向量,标量,和矢量的区别?
向量就是矢量,只不过向量是数学上表示的,矢量是物理上表示的!标量是只有大小而没有方向的!向量是既有大小又有方向的!!麻烦采纳,谢谢!FinCloud2023-05-16 14:51:011
线性代数:什么是向量组等价
两个向量组可以相互线性表出,比如A向量组中的向量(α1,……,αn),B向量组中的向量(β1,……,βn),A中的任意一个向量αi可由β1,……,βn线性表出,同时B中的任意一个向量βi可由α1,……,αn线性表出,则A和B两个向量组等价此后故乡只2023-05-16 14:50:483
向量组等价是什么意思?
向量组等价一般指等价向量组。向量组等价的基本判定是:两个向量组可以互相线性表示。需要重点强调的是:等价的向量组的秩相等,但是秩相等的向量组不一定等价。向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。(注意区分粗体字与普通字母所表示的不同意义)或者说:两个向量组可以互相线性表示,则称这两个向量组等价。注:1、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。2、任一向量组和它的极大无关组等价。3、向量组的任意两个极大无关组等价。4、两个等价的线性无关的向量组所含向量的个数相同。5、等价的向量组具有相同的秩,但秩相同的向量组不一定等价。扩展资料设有两个向量组(Ⅰ):α1,α2,……,αm;(Ⅱ):β1,β2,……,βm;如果(Ⅰ)中每个向量都可以由向量组(Ⅱ)线性表示,则称(Ⅰ)可由(Ⅱ)线性表示;如果(Ⅰ)与(Ⅱ)可以相互线性表示,则称(Ⅰ)与(Ⅱ)等价,记为(Ⅰ)≌(Ⅱ)。例如:,若β1=α1+α2,β2=α1-2α2,β3=α1,则向量组(Ⅰ)={α1,α2}与向量组(Ⅱ)={β1,β2,β3}等价。事实上,给定的条件已表明(Ⅱ)可由(Ⅰ)线性表示,又容易得到α1=(2/3)β1+(1/3)β2+0β3,α2=(1/3)β1-(1/3)β2+0β3,这表明(Ⅰ)也可以由(Ⅱ)线性表示,由定义即知(Ⅰ)与(Ⅱ)等价。豆豆staR2023-05-16 14:50:471
线性代数中两个向量组等价是什么意思
两个向量组可以互相线性表出, 即是第一个向量组中的每个向量都能表示成第二个向量组的向量的线性组合,且第二个向量组中的每个向量都能表示成第一二个向量组的向量的线性组合可桃可挑2023-05-16 14:50:475
如何判断向量组等价
A组与B组等价<=> R(A) = R(A,B) = R(B)ardim2023-05-16 14:50:465
线性代数中的向量组等价具体指的是什么?
向量组等价一般指等价向量组。向量组等价的基本判定是:两个向量组可以互相线性表示。需要重点强调的是:等价的向量组的秩相等,但是秩相等的向量组不一定等价。向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。(注意区分粗体字与普通字母所表示的不同意义)或者说:两个向量组可以互相线性表示,则称这两个向量组等价。注:1、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。2、任一向量组和它的极大无关组等价。3、向量组的任意两个极大无关组等价。4、两个等价的线性无关的向量组所含向量的个数相同。5、等价的向量组具有相同的秩,但秩相同的向量组不一定等价。扩展资料设有两个向量组(Ⅰ):α1,α2,……,αm;(Ⅱ):β1,β2,……,βm;如果(Ⅰ)中每个向量都可以由向量组(Ⅱ)线性表示,则称(Ⅰ)可由(Ⅱ)线性表示;如果(Ⅰ)与(Ⅱ)可以相互线性表示,则称(Ⅰ)与(Ⅱ)等价,记为(Ⅰ)≌(Ⅱ)。例如:,若β1=α1+α2,β2=α1-2α2,β3=α1,则向量组(Ⅰ)={α1,α2}与向量组(Ⅱ)={β1,β2,β3}等价。事实上,给定的条件已表明(Ⅱ)可由(Ⅰ)线性表示,又容易得到α1=(2/3)β1+(1/3)β2+0β3,α2=(1/3)β1-(1/3)β2+0β3,这表明(Ⅰ)也可以由(Ⅱ)线性表示,由定义即知(Ⅰ)与(Ⅱ)等价。黑桃花2023-05-16 14:50:431
什么是向量组等价?
两个向量组可以互相线性表出,即是第一个向量组中的每个向量都能表示成第二个向量组的向量的线性组合,且第二个向量组中的每个向量都能表示成第一二个向量组的向量的线性组合。向量组等价的基本判定是:两个向量组可以互相线性表示。需要重点强调的是:等价的向量组的秩相等,但是秩相等的向量组不一定等价。向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。向量组等价和矩阵等价是两个不同的概念。前者是从能够互相线性表出的角度给出定义;后者是从初等变换的角度给出定义。向量组(必须包含向量个数相同)等价能够推出矩阵等价。但是矩阵等价不一定能推出向量组等价。向量组等价,是两向量组中的各向量,都可以用另一个向量组中的向量线性表示。矩阵等价,是存在可逆变换(行变换或列变换,对应于1个可逆矩阵),使得一个矩阵之间可以相互转化。如果是行变换,相当于两矩阵的列向量组是等价的。如果是列变换,相当于两矩阵的行向量组是等价的。由于矩阵的行秩,与列秩相等,就是矩阵的秩,在行列数都相等的情况下,两矩阵等价实际上就是秩相等,反过来,在这种行列数都相等情况下,秩相等,就说明两矩阵等价。此后故乡只2023-05-16 14:50:431
数学必修四向量的所有公式 总结一下 谢谢
1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x",y+y"). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y"). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且|λa|=|λ|•|a|. 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当|λ|>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍; 当|λ|<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的|λ|倍. 数与向量的乘法满足下面的运算律 结合律:(λa)•b=λ(a•b)=(a•λb). 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ. 3、向量的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作<a,b>并规定0≤<a,b>≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos<a,b>;若a、b共线,则a•b=+-|a||b|. 向量的数量积的坐标表示:a•b=x•x"+y•y". 向量的数量积的运算律 a•b=b•a(交换律); (λa)•b=λ(a•b)(关于数乘法的结合律); (a+b)•c=a•c+b•c(分配律); 向量的数量积的性质 a•a=|a|的平方. a⊥b <=>a•b=0. |a•b|≤|a|•|b|. 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2. 2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c. 3、|a•b|≠|a|•|b| 4、由 |a|=|b| ,推不出 a=b或a=-b.u投在线2023-05-15 13:53:311
向量的运算的所有公式
数学公式是数学题目解题关键,那么向量的运算公式有哪些呢?快来和我一起看看吧。下面是由我为大家整理的“向量的运算的所有公式”,仅供参考,欢迎大家阅读。 向量的运算的所有公式 向量的加法满足平行四边形法则和三角形法则, 向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。 在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。向量的加法满足平行四边形法则和三角形法则,向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。 数与向量的乘法满足下面的运算律: 结合律:(λa)·b=λ(a·b)=(a·λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 向量的数量积的运算律: a·b=b·a(交换律) (λa)·b=λ(a·b)(关于数乘法的结合律) (a+b)·c=a·c+b·c(分配律) 向量的向量积运算律: a×b=-b×a (λa)×b=λ(a×b)=a×(λb) a×(b+c)=a×b+a×c. (a+b)×c=a×c+b×c. 拓展阅读:向量的表达方式 1.代数表示 一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,也可以用大写字母AB、CD上加一箭头(→)等表示。 2.几何表示 向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。 3.坐标表示 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理可知,有且只有一对实数(x,y),这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。wpBeta2023-05-15 13:53:311
数学向量的所有公式
1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y"). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。 定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a·b=x·x"+y·y"。 向量的数量积的运算率 a·b=b·a(交换率); (a+b)·c=a·c+b·c(分配率); 向量的数量积的性质 a·a=|a|的平方。 a⊥b 〈=〉a·b=0。 |a·b|≤|a|·|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。 2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。 3、|a·b|≠|a|·|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a∥b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。摘自:http://zhidao.baidu.com/link?url=Ik2MLAgFlI1G8NWKNLGgVV0VAJgFJKw33_5PUKy_KE8hJv-EmQxOAf0KZjgxE7F7vzVNmoPqzm7Bu4W32lHnB-jonWrk8wAJFZSgkq0FUTy再也不做站长了2023-05-15 13:53:312
高一数学必修4 有关向量 的所有计算公式。急用.. 谢谢。 必修3和必修4的所有公式..
设a=(x,y),b=(x",y")。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y"). 4、向量数乘 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣�6�1∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)�6�1b=λ(a�6�1b)=(a�6�1λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a�6�1b。若a、b不共线,则a�6�1b=|a|�6�1|b|�6�1cos〈a,b〉;若a、b共线,则a�6�1b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a�6�1b=x�6�1x"+y�6�1y"。 向量的数量积的运算律 a�6�1b=b�6�1a(交换律); (λa)�6�1b=λ(a�6�1b)(关于数乘法的结合律); (a+b)�6�1c=a�6�1c+b�6�1c(分配律); 向量的数量积的性质 a�6�1a=|a|的平方。 a⊥b 〈=〉a�6�1b=0。 |a�6�1b|≤|a|�6�1|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a�6�1b)�6�1c≠a�6�1(b�6�1c);例如:(a�6�1b)^2≠a^2�6�1b^2。 2、向量的数量积不满足消去律,即:由 a�6�1b=a�6�1c (a≠0),推不出 b=c。 3、|a�6�1b|≠|a|�6�1|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|�6�1|b|�6�1sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 定比分点 定比分点公式(向量P1P=λ�6�1向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ�6�1向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy"-x"y=0。 零向量0平行于任何向量。 [编辑本段]向量垂直的充要条件 a⊥b的充要条件是 a�6�1b=0。 a⊥b的充要条件是 xx"+yy"=0。 零向量0垂直于任何向量. copy的 : http://zhidao.baidu.com/question/110272005.html 回答者: 312776268 | 五级 | 2011-2-27 15:31 向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a�6�1b。若a、b不共线,则a�6�1b=|a|�6�1|b|�6�1cos〈a,b〉;若a、b共线,则a�6�1b=+-∣a∣∣b∣。(同向为正,反向为负)。 向量的数量积的坐标表示:a�6�1b=x�6�1x"+y�6�1y"。 向量的数量积的运算律 a�6�1b=b�6�1a(交换律); (λa)�6�1b=λ(a�6�1b)(关于数乘法的结合律); (a+b)�6�1c=a�6�1c+b�6�1c(分配律); 向量的数量积的性质 a�6�1a=|a|的平方。 a⊥b 〈=〉a�6�1b=0。 |a�6�1b|≤|a|�6�1|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a�6�1b)�6�1c≠a�6�1(b�6�1c);例如:(a�6�1b)^2≠a^2�6�1b^2。 2、向量的数量积不满足消去律,即:由 a�6�1b=a�6�1c (a≠0),推不出 b=c。 3、|a�6�1b|≤|a|�6�1|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。向量的向量积 |axb|=|a||b|sin<a,b>西柚不是西游2023-05-15 13:53:311
向量的所有公式
1.cos<a,b>=a.b/|a||b| <a,b>是向量a b 的夹角2.若向量a=(x,y) 向量b=(m,n) 1)a·b=xm+yn 2)a+b=(x+m,y+n)meira2023-05-15 13:53:311
空间向量的所有公式
善士六合2023-05-15 13:53:311
高一数学必修4 有关向量 的所有计算公式。急用.. 谢谢。必修3和必修4的所有公式..
设a=(x,y),b=(x",y")。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y"). 4、向量数乘 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)b=λ(ab)=(aλb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。 向量的数量积的坐标表示:ab=xx"+yy"。 向量的数量积的运算律 ab=ba(交换律); (λa)b=λ(ab)(关于数乘法的结合律);(a+b)c=ac+bc(分配律); 向量的数量积的性质 aa=|a|的平方。 a⊥b 〈=〉ab=0。 |ab|≤|a||b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。 2、向量的数量积不满足消去律,即:由 ab=ac (a≠0),推不出 b=c。 3、|ab|≠|a||b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 定比分点 定比分点公式(向量P1P=λ向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy"-x"y=0。 零向量0平行于任何向量。 [编辑本段]向量垂直的充要条件 a⊥b的充要条件是 ab=0。 a⊥b的充要条件是 xx"+yy"=0。 零向量0垂直于任何向量. copy的 : http://zhidao.baidu.com/question/110272005.html 回答者: 312776268 | 五级 | 2011-2-27 15:31 向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。(同向为正,反向为负)。 向量的数量积的坐标表示:ab=xx"+yy"。 向量的数量积的运算律 ab=ba(交换律); (λa)b=λ(ab)(关于数乘法的结合律);(a+b)c=ac+bc(分配律); 向量的数量积的性质 aa=|a|的平方。 a⊥b 〈=〉ab=0。 |ab|≤|a||b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。 2、向量的数量积不满足消去律,即:由 ab=ac (a≠0),推不出 b=c。 3、|ab|≤|a||b| 4、由 |a|=|b| ,推不出 a=b或a=-b。向量的向量积 |axb|=|a||b|sin<a,b>韦斯特兰2023-05-15 13:53:311
高一向量所有公式
向量加法与减法的几何表示:平行四边形法则、三角形法则。 向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律); +0= +(- )=0. 1.实数与向量的积:实数 与向量 的积是一个向量。 (1)| |=| |�6�1| |; (2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0. (3)若 =( ),则 �6�1 =( ). 两个向量共线的充要条件: (1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= . (2) 若 =( ),b=( )则 ‖b . 平面向量基本定理: 若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2. 2.P分有向线段 所成的比: 设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。 当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0; 分点坐标公式: 3. 向量的数量积: (1).向量的夹角: (2).两个向量的数量积: (3).向量的数量积的性质: (4) .向量的数量积的运算律: 4.主要思想与方法: 本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。九万里风9 2023-05-15 13:53:311
高中数学向量所有公式,详细点
AB+BC=AC,a*b=|a‖b|cosθ北营2023-05-15 13:53:311
关于向量的一切公式。
设a=(x,y),b=(x",y")。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y"). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)•b=λ(a•b)=(a•λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a•b=x•x"+y•y"。 向量的数量积的运算律 a•b=b•a(交换律); (λa)•b=λ(a•b)(关于数乘法的结合律); (a+b)•c=a•c+b•c(分配律); 向量的数量积的性质 a•a=|a|的平方。 a⊥b 〈=〉a•b=0。 |a•b|≤|a|•|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。 2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。 3、|a•b|≠|a|•|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 定比分点 定比分点公式(向量P1P=λ•向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy"-x"y=0。 零向量0平行于任何向量。 [编辑本段]向量垂直的充要条件 a⊥b的充要条件是 a•b=0。 a⊥b的充要条件是 xx"+yy"=0。 零向量0垂直于任何向量.苏萦2023-05-15 13:53:311
求高一必修4所有平面向量公式
加法1、三角形法则2、平行四边形法则设a向量=(x1,y1),b向量=(x2,y2),则:a向量+b向量=(x1+x2,y1+y2)减法三角形法则:设a向量=(x1+y1),b向量=(x2,y2),则:a向量+b向量=(x1-x2,y1-y2)a向量*b向量=b向量*a向量豆豆staR2023-05-15 13:53:311
高中数学所有的向量公式 谢谢
设a=(x,y),b=(x",y")。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y"). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)•b=λ(a•b)=(a•λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a•b=x•x"+y•y"。 向量的数量积的运算律 a•b=b•a(交换律); (λa)•b=λ(a•b)(关于数乘法的结合律); (a+b)•c=a•c+b•c(分配律); 向量的数量积的性质 a•a=|a|的平方。 a⊥b 〈=〉a•b=0。 |a•b|≤|a|•|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。 2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。 3、|a•b|≠|a|•|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 定比分点 定比分点公式(向量P1P=λ•向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy"-x"y=0。 零向量0平行于任何向量。 [编辑本段]向量垂直的充要条件 a⊥b的充要条件是 a•b=0。 a⊥b的充要条件是 xx"+yy"=0。 零向量0垂直于任何向量.肖振2023-05-15 13:53:312
求向量所有公式
瑞瑞爱吃桃2023-05-15 13:53:311
关于向量的一切公式。
设a=(x,y),b=(x",y")。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y"). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)•b=λ(a•b)=(a•λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a•b=x•x"+y•y"。 向量的数量积的运算律 a•b=b•a(交换律); (λa)•b=λ(a•b)(关于数乘法的结合律); (a+b)•c=a•c+b•c(分配律); 向量的数量积的性质 a•a=|a|的平方。 a⊥b 〈=〉a•b=0。 |a•b|≤|a|•|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。 2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。 3、|a•b|≠|a|•|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 定比分点 定比分点公式(向量P1P=λ•向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy"-x"y=0。 零向量0平行于任何向量。 [编辑本段]向量垂直的充要条件 a⊥b的充要条件是 a•b=0。 a⊥b的充要条件是 xx"+yy"=0。 零向量0垂直于任何向量.tt白2023-05-15 13:53:311
向量的有关公式 麻烦告一下
设有向量AB和点P,向量n是向量AB的法向量 d=向量n*向量PB/|向量n| A(xa,ya...na),B(xb,yb...nb) AB中点C[(xa+xb)/2,(ya+yb)/2....(na+nb)/2]韦斯特兰2023-05-15 13:53:311
垂直向量的公式
垂直向量的公式为:a1b1+a2b2=0在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。向量发展历史:向量最初被应用于物理学,很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系。FinCloud2023-05-15 13:53:311
空间向量公式是什么?
空间向量公式如下:1、空间向量线面夹角公式是cosθ=(ab的内积)/(|a||b|)。2、|a|=√(x1^2+y1^2+z1^2),|b|=√(x2^2+y2^2+z2^2)。3、空间向量的模公式:空间向量(x,y,z),其中x,y,z分别是三轴上的坐标,模长是:²√x²+y²+z²,平面向量(x,y),模长是:²√x²+y²。空间向量基本定理:1、共线向量定理两个空间向量a、b向量,a∥b的充要条件是存在唯一的实数λ,使a=λb。2、共面向量定理如果两个向量a、b不共线,则向量c与向量a、b共面的充要条件是:存在唯一的一对实数x、y,使c=ax+by。3、空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。铁血嘟嘟2023-05-15 13:53:311
向量的公式是什么?
投影向量的公式:向量a·向量b=| a |*| b |*cosΘ (Θ为两向量夹角)。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。公式就是用数学符号表示各个量之间的一定关系(如定律或定理)的式子。具有普遍性,适合于同类关系的所有问题。 在数理逻辑中,公式是表达命题的形式语法对象,除了这个命题可能依赖于这个公式的自由变量的值之外。 投影向量向量在三维空间中的各个方向的投影,最有代表性的有二个方向的投影,即垂直方向、水平方向。其它方向投影可以利用解直角三角形,转化为这两个方向上的投影。可桃可挑2023-05-15 13:53:311
平面向量所有公式
设a=(x,y),b=(x",y")。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y"). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)•b=λ(a•b)=(a•λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a•b=x•x"+y•y"。 向量的数量积的运算律 a•b=b•a(交换律); (λa)•b=λ(a•b)(关于数乘法的结合律); (a+b)•c=a•c+b•c(分配律); 向量的数量积的性质 a•a=|a|的平方。 a⊥b 〈=〉a•b=0。 |a•b|≤|a|•|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。 2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。 3、|a•b|≠|a|•|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 定比分点 定比分点公式(向量P1P=λ•向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy"-x"y=0。 零向量0平行于任何向量。 [编辑本段]向量垂直的充要条件 a⊥b的充要条件是 a•b=0。 a⊥b的充要条件是 xx"+yy"=0。 零向量0垂直于任何向量.bikbok2023-05-15 13:53:311
什么是向量的线性运算公式,代数规则?
向量的运算的所有公式是:1、加法:已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法:AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。3、数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。向量代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。Ntou1232023-05-15 13:53:311
向量公式
x1y1+x2y2=0 平行向量向量相加 x1y1+x2y2余辉2023-05-15 13:53:313
关于向量所有公式
不好打字啊阿啵呲嘚2023-05-15 13:53:311
向量的有关公式,全部
设a向量=(x1,y1),b向量=(x2,y2),则:a向量+b向量=(x1+x2,y1+y2)a向量*b向量=b向量*a向量 若向量a=(x,y) 向量b=(m,n) 1)a·b=xm+yn 2)a+b=(x+m,y+n) 向量a*向量b<= 绝对值a*绝对值b向量a+向量b<=绝对值a+绝对值b苏萦2023-05-15 13:53:301
平面向量的所有公式
都在图中铁血嘟嘟2023-05-15 13:53:303
向量公式是什么?
交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。1、单位向量:单位向量a0=向量a/|向量a|。2、P(x,y)那么向量OP=x向量i+y向量j。|向量OP|=根号(x平方+y平方)。3、P1(x1,y1)P2(x2,y2)。那么向量P1P2={x2-x1,y2-y1}。|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]。4、向量a={x1,x2}向量b={x2,y2}。向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2。Cosα=向量a*向量b/|向量a|*|向量b|。(x1x2+y1y2)。根号(x1平方+y1平方)*根号(x2平方+y2平方)。5、空间向量:同上推论。(提示:向量a={x,y,z})。可桃可挑2023-05-15 13:53:301
平面直角坐标系中向量相关公式
若向量a=(x,y) 向量b=(m,n) 1)a·b=xm+yn a*a=a^2=|a|^2=(x^2+y^2)2)ka+Lb=(Kx+Lm,Ky+Ln)(K,L为任意实数)3)a-b=(x-m,y-n)4)向量的夹角cosA=a·b/(|a||b|)=(xm+yn)/(根号下(x^2+y^2)*根号下(m^2+n^2))5)a垂直b等价于xm+yn=06)a//b等价于xn=ymtt白2023-05-15 13:53:301
高中数学向量公式有哪些?
亲爱的楼主:设a=(x,y),b=(x",y").1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x",y+y"). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+...九万里风9 2023-05-15 13:53:301
向量的数量积公式是什么?
向量的坐标运算公式:a+b=(x+m,y+n)。我的文件助手 15:35:00向量最初被应用于物理学.很多物理量如力速度位移以及电场强向量度磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。“向量”一词来自力学解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。向量的坐标表示这个向量的有向线段的终点坐标减去始点的坐标。在平面直角坐标系中,分别取x轴和y轴上的基地向量i、j;作一向量a,有且只有一对实数(x,y)是a=xi+yj,把这对实数(x,y)叫做向量a的坐标。向量的运算规则:向量的数量积的性质(1)a·a=∣a∣²≥0(2)a·b=b·a(3)k(ab)=(ka)b=a(kb)(4)a·(b+c)=a·b+a·c(5)a·b=0<=>a⊥b(6)a=kb<=>a//b(7)e1·e2=|e1||e2|cosθ=cosθ希望我的回答对你有所帮助!肖振2023-05-15 13:53:301
向量垂直公式
设向量a的坐标为﹙x,y﹚|向量a|²=x²+y²=52①向量a⊥向量b,∴-2x+3y=0②由①②解得x=6,y=4或x=-6,y=-4所以向量a的坐标为﹙6,4﹚或﹙-6,-4﹚小白2023-05-15 13:53:303
向量的所有高中知识点及公式
向量的所有高中知识点及公式如下:1、定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π。2、两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。向量的数量积的坐标表示:a•b=x•x+y•y。向量的数量积的运算律a•b=b•a(交换律)。3、(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);向量的数量积的性质a•a=|a|的平方。a⊥b〈=〉a•b=0。|a•b|≤|a|•|b|。4、向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。2、向量的数量积不满足消去律,即由a•b=a•c(a≠0),推不出b=c。向量:1、最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。“向量”一词来自力学、解析几何中的有向线段。2、最先使用有向线段表示向量的是英国大科学家牛顿。从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识。3、直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系。左迁2023-05-15 13:53:301
向量积的垂直与平行公式
a,b是两个向量,a=(a1,a2),b=(b1,b2)。a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb,λ是一个常数。a垂直b:a1b1+a2b2=0。 向量垂直,平行的公式 若a,b是两个向量:a=(x,y)b=(m,n); 则a⊥b的充要条件是a·b=0,即(xm+yn)=0; 向量平行的公式为:a//b→a×b=xn-ym=0; 在数学中,向量,指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向; 向量积的基本概念 表示方法 两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。 定义 向量积可以被定义为: 模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0°≤θ≤180°),它位于这两个矢量所定义的平面上。) 方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。) 也可以这样定义(等效): 向量积|c|=|a×b|=|a||b|sin<a,b> 即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。 而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。 运算结果c是一个伪向量。这是因为在不同的坐标系中c可能不同。余辉2023-05-15 13:53:301
向量的公式有那些?求救
你好,1、向量的加法:ab+bc=ac设a=(x,y) b=(x",y")则a+b=(x+x",y+y")向量的加法满足平行四边形法则和三角形法则。向量加法的性质:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)a+0=0+a=a2、向量的减法ab-ac=cba-b=(x-x",y-y")若a//b则a=eb则xy`-x`y=0若a垂直b则ab=0则xx`+yy`=03、向量的乘法设a=(x,x") b=(y,y")a·b(点积)=x·x"+y·y"【如果解决了您的问题请设为好评哈^^,如果对我的回答不满意,你可以追问我的哦,最开心就是能帮到你的忙^^】善士六合2023-05-15 13:53:301
向量的计算公式有哪些?
公式:L = T2/2R向量从外 切线长度的计算公式:T = 1/2 * R *(II前) 凹曲线上任何一点的计算公式:H = E + ABS(QC)* I + L 凸曲线在任何一点计算公式:H = E-ABS(QC)* I - L 说明:H =问点高程,交叉抬高E =竖曲线Q =起点桩号,C =问点桩号 I =线纵向坡度斜率,我前的斜率的计算,当计算出的斜率之前使用I ? ? ????????????=参数! $ G $ 4 +的参数! $ D $ 4 *“(elevation! A327参数。$ F $ 4)+”(elevation! A327参数。$ F $ 4)*(elevation! A327参数!$ F $ 4)/ 2 /参数! $ C $ 4 ? ??????垂直曲线左手车道中线海拔=竖曲线起点高程+坡率*(ASK里程 - 竖曲线起点里程)+(ASK里程 - 竖曲线开始点里程)*(ASK里程 - 垂直曲线起点里程)/ 2 /竖曲线半径 ? ? 各种元素的圆曲线的公式 ? T = Rtan(A÷2)◢?=π÷180(RA)◢ ? E0 = R÷COS(A÷2)-R◢Q = 2T-L◢ ? 描述:T切线长度,R曲线半径,L曲线长度; ? E0外的矢量距离的Q切曲差;曲线转向角;Chen2023-05-15 13:53:301
关于向量的公式
急需所有关于向量的公式和结论 设a=(x,y),b=(x",y")。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。向量的加法 AB+BC=AC北有云溪2023-05-15 13:53:301
数学必修4向量公式归纳
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量,它可以形象化地表示为带箭头的线段。下面我给大家带来数学必修4向量公式,希望对你有帮助。 目录 高中数学必修4向量公式 高中数学必修4目录 高中数学学习方法 高中数学必修4向量公式 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x",y") 则 a-b=(x-x",y-y"). 3、向量的的数量积 定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。 定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a·b=x·x"+y·y"。 向量的数量积的运算率 a·b=b·a(交换率); (a+b)·c=a·c+b·c(分配率); 向量的数量积的性质 a·a=|a|的平方。 a⊥b 〈=〉a·b=0。 |a·b|≤|a|·|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。 2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。 3、|a·b|≠|a|·|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 <<< 高中数学必修4目录 第一章 三角函数 1.1 任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图象与性质 1.5 函数y=Asin(ωx ψ) 1.6 三角函数模型的简单应用 本章综合 第二章 平面向量 2.1 平面向量的实际背景及基本概念 2.2 平面向量的线性运算 2.3 平面向量的基本定理及坐标表示 2.4 平面向量的数量积 2.5 平面向量应用举例 本章综合 第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式 3.2 简单的三角恒等变换 本章综合 <<< 高中 数学 学习 方法 (1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 (2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 (3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。 (4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。 (5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。 (6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。 (7)学会从多角度、多层次地进行 总结 归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。 (8)经常在做题后进行一定的“ 反思 ”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解 其它 问题时,是否也用到过。 (9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。 <<< 数学必修4向量公式归纳相关 文章 : ★ 数学必修4向量公式归纳 ★ 数学必修4平面向量公式总结 ★ 高中数学必修4平面向量知识点总结 ★ 高一数学必修4平面向量知识点总结 ★ 高中数学必修4平面向量知识点 ★ 人教版高二数学上向量的三角形不等式归纳 ★ 高二数学必修4向量模的计算知识点 ★ 高一数学必修4第二章平面向量基本定理及坐标表示知识点 ★ 高一数学必修4第二章平面向量基本定理及坐标表示知识点(2) ★ 高一数学必修4知识点总结(人教版) var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?1fc3c5445c1ba79cfc8b2d8178c3c5dd"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();hi投2023-05-15 13:53:301
高一数学必修4有关向量的所有公式(是所有有关哟)!分数诱人……
设a=(x,y),b=(x",y")。1、向量的加法 向量的加法满足平行四边形法则和三角形法则。向量的加法AB+BC=AC。 a+b=(x+x",y+y")。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被向量的减法减” a=(x,y)b=(x",y") 则a-b=(x-x",y-y").3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向;向量的数乘当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。4、向量的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a·b=x·x"+y·y"。 向量的数量积的运算律 a·b=b·a(交换律); (λa)·b=λ(a·b)(关于数乘法的结合律); (a+b)·c=a·c+b·c(分配律); 向量的数量积的性质 a·a=|a|的平方。 a⊥b 〈=〉a·b=0。 |a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|) 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。 2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。 3、|a·b|≠|a|·|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。5、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a垂直b〈=〉a×b=|a||b|。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); a×(b+c)=a×b+a×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。6、三向量的混合积 定义:给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,向量的混合积所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c 混合积具有下列性质: 1、三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1) 2、上性质的推论:三向量a、b、c共面的充要条件是(abc)=0 3、(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb) 4、(a×b)·c=a·(b×c)7、三向量的二重向量积 由于二重向量叉乘的计算较为复杂,于是直接给出了下列化简公式以及证明过程: 二重向量叉乘化简公式及证明向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 定比分点公式(向量P1P=λ·向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个任意实数 λ且λ不等于-1,使 向量P1P=λ·向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)/(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心向量共线的条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 若设a=(x1,y1),b=(x2,y2),则有x1y2=x2y1。 零向量0平行于任何向量。向量垂直的充要条件 a⊥b的充要条件是 a·b=0,即x1x2+y1y2=0。 零向量0垂直于任何向量. 平面向量的分解定理 平面向量分解定理:如果e1、e2是同一平面内的两个不平行向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使 a=λ1e1+λ2e2 我们把不平行向量e1、e2叫做这一平面内所有向量的一基组.Ntou1232023-05-15 13:53:301
向量章节的所有公式
空间点到直线距离就是{点到直线的距离}【这是平面的】kikcik2023-05-15 13:53:301
向量运算公式
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a?b=x?x"+y?y"。 向量的数量积的运算律 a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b〈=〉a?b=0。 |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。 2、向量的数量积不满足消去律,即:由a?b=a?c(a≠0),推不出b=c。 3、|a?b|≠|a|?|b| 4、由|a|=|b|,推不出a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ①当且仅当a、b反向时,左边取等号; ②当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ①当且仅当a、b同向时,左边取等号; ②当且仅当a、b反向时,右边取等号。 4、定比分点 定比分点公式(向量P1P=λ?向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数λ,使向量P1P=λ?向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 5、三点共线定理 若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA+GB+GC=O,则G为△ABC的重心 向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是xy"-x"y=0。 零向量0平行于任何向量。 向量垂直的充要条件 a⊥b的充要条件是a?b=0。 a⊥b的充要条件希望对你有用,望采纳。无尘剑 2023-05-15 13:53:303
我想知道关于向量的所有公式。
墨然殇2023-05-15 13:53:301
关于向量的所有公式
向量加法的三角形法则:AB+BC=AC;向量减法的三角形法则:a+(-a)=(-a)+a=0、a-b=a+(-b);向量数乘公式:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)。 在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。左迁2023-05-15 13:53:301
向量公式是什么?
向量a=(x1,y1),向量b=(x2,y2),a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角),向量之间不叫"乘积",而叫数量积,如a·b叫做a与b的数量积或a点乘b。已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。1、加法:已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法:AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。3、数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。LuckySXyd2023-05-15 13:53:301
关于向量的所有公式
向量加法的三角形法则:AB+BC=AC;向量减法的三角形法则:a+(-a)=(-a)+a=0、a-b=a+(-b);向量数乘公式:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)。 在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。小菜G的建站之路2023-05-15 13:53:301
高数:曲面2x-y^2-z=0,在(1,1,1)点的法向向量为:
设F(x,y,z)=2x-y^2-z 三个偏导数 Fx(1,1,1)=2,Fy(1,1,1)=-2,Fz(1,1,1)=-1 (2,-2,-1) 即为曲面在 (1,1,1) 的一个法向量.bikbok2023-05-15 13:53:291
曲面,怎么判断内法线向量和外法线向量.
根据曲面局部微分性质来做 如果已知某点的向量判断是否是内外 可以在该点求U,v向的切矢(偏导),两向量U向乘以V向 得到一个向量 再判断该向量与已知向量是否同向即可. 为什么是U乘以V向呢,这个与我们常见的坐标系是右手坐标系有关. 更简单的办法可以不用求导,用差分替代九万里风9 2023-05-15 13:53:291
法向量的求法
可以使用向量积找出平面内任意相交的2个向量做向量积a×b-------------------高中没有向量积内容可以使用数量积,因为法向量与平面内的所有向量垂直,所以找出任意两个相交的向量分别作数量积。Chen2023-05-15 13:53:295
如何判断法向量的方向?
矢量都有方向,方向就是表示起点和终点,矢量都可以计算。方向一定和面积垂直,非闭合曲面正方向由你确定,闭合曲面只能取向外为正。法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。扩展资料:对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线。如果S是曲线坐标x(s,t)表示的曲面,其中s及t是实数变量,那么用偏导数叉积表示的法线为:如果曲面S用隐函数表示,点集合(x,y,z)满足 F(x,y,z)=0,那么在点(x,y,z)处的曲面法线用梯度表示为如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。瑞瑞爱吃桃2023-05-15 13:53:282
直线与另一已知直线平行或垂直,法向量关系?
直线没有法向量,只有方向向量三维直线垂直,方向向量也垂直直线平行,方向向量也平行再也不做站长了2023-05-15 13:53:272
已知直线的法向量,怎么求斜率
直线没有法向量,只有方向向量 斜率就是方向方向向量的y/xhi投2023-05-15 13:53:272
为什么法向量垂直平面内的任意一条直线?
答 :因为平面过直线,则平面的法向量一定垂直于平面内直线的切向量。一个平面垂直于另一个平面,则两个平面的法向量一定垂直。那么,所求平面的法向量既要垂直已知直线的切向量,又要垂直已知平面的法向量,我们知道,只要这两个已知向量不是平行向量或者在同一直线上,这两个已知向量的就可以组成一个平面(向量可以自由平移的特点所决定,等同于把两个异面直线平移到相交直线);那么,垂直这一平面的向量,由这两个已知向量的叉积所决定。因此,取两者的叉积。原理:如果一条直线垂直于一个平面,则这条直线垂直于这个平面内的所有直线。wpBeta2023-05-15 13:53:271
如何求法向量
在平面几何中,如果一个向量垂直于一条直线,那么它就叫做直线的法向量,在立体几何中,如果一个向量垂直于一个平面,那么它就叫做平面的法向量,三维平面的法线是垂直于该平面的三维向量,曲面在某点p处的法线为垂直于该点切平面的向量。在立体几何中,如果一个向量同时垂直于两条或多条异面直线,那么该向量叫做这些异面直线的公共法向量。比方说,1在平面上有直线y=x,那么向量(1,-1)就是这条直线的(一个)法向量(注意法向量是无穷多的)。在立体空间中有由x轴和y轴确定的平面,那么这个平面就有一个法向量(0,0,1)。meira2023-05-15 13:53:271
法向量的求法
法向量的求法:在空间直角坐标系下求出法向量所垂直的平面内两条不平行的直线的方向向量设为(x1,y1,z1) (x2,y2,z2)显然平面的法向量(x,y,z)与两直线方向向量垂直即得xx1+yy1+zz1=0,xx2+yy2+zz2=0将任一未知量取一特殊值,则另外两个未知量可得即可求出法向量扩展资料如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。在空间直角坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j,k作为一组基底。若为该坐标系内的任意向量,以坐标原点O为起点作向量a。由空间基本定理知,有且只有一组实数(x,y,z),使得a=ix+jy+kz,因此把实数对(x,y,z)叫做向量a的坐标,记作a=(x,y,z)。这就是向量a的坐标表示。阿啵呲嘚2023-05-15 13:53:271
怎样求法向量?
下面我用几何法和向量法两种方法解几何法:过E点作EF⊥AD交AD于F,再作FG⊥AC交AB于G,然后过G作GH平行且等于EF,连接EH,则四边形EFGH是矩形。。。因为FG⊥PA,FG⊥AC。所以EH⊥AC。EH⊥AP。所以EH⊥面PAC,则H就是要求的那个点(即N)。因为AP=2,所以EF=1,所以HG=1。所以H到AB的距离是1。因为∠BAC=30°,所以∠AFG=30°。因为AF=1/2所以AG=√3/6。所以H到AP的距离是√3/6向量法:以A为坐标原点(下面的矩形ABCD哦用的顺时针)。AB为X轴,AD为Y轴,AP为Z轴建系。因为N在面PAB内,所以设其坐标为(X,0,Z)P(0,0,2)A(0,0,0,)C(√3,1,0)E(0,1/2,1)向量AP=(0,0,2)向量AC=(√3,1,0)向量EH=(X,-1/2,Z-1)..因为向量EH*AP=0EH*AC=0。。能够得到X=√3/6,Z=1..所以。。。跟上面一样左迁2023-05-15 13:53:272
法向量的计算方法
法向量是有无数个,但每个法向量都垂直于平面,且互相平行;如果限定为从原点出发的单位法向量,那就只剩一个了。题中图片上直线L的向量(5,2,10),平面π的一个法向量:(4,0,-2),因两向量不成比例,故直线不予平面垂直,但两向量的点乘积等于0,说明两向量垂直,即直线L平行于平面π;苏萦2023-05-15 13:53:275
高中数学法向量怎么求
高中数学法向量,建立恰当的直角坐标系。设平面法向量n=(x,y,z)在平面内找出两个不共线的向量,记为a=(a1,a2, a3) b=(b1,b2,b3)根据法向量的定义建立方程组:①n·a=0;②n·b=0。解方程组,取其中一组解即可。高中数学法向量法向量是垂直于平面的,题目解法的原理,是“垂直于平面内两条相交直线的直线,垂直于这个平面”。平面内的两条直线,选相交的,两条线段对应的向量,用坐标表示为线段端点对应坐标的差:向量a=向量AB=(xB-xA,yB-yA,zB-zA);向量b=向量CD=(xD-xC,yD-yC,zD-zC),AB、CD在同一平面内,但是不平行。 如果学过向量的叉积,那么向量的叉积就是两向量所在平面的法向量。用行列式可以写成:i,j,kxa,ya,zaxb,yb,zb其中i,j,k分别为x,y,z轴方向的单位向量。Jm-R2023-05-15 13:53:271
如何运用向量方法求直线方程?
1)如果已知直线的方向向量(与直线平行的向量)v=(v1,v2) ,又已知直线过定点M(x0,y0) ,那么直线的方程为 (x-x0)/v1=(y-y0)/v2 。2)如果已知直线的法向量(与直线垂直的向量)n=(A,B) ,又已知直线过定点M(x0,y0),那么直线的方程为 A(x-x0)+B(y-y0)=0 。kikcik2023-05-15 13:53:271
什么是直线的方向向量和法向量
直线的方向向量是用直线上任意两点坐标相减得到的向量,直线的法向量是与方向向量相垂直的向量。 数学中,既有大小又有方向且遵循平行四边形法则的量叫做向量。有方向与大小,分为自由向量与固定向量。数学中,把只有大小但没有方向的量叫做数量,物理中称为标量。例如距离、质量、密度、温度等。meira2023-05-15 13:53:261
法向量是什么意思
法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,而且每条直线可以存在不同的法向量;因此一个平面都存在无数个法向量,但相互平行。从理论上说,空间零向量是任何平面的法向量,但是由于零向量不能表示平面的信息。一般不选择零向量为平面的法向量。在平面几何中,如果一个向量垂直于一条直线,那么它就叫做直线的法向量。在立体几何中,如果一个向量垂直于一个平面,那么它就叫做平面的法向量。在立体几何中,如果一个向量同时垂直于两条或多条异面直线,那么向量叫做这些异面直线的公共法向量。法向量的主要应用如下:一、求斜线与平面所成的角:求出平面法向量和斜线的一边,然后联立方程组,可以得到角度的余弦值,根据公式Sinα=|Cosα|。利用这个原理也可以证明线面平行。二、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补。三、求点到面的距离:求任一斜线(平面上一点与平面内的连线在)法向量方向的射影,利用这个原理也可以求异面直线的距离。Chen2023-05-15 13:53:261
直线的系数是法向量吗
直线的系数是法向量。直线的方向向量是用直线上任意两点坐标相减得到的向量,直线的法向量是与方向向量相垂直的向量。数学中,既有大小又有方向且遵循平行四边形法则的量叫做向量。有方向与大小分为自由向量与固定向量。数学中把只有大小但没有方向的量叫做数量,物理中称为标量。法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。 由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量。法向量:是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。法线是与多边形(polygon)的曲面垂直的理论线,一个平面(plane)存在无限个法向量(normal vector)。在电脑图学(computer graphics)的领域里,法线决定着曲面与光源(light source)的浓淡处理(Flat Shading),对于每个点光源位置,其亮度取决于曲面法线的方向。以上内容参考:百度百科--法向量九万里风9 2023-05-15 13:53:261
什么是直线的方向向量和法向量
直线的方向向量是用直线上任意两点坐标相减得到的向量,直线的法向量是与方向向量相垂直的向量。 数学中,既有大小又有方向且遵循平行四边形法则的量叫做向量。有方向与大小,分为自由向量与固定向量。数学中,把只有大小但没有方向的量叫做数量,物理中称为标量。例如距离、质量、密度、温度等。西柚不是西游2023-05-15 13:53:261
如何求法向量?
法向量 法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,而且每条直线可以存在不同的法向量;因此一个平面都存在无数个法向量,但是这些法向量之间相互平行。从理论上述,空间零向量是任何平面的法向量,但是由于零向量不能表示平面的信息。一般不选择零向量为平面的法向量。 如果已知直线与平面垂直,可以取已知直线的两点构成的向量作为法向量;如果不存在这样的直线,可用设元法求一个平面的法向量;步骤如下:首先设平面的法向量m(x,y,z),然后寻找平面内任意两个不共线的向量AB(x1,y1,z1)和CD(x2,y2,z2)。由于平面法向量垂直于平面内所有的向量,因此得到x*x1+y*y1+z*z1=0和x*x2+y*y2+z*z2=0。由于上面解法存在三个未知数两个方程(不能通过增加新的向量和方程求解,因为其它方程和上述两个方程是等价的),无法得到唯一的法向量(因为法向量不是唯一的)。为了得到确定法向量,可采用固定z=1(也可以固定x=1或y=1)或者模等于1的方法(单位法向量),但是这步并不是必须的。因为确定法向量和不确定法向量的作用是一样的。 法向量的主要应用如下: 1、求斜线与平面所成的角:求出平面法向量和斜线的夹角,这个角和斜线与平面所成的角互余。利用这个原理也可以证明线面平行; 2、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补; 3、点到面的距离: 任一斜线(平面为一点与平面内的连线)在法向量方向的射影;如点B到平面α的距离d=|BD·n|/|n|(等式右边全为向量,D为平面内任意一点,向量n为平面α的法向量)。利用这个原理也可以求异面直线的距离 法向量方法是高考数学可以采用的方法之一,他的优点在于思路简单,容易操作。只要能够建立出直角坐标系,都可以写出最后答案。缺点在于同一般立体几何方法相比,其计算量巨大,特别是在计算二面角的时候。肖振2023-05-15 13:53:261
空间直线的方向向量和法向量怎么求?
方向向量就是用直线上任意两点坐标相减得到的向量,法向量是与方向向量相垂直的向量。譬如一直线有两点(1,2)(3,4)则方向向量为(2,1),设法向量为(a,x)则2a+x=0→x=-2a,即法向量为(a,-2a)黑桃花2023-05-15 13:53:261
直线的方向向量和法向向量分别是什么
方向向量就是用直线上任意两点坐标相减得到的向量,法向量是与方向向量相垂直的向量。譬如一直线有两点(1,2)(3,4)则方向向量为(2,1),设法向量为(a,x)则2a+x=0→x=-2a,即法向量为(a,-2a)凡尘2023-05-15 13:53:261
线的法向量如何求?
直线的方向向量为(1,k),那么它的法向量就是和方向向量垂直的向量,可以为(1,-1/k)LuckySXyd2023-05-15 13:53:261
直线y=3的一个单位法向量是______
直线y=3的方向向量是(a,0)(a≠0),不妨取(1,0)设直线y=3的法向量为 n =(x,y) ∴(x,y)?(1,0)=0∴x=0∴直线y=3的一个单位法向量是(0,1)故答案为:(0,1)北有云溪2023-05-15 13:53:262
直线的方向向量和法向量怎么看啊~
直线标准方程为:y=ax+b,则直线方向向量可以写为(1,a),与标准直线垂直:y=(-1/a)x+c,(c,b为任意常数)。法向量可以写为(1,-1/a)肖振2023-05-15 13:53:261
给定一定点,以及该点所在的直线的法向量,求该直线
设定点A(a,b),直线的法向量为(m,n),直线上的动点为P(x,y),则向量AP=(x-a,y-b),直线方程为(x-a,y-b)*(m,n)=m(x-a)+n(y-b)=0.左迁2023-05-15 13:53:261
直线的向量参数方程是怎么来的
过空间一点p(x0,y0,z0),且已知直线的一个方向向量s=(m,n,p),则该空间直线的参数方程:x=x0+mty=y0+ntz=z0+pt在已知条件下,令n(x,y,z)是直线上任意一点则向量pn与方向向量s平行而:pn=(x,y,z)-(x0,y0,z0)=(x-x0,y-y0,z-z0)故:(x-x0)/m=(y-y0)/n=(z-z0)/p这就是直线的点向式方程,也叫做对称式方程令(x-x0)/m=(y-y0)/n=(z-z0)/p=t便得到参数方程考得题目一般会和平面在一起考比如,给2个平面,让求直线的对称式方程和参数方程求2直线的夹角求直线与面的夹角大鱼炖火锅2023-05-15 13:53:262
空间向量中任意两个向量的法向量公式。不要给我说别的,我只要公式,本人知道求法,只要公式!
法向量公式即两个向量叉乘,设已知α=a1j+a2k+a3l,,β=b1i+b2k+b3j。其中i,j,k是三维空间一组基向量。令γ=α×β,即γ=|i j k||a1 a2 a3||b1 b2 b3|γ的向量公式即是上述行列式求解。在空间中把既有大小又有方向的量叫做空间向量,主要用于解决立体几何问题。法向量指的是在空间中与某平面垂直的直线的方向向量。扩展资料:从理论上说,空间零向量是任何平面的法向量,但是由于零向量不能表示平面的信息。一般不选择零向量为平面的法向量。如果已知直线与平面垂直,可以取已知直线的两点构成的向量作为法向量;如果不存在这样的直线,可用设元法求一个平面的法向量。首先设平面的法向量m(x,y,z),然后寻找平面内任意两个不平行的向量AB(x1,y1,z1)和CD(x2,y2,z2)。由于平面法向量垂直于平面内所有的向量,因此得到x*x1+y*y1+z*z1=0和x*x2+y*y2+z*z2=0。由于上面解法存在三个未知数两个方程(不能通过增加新的向量和方程求解,因为其它方程和上述两个方程是等价的),无法得到唯一的法向量(因为法向量不是唯一的)。为了得到确定法向量,可采用固定z=1(也可以固定x=1或y=1)或者模等于1的方法(单位法向量),但是这步并不是必须的。因为确定法向量和不确定法向量的作用是一样的。参考资料来源:百度百科——法向量真颛2023-05-15 13:53:261
法向量和方向向量问题
直线只有方向向量,平面有法向量。不要混淆! 空间直角坐标系中,一个三元一次方程表示一个平面,两个平面在相交时交于一条直线,所以两个三元一次方程联立可以表示一条直线,就是它们的交线。 一个三元一次方程中三个变量的系数就是它的法向量的三个分量,平面x-2y+4z-7=0的法向量就是(1,-2,4),因为由方程知(7,0,0)是平面上的一点,(x,y,z)是平面上任意一点,向量(x-7,y-0,z-0)与(1,-2,4)的数量积为0,就是说,(1,-2,4)与平面内的任意向量都垂直。 同理3x+5y-2z+1=0的法向量是(3,5,-2). 如果用这两个平面方程联立表示一条直线的话,这个方程组的两个解就是直线上的两个点A(3,-2,0)和B(17/11,-8/11,1),这条直线的方向向量就是AB向量。此后故乡只2023-05-15 13:53:261
为什么直线的法向量和方向向量相反
为什么直线的法向量和方向向量相反:;在相反方向的法线也是曲面的法线;法线的两个方向的法向量都可以表示这条法线方向.定向曲面的法线通常按照右手定则来确定.法向量的模等于1的法向量叫单位法向量.善士六合2023-05-15 13:53:261
法向量的方向是什么?
矢量都有方向,方向就是表示起点和终点,矢量都可以计算。方向一定和面积垂直,非闭合曲面正方向由你确定,闭合曲面只能取向外为正。法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。扩展资料:对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线。如果S是曲线坐标x(s,t)表示的曲面,其中s及t是实数变量,那么用偏导数叉积表示的法线为:如果曲面S用隐函数表示,点集合(x,y,z)满足 F(x,y,z)=0,那么在点(x,y,z)处的曲面法线用梯度表示为如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。gitcloud2023-05-15 13:53:261
怎么求方向向量和法向量
法向量的定义: 1 在平面几何中,如果一个向量垂直于一条直线,那么它就叫做直线的法向量. 2 在立体几何中,如果一个向量垂直于一个平面,那么它就叫做平面的法向量.三维平面的法线是垂直于该平面的三维向量。曲面在某点 p 处的法线为垂直于该点切平面的向量。 3 在立体几何中,如果一个向量同时垂直于两条或多条异面直线,那么该向量叫做这些异面直线的公共法向量. 比方说, 1 在平面上有直线 y=x,那么向量(1,-1)就是这条直线的(一个)法向量(注意法向量是无穷多的). 2 在立体空间中有由x轴和y轴确定的平面,那么这个平面就有一个法向量(0,0,1). 法线法向量是否唯一的? 曲面法线的法向量不具有唯一性;在相反方向的法线也是曲面的法线;法线的两个方向的法向量都可以表示这条法线方向。定向曲面的法线通常按照右手定则来确定。 法向量的模等于1的法向量叫单位法向量。 如何用矩阵行列式求法向量? 如果矩阵是方阵(如nxn):它的行向量组线性相关,则r(A)<n,由于矩阵行向量组的秩等于列向量组的秩,那么它的列向量组也线性相关; 如果矩阵不是方阵,则上述结论不一定成立,比如一个4x3的矩阵,如果它的行向量组的秩为3,那么行向量组线性相关,此时列向量组的秩也为3,但列向量组线性无关。 平面四边形,知道四个节点的坐标,求一条边的x,y方向的法向量,nx和ny,怎么求? 先表示出一条直线的向量,再根据(法向量)点乘(向量)的点乘积为0,就可以求出来了。 怎样通过点法向量方程式求法向量 ?请解释为什么d=(b,-a)是直线l(它的方程式是:ax+by+c=0)的一个方向向量。 首先,直线ax+by+c=0与直线ax+by=0平行。 在直线ax+by=0上取一点(b,-a),则向量(b,-a)与直线ax+by=0共线。 所以向量(b,-a)是直线ax+by=0的一个方向向量。 而直线ax+by+c=0与直线ax+by=0平行, 所以向量(b,-a)是直线ax+by+c=0的一个方向向量。 求法向量的一个简单公式: 已知平面内两条不平行的直线的方向向量分别为n1、n2,则该平面的法向量=n1×n2。 如何求立体几何中的法向量? 首先对该立体图形建立坐标系,如果能建,则可求面的法向量 : 求面的法向量的方法是: 1、尽量在图中找到垂直于面的向量 ; 2、如果找不到,那么就设法向量n=(x,y,z), 然后因为法向量垂直于面,所以n垂直于面内两相交直线,可列出两个含有x、y、z的方程,两个方程中有三个未知数,解不出一个唯一的解。但可以根据题目情况、计算方便,使z(或x或y)等于一个具体的数,就变成了两个未知量两个方程的方程组了,是可解方程组,解出唯一的解,就是设的那个法向量n(x,y,z)了.请采纳。凡尘2023-05-15 13:53:261
已知空间直线方程 怎么求其法向量
1、平面内直线方程为ax+by+c=0,法向量(a,b),那么方向向量可取(b,-a),2、空间直线方程为(x-x0)/v1=(y-y0)/v2=(z-z0)/v3,那么它的方向向量就是(v1,v2,v3)。tt白2023-05-15 13:53:262