向量

向量叉积求面积

设三角形两边a,b, 夹角为θ,由于|a×b|=|a||b|sin(θ), |b|sin(θ)相当于三角形的高所以三角形面积=1/2 |a×b|,即两向量叉积的模的一半 
左迁2023-05-24 18:37:231

标题两向量的向量积和这两个向量有什么特殊关系?

两个向量的向量积有两种形式,即叉积和点积。向量叉积=向量的模乘以向量夹角的正弦值;向量点积=向量的模乘以向量夹角的余弦值。向量叉积a×b=|a||b|sin,向量点积a·b=|a||b|cos。向量的乘积公式:向量a=(x1,y1),向量b=(x2,y2) a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角),叫作a与b的数量积或a点乘b。平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上界定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
bikbok2023-05-24 18:37:231

向量的数量积表示什么?

一、向量的数量积格式:a*b=|a||b|cosθ,a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。二、拓展资料:关于向量积1、向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。2、两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。3、向量积可以被定义为: 。4、模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0° ≤ θ ≤ 180°),它位于这两个矢量所定义的平面上。)。5、方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)(参考资料:百度百科:向量积)
小菜G的建站之路2023-05-24 18:37:231

向量的叉积怎么求?

向量积的行列式计算法:给定直角坐标系的单位向量i,j,k满足下列等式:i×j=k;j×k=i;k×i=j;通过这些规则,两个向量的叉积的坐标可以方便地计算出来,不需要考虑任何角度:设a=[a1,a2,a3]=a1i+a2j+a3k;b=[b1,b2,b3]=b1i+b2j+b3k;则a×b=[a2b3-a3b2,a3b1-a1b3,a1b2-a2b1]。扩展资料:向量积与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。在物理学光学和计算机图形学中,叉积被用于求物体光照相关问题。求解光照的核心在于求出物体表面法线,而叉积运算保证了只要已知物体表面的两个非平行矢量(或者不在同一直线的三个点),就可依靠叉积求得法线。
Jm-R2023-05-24 18:37:221

向量叉积公式的本质是什么?

是向量公式。a向量点积b向量,结果是个数,等于abcos<a,b>,<a,b>是a向量与b向量的夹角。a向量叉积b向量,结果是个向量,模等于absin<a,b>,方向与a向量和b向量所在平面垂直,并且遵守右手法则,a握向b,拇指方向就是叉积向量方向。1、意义不同a.b是向量的内积;axb是向量的外积,方向与向量a,向量b垂直,并且遵守右手法则,a握向b,拇指方向就是叉积向量方向。。2、表示的东西不同a向量点积b向量,结果是个数,等于abcos(a,b),(a,b)是a向量与b向量的夹角;a向量叉积b向量,结果是个向量,方向与a向量和b向量所在平面垂直。扩展资料:给定集合S上的两个二元运算x和+,若对任意S中的a,b,c有cx(a+b) = (cxa)+(cxb) ,则称运算x对运算+满足左分配律。若对任意S中的a,b,c有(a+b)xc = (axc)+(bxc), 则称运算x对运算+满足右分配律。例如,在常见的四则运算中,乘法对加法和减法都满足分配律(即同时满足左右分配律)。即两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加。另外,在集合运算中,交运算对并运算满足分配律;并运算对交运算满足分配律;交运算对差运算满足分配律;并运算对差运算满足分配律。
Jm-R2023-05-24 18:37:221

向量叉积的方向怎么确定?

右手除姆指外的四指合并,姆指与其他四指垂直,四指由A向量的方向握向B向量的方向,这时姆指的指向就是A,B向量向量积的方向。就是说,AB向量积的方向垂直于AB向量确定的平面。几何意义:叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。扩展资料高维情形——七维向量的叉积可以通过八元数得到,与上述的四元数方法相同。七维叉积具有与三维叉积相似的性质:双线性性:x×(ay+bz)=ax×y+bx×z;(ay+bz)×x=ay×x+bz×x;反交换律:x×y+y×x=0;同时与x和y垂直:x·(x×y)=y·(x×y)=0;拉格朗日恒等式:|x×y|²=|x|²|y|²-(x·y)²;不同于三维情形,它并不满足雅可比恒等式:x×(y×z)+y×(z×x)+z×(x×y)≠0。
此后故乡只2023-05-24 18:37:221

空间解析几何中叉积是求什麼?法向量?方向向量?还是什麼?

空间解析几何中叉积 得到的是一个向量,而不是标量 a×b=(aybz-azby)i+(azbx-axbz)j+(axby-aybx)k 法向量 是 一个与已知向量垂直的单位向量 方向向量 是一个与已知向量平行的单位向量
meira2023-05-24 18:37:221

向量的叉积能写成坐标形式么

可以,向量叉乘得向量,仍然可以表示为坐标形式
mlhxueli 2023-05-24 18:37:221

坐标形式的向量叉乘公式是什么?是那个三阶行列式吗?就这样定义的?

向量的叉乘公式(x1,y1,z1)X(x2,y2,z2)=(y1z2-y2z1, z1x2-z2y1, x1y2-x2y1)因为直角坐标系下,a=a1i+a2j+a3k,b=b1i+b2j+b3k; 而i=j×k,j=k×i,k=i×j(右手系),且i×i=0,j×j=0,k×k=0,再利用叉乘的分配律,自己推算一下吧向量叉乘的拉格朗日公式怎么推导拉格朗日公式 这是一个著名的公式,而且非常有用:a × (b × c) = b(a·c)− c(a·b)向量叉乘的分配律如何证明,求教ax(b+c)=axb + axc?这个可以用向量a,b,c的座标带进去,订边右边分别计算出结果,并证明相等向量ax向量b的叉乘怎么推导的这是个定义 规定这样 不用推导向量叉乘公式是什么啊叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。|向量c|=|向量a×向量b|=|a||b|sin向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。因此向量的外积不遵守乘法交换率,因为向量a×向量b= -向量b×向量a在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。将向量用坐标表示(三维向量),若向量a=(a1,b1,c1),向量b=(a2,b2,c2),则向量a×向量b=| i j k ||a1 b1 c1||a2 b2 c2|=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。
小白2023-05-24 18:37:223

请问了 两个反向向量叉积向量的方向是什么啊?书上只说了小于180的情况啊

你好,反向向量的情况与同向向量的情况是一样的 向量积都是零向量 因为2个反向向量是共线向量,2个共线向量是不能确定一个平面的 所以反向向量的叉积的方向就是零向量的方向
Chen2023-05-24 18:37:221

向量叉积为什么是反交换律 为什么axb=-bxa,而不是bxa 难道还有左右之分吗,

按照向量叉积的定义计算即可证明. 比如说用行列式的计算法,你把两个叉积的行列式写出来,然后计算此行列式,就可以发现反交换律.因为两个行列式的不同就在于:两行互换了. 而行列式的性之中就有:行列式两行互换,行列式的值变号.
北营2023-05-24 18:37:221

向量运算中,"点积等于叉积的模"对吗

显然是错的。
黑桃花2023-05-24 18:37:222

怎么求两个向量叉积?

(a1,a2,a3)x(b1,b2,b3)=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)|向量c|=|向量a×向量b|=|a||b|sin<a,b> 向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。 因此向量的外积不遵守乘法交换率,因为向量a×向量b= -向量b×向量a 扩展资料:向量几何表示向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。代数规则1、反交换律:a×b=-b×a2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。
小白2023-05-24 18:37:221

向量的叉积如何计算??

一般而言,ijk分别代表x轴正方向、y轴正方向、z轴正方向的单位向量,如a=(2,1,-1)=2i+j-k。因为叉积的计算方法正好是三阶行列式的计算方法而已,所以这么写。向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。公式:向量积|c|=|a×b|=|a||b|sin<a,b>。即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。*运算结果c是一个伪向量。这是因为在不同的坐标系中c可能不同。
小菜G的建站之路2023-05-24 18:37:221

向量点积|a||b|是什么意思?

比如说一个向量ai+bj+ck,另一个向量di+ej+fk,则它们的点乘积为ad+be+cf
此后故乡只2023-05-24 18:37:211

向量积和数量积的区别和含义

向量积(带方向):也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个伪向量而不是一个标量。并且两个向量的叉积与这两个向量都垂直。叉积的长度|a×b|可以解释成以a和b为边的平行四边形的面积.(|a||b|cos<a,b>)。一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,则将右手的拇指指向第一个向量的方向,右手的食指指向第二个向量的方向,那么结果向量的方向就是右手中指的方向。由于向量的叉积由坐标系确定,所以其结果被称为伪向量。数量积(不带方向):又称“内积”、“点积”,物理学上称为“标量积”。两向量a与b的数量积是数量|a|·|b|cosθ,记作a·b;其中|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π)。即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b
九万里风9 2023-05-24 18:37:211

是零向量与任一数量的向量积为0,还是数量积为0

你要的是数量积,是标量,为0,向量是矢量,具有方向性,数量积显然不是向量了。数量积:又称“内积”、“点积”,物理学上称为“标量积”。两向量a与b的数量积是数量|a|·|b|cosθ,记作a·b;其中|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π)。即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b向量积:也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个伪向量而不是一个标量。并且两个向量的叉积与这两个向量都垂直。叉积的长度|a×b|可以解释成以a和b为边的平行四边形的面积.(|a||b|cos<a,b>)
小菜G的建站之路2023-05-24 18:37:211

向量的点积与叉积有何物理意义

[(a+b)xb].(c+a)=[axb+bxb].(c+a)=[axb+0].(c+a)=(axb).c+(axb).a=(axb).c[(a+b)xc].(c+a)=(axc).c+(bxc).c+(axc).a+(bxc).a=(bxc).a=(axb).c于是就是4了,注意叉乘和点乘的区别
拌三丝2023-05-24 18:37:215

为什么向量数量积必须为非零向量?

你要的是数量积,是标量,为0,向量是矢量,具有方向性,数量积显然不是向量了.数量积 :又称“内积”、“点积”,物理学上称为“标量积”.两向量a与b的数量积是数量|a|·|b|cosθ,记作a·b;其中|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π).即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b向量积:也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算.与点积不同,它的运算结果是一个伪向量而不是一个标量.并且两个向量的叉积与这两个向量都垂直.叉积的长度 |a × b| 可以解释成以 a 和 b 为边的平行四边形的面积.(|a||b|cos)
Ntou1232023-05-24 18:37:211

向量积和数量积的区别和含义

向量积(带方向):也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个伪向量而不是一个标量。并且两个向量的叉积与这两个向量都垂直。 叉积的长度 |a × b| 可以解释成以 a 和 b 为边的平行四边形的面积.(|a||b|cos<a,b>)。一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,则将右手的拇指指向第一个向量的方向,右手的食指指向第二个向量的方向,那么结果向量的方向就是右手中指的方向。由于向量的叉积由坐标系确定,所以其结果被称为伪向量。 数量积 (不带方向):又称“内积”、“点积”,物理学上称为“标量积”。两向量a与b的数量积是数量|a|·|b|cosθ,记作a·b;其中|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π)。即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b  
黑桃花2023-05-24 18:37:211

向量点积(Dot Product),向量叉积(Cross Product)

参考的是《游戏和图形学的3D数学入门教程》,非常不错的书,推荐阅读,老外很喜欢把一个东西解释的很详细。 向量点积的结果有什么意义?事实上,向量的点积结果跟两个向量之间的角度有关。 两个向量a,b,它们的叉积表示为axb,这个很容易跟数学中两个数字之间的相乘,但是这里是完全不同的。 两个向量叉积在图形坐标中就很直观了,axb同时垂直与a和b。 我们很容易验证axb是否同时垂直a和b向量。根据向量乘积的知识,我们只需要计算下axb分别和a,b向量的乘积是否等于0。根据下面的计算确实等于0,这也可以用来验证我们平时向量叉积是否正确的方法。 文章源地址: http://www.waitingfy.com/?p=320
Ntou1232023-05-24 18:37:201

两共线的单位向量的点积为多少

当两共线的单位向量的夹角为0°时,点积=1×1×cos0°=1当两共线的单位向量的夹角为180°时,点积=1×1×cos180°=-1所以两共线的单位向量的点积=1或-1
bikbok2023-05-24 18:37:201

向量积和数量积的区别和含义

向量积(带方向):也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个伪向量而不是一个标量。并且两个向量的叉积与这两个向量都垂直。 叉积的长度 |a × b| 可以解释成以 a 和 b 为边的平行四边形的面积.(|a||b|cos)。一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,则将右手的拇指指向第一个向量的方向,右手的食指指向第二个向量的方向,那么结果向量的方向就是右手中指的方向。由于向量的叉积由坐标系确定,所以其结果被称为伪向量。 数量积 (不带方向):又称“内积”、“点积”,物理学上称为“标量积”。两向量a与b的数量积是数量|a|·|b|cosθ,记作a·b;其中|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π)。即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b
Ntou1232023-05-24 18:37:201

数量积和向量积的区别

数量积是接受在实数R上的两个向量并返回一个实数值标量的二元运算。向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。向量积(带方向):也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个伪向量而不是一个标量。并且两个向量的叉积与这两个向量都垂直。 叉积的长度 |a × b| 可以解释成以 a 和 b 为边的平行四边形的面积.(|a||b|cos)。 一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,则将右手的拇指指向第一个向量的方向,右手的食指指向第二个向量的方向,那么结果向量的方向就是右手中指的方向。由于向量的叉积由坐标系确定,所以其结果被称为伪向量。 数量积 (不带方向):又称“内积”、“点积”,物理学上称为“标量积”。两向量a与b的数量积是数量|a|·|b|cosθ,记作a·b;其中|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π)。即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b。
u投在线2023-05-24 18:37:201

向量运算中,"点积等于叉积的模"对吗?

向量乘法中。点乘的公式是:向量a·向量b=|a||b|cos<a,b>(<a,b>指向量a与向量b之间的夹角),是个数量。公式里面对夹角是算余弦值。叉乘的公式是,叉乘的模为:|向量c|=|向量a×向量b|=|a||b|sinθ,θ是有指向量a与向量b之间的夹角。c方向,是个向量。公式里面对夹角是算正弦值。所以很明显能看出来。点积等于叉积的模是完全错误的。一切都按照公式来,很多东西都很明显了。愿我的回答对你有帮助!如有疑问请追问,愿意解疑答惑。如果明白,并且解决了你的问题,请及时采纳为满意答案!如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
FinCloud2023-05-24 18:37:201

向量运算中,"点积等于叉积的模"对吗?

向量乘法中。点乘的公式是:向量a·向量b=|a||b|cos(指向量a与向量b之间的夹角),是个数量。公式里面对夹角是算余弦值。叉乘的公式是,叉乘的模为:|向量c|=|向量a×向量b|=|a||b|sinθ,θ是有指向量a与向量b之间的夹角。c方向,是个向量。公式里面对夹角是算正弦值。所以很明显能看出来。点积等于叉积的模是完全错误的。一切都按照公式来,很多东西都很明显了。愿我的回答对你有帮助!如有疑问请追问,愿意解疑答惑。如果明白,并且解决了你的问题,请及时采纳为满意答案!如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
u投在线2023-05-24 18:37:191

向量积和数量积有什么区别?

向量数量积的运算律是:1、交换律:a·b=b·a。2、数乘结合律:(ta)·b=a·(tb)=t(a·b)。3、分配律:a·(b+c)=a·b+a·c。4、λ(μa)=(λμ)a。5、(λ+μ)a=λa+μa。6、λ(a+b)=λa+λb (λμ是实数,a,b均为向量)。向量积和数量积的区别有:1、向量积(带方向):也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个伪向量而不是一个标量。并且两个向量的叉积与这两个向量都垂直。叉积的长度|a × b|可以解释成以a和b为边的平行四边形的面积(|a||b|cos)。2、数量积(不带方向):又称“内积”、“点积”,物理学上称为“标量积”。两向量a与b的数量积是数量|a|·|b|cosθ,记作a·b;其中|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π)。
Ntou1232023-05-24 18:37:191

数量积和向量积的区别

向量数量积是两向量的模相乘再乘以两向量夹角的余弦值,而向量的向量积是两模相乘再乘夹角正弦值,此外数量积结果是个标量,向量积结果仍是矢量
九万里风9 2023-05-24 18:37:193

向量的点积与叉积有何物理意义

向量的点积与叉积有何物理意义 答:已知向量a和向量b,它们的点积a•b=︱a︱︱b︱cosθ,其中 θ是a,b的夹角.在物理里, 点积用来表示力所作的功.当力F与质点的位移S有夹角θ时,力F所作的功W=︱F︱︱S︱cosθ =F•S,功是数量,故点积又称数量积,无向积等. 两个向量的叉积a×b=︱a︱︱b︱sinθ,其中 θ是a,b的夹角.在力学里,用叉积表示一个力对 一个定点的矩M=r×F,当F与向径r不垂直时,二者有个夹角θ,那么︱M︱=︱r︱︱F︱sinθ,力 矩M是向量,因此叉积又称向量积,有向积等;C= A×B,C的方向用右手法则规定:将三个向量 A,B,C附着于同一个起点,把右手的拇指顺着A的方向,食指顺着B的方向,则中指的指向就是 C的方向.
余辉2023-05-24 18:37:191

向量的向量积是什么?

向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。表示方法:两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。
凡尘2023-05-24 18:37:191

如何判断向量组是否线性相关?

定义法令向量组的线性组合为零,研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关;若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。线性相关定理在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立,反之称为线性相关。例如在三维欧几里得空间R的三个矢量(1,0,0),(0,1,0)和(0,0,1)线性无关;但(2,−1,1),(1,0,1)和(3,−1,2)线性相关,因为第三个是前两个的和。线性无关和线性相关1、对于任一向量组而言,不是线性无关的就是线性相关的。2、向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。3、包含零向量的任何向量组是线性相关的。4、含有相同向量的向量组必线性相关。
北境漫步2023-05-24 18:37:182

向量空间的维数怎么求

向量空间的维数的求法如下:向量组只有两个向量,且此两个向量线性无关,所以生成的子空间的维数是2。向量空间又称线性空间,是线性代数的中心内容和基本概念之一。 在解析几何里引入向量概念后,使许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域相联系的向量空间概念。譬如,实系数多项式的集合在定义适当的运算后构成向量空间,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。
mlhxueli 2023-05-24 18:37:181

向量组线性相关的条件是什么?

向量组线性相关的定义来源于对向量组线性无关的取反,而向量组线性无关的定义是向量组中没有向量可以用其它有限个向量线性组合表示,则成为无关。因此在向量组中并不要求任何两个向量之间都线性相关。比如向量组:(1,1,1),(1,0,1),(2,1,2),三个向量并不是线性两两线性相关,但是该组向量,线性相关。扩展资料:在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立  (linearly independent),反之称为线性相关(linearly dependent)。例如在三维欧几里得空间R的三个矢量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关;但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。
苏萦2023-05-24 18:37:181

向量空间是否一定含零向量

一个向量空间必对加法、减法、数乘运算自封,在空间中任取一个向量 a,由 a-a=0 属于空间可知,向量空间一定含有 0 向量 。这是对的。
tt白2023-05-24 18:37:181

向量(物理中的矢量)为什么能根据几何图形来计算

其实是一个意思矢量(英语:vector)是数学、物理学和工程科学等多个自然科学中的基本概念,指一个同时具有大小和方向的几何对象,因常常以箭头符号标示以区别于其它量而得名。直观上,矢量通常被标示为一个带箭头的线段(如右图)。线段的长度可以表示矢量的大小,而矢量的方向也就是箭头所指的方向。物理学中的位移、速度、力、动量、磁矩、电流密度等,都是矢量。与矢量概念相对的是只有大小而没有方向的标量。在数学中,矢量也常称为向量,即有方向和大小的量,并采用更为抽象的矢量空间(也称为线性空间)来定义,而定义具有物理意义上的大小和方向的向量概念则需要引进了范数和内积的欧几里得空间。
拌三丝2023-05-24 18:37:181

设A是n阶方阵,如果对任意的n维列向量X都有X的转置乘A乘X等于零。证明:当A为对称阵时,A等于零

瑞瑞爱吃桃2023-05-24 18:37:182

什么叫向量空间?线性代数里面的

向量空间的基底就是线性空间的基,所谓基就是一组向量,满足以下两个条件:1、这组向量线性无关;2、向量空间中任何向量均可有这组向量线性表示出。书上有定义啊
meira2023-05-24 18:37:172

向量的线性无关!!!

你的题目是:"设向量组a1,a2,........ar线性相关,而其中任意r-1个向量都线性无关,证明要使k1a1+k2a2+....+krar=0成立,k1,k1,.....,kr必全不为0或全为0"对吧? 第一步:k1,k1,.....,kr全为0,这很容易验证,k1,k1,.....,kr全为0,k1a1+k2a2+....+krar=0成立的。 第二步:因为向量组a1,a2,........ar线性相关,其中任意r-1个向量都线性无关。采用反证法,不失一般性,设ki=0,当ki等于0时,剩下k1a1+k2a2+....+ki-1ar-1+ki+1ar+1+krar=0,任一r-1个向量线性无关,则k1,k1,.....,kr全为0。向量组a1,a2,........ar线性相关,必存在系数不为0的情况。假设矛盾。故结论成立。不知道你懂我意思没?希望能帮助到你!
阿啵呲嘚2023-05-24 18:37:172

怎么判断是不是向量范数

判断是不是向量范数:那么向量的范数,就是表示这个原有集合的大小。而矩阵的范数,就是表示这个变化过程的大小的一个度量,而0范数则指向量中非0的元素的个数。-范数║x║1=│x1│+│x2│+…+│xn│-范数║x║2=(│x1│2+│x2│2+…+│xn│2)^1/2∞-范数║x║∞=max(│x1│,│x2│,…,│xn│)易得 ║x║∞≤║x║2≤║x║1≤n1/2║x║2≤n║x║∞范数是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。定义范数的矢量空间是赋范矢量空间;同样,定义半范数的矢量空间就是赋半范矢量空间。注:在二维的欧氏几何空间 R中定义欧氏范数,在该矢量空间中,元素被画成一个从原点出发的带有箭头的有向线段,每一个矢量的有向线段的长度即为该矢量的欧氏范数。
水元素sl2023-05-24 18:37:171

向量组线性相关的性质

关于向量组线性相关的性质如下:对于任一向量组而言,不是线性无关的就是线性相关的。 向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。 包含零向量的任何向量组是线性相关的。 含有相同向量的向量组必线性相关。在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立[1](linearly independent),反之称为线性相关(linearly dependent)。例如在三维欧几里得空间R的三个矢量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关;但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。在向量空间V的一组向量A: ,如果存在不全为零的数 k1, k2, ···,km , 使则称向量组A是线性相关的 ,否则数 k1, k2, ···,km全为0时,称它是线性无关。由此定义看出 是否线性相关,就看是否存在一组不全为零的数 k1, k2, ···,km使得上式成立。即看这个齐次线性方程组是否存在非零解,将其系数矩阵化为最简形矩阵,即可求解。此外,当这个齐次线性方程组的系数矩阵是一个方阵时,这个系数矩阵存在行列式为0,即有非零解,从而 线性相关。注意对于任一向量组而言,,不是线性无关的就是线性相关的。向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。包含零向量的任何向量组是线性相关的。含有相同向量的向量组必线性相关。增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)【局部相关,整体相关】减少向量的个数,不改变向量的无关性。(注意,原本的向量组是线性无关的)【整体无关,局部无关】一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关。【无关组的加长组仍无关】一个向量组线性相关,则在相同位置处都去掉一个分量后得到的新向量组仍线性相关。【相关组的缩短组仍相关】若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。若行列式为零,则向量组线性相关;否则是线性无关的。
小菜G的建站之路2023-05-24 18:37:171

判断向量集合是否为向量空间?

判断向量集合是否为向量空间:看集合内任意的向量进行线性变换{加法与数乘}都能得出本集合的向量,那么这个集合就是向量空间。V2={x=(x1,x2,…,xn)|x€R且x1+x2+…+xn=0}是向量空间。但V1={x=(x1,x2,…,xn)|x€R且x1+x2+…+xn=1}不是,因为它对加法运算和数乘运算不封闭,即V1中任意两个元素的和不在V1中,V1中任意元素乘以常数k不在V1中(k不等于1)。向量空间又称线性空间,是线性代数的中心内容和基本概念之一。在解析几何里引入向量概念后,使许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域相联系的向量空间概念。譬如,实系数多项式的集合在定义适当的运算后构成向量空间,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。向量空间它的理论和方法在科学技术的各个领域都有广泛的应用。
wpBeta2023-05-24 18:37:171

向量组线性相关是什么意思?

向量组线性相关的定义来源于对向量组线性无关的取反,而向量组线性无关的定义是向量组中没有向量可以用其它有限个向量线性组合表示,则成为无关。因此在向量组中并不要求任何两个向量之间都线性相关。比如向量组:(1,1,1),(1,0,1),(2,1,2),三个向量并不是线性两两线性相关,但是该组向量,线性相关。扩展资料:在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立  (linearly independent),反之称为线性相关(linearly dependent)。例如在三维欧几里得空间R的三个矢量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关;但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。
凡尘2023-05-24 18:37:171

向量范数是什么呢?

向量范数一般指范数。范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。定义范数的矢量空间是赋范矢量空间;同样,定义半范数的矢量空间就是赋半范矢量空间。注:在二维的欧氏几何空间 R中定义欧氏范数,在该矢量空间中,元素被画成一个从原点出发的带有箭头的有向线段,每一个矢量的有向线段的长度即为该矢量的欧氏范数。基本性质有限维空间上的范数具有良好的性质,主要体现在以下几个定理:性质1:对于有限维赋范线性空间的任何一组基,范数是元素(在这组基下)的坐标的连续函数。性质2(Minkowski定理):有限维线性空间的所有范数都等价。性质3(Cauchy收敛原理):实数域(或复数域)上的有限维线性空间(按任何范数)必定完备。性质4:有限维赋范线性空间中的序列按坐标收敛的充要条件是它按任何范数都收敛。
九万里风9 2023-05-24 18:37:171

向量组线性相关怎么判断?

判断向量组线性相关性的方法:写成矩阵形式,然后通过行变换,化为行最简形,得到矩阵的秩;得出矩阵的秩,用来和向量个数比较;因为向量组组成的矩阵的秩小于向量个数,所以得出。在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立(linearlyindependent),反之称为线性相关(linearlydependent)。例如在三维欧几里得空间R3的三个矢量(1,0,0),(0,1,0)和(0,0,1)线性无关。但(2,_1,1),(1,0,1)和(3,_1,2)线性相关,因为第三个是前两个的和。向量a1,a2,···,an(n_2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。一个向量线性相关的充分条件是它是一个零向量。两个向量a、b共线的充要条件是a、b线性相关。三个向量a、b、c共面的充要条件是a、b、c线性相关。空间中任意四个向量总是线性相关。
瑞瑞爱吃桃2023-05-24 18:37:171

为什么说向量组线性相关呢?

向量组线性相关的定义来源于对向量组线性无关的取反,而向量组线性无关的定义是向量组中没有向量可以用其它有限个向量线性组合表示,则成为无关。因此在向量组中并不要求任何两个向量之间都线性相关。比如向量组:(1,1,1),(1,0,1),(2,1,2),三个向量并不是线性两两线性相关,但是该组向量,线性相关。扩展资料:在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立  (linearly independent),反之称为线性相关(linearly dependent)。例如在三维欧几里得空间R的三个矢量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关;但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。
mlhxueli 2023-05-24 18:37:171

向量范数是多少?

向量范数是0。向量的范数:0范数,向量中非零元素的个数。范数(norm)是数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即非负性;齐次性;三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。定义范数的矢量空间是赋范矢量空间;同样,定义半范数的矢量空间就是赋半范矢量空间。注:在二维的欧氏几何空间 R中定义欧氏范数,在该矢量空间中,元素被画成一个从原点出发的带有箭头的有向线段,每一个矢量的有向线段的长度即为该矢量的欧氏范数。如果不考虑相容性,那么矩阵范数和向量范数就没有区别,因为mxn矩阵全体和mn维向量空间同构。引入相容性主要是为了保持矩阵作为线性算子的特征,这一点和算子范数的相容性一致,并且可以得到Mincowski定理以外的信息。
tt白2023-05-24 18:37:171

范数为0的向量一定是0向量吗

向量的范数:0范数,向量中非零元素的个数。范数(norm)是数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即非负性;齐次性;三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。定义范数的矢量空间是赋范矢量空间;同样,定义半范数的矢量空间就是赋半范矢量空间。注:在二维的欧氏几何空间 R中定义欧氏范数,在该矢量空间中,元素被画成一个从原点出发的带有箭头的有向线段,每一个矢量的有向线段的长度即为该矢量的欧氏范数
kikcik2023-05-24 18:37:172

在线性代数中,向量的秩与其维数有何关系

向量的维数和秩无关维数之和向量本身有关,但是秩总是小于等于维数。
肖振2023-05-24 18:37:175

线性代数中的向量空间与线性空间的区别

没有区别, 同一个概念的两种名字而已
北有云溪2023-05-24 18:37:163

三维线性无关的列向量什么意思

在线性代数中,列向量是一个n×1的矩阵,即矩阵由一个含有n个元素的列所组成。列向量的转置是一个行向量,反之亦然。所有的列向量的集合形成一个向量空间,它是所有行向量集合的对偶空间。单位列向量,即向量的长度为1,其向量所有元素的平方和为1。在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关。
肖振2023-05-24 18:37:161

向量空间中为什么零元素是唯一的?

有两零元素O1,O2有向量空间的定义知,O1=O1+O2=O2+O1=O2所以有O1=O2,即零元素是唯一的
真颛2023-05-24 18:37:153

一个向量空间的维数是多少,该向量空间的基中就包含多少个向量

有限维空间。3维的基为(1 0 0),(0 1 0),(0 0 1)。依次类推
韦斯特兰2023-05-24 18:37:152

什么是向量空间,最好有例子

空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键. 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量 (k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量 . 5、利用向量求两直线a与b的夹角,就是分别在a,b上取 ,求: 的问题. 6、利用向量求距离就是转化成求向量的模问题: . 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线 可列出两个方程 两个方程,三个未知数 然后根据计算方便 取z(或x或y)等于一个数 然后就求出面的一个法向量了 会求法向量后 1。二面角的求法就是求出两个平面的法向量 可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积 :cos<a,b>=|n·n1|/|n| 如过在两面的同一边可以看到两向量的箭头或箭尾相交 那么二面角就是上面求的两法向量的夹角的补角 2。点到平面的距离就是求出该面的法向量 在平面上任取(除被求点在该平面的射影外)一点, 求出平面外那点和你所取的那点所构成的向量记为n1 点到平面的距离就是法向量与n1的数量积的绝对值除以法向量的模即得所求 设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为μ,ν 则 线线平行 l∥m <=> a∥b <=> a=kb; 线面平行 l∥α <=> a⊥μ <=> a·μ=0; 面面平行 α∥β <=> μ∥ν <=> μ=kν 线线垂直 l⊥m <=> a⊥b <=>a·b=0; 线面垂直 l⊥α <=> a∥μ <=> a=kμ; 面面垂直 α⊥β <=> μ⊥ν <=> μ·ν=0
tt白2023-05-24 18:37:141

向量的范数

向量的范数内容如下:向量范数一般指范数。范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。定义范数的矢量空间是赋范矢量空间;同样,定义半范数的矢量空间就是赋半范矢量空间。注:在二维的欧氏几何空间 R中定义欧氏范数,在该矢量空间中,元素被画成一个从原点出发的带有箭头的有向线段,每一个矢量的有向线段的长度即为该矢量的欧氏范数。基本性质:有限维空间上的范数具有良好的性质,主要体现在以下几个定理:性质1:对于有限维赋范线性空间的任何一组基,范数是元素(在这组基下)的坐标的连续函数。性质2(Minkowski定理):有限维线性空间的所有范数都等价。性质3(Cauchy收敛原理):实数域(或复数域)上的有限维线性空间(按任何范数)必定完备。性质4:有限维赋范线性空间中的序列按坐标收敛的充要条件是它按任何范数都收敛。
苏州马小云2023-05-24 18:37:141

向量线性无关的条件

两个向量的话就是两者不成比例。多个向量的话,通俗一点,就是不存在其中某个向量能被其他向量线性表出。用数学上准确的定义就是:一组向量a1 ,a2 ,……,an线性无关 当且仅当k1*a1+k2*a2+……+kn*an=0只有在k1=k2=……=kn=0时成立
LuckySXyd2023-05-24 18:37:143

向量组线性相关怎么判断?

1、定义法令向量组的线性组合为零(零向量),研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关;若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。2、向量组的相关性质(1)当向量组所含向量的个数与向量的维数相等时,该向量组构成的行列式不为零的充分必要条件是该向量组线性无关;(2)当向量组所含向量的个数多于向量的维数时,该向量组一定线性相关;(3)通过向量组的正交性研究向量组的相关性;(4)通过向量组构成的齐次线性方程组解的情况判断向量组的线性相关性;线性方程组有非零解向量组就线性相关,反之,线性无关。(5)通过向量组的秩研究向量组的相关性。若向量组的秩等于向量的个数,则该向量组是线性无关的;若向量组的秩小于向量的个数,则该向量组是线性相关的
北有云溪2023-05-24 18:37:145

向量组线性无关的充要条件是什么?

1、在线性代数里,向量空间的一组元素如果其中没有向量可表示成有限个其他向量的线性组合称为线性无关,反之称为线性相关。2、例如在三维欧几里得空间R3的三个向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关。但(2, 1, 1),(1, 0, 1)和(3, 1, 2)线性相关,因为第三个是前两个的和。3、在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立[1]  (linearly independent),反之称为线性相关(linearly dependent)。如何理解矩阵的线性相关和无关?1、线性相关性与向量的线性表示有关,刻画线性相关的定理: 向量组线性相关的充要条件是至少有一个向量可由其余向量线性表示。2、 线性相关的向量组中有"多余"的向量, "多余"是指它可由其余向量表示,而向量组的极大无关组(线性无关)就可理解为向量组精减后的代表。
无尘剑 2023-05-24 18:37:141

两个向量组线性相关的含义是什么?

没有这个东西。线性相关是对单个向量组来说的。两个向量组之间只有是否(行或列)等价的关系。谢谢。
人类地板流精华2023-05-24 18:37:145

高一数学向量问题

矢量(vector)是一种既有大小又有方向的量,又称为向量。一般来说,在物理学中称作矢量,例如速度、加速度、力等等就是这样的量。舍弃实际含义,就抽象为数学中的概念──向量。在电脑中,矢量图可以无限放大永不变形。矢量是数学、物理学和工程科学等多个自然科学中的基本概念,指一个同时具有大小和方向的量,因常以箭头符号标示以区别于其它量而得名。直观上,矢量通常被标示为一个带箭头的线段。线段的长度可以表示矢量的大小,而矢量的方向也就是箭头所指的方向。物理学中的位移、速度、力、动量、磁矩、电流密度等,都是矢量。与矢量概念相对的是只有大小而没有方向的标量。在数学中,矢量也常称为向量,即有方向的量。并采用更为抽象的矢量空间(也称为线性空间)来定义,而定义具有物理意义上的大小和方向的向量概念则需要引进范数和内积的欧几里得空间。矢量对标量求导后结果为矢量。而标量对标量求导结果仍为标量。(1)定义或解释:有些物理量,既要有数值大小(包括有关的单位),又要有方向才能完全确定。这些量之间的运算并不遵循一般的代数法则,而遵循特殊的运算法则。比如说位移这样的物理量叫作物理矢量。有些物理量,只具有数值大小(包括有关的单位),而不具有方向性。这些量之间的运算遵循一般的代数法则。例如温度、质量这些物理量叫作物理标量。(2)说明:①矢量之间的运算要遵循特殊的法则。矢量加法一般可用平行四边形法则。由平行四边形法则可推广至三角形法则、多边形法则或正交分解法等。矢量减法是矢量加法的逆运算,一个矢量减去另一个矢量,等于加上那个矢量的负矢量。即 A-B=A+(-B)。矢量的乘法。矢量和标量的乘积仍为矢量。矢量和矢量的乘积,可以构成新的标量,矢量间这样的乘积叫数量积;也可构成新的矢量,矢量间这样的乘积叫矢量积。例如,物理学中,功、功率等的计算是采用两个矢量的标量积,W=F·s,P=F·v。力矩、洛伦兹力等的计算是采用两个矢量的矢积。M=r×F,F=qv×B。②物理定律的矢量表达跟坐标的选择无关,矢量符号为表述物理定律提供了简单明了的形式,且使这些定律的推导简单化,因此矢量是研究物理学的有用工具。一般来说,矢量只有在同方向上才可比较大小,不同方向上的矢量一般不能比较大小。①矢量:力(包括力学和电磁学中的“力”),力矩、线速度、角速度、位移、加速度、动量、冲量、角动量、场强、速度等。②标量:质量、密度、温度、长度、功、功率、速率、体积、时间、热、电阻等。希望我能帮助你解疑释惑。
真颛2023-05-24 18:37:141

线性代数中,向量空间的维数和解空间维数有什么区别

没什么区别。空间维数的定义是,该空间一组坐标基向量中向量的个数。
小菜G的建站之路2023-05-24 18:37:144

什么叫矢量向量

有方向和没方向之分
无尘剑 2023-05-24 18:37:139

矢量与向量的区别~~

矢量与向量意思相同,没有区别矢量(vector)是一种既有大小又有方向的量,又称为向量。一般来说,在物理学中称作矢量,例如速度、加速度、力等等就是这样的量。舍弃实际含义,就抽象为数学中的概念──向量。 [1]  在计算机中,矢量图可以无限放大永不变形。矢量是数学、物理学和工程科学等多个自然科学中的基本概念,指一个同时具有大小和方向的几何对象,因常以箭头符号标示以区别于其它量而得名。直观上,矢量通常被标示为一个带箭头的线段。线段的长度可以表示矢量的大小,而矢量的方向也就是箭头所指的方向。物理学中的位移、速度、力、动量、磁矩、电流密度等,都是矢量。与矢量概念相对的是只有大小而没有方向的标量。扩展资料:矢量、标量举例①矢量:力(包括力学和电磁学中的“力”),力矩、线速度、角速度、位移、加速度、动量、冲量、角动量、场强、速度等。严格说来,矢量必须在空间反演时变号。空间反演时不变号的称作赝矢量。物理学中通常称作矢量的角速度、角动量、力矩都不是矢量,而是赝矢量。矢量和赝矢量有本质不同。②标量:质量、密度、温度、功、功率、路程、速率、体积、时间、热、电阻等。参考资料来源:百度百科-矢量
wpBeta2023-05-24 18:37:121

‘向量’和‘矢量’的区别

不同学科叫法不同。
墨然殇2023-05-24 18:37:104

关于向量概念的3道判断题(麻烦分析一下,谢谢)

1,对的,|0(向量)×a(向量)|=|0||a|sin(0,a)=0,所以0(向量)×a(向量)=0(向量)2,错的,a×b=b×c则a×b-b×c=0,a×b+c×b=0所以(a+c)×b=0所以a+c)//b,不一定要a=c3,错误,|a+b|=|a-b|则(a+b)2=(a-b)2,展开得ab=0,不是a×b=0 ,但也不排除有a=0或b=0的情况
水元素sl2023-05-24 18:37:074

★在数学史上“向量”和“复数”这两个概念哪个先被提出来?★

先有的复数
hi投2023-05-24 18:37:073

请问下大神,电路分析里面的向量法,算时域分析还是频域分析?我看的不同教材的说法不一样,重大的课本里

相量分析法是正弦稳态电路分析的重要方法。 就是将正弦量与复数对应起来,将三角函数运算转化为复数运算的一种方法。
mlhxueli 2023-05-24 18:37:073

中断向量地址的理论分析

在PC/AT机中,中断向量是指中断服务程序的入口地址,每个中断向量分配4个连续的字节单元,两个高字节单元存放入口的段地址CS,两个低字节单元存放入口的段内偏移量IP。在PC/AT中,规定内存储器的最低1 KB用来存放中断向量(共256个),称这一片内存区为中断向量表,地址范围是0~3FFH,如图所示。在PC/AT中由硬件产生的中断标识码被称为中断类型号(当然,中断类型号还有其他的产生方法,如指令中直接给出、CPU自动形成等),即在中断响应期间8259A产生的是当前请求中断的最高优先级的中断源的中断类型号。中断类型号和中断向量之间有下面的关系:中断类型号×4=存放中断子程序的首地址=中断向量有了存放中断向量的首地址,从该地址开始的4个存储单元中取出的就是中断服务程序的入口。 在AVR或ARM微处理器中,中断向量的大小也是4个字节,但其中存放的不是中断程服务程序的入口地址,而是可执行的代码。当响应中断时,硬件自动执行相应中断向量处的跳转代码,然后跳转到具体的中断服务程序的入口地址。中断向量地址和中断向量中断向量:中断服务程序的入口地址中断向量地址:内存中存放中断服务程序入口地址的地址
gitcloud2023-05-24 18:37:071

关于主成分分析的特征向量确定问题?

主成分的特征向量有两个约束条件:(1)特征向量的模为1;(2)特征向量两两正交。在这两个条件的制约下,一个特征值对应两个方向相反的特征向量a和-a。因此需要再设定一个约束条件,即:取值最大的样本的主成分的得分必须大于取值最小的样本的主成分的得分,满足这个条件的特征向量就只有一个了。
真颛2023-05-24 18:37:071

向量坐标的概念

向量(英语:vector,物理、工程等也称作矢量)是数学、物理学和工程科学等多个自然科学中的基本概念。指一个同时具有大小和方向,且满足平行四边形法则的几何对象。 向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。 在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。 几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。代数表示一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,如,也可以用大写字母AB、CD上加一箭头(→)等表示,如,。向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。向量的坐标表示在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。为平面直角坐标系内的任意向量,以坐标原点O为起点作向量。由平面向量基本定理可知,有且只有一对实数(x,y),使得,因此把实数对叫做向量的坐标,记作。这就是向量的坐标表示。其中就是点的坐标。向量称为点P的位置向量。在空间直角坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j,k作为一组基底。若为该坐标系内的任意向量,以坐标原点O为起点作向量。由空间基本定理知,有且只有一组实数,使得,因此把实数对叫做向量的坐标,记作)。这就是向量的坐标表示。其中,就是点P的坐标。向量称为点P的位置向量。当然,对于多维的空间向量,可以通过类推得到
余辉2023-05-24 18:37:072

求问!电路分析中向量图具体在题目中怎么画,比如如下图例6-9,不知道怎么画出来的

先水平画U做为参考向量。因为电感电阻是感性的,电压会引前电流,所以顺时针夹角φ1画出电流I1。画总电流。I=I1+Ic。ic垂直于U向上的。所以过I1终点,做竖直辅助线。又由于给出功率因数φ2,可知I和U夹角φ2,但是没说容性还是感性,所以存在两种可能。也就如图里两个I。夹角φ2的直线与竖直辅助线交点就是I的终点。I1终点到I的终点,就是Ic(有两种情况)知道Ic,也就能求出C了。
瑞瑞爱吃桃2023-05-24 18:37:071

怎样求和一个向量平行的向量

已知向量a=(1,2)b//a且|b|=5求向量b解:设b=λa=(λ,2λ)|b|=5λ^2+(2λ)^2=255λ^2=25λ^2=5λ=±√5b=±√5(1,2)
拌三丝2023-05-24 18:37:062

数学向量的问题 关于向量坐标的

a^2=|a|^2=m^2+n^2 a^2想成两个a向量相乘就可以了 a^2是实数不是坐标有不懂的可以HI我,望采纳,谢谢!
肖振2023-05-24 18:37:062

向量坐标的概念

向量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。“向量”一词来自力学、解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系。向量能够进入数学并得到发展,首先应从复数的几何表示谈起。18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi(a,b为有理数,且不同时等于0),并利用具有几何意义的复数运算来定义向量的运算。把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题。人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学中。但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系。19世纪中期,英国数学家哈密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量。他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克斯韦把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析。三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪80年代各自独立完成的。他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数。他们引进了两种类型的乘法,即数量积和向量积。并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具。
FinCloud2023-05-24 18:37:061

如果高压跌落断一相,在变压器低压侧对地电压表现为多少,大概值,向量图分析

10KV高压跌落断一相,变压器低压侧对地电压不变 是吧
小白2023-05-24 18:37:063

为什么三相电源为三角形联结时,有一相接反,电源回路的电压是某一相电压的2倍?试用向量图分析。

有一相接反,
左迁2023-05-24 18:37:062

向量的大小

向量(英语:vector,物理、工程等也称作矢量)是数学、物理学和工程科学等多个自然科学中的基本概念。指一个同时具有大小和方向,且满足平行四边形法则的几何对象。向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。向量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。“向量”一词来自力学、解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系。向量能够进入数学并得到发展,首先应从复数的几何表示谈起。18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi(a,b为有理数,且不同时等于0),并利用具有几何意义的复数运算来定义向量的运算。把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题。人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学中。但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系。19世纪中期,英国数学家哈密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量。他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克斯韦把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析。三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪80年代各自独立完成的。他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数。他们引进了两种类型的乘法,即数量积和向量积。并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具。
铁血嘟嘟2023-05-24 18:37:061

大电流接地系统发生单相接地短路后的现象及后果是什么?用向量图进行分析

所谓大电流接地系统就是中性点接地阻抗很小,发生单相接地短路后会产生很大电流的系统,搞清楚了它名称的由来,楼主的问题就不言而喻了。对于如此简单的问题向量图就不必画了,短路电流=相电压/(中性点接地阻抗+短路点阻抗)
墨然殇2023-05-24 18:37:061

矩阵列向量组线性无关,行向量组也线性无关吗

不一定。如A为m*n矩阵列向量组的秩=行向量组的秩=n(因为列线性无关)但m不一定等于n。
瑞瑞爱吃桃2023-05-24 18:37:063

数学向量法

楼主的问题,本人帮你大概分析和提示一下,看看有没有帮助:1、向量法就是矢量法,在英语中是没有区分的,就是Vector。不知道什么原因,咱们的数学教师、物理教师就是格格不入,你槌你的鼓,我敲我的锣,永远各唱各的调。所以自从一开始,由于教师的心态有问题,就注定一些学生难以学下去。2、矢量法的基础,来源于物理上的位移分析、力的分析,讲求的是“等效”,也就是,平面几何中,三角形的两边之和大于第三边。矢量几何中,不是两边的长度加起来等于第三边的长度,而是位移的效果相同,力的合力相同!具体化成数量运算时,还是用以前的方法计算,不管是三角形法,还是平行四边形法,都离不开正弦定理、余弦定理、勾股定理这三大定理。如果讲矢量前,适当讲一点物理的例子,就会自然而然地接受了,可惜不少数学老师的物理基础十分薄弱。3、矢量有自己一套特定的算法,起始时的算法离不开分解,求分量的和,譬如将X方向上所有的分量加起来,将Y方向上所有的分量加起来,然后用勾股定理计算。4、进一步才有矢量的点乘和叉乘,可惜的是高中只学点乘,不学叉乘。虽然简单多了,但学生思维的辩证性、系统性、逻辑性全被破坏了。矢量与微积分集合起来是矢量分析(Vector Analysis),涉及到场论,那就深了,一般的大学毕业生也基本是空白。所以,楼主也不用着急,没有多少内容,吓不了人!说一千,讲一万,在这里寥寥数语是说不清的,楼主有问题,Hi我,一定轻轻松松学会!
豆豆staR2023-05-24 18:37:061

向量及向量符号的由来

从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系.   向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学.   但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家汉密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析.   三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪8O年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具.
再也不做站长了2023-05-24 18:37:061
 首页 上一页  8 9 10 11 12 13 14 15 16 17 18  下一页  尾页