/(x-k)x→k=lim (x+1)x→k=k+12023-05-21 08:52:004
给出函数极限的两个重要极限?
第一重要极限lim(1+1/x)^x f(x)=(1+1/x)^x,当x趋向于无穷时这个函数的极限存在,一开始我们并不知道其确切的数值,所以用e来表示,这也是自然对数,现如仅有的两个超越数(e,π)之一,的来源。 1,当x趋向于负无穷时f(x)趋向于e 2,当x趋向于从负向-1时f(x)趋向于正无穷 第二重要极限lim(sinx/x) f(x)=sinx/x当x→0是f(x)→1,当x→∞时,由有界函数乘以无穷小仍为无穷小知道函数趋向于02023-05-21 08:52:141
谁能帮我举例解释一下函数极限的定义。
楼主请仔细理解,“则称”前面的句子相当于:绝对值[f(x)-A]=0,因为Y可以任意小!理解这就好说了,举个例子:f(x)=e^(-x),A=02023-05-21 08:52:253
如何确定函数是否有极限?
1)可以观察函数,若是连续函数,就直接用四则运算法则以及复合函数极限运算法则去求极限值就可以了,若极限不是反复振荡的,或者不为无穷大,而是就等于一个常数,则极限存在. 2)若函数在该点不连续,则求在该点的左、右极限,若左右极限都存在,而且相等,都等于一个常数A,则这个函数在该点的极限存在,极限值也为A.2023-05-21 08:52:321
函数的极限是什么
函数极限的定义是某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”的过程中,此变量的变化,被人为规定为“永远靠近而不停止2023-05-21 08:52:391
求教一个函数的极限怎么求
把1代入后发现,分子分母都为0,则利用罗比达法则,分子分母同时对x求导,得:lim(sin2(x-1))/(2x)=0(在x趋于1时的极限)2023-05-21 08:52:472
微积分中说函数极限的六种形式是哪六种
楼主的说法,一定是被误导了。1、如果有极限,直接代入,也就是“定式”,就是可以直接确定的极限表达式;2、如果直接代入,出现无法确定的情况没,需要经过特别处理才能确定最后结果,这样的情况有七种,七种不定式:(1)、无穷大减无穷大;(2)、无穷大乘无穷小;(3)、无穷大除无穷大;(4)、无穷小除无穷小;(5)、1的无穷大次幂;(6)、无穷大的无穷小次幂;(7)、无穷小的无穷小次幂。2023-05-21 08:52:561
函数微积分关于极限的定义
在高等数学中,极限是一个重要的概念。 极限可分为数列极限和函数极限,分别定义如下。 首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式An+1<A<An+2[(An+1)-An](n=1,2,3....)得到圆周率=3927/1250约等于3.1416 数列极限: 定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式 |Xn - a|<ε 都成立,那么就成常数a是数列|Xn|的极限,或称数列|Xn|收敛于a。记为lim Xn = a 或Xn→a(n→∞) 数列极限的性质: 1.唯一性:若数列的极限存在,则极限值是唯一的; 2.改变数列的有限项,不改变数列的极限。 几个常用数列的极限: an=c 常数列 极限为c an=1/n 极限为0 an=x^n 绝对值x小于1 极限为0 函数极限的专业定义: 设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε 那么常数A就叫做函数f(x)当x→x。时的极限。 函数极限的通俗定义: 1、设函数y=f(x)在(a,+∞)内有定义,如果当x→+∽时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∞时函数f(x)的极限。记作lim f(x)=A ,x→+∞。 2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作lim f(x)=A ,x→a。 函数的左右极限: 1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a. 2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a. 注:若一个函数在x(0)上的左右极限不同则此函数在x(0)上不存在极限 函数极限的性质: 极限的运算法则(或称有关公式): lim(f(x)+g(x))=limf(x)+limg(x) lim(f(x)-g(x))=limf(x)-limg(x) lim(f(x)*g(x))=limf(x)*limg(x) lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 ) lim(f(x))^n=(limf(x))^n 以上limf(x) limg(x)都存在时才成立 lim(1+1/x)^x =e x→∞ 无穷大与无穷小: 一个数列(极限)无限趋近于0,它就是一个无穷小数列(极限)。 无穷大数列和无穷小数列成倒数。参见 http://baike.baidu.com/view/17644.htm2023-05-21 08:53:041
如何求函数的极限?(高中)
二元函数的极限成一元函数的极限,即将二重极限化成累次极限,在很多情况下方便求极限(但是有个限制条件,必须是二重极限和累次极限都存在的情况下才能这么做)可是在某些情况下直接计算二重极限比较方便,例如lim(x→0,y→1)[(x^2+3x)/xy]=lim(x→0,y→0)[(x+3)/y]=3这个可以在最后一步时将x,y的极限值直接代入并且前面说了二重极限化累次极限是有限定条件的,不满足条件则不能化成累次极限2023-05-21 08:53:132
用函数极限的定义证明
(1)令f(x)=(2x+3)/3x,由于|f(x)-A|=|f(x)-2/3|=|1/x|,任意ε>0,要证存在M>0,当|x|>M时,不等式|(1/x)-0|<ε成立。因为这个不等式相当于1/|x|1/ε.由此可知,如果取M=1/ε,那么当|x|>M=1/ε时,不等式|1/x-0|∞时,limf(x)=2/3.(3)小弟不才,此题不会。。。其他网友的解答:[x-2]<δ。-δ0[1/(x-1)-1]=[2-x]/[x-1]<δ/(1-δ)=ε,可以设δ=ε/(1+ε)。下面用ε-δ语言来证明x趋近2时,1/(x-1)的极限是1。对任意小的0<ε<1,取a=ε/(1+ε)。当[x-2](1+ε)时,ε>[x-2](1+ε)=[x-2]+[x-2]ε,[x-2]<ε(1-[x-2]),[1/(x-1)-1]=[x-2]/[x-2+1]<[x-2]/(1-[x-2])<ε。所以,x趋近2时,1/(x-1)的极限是1。(4)如果这题极限为2的话,可以这样证明:函数在点x=1是没有定义的,但是函数当x->1时的极限存在或不存在与它并无关系。事实上,任意ε>0,将不等式|f(x)-2|<ε约去非零因子x-1后,就化为|x-1|<ε,因此,只要取δ=ε,那么当0<|x-1|<δ时,就有|f(x)-2|<ε.所以,原极限成立。2023-05-21 08:53:221
如何求函数的极限?
一、利用极限四则运算法则求极限函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则lim[f(x)±g(x)]=limf(x)±limg(x)=A±Blim[f(x)・g(x)]=limf(x)・limg(x)=A・Blim==(B≠0)(类似的有数列极限四则运算法则)现以讨论函数为例。对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有:1.直接代入法对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。2.无穷大与无穷小的转换法在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。3.除以适当无穷大法对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。4.有理化法适用于带根式的极限。二、利用夹逼准则求极限函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)利用夹逼准则关键在于选用合适的不等式。三、利用单调有界准则求极限单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。四、利用等价无穷小代换求极限常见等价无穷小量的例子有:当x→0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。五、利用无穷小量性质求极限在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。六、利用两个重要极限求极限使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。七、利用洛必达法则求极限如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。2023-05-21 08:53:521
函数极限的定理
函数极限的定理如下:函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。如函数极限的唯一性(若极限存在,则在该点的极限是唯一的)2023-05-21 08:53:591
高数中关于函数极限的法则
极限是高等数学的基础,要学清楚。设f:(a,+∞)→R是一个一元实值函数,a∈R.如果对于任意给定的ε>0,存在正数X,使得对于适合不等式x>X的一切x,所对应的函数值f(x)都满足不等式. │f(x)-A│<ε , 则称数A为函数f(x)当x→+∞时的极限,记作 f(x)→A(x→+∞). 例y=1/x,x→+∞时极限为y=0 函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。 极限符号可记为lim。函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x。时的极限。 问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。详见附例1。 函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若极限 存在,则在该点的极限是唯一的)有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。 1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立 (2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A 不但能证明极限存在,还可以求极限,主要用放缩法。 2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。 在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。 3.柯西准则 数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。2023-05-21 08:54:171
如何求函数的极限?
极限公式:1、e^x-1~x (x→0) 2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)9、1-cosx~1/2x^2 (x→0)10、a^x-1~xlna (x→0)11、e^x-1~x (x→0)12、ln(1+x)~x (x→0)13、(1+Bx)^a-1~aBx (x→0)14、[(1+x)^1/n]-1~1/nx (x→0)15、loga(1+x)~x/lna(x→0)求极限基本方法有:1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。2、无穷大根式减去无穷大根式时,分子有理化。3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。2023-05-21 08:54:241
函数极限
一、利用极限四则运算法则求极限函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则 lim[f(x)±g(x)]=limf(x)±limg(x)=A±B lim[f(x)?g(x)]=limf(x)?limg(x)=A?B lim==(B≠0)(类似的有数列极限四则运算法则)现以讨论函数为例。对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有: 1.直接代入法对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。 2.无穷大与无穷小的转换法在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。 3.除以适当无穷大法对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。 4.有理化法适用于带根式的极限。二、利用夹逼准则求极限函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)利用夹逼准则关键在于选用合适的不等式。 三、利用单调有界准则求极限单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。四、利用等价无穷小代换求极限常见等价无穷小量的例子有:当x→0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。五、利用无穷小量性质求极限在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。六、利用两个重要极限求极限使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。七、利用洛必达法则求极限如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。2023-05-21 08:54:371
极限的公式有哪些?
极限的公式如下:1、lim(f(x)+g(x))=limf(x)+limg(x);2、lim(f(x)-g(x))=limf(x)-limg(x);3、lim(f(x)g(x))=limf(x)limg(x);4、e^x-1~x(x→0);5、1-cosx~1/2x^2(x→0);6、1-cos(x^2)~1/2x^4(x→0);7、loga(1+x)~x/lna(x→0)。lim极限运算公式总结,p>差、积的极限法则。当分子、分母的极限都存在,且分母的极限不为零时,才可使用商的极限法则。极限的求法:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。2、利用恒等变形消去零因子(针对于0/0型)3、利用无穷大与无穷小的关系求极限。4、利用无穷小的性质求极限。5、利用等价无穷小替换求极限,可以将原式化简计算。6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。2023-05-21 08:54:442
如何求函数的极限呢?
不满足三个条件不能用:1、为未定式。2、分子分母可导且分母导数不为零。3、导数比值有确定趋势。极限的求法有很多种:1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。2、利用恒等变形消去零因子(针对于0/0型)。3、利用无穷大与无穷小的关系求极限。4、利用无穷小的性质求极限。5、利用等价无穷小替换求极限,可以将原式化简计算。6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。2023-05-21 08:54:591
lim极限函数公式总结有哪些?
lim,极限没有所谓的固定公式 就按题所给的条件做就可以了 只是有时候会用到洛必达法则 无穷小的替换等方式2023-05-21 08:55:063
请给出"函数极限 "lim f(x)=A 的直观含义
直观含义就是把x=x0 代入到f(x)中,得到的f(x0)的值。不过有些x0 不在定义域中,就不能直接代入了。这个时候只能说是 在距离f(x0)这个点很近很近的一个值lim(x->0)[(1/x-1/sinx)]= lim(x->0)[(sinx-x)/xsinx]用近似替换 lim(x->0) x相似于sinx= lim(x->0)[(sinx-x)/x^2]用洛必达法则=lim(x->0)[(cosx-1)/2x]=lim(x->0) [(-1/2x^2) /2x]=lim(x->0)[-1/4x]=02023-05-21 08:55:242
求函数极限的方法
洛必达法则,公式,目测2023-05-21 08:55:332
函数极限定义
设函数y=f(x)在点X0的某个去心邻域中有定义,即存在ρ>0,使O(X0,ρ){X0}。如果存在实数A,对于任意给定的ε>0,都可以找到δ>0,使得当0<|x-x0|<δ时,成立│f(x)-A│<ε ,则称数A为函数f(x)当x→+∞时的极限,记作f(x)→A(x→+∞).例y=1/x,x→+∞时极限为y=0函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。极限符号可记为lim2023-05-21 08:55:511
如何理解函数的极限的概念?
y=lnx²y"=(x²)"/x²=2x/x²=2/xy=ln²xy"=2lnx·(lnx)"=2lnx/x扩展资料某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。求极限基本方法有1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;2、无穷大根式减去无穷大根式时,分子有理化;3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。4、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。2023-05-21 08:55:571
如何求函数在一点的极限值
1、如果是连续函数,就直接代入;.2、如果是间断点、奇点,就必须运用极限计算的特别方法。.3、下面给楼主提供一套计算极限方法的总结与示例,由于 篇幅巨大,无法全部上传。不过下面的这些方法,应付 到考研已经绰绰有余。.4、每张图片均可点击放大。...........2023-05-21 08:56:051
函数极限怎么求
这是一个幂指函数的极限,底数的极限是1,指数的极限是∞。先取对数,考虑极限lim(x→∞)x×ln(sin(2/x)+cos(1/x)),其中ln(sin(2/x)+cos(1/x))等价于sin(2/x)+cos(1/x)-1所以lim(x→∞)x×ln(sin(2/x)+cos(1/x))=lim(x→∞)x×(sin(2/x)+cos(1/x)-1)=lim(x→∞)x×sin(2/x)-lim(x→∞)x×(1-cos(1/x))=lim(x→∞)x×(2/x)-lim(x→∞)x×1/2×(1/x)^2=2-0=2所以,原极限等于e^2,其中使用的等价无穷小是:x→0时,ln(1+x)~x,sinx~x,1-cosx~1/2×x^2二元函数的极限成一元函数的极限,即将二重极限化成累次极限,在很多情专况下方便求极限可是在某些情况下直接计算二重极限比较方便,例如:lim(x→0,y→1)[(x^2+3x)/xy]=lim(x→0,y→0)[(x+3)/y]=3这个可以在最后一步时将x,y的极限值直接代入,并且前面说了二重极限化累次极限是有限定条件的,不满足条件则不能化成累次极限。扩展资料:在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:第一:因式分解,通过约分使分母不会为零。第二:若分母出现根号,可以配一个因子使根号去除。第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。参考资料来源:百度百科-函数极限2023-05-21 09:00:151
函数极限的定义证明是什么?
函数极限的定义证明:任意给定ε>0,要使|f(x)-A|0,使当0<|x-x0|<δ时,有|f(x)-A|0,要使|lnx-1|0,都能找到δ>0,使当0<|x-e|<δ时,有|f(x)-1|<ε。即当x趋近于e时,函数f(x)。说明:取0<|x-e|,是不需要考虑点x=e时的函数值,它可以存在也可不存在,可为A也可不为A。用ε-δ语言证明函数的极限较难,通常对综合大学数学等少数专业才要求。函数极限的性质函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。2023-05-21 09:00:221
极限函数lim重要公式16个
极限函数lim重要公式16个如下:1、e^x-1~x(x→0)。2、e^(x^2)-1~x^2(x→0)。3、1-cosx~1/2x^2(x→0)。4、1-cos(x^2)~1/2x^4(x→0)。5、sinx~x(x→0)。6、tanx~x(x→0)。7、arcsinx~x(x→0)。8、arctanx~x(x→0)。9、1-cosx~1/2x^2(x→0)。10、a^x-1~xlna(x→0)。11、e^x-1~x(x→0)。12、ln(1+x)~x(x→0)。13、(1+Bx)^a-1~aBx(x→0)。14、[(1+x)^1/n]-1~1/nx(x→0)。15、loga(1+x)~x/lna(x→0)。16、limα→0(1+α)1α=e。“极限”是数学中的分支微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。微积分中的极限是基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。2023-05-21 09:00:361
函数极限公式汇总有哪些?
极限公式:1、e^x-1~x (x→0) 2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)9、1-cosx~1/2x^2 (x→0)10、a^x-1~xlna (x→0)11、e^x-1~x (x→0)12、ln(1+x)~x (x→0)13、(1+Bx)^a-1~aBx (x→0)14、[(1+x)^1/n]-1~1/nx (x→0)15、loga(1+x)~x/lna(x→0)求极限基本方法有:1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。2、无穷大根式减去无穷大根式时,分子有理化。3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。2023-05-21 09:00:511