向量

空间向量的知识点

空间向量的知识点如下:1、空间向量的概念。具有大小和方向的量叫做向量。2、空间向量的运算。定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下。运算律:加法交换律:a+b=b+a。加法结合律:(a+b)+c=a+(b+c)。数乘分配律:λ(a+b)=λa+λb。3、共线向量。表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量a平行于b记作a//b。当我们说向量a、b共线(或a//b)时,表示a、b的有向线段所在的直线可能是同一直线,也可能是平行直线。4、共线向量定理及其推论。共线向量定理:空间任意两个向量a、b(b≠0),a//b的充要条件是存在实数λ,使a=λb。推论:如果ι为经过已知点A且平行于已知非零向量a的直线,那么对于任意一点O,点P在直线ι上的充要条件是存在实数t 满足等式 OP=OA+ta。其中向量a叫做直线ι的方向向量。5、向量与平面平行。已知平面α和向量a,作OA=a,如果直线OA平行于α或在α内,那么我们说向量α平行于平面α,记作:a//α。通常我们把平行于同一平面的向量,叫做共面向量。说明:空间任意的两向量都是共面的。卦限介绍:三个坐标面把 空间分成八个部分,每个部分叫做一个 卦限。含有x轴 正半轴、y轴正半轴、z轴正半轴的卦限称为第一卦限,其他第二、三、四卦限,在xoy面的上方,按 逆时针方向确定。在第一、二、三、四卦限下面的部分分别称为第五、六、七、八卦限。立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。
gitcloud2023-05-24 18:37:282

空间向量是什么

空间中,既有大小又有方向的量称为空间向量。与平面向量得区别就在于一个在空间中,一个在平面中,前者范围扩大了
北境漫步2023-05-24 18:37:282

空间向量公式是什么呢?

空间向量公式D=AS*(B-Q)。空间中具有大小和方向的量叫做空间向量。空间是一个相对概念,构成了事物的抽象概念,事物的抽象概念是参照于空间存在的。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小方向的量。它可以形象化地表示为带箭头的线段。空间直线在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
kikcik2023-05-24 18:37:281

空间向量公式有哪些呢?

空间向量公式如下:1、空间向量线面夹角公式是cosθ=(ab的内积)/(|a||b|)。2、|a|=√(x1^2+y1^2+z1^2),|b|=√(x2^2+y2^2+z2^2)。3、空间向量的模公式:空间向量(x,y,z),其中x,y,z分别是三轴上的坐标,模长是:²√x²+y²+z²,平面向量(x,y),模长是:²√x²+y²。空间向量基本定理:1、共线向量定理两个空间向量a、b向量,a∥b的充要条件是存在唯一的实数λ,使a=λb。2、共面向量定理如果两个向量a、b不共线,则向量c与向量a、b共面的充要条件是:存在唯一的一对实数x、y,使c=ax+by。3、空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
大鱼炖火锅2023-05-24 18:37:281

空间向量公式是什么?

空间向量公式:D=AS*(B-Q)。如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。本文由101教育整理发布。向量a+向量b的模=|向量a+向量b|。=根号下(向量a+向量b)²。=根号下(|a|²+|b|²+2|a||b|cosα)。其中:cosα是向量a和向量b的夹角。向量的大小,也就是向量的长度(或称模)。注:1.向量的模是非负实数,向量的模是可以比较大小的。2.因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。
tt白2023-05-24 18:37:281

空间向量的运算

空间向量的运算如下:空间向量就是空间中具有大小和方向的量,其运算方法是:PM=xPA+yPB。1、空间向量及运算,垂直三垂线定理先看下,或者通过线面垂直得到面面垂直,或者通过两个面的法向量垂直得到这两个面垂直。线面平行得到线线平行或者面面平行,注意得是不平行的在同一个面上的两条直线分别与另一个面的两条直线平行,这两个面才平行。2、空间向量,加法与减法,空间向量的加减法与平面向量没有区别,就是平行四边形法则和三角形法则,如果两个向量初始位置没有交点的话,要移到起点相同或者首尾相接的位置。如果你是要用坐标运算,那空间向量无非就是多出一个z的分量而已,方法也是和平面一样的。3、平面向量的坐标运算,A和B中需要注意的是,一个坐标可以代表无数个向量,比如起点是(1,1),终点是(2,3)的向量,和起点是(0,0),终点在(1,2)的向量,他们的坐标表示都是(1,2),然而这并不与A,B矛盾,注意正反的区别。
韦斯特兰2023-05-24 18:37:281

什么是空间向量

在空间中即有大小又有方向的量
ardim2023-05-24 18:37:283

空间向量~~~

1. 不对。 没考虑向量的方向。2. 对。 向量AB=向量DC 即 一对对边 平行切相等。3. 对。 向量相等具有传递性。4. 不对。 ①|a|=|b|;②a‖b 小写字母都为向量, ===> a=b 或 a=-b.5. 不对。 |a|=|b|是向量a=b的必要条件但不是充分条件
黑桃花2023-05-24 18:37:282

空间向量基本定理

空间向量基本定理,回答如下:空间向量基本定理是用数学方式表达的一种空间概念,表达式为p=xa+yb+zc d=AB*AB*n。若存在三个不共面向量a,b,c,那么对空间任一向量p,存在唯一有序实数组{x,y,z}使得成立。这里科普一下,空间向量。空间向量(space vector)是一个数学名词,是指空间中具有大小和方向的量。向量规定:向量的大小叫做向量的长度或模(modulus)。1.长度为0的向量叫做零向量,记为0。2.模为1的向量称为单位向量。3.与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a。4.方向相等且模相等的向量称为相等向量。基本定理:1、共线向量定理两个空间向量a,b向量(b向量不等于0),a//b的充要条件是存在唯一的实数λ,使a=λb2、共面向量定理如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by3、空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
kikcik2023-05-24 18:37:281

空间向量的介绍

空间中具有大小和方向的量叫做空间向量。向量的大小叫做向量的长度或模(moduius)。规定,长度为0的向量叫做零向量,记为0.模为1的向量称为单位向量。与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a方向相等且模相等的向量称为相等向量。
hi投2023-05-24 18:37:281

高二数学空间向量的公式及定理

  科学是人类的共同财富,而真正科学家的任务就是丰富这个全人类都能受益的知识宝库。下面是我为大家整理的高二数学空间向量的公式及定理,希望大家喜欢。   空间向量   一、空间向量知识点   1.空间向量的概念:   定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。   具有大小和方向的量叫做向量注:   ⑴空间的一个平移就是一个向量   ⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量   ⑶空间的两个向量可用同一平面内的两条有向线段来表示   ⅰ定理:如果三个向量 不共面,那么对于空间任一向量 ,存在唯一的有序实数组x、y、z,使 。且把 叫做空间的一个基底, 都叫基向量。   ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。   ⅲ 单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用 表示。   ⅳ 空间四点共面:设O、A、B、C是不共面的四点,则对空间中任意一点P,都存在唯一的有序实数组x、y、z,使 。   2.空间向量的运算   二、复习点睛:   1、立体几何初步是侧重于定性研究,而空间向量则侧重于定量研究。空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。   2、根据空间向量的基本定理,出现了用基向量解决立体几何问题的向量法,建立空间直角坐标系,形成了用空间坐标研究空间图形的坐标法,它们的解答通常遵循“三步”:一化向量问题,二进行向量运算,三回到图形问题。其实质是数形结合思想与等价转化思想的运用。   3、实数的运算与向量的运算既有联系又有区别,向量的数量积满足交换律和分配律,但不满足结合律,因此在进行数量积相关运算的过程中不可以随意组合。值得一提的是:完全平方公式和平方差公式仍然适用,数量积的运算在许多方面和多项式的运算如出一辙,尤其去括号就显得更为突出,下面两个公式较为常用,请务必记住并学会应用: 。   2、空间向量的坐标表示:   (1)空间直角坐标系:   ①空间直角坐标系O-xyz,在空间选定一点O和一个单位正交基底 ,以点O为原点,分别以 的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,点O叫做原点,向量 叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面,yOz平面,zOx平面。   ②右手直角坐标系:右手握住z轴,当右手的四指从正向x轴以90°角度转向正向y轴时,大拇指的指向就是z轴的正向;   ③构成元素:点(原点)、线(x、y、z轴)、面(xOy平面,yOz平面,zOx平面);   ④空间直角坐标系的画法:作空间直角坐标系O-xyz时,一般使∠xOy=135°(或45°), ∠yOz=90°,z轴垂直于y轴,z轴、y轴的单位长度相同,x轴上的单位长度为y轴(或z轴)的一半;   (2)空间向量的坐标表示:   ①已知空间直角坐标系和向量 ,且设 为坐标向量(如图),   由空间向量基本定理知,存在唯一的有序实数组 叫做向量在此直角坐标系中的坐标,记作 。   ②在空间直角坐标系O-xyz中,对于空间任一点A,对应一个向量 ,若 ,则有序数组(x,y,z)叫做点在此空间直角坐标系中的"坐标,记为A(x,y,z),其中x叫做点A的横坐标, y叫做点A的纵坐标,z叫做点A的竖坐标,写点的坐标时,三个坐标间的顺序不能变。   ③空间任一点的坐标的确定:过P分别作三个与坐标平面平行的平面(或垂面),分别交坐标轴于A、B、C三点,│x│=│OA│,│y│=│OB│,│z│=│OC│,当 与 的方向相同时,x>0,当 与 的方向相反时,x<0,同理可确y、z(如图)。   ④规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应。   ⑤一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。   (3)空间向量的直角坐标运算:   ⑦空间两点间距离: ;   ⑧空间线段 的中点M(x,y,z)的坐标: ;   ⑨球面方程:   4、过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位。这三条轴分别叫做z轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴。通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。   5、空间直角坐标系中的特殊点:   (1)点(原点)的坐标:(0,0,0);   (2)线(坐标轴)上的点的坐标:x轴上的坐标为(x,0,0),y轴上的坐标为(0,y,0),z轴上的坐标为(0,0,z);   (3)面(xOy平面、yOz平面、zOx平面)内的点的坐标:平面上的坐标为(x,y,0)、平面上的坐标为(0,y,z)、平面上的坐标为(x,0,z)   6、要使向量 与z轴垂直,只要z=0即可。事实上,要使向量 与哪一个坐标轴垂直,只要向量 的相应坐标为0即可。   7、空间直角坐标系中,方程x=0表示yOz平面、方程y=0表示zOx平面、方程z=0表示xOy平面,方程x=a表示平行于平面yOz的平面、方程y=b表示平行于平面zOx的平面、方程z=c表示平行于平面xOy平面;   8、只要将 和 代入,即可证明空间向量的运算法则与平面向量一样;   9、由空间向量基本定理可知,空间任一向量均可以由空间不共面的三个向量生成.任意不共面的三个向量 都可以构成空间的一个基底,此定理是空间向量分解的基础。
阿啵呲嘚2023-05-24 18:37:281

空间向量在高中数学中具有怎样的地位和作用?

用空间向量处理某些立体几何问题,可以为学生提供新的视角。在空间特别是空间直角坐标系中引入空间向量,可以为解决三维图形的形状、大小及位置关系的几何问题增加一种理想的代数工具,从而提高学生的空间想象能力和学习效率。  高中数学新教材中讲述空间向量的部分约占14课时(当然它的应用不止在这14课时),它被包含在第九章“直线、平面、简单几何体”(简称“9(B)”)中,含有空间向量的高二下学期的数学教科书简称“第二册(下B)”;与它平行,仍用传统方法来阐述高中立体几何内容的教科书简称“第二册(下A)”。两本教科书第九章的章名一样,并且都用36课时进行教学。  综上,“空间向量”这部分内容具有“必学”和“选学”两重性。按照大纲第10页的脚注规定“直线、平面、简单几何体的教学内容和教学目标在9(A)和9(B)两个方案中只选一个执行”,9(B)具有选学的性质;但大纲把“直线、平面、简单几何体”作为必学内容,如果学生不按“第二册(下A)”教科书来学习,那么空间向量对于他们就是必学内容。  “空间向量”这部分内容,大致可分成“空间向量及其运算”与“空间向量的应用”这两个模块。  (1)空间向量及其运算。包括:  ①经历向量及其运算由平面向空间推广的过程。  ②理解空间向量的概念,掌握空间向量的加法、减法、数乘及其坐标表示,了解空间向量基本定理及其意义;掌握空间坐标系,能将空间向量用坐标轴上的单位向量线性表示,掌握空间向量的坐标表示。  ③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线或垂直。  (2)空间向量的应用。包括:  ①理解直线的方向向量、平面的法向量、向量在平面内的射影等概念。  ②能用向量语言表述线线、线面、面面的垂直、平行关系。  ③能用向量方法证明有关线、面位置关系的一些定理。  ④能用空间坐标系与向量方法解决夹角与距离的计算问题,体会向量方法在研究几何问题中的作用。教学中,应引导学生运用类比的方法,经历向量及其运算由平面向空间推广的过程,应注意由于维数增加所带来的影响。
小菜G的建站之路2023-05-24 18:37:281

平面向量中的定理

a∥b(a≠0)等价于b=λa(λ∈R)平面向量基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,存在唯一一对有序实数(x、y),使a=xe1+ye2。
西柚不是西游2023-05-24 18:37:271

平面向量的加减法是怎样运算的

平面向量加法:首尾相连手指向尾平面向量减法:尾尾相连为指向头
tt白2023-05-24 18:37:272

平面向量的表示方法

在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。任作一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得:a=xi+yj,我们把(x,y)叫做向量a的(直角)坐标,记作:a=(x,y)。其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。根据定义,任取平面上两点A(x1,y1),B(x2,y2),则向量AB=(x2-x1,y2-y1),即一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。 印刷体:只用小写字母表示时,采用加粗黑体;用首尾点大写字母表示时,需要在字母上加箭头,如;手写体:均需在字母上加箭头表示,如、。
大鱼炖火锅2023-05-24 18:37:271

平面向量基本定理公式

平面向量基本定理公式:p=xa+yb。平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
无尘剑 2023-05-24 18:37:271

平面向量怎么算?

平面向量的计算一般有两种方法,一种是直接利用几何关系,在一种是利用坐标关系。利用几何关系 AB+BC=AC (这里用粗体字表示向量)在坐标系中我们设A、B、C坐标为别是(x1,y1),(x2,y2),(x3,y3)这样得到AB=(x2-x1,y2-y1),BC=(x3-x2,y3,-y2),AC=(x3-x1,y3-y1)这样AB+BC=(x2-x1,y2-y1)+(x3-x2,y3,-y2)=(x3-x1,y3-y1)=AC因此两种算法是统一的。在数学中,利用坐标解决向量问题更普遍。这样,利用向量就建立了几何和代数之间的关系,提供了一种利用代数解决几何问题的方法。另外,向量和复数之间也是有一一对应关系的比如一个复数z=a+bi,(这里i表示虚数单位满足i�0�5=-1),这样z就对应着一个向量z=(a,b),因此利用复数的计算也可以进行向量计算。利用复数计算向量的好处就是,对于向量的旋转问题有比较简单的算法。根据欧拉公式复数z可以化成z=re^θ,其中r是z的模,θ是相角,也就是向量z和x轴正方向的夹角。若是把向量z逆时针转45°角度,得到的向量就可以直接表示为re^(θ-π/4),比利用向量的夹角公式要简便许多。
左迁2023-05-24 18:37:271

平面向量!!!!

a=(2,1),b=(-3,4)(3a)·(4b)=12a·b=12(2,1)·(-3,4)=12(-6+4)=-24
肖振2023-05-24 18:37:272

平面向量坐标表示

向量的概念 既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。[编辑本段]向量的几何表示 具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。(AB是印刷体,也就是粗体字母,书写体是上面加个→) 有向线段AB的长度叫做向量的模,记作|AB|。 有向线段包含3个因素:起点、方向、长度。 相等向量、平行向量、共线向量、零向量、单位向量: 长度相等且方向相同的向量叫做相等向量。 两个方向相同或相反的非零向量叫做平行向量, 向量a、b平行,记作a//b,零向量与任意向量平行,即0//a, 在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量共线就是指两条是平行向量) 长度等于0的向量叫做零向量,记作0。 零向量的方向是任意的;且零向量与任何向量都垂直。 长度等于1个单位长度的向量叫做单位向量。[编辑本段]平面向量的坐标表示 在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得 a=λ1i+λ2j 我们把(x,y)叫做向量a的(直角)坐标,记作 a=(x,y), 其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。 在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。 注意:平面向量的坐标与点的坐标不一样,平面向量的坐标是相对的。而点的坐标是绝对的。若一向量的起点在原点,例如该向量为(1,2)那么该项两上的所有点都可以用(a,2a)表示。即,若一向量的起点在原点,那么该向量上的任意一点的横纵坐标比例关系与向量坐标的比例关系是一样的。[编辑本段]向量的运算 加法运算 向量加法的定义 已知向量a、b,在平面上任意取一点A,作AB=a,BC=b,再作向量AC,则向量AC叫做a与b的和,记做a+b,即a+b=AB+BC=AC AB+BC=AC,这种计算法则叫做向量加法的三角形法则。(首尾相连,连接首尾,指向终点) 已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。 对于零向量和任意向量a,有:0+a=a+0=a。 |a+b|≤|a|+|b|。 向量的加法满足所有的加法运算定律。 减法运算 AB-AC=CB,这种计算法则叫做向量减法的三角形法则。(共起点,连终点,方向指向被减向量) 与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。 (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。 数乘运算 实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。 设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ + μ)a = λa + μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。 向量的加法运算、减法运算、数乘运算统称线性运算。坐标运算已知a=(x1,y1),b=(x2,y2),则 a+b=(x1i+y1j)+(x2i+y2j) =(x1+x2)i+(y1+y2)j 即 a+b=(x1+x2,y1+y2)。 同理可得 a-b=(x1-x2,y1-y2)。 这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。 由此可以得到: 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。 根据上面的结论又可得 若a=(x,y),则λa=(λx,λy) 这就是说,实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。[编辑本段]向量的数量积 已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a•b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。 a•b的几何意义:数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。 两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2 向量的数量积的性质 (1)a·a=∣a∣^2≥0 (2)a·b=b·a (3)k(ab)=(ka)b=a(kb) (4)a·(b+c)=a·b+a·c (5)a·b=0<=>a⊥b (6)a=kb<=>a//b (7)e1·e2=|e1||e2|cosθ=cosθ[编辑本段]平面向量的基本定理 如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数λ、μ,使a= λ*e1+ μ*e2,(λ+μ=1)。[编辑本段]相关练习 1.若a =0,则对任一向量b ,有a · b=0. 对 2.若a ≠0,则对任一非零向量b ,有a · b≠0. 错(当a⊥b时,a · b=0) 3.若a ≠0,a · b =0,则b=0 错(当a和b都不为零,且a⊥b时,a · b=0) 4.若a · b=0,则a · b中至少有一个为0. 错(可以都不为0,当a⊥b时,a · b=0成立) 5.若a≠0,a · b= b · c,则a=c 错(当b=0时) 6.若a · b = a · c ,则b≠c,当且仅当a= 0 时成立. 错(a≠0且同时垂直于b,c时也成立) 7.对任意向量 a 有a*a=∣a∣* ∣a∣ 对
大鱼炖火锅2023-05-24 18:37:271

平面向量的数学符号是什么?

向量a·向量b=| a |*| b |*cosΘΘ为两向量夹角| b |*cosΘ叫做向量b在向量a上的投影| a |*cosΘ叫做向量a在向量b上的投影扩展资料平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。参考资料平面向量_百度百科
此后故乡只2023-05-24 18:37:271

数学平面向量

OA=(0.1.1) OB=(2,0,2) OC =(1,0,1) N=(X,Y,Z)由法向量定义得: y+z=0 2x+2z=0; x+z=0所以:n=(k,k,-k)k不等于0
人类地板流精华2023-05-24 18:37:271

平面向量的基本定理及坐标表示

第一题:你题目不全啊~~第二题:做下变形:向量OP-向量OA=向量AP则有:向量AP/k=向量AB/|AB|+向量AC/|AC|这样因为向量单位化后却不会影响向量方向,所以向量AB/|AB|+向量AC/|AC|和向量AB+AC的方向一样,我们知道向量AB+向量AC的和的方向一定是∠BAC的角平分线方向,而三角形的内心是三个角平分线的交点,所以P的轨迹过三角形内心选:B
左迁2023-05-24 18:37:272

平面向量定义三要素

平面向量定义三要素是起点、方向、长度。平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
NerveM 2023-05-24 18:37:271

高中数学,平面向量

移项:(λn-1)i=(m-λ)j两个不共线的向量要相等,除非都是零向量所以λn-1=0,m-λ=0
ardim2023-05-24 18:37:271

空间向量基本概念

空间向量 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键. 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得 或对空间一定点O有 2、对空间任一点O和不共线的三点A,B,C,若: (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量 (k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量 . 5、利用向量求两直线a与b的夹角,就是分别在a,b上取 ,求: 的问题. 6、利用向量求距离就是转化成求向量的模问题: . 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线 可列出两个方程 两个方程,三个未知数 然后根据计算方便 取z(或x或y)等于一个数 然后就求出面的一个法向量了 会求法向量后 1。二面角的求法就是求出两个面的法向量 可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积 如过在两面的同一边可以看到两向量的箭头或箭尾相交 那么二面角就是上面求的两法向量的夹角的补角 如果只能看到其中一个的箭头和另一个的箭尾相交 那么上面两向量的夹角就是所求 2。点到平面的距离就是求出该面的法向量 然后在平面上任取一点(除平面外那点在平面内的射影) 求出平面外那点和你所取的那点所构成的向量记为n1 点到平面的距离就是法向量与n1的数量积的绝对值除以法向量的模即得所求
苏州马小云2023-05-24 18:37:274

平面向量公式是什么? 举例子

若向量a=(x,y) 向量b=(m,n) 1)a·b=xm+yn 2)a+b=(x+m,y+n)
可桃可挑2023-05-24 18:37:261

平面向量定义三要素

起点,大小,方向
LuckySXyd2023-05-24 18:37:263

平面向量是什么

有向线段的要素;:起点,方向,长度。长度为零的向量为零向量,单位向量为一长度单位。方向相同或相反的非零向量为平行向量。0||a.。 如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,存在唯一一对有序实数(x 、y) ,使 a= xe1+ ye2。这里{e1、e2}称为这一平面内所有向量的一组基底,e1、e2称为基向量。
黑桃花2023-05-24 18:37:261

如何理解平面向量的方向?

若其中一个是零向量,由于零向量的方向是任意的,所以零向量所在直线的方向也是任意的所以不能保证两向量所在直线平行,如果再加个前提条件:两向量非零那就对了。平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。向量能够进入数学并得到发展,首先应从复数的几何表示谈起。18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi(a,b为有理数,且不同时等于0),并利用具有几何意义的复数运算来定义向量的运算。把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题。人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学中。
ardim2023-05-24 18:37:261

平面向量的计算

向量PB=向量OB-向量OP=(2,1)-(x,y)=(2-x,1-y)(向量PB)^2=(2-x)^2+(1-y)^2向量OA*向量OP<=2(1,1)*(x,y)<=2x+y<=2又因为x>0,y>0所以当所以=(2-x)^2+(1-y)^2=(x-2)^2+(y-1)^2<=(x-2)^2+(2-x-1)^2,求出<=(x-2)^2+(2-x-1)^2的最小值,(向量PB)^2就要小于这个值(1)同样的道理=(x-2)^2+(y-1)^2<=(2-y-2)^2+(y-1)^2的最小值,(向量PB)^2就要小于这个值(2)比较(1)(2)的大小,要小于更小者我的头好痛!看电脑太久了!不好意思,不能帮你解出来了!其实就是以为(2,1)为圆心的圆,圆上的点就是P点的坐标,半径就是这个的范围!
阿啵呲嘚2023-05-24 18:37:261

什么是平面向量

平面向量向量的概念既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。向量的几何表示具有方向的线段叫做有向线段,以a为起点,b为终点的有向线段记作ab。(ab是印刷体,书写体是上面加个→)有向线段ab的长度叫做向量的模,记作|ab|。有向线段包含3个因素:起点、方向、长度。长度等于0的向量叫做零向量,记作0。零向量的方向是任意的;长度等于1个单位长度的向量叫做单位向量。相等向量与共线向量长度相等且方向相同的向量叫做相等向量。两个方向相同或相反的非零向量叫做平行向量,向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,平行向量也叫做共线向量。向量的运算加法运算ab+bc=ac,这种计算法则叫做向量加法的三角形法则。已知两个从同一点o出发的两个向量oa、ob,以oa、ob为邻边作平行四边形oacb,则以o为起点的对角线oc就是向量oa、ob的和,这种计算法则叫做向量加法的平行四边形法则。对于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。向量的加法满足所有的加法运算定律。减法运算与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ=0时,λa=0。设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λ+μ)a=λa+μa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。向量的加法运算、减法运算、数乘运算统称线性运算。向量的数量积已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作a•b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。a•b的几何意义:数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。
苏萦2023-05-24 18:37:261

平面向量的概念

平面向量的概念是在二维平面内既有方向又有大小的量。平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a、b、c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。向量这个术语作为现代数学物理中的一个重要概念,首先是由英国数学家哈密顿使用的。向量的名词虽来自哈密顿,但向量作为一条有向线段的思想却由来已久。向量理论的起源与发展主要有三条线索:物理学中的速度和力的平行四边形法则、位置几何、复数的几何表示。物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。
凡尘2023-05-24 18:37:261

平面向量知识点梳理是什么?

向量的概念既有方向又有大小的量叫做向量(物理学中叫做矢量),向量可以用小写黑体字母a,b,c表示,也可以用表示向量的有向线段的起点和终点字母表示。只有大小没有方向的量叫做数量(物理学中叫做标量)。在自然界中,有许多量既有大小又有方向,如力、速度等。我们为了研究这些量的这个共性,在它们的基础上提取出了向量这个概念。这样研究清楚了向量的性质,当然用它来研究其它量,就会方便许多。
NerveM 2023-05-24 18:37:262

什么是平面向量

平面向量向量的概念既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。向量的几何表示具有方向的线段叫做有向线段,以a为起点,b为终点的有向线段记作ab。(ab是印刷体,书写体是上面加个→)有向线段ab的长度叫做向量的模,记作|ab|。有向线段包含3个因素:起点、方向、长度。长度等于0的向量叫做零向量,记作0。零向量的方向是任意的;长度等于1个单位长度的向量叫做单位向量。相等向量与共线向量长度相等且方向相同的向量叫做相等向量。两个方向相同或相反的非零向量叫做平行向量,向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,平行向量也叫做共线向量。向量的运算加法运算ab+bc=ac,这种计算法则叫做向量加法的三角形法则。已知两个从同一点o出发的两个向量oa、ob,以oa、ob为邻边作平行四边形oacb,则以o为起点的对角线oc就是向量oa、ob的和,这种计算法则叫做向量加法的平行四边形法则。对于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。向量的加法满足所有的加法运算定律。减法运算与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ=0时,λa=0。设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λ+μ)a=λa+μa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。向量的加法运算、减法运算、数乘运算统称线性运算。向量的数量积已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作a•b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。a•b的几何意义:数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。
hi投2023-05-24 18:37:261

平面向量公式

平面向量公式:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC。平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
苏州马小云2023-05-24 18:37:261

平面向量有啥基本内容,谢谢了学霸们

共面向量基本定理:如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使 p=xa+by。  此定理其实说明了平面向量可以沿任意指定的两方向分解,同时也说明了由任意两向量可以合成指定向量,即向量的合成与分解 。  当两个方向相互垂直时,其实就是把他们在直角坐标系中分解,此时(x,y)就称为此向量的坐标。所以此定理为向量的坐标表示提供了理论依据。3 坐标表示  在平面直角坐标系中,分别取与x轴,y轴方向相同的两个单位向量i、j作为基底,a为坐标平面内的任意向量,以坐标原点O为起点作向量OP=a。有平面向量基本定理可知,有且只有一对实数x、y,使得向量OP=xi+yj。  因此,a=xi+yj。  我们把实数(x,y)对叫做向量的坐标,记作:a=(x,y)。  显然,其中(x,y)就是点P的坐标。  向量OP称为点P的位置向量。4 向量关系   1.若a=0,则对任一向量b,有a · b=0。  2.若a≠0,则对任一非零向量b,有a · b≠0. 错(当a⊥b时,a · b=0)。  3.若a≠0,a · b =0,则b=0错(当a和b都不为零,且a⊥b时,a · b=0) 。  4.若a · b=0,则a · b中至少有一个为0. 错(可以都不为0,当a⊥b时,a · b=0成立) 。  5.若a≠0,a · b= b · c,则a=c 错(当b=0时)。  6.若a · b= a · c,则b≠c,当且仅当a= 0时成立. 错(a≠0且同时垂直于b,c时也成立) 。  7.对任意向量 a有a*a=∣a∣* ∣a∣。  平面向量的线性运算:加法为三角形法则"平行四边形法则"。定理:向量a与b共线,a不等于零,有且只有唯一一个实数c,使b=ca。
苏萦2023-05-24 18:37:261

平面向量的基本定理

平面向量基本定理是在向量知识体系中占有核心地位的定理。一方面,平面向量基本定理是平面向量正交分解及坐标表示的基础,坐标表示使平面中的向量与其坐标建立起了一一对应的关系,这为通过数的运算处理形的问题搭起了桥梁。另一方面,平面向量基本定理是平行向量基本定理由一维到二维的推广,揭示了平面向量的结构特征,将来还可以推广为空间向量基本定理。因此,平面向量基本定理在向量知识体系中起着承上启下的重要作用。
康康map2023-05-24 18:37:261

平面向量的基础知识具体点

  平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。平面向量用a,b,c,上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。   相关知识点:   1、具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。   2、长度相等且方向相同的向量叫做相等向量。   3、两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行。
wpBeta2023-05-24 18:37:261

平面向量坐标表示

平面向量坐标表示的介绍如下: 1、平面向量的概念。既有方向又有大小的量叫做向量,物理学中叫做矢量。只有大小没有方向的量叫做数量。物理学中叫做标量。 2、平面向量的因素。即包括起点,方向,长度,相等向量,平行向量,共线向量,零向量,单位向量。长度相等且方向相同的向量叫做相等向量。 两个方向相同或者相反的非零向量叫做平行向量。 3、平面向量可以使用坐标表示。在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。注意平面向量的坐标与点的坐标不一样,平面向量的坐标是相对的。而点的坐标是绝对的。
mlhxueli 2023-05-24 18:37:261

平面向量是什么………………

平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中叫也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用小写加粗的字母a,b,c表示,也可以用表示向量的有向线段的起点和终点字母表示。
无尘剑 2023-05-24 18:37:262

平面向量相乘是怎么回事

平面向量相乘1.数量积:设向量分别为x、y,乘积(是一个实数)为nn=xycosα其中α是将两个向量的起点平移到一个点上时两个向量的夹角。2.向量A=(X,Y),向量B=(Z,K)A·B=XZ+YK
苏州马小云2023-05-24 18:37:262

平面向量的基本概念

平面向量的基本概念:我们把既有大小又有方向的量叫向量。平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。向量(矢量)这个术语作为现代数学-物理学中的一个重要概念,首先是由英国数学家哈密顿使用的。向量的名词虽来自哈密顿,但向量作为一条有向线段的思想却由来已久。向量理论的起源与发展主要有三条线索:物理学中的速度和力的平行四边形法则、位置几何、复数的几何表示。物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。
陶小凡2023-05-24 18:37:261

高中数学平面向量加法

.........
wpBeta2023-05-24 18:37:264

平面向量的坐标运算

平面向量坐标运算公式是:向量坐标=末点的坐标减去起始点的坐标。平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。向量同数量一样,也可以进行运算。向量可以参与多种运算过程,包括线性运算、数量积、向量积与混合积等。三角形法则:这种计算法则叫做向量加法的三角形法则,简记为:首尾相连、连接首尾、指向终点。四边形法则:这种计算法则叫做向量加法的平行四边形法则,简记为:共起点对角连。
大鱼炖火锅2023-05-24 18:37:261

平面向量的概念是什么?

平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
人类地板流精华2023-05-24 18:37:253

高一数学中的平面向量怎么理解

从起点到终点做的一条有向线段。
北有云溪2023-05-24 18:37:253

平面向量知识点梳理有哪些?

平面向量知识点梳理有:1、向量的有关概念、名称、定义、备注、向量既有大小又有方向的量,向量的大小叫做向量的长度(或称模)平面向量是自由向量。2、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。3、向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量。(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段。4、向量的表示方法:①用有向线段表示。②用字母a、b(黑体,印刷用)等表示。③用有向线段的起点与终点字母表示。5、有向线段的三个要素:起点、方向、长度。
hi投2023-05-24 18:37:251

平面向量是什么?

只有大小没有方向的量叫做数量(物理学中叫做标量),比如温度,功,路程等等。既有方向(direction)又有大小(magnitude)的量叫做向量(物理学中叫做矢量),向量可以用小写黑体字母a,b,c,.......表示,也可以用表示向量的有向线段的起点和终点字母表示。在自然界中,有许多量既有大小又有方向,如力、速度等。我们为了研究这些量的这个共性,在它们的基础上提取出了向量这个概念。这样,研究清楚了向量的性质,当然用它来研究其它量,就会方便许多。在向量的定义中,在一平面内既有方向又有大小的量就叫平面向量 以下是一些补充:向量的几何表示  具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。(AB是印刷体,也就是粗体字母,书写体是上面加个→)  有向线段AB的长度叫做向量的模,记作|AB|。  有向线段包含3个因素:起点、方向、长度。  相等向量、平行向量、共线向量、零向量、单位向量:  长度相等且方向相同的向量叫做相等向量。  两个方向相同或相反的非零向量叫做平行向量或共线向量,  向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,  在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量共线就是指两条是平行向量)  长度等于0的向量叫做零向量,记作0。(注意粗体格式,实数“0”和向量“0”是有区别的)  零向量的方向是任意的;且零向量与任何向量都平行,垂直。  模等于1个单位长度的向量叫做单位向量。平面向量的坐标表示  在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得  a=xi+yj  我们把(x,y)叫做向量a的(直角)坐标,记作  a=(x,y),  其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。  在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。  注意:平面向量的坐标与点的坐标不一样,平面向量的坐标是相对的。而点的坐标是绝对的。若一向量的起点在原点,例如该向量为(1,2)那么该向量上的所有点都可以用(a,2a)表示。即,若一向量的起点在原点,那么该向量上的任意一点的横纵坐标比例关系与向量坐标的比例关系是一样的。编辑本段向量的运算加法运算  向量加法的定义  已知向量a、b,在平面上任意取一点A,作AB=a,BC=b,再作向量AC,则向量AC叫做a与b的和,记做a+b,即a+b=AB+BC=AC  AB+BC=AC,这种计算法则叫做向量加法的三角形法则。(首尾相连,连接首尾,指向终点) 同样,作AB=a,且AD=BC,再作平行AD的BC=b,连接DC,因为AD∥BC,且AD=BC,所以四边形ABCD为平行四边形,AC叫做a与b的和,表示为:AC=a+b.这种方法叫做向量加法的平行四边形法则。(共起点,对角连)。  已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。  对于零向量和任意向量a,有:0+a=a+0=a。  ||a|-|b||≤|a+b|≤|a|+|b|。  向量的加法满足所有的加法运算定律。减法运算  AB-AC=CB,这种计算法则叫做向量减法的三角形法则。(共起点,连终点,方向指向被减向量)  与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。  (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。数乘运算  实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa= 0。  设λ、μ是实数,那么:(1)(λμ)a= λ(μa)(2)(λ + μ)a= λa+ μa(3)λ(a± b) = λa± λb(4)(-λ)a=-(λa) = λ(-a)。  向量的加法运算、减法运算、数乘运算统称线性运算。坐标运算  已知a=(x1,y1),b=(x2,y2),则  a+b=(x1i+y1j)+(x2i+y2j)  =(x1+x2)i+(y1+y2)j  即 a+b=(x1+x2,y1+y2)。  同理可得 a-b=(x1-x2,y1-y2)。  这就是说, 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。  由此可以得到:  一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。  根据上面的结论又可得  若a=(x,y),则λa=(λx,λy)  这就是说,实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。向量的数量积  向量数量积定义:  (1)向量a与向量b的夹角:已知两个非零向量,过O点做向量OA=a,向量OB=b,则角AOB=θ叫做向量a与b的夹角。  (2)已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a·b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。  a·b的几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。  两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2  向量的数量积的性质  (1)a·a=∣a∣^2≥0  (2)a·b=b·a  (3)k(ab)=(ka)b=a(kb)  (4)a·(b+c)=a·b+a·c  (5)a·b=0<=>a⊥b  (6)a=kb<=>a//b  (7)e1·e2=|e1||e2|cosθ=cosθ  向量的混合积  定义:给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c  混合积具有下列性质:  1、三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)  2、上性质的推论:三向量a、b、c共面的充要条件是(abc)=0  3、(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb)  4、(a×b)·c=a·(b×c)编辑本段平面向量的基本定理  如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数λ、μ,使a= λ*e1+ μ*e2。编辑本段相关练习  1.若a =0,则对任一向量b ,有a · b=0.  2.若a ≠0,则对任一非零向量b ,有a · b≠0. 错(当a⊥b时,a · b=0)  3.若a ≠0,a · b =0,则b=0 错(当a和b都不为零,且a⊥b时,a · b=0)  4.若a · b=0,则a · b中至少有一个为0. 错(可以都不为0,当a⊥b时,a · b=0成立)  5.若a≠0,a · b= b · c,则a=c 错(当b=0时)  6.若a · b = a · c ,则b≠c,当且仅当a= 0 时成立. 错(a≠0且同时垂直于b,c时也成立)  7.对任意向量 a 有a*a=∣a∣* ∣a∣编辑本段向量与三角形有关的特殊规律  1.三角形ABC内一点O,向量OA·向量OB=向量OB·向量OC=向量OC·向量OA,则点O是三角形的垂心。  2.若O是三角形ABC的外心,点M满足向量OA+向量OB+向量OC=向量OM,则M是三角形ABC的外心。  3若O和三角形ABC共面,且满足向量OA+向量OB+向量OC=零向量,则O是三角形ABC的重心。
拌三丝2023-05-24 18:37:251

平面向量基本公式是什么?

平面向量基本知识一、向量知识:(1)叫做向量。(2)向量的运算:运算定义或法则运算性质(运算律)坐标运算加法减法实数与向量的积数量积几何意义:(3)平面向量的基本定理:如果和是同一平面内的两个不共线的向量,那么。(4)两个向量平行和垂直的充要条件:;‖;(5)夹角、模、距离等计算:夹角:与的夹角模:|+|=|-|=|++|=模||=两点距离公式:|PP|=向量||=计算:求与=(a,b)共线的单位向量(6)线段的定比分点坐标公式:设,且,则时,得中点坐标公式:可推出三角形重心坐标公式:(7)平移公式点按平移到,则点点P(a,b)点曲线y=曲线y=f(x)曲线y=二、解斜三角形(1)正弦定理:==(2)余弦定理:(3)S===(4)解三角形的几种类型及步骤:①已知两角一边:先用→再用。②已知两边及夹角:先用→再用。③已知两边及一边对角:先用(注意:解;内角和)→再用。④已知三边:先用→再用。(5)解应用问题的一般步骤:①→②→③→④
mlhxueli 2023-05-24 18:37:251

平面向量的基础知识具体点

平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。平面向量用a,b,c,上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。 相关知识点: 1、具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。 2、长度相等且方向相同的向量叫做相等向量。 3、两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行。
余辉2023-05-24 18:37:251

平面向量

|a+b|≤|a|+|b|
mlhxueli 2023-05-24 18:37:253

平面向量的基础知识(具体点)

亲爱的楼主:相关概念有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB;向量的模:有向线段AB的长度叫做向量的模,记作|AB|;零向量:长度等于0的向量叫做零向量,记作或0。(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);相等向量:长度相等且方向相同的向量叫做相等向量;平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示,平行于坐标轴的单位向量习惯上分别用i、j表示。相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。[1]3表示方法几何表示具有方向的线段叫做有向线段,我们以A为起点、B为终点的有向线段记作,则向量可以相应地记作。但是,区别于有向线段,在一般的数学研究中,向量是可以平移的。[2]坐标表示在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。任作一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得: 向量的坐标表示a=xi+yj,我们把(x,y)叫做向量a的(直角)坐标,记作:a=(x,y)。其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。根据定义,任取平面上两点A(x1,y1),B(x2,y2),则向量AB=(x2-x1,y2-y1),即一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标加法向量加法的三角形法则已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。用坐标表示时,显然有:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC。这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差三角形法则:AB+BC=AC,这种计算法则叫做向量加法的三角形法则,简记为:首尾相连、连接首尾、指向终点。四边形法则:已知两个从同一点A出发的两个向量AC、AB,以AC、AB为邻边作平行四边形ACDB,则以A为起点的对角线AD就是向量 向量加法的四边形法则AC、AB的和,这种计算法则叫做向量加法的平行四边形法则,简记为:共起点 对角连。对于零向量和任意向量a,有:0+a=a+0=a。向量的加法满足所有的加法运算定律,如:交换律、结合律。减法AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连终点、方向指向被减向量。-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。[2]数乘实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)设λ、μ是实数,那么满足如下运算性质:(λμ)a= λ(μa)(λ + μ)a= λa+ μaλ(a±b) = λa± λb(-λ)a=-(λa) = λ(-a)|λa|=|λ||a|[2]数量积已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2数量积具有以下性质:a·a=|a|2≥0a·b=b·ak(a·b)=(ka)b=a(kb)a·(b+c)=a·b+a·ca·b=0<=>a⊥ba=kb<=>a//be1·e2=|e1||e2|cosθ[2]向量积向量a与向量b的夹角:已知两个非零向量,过O点做向量OA=a,向量OB=b, 向量积示意图则∠AOB=θ 叫做向量a与b的夹角,记作<a,b>。已知两个非零向量a、b,那么a×b叫做a与b的向量积或外积。向量积几何意义是以a和b为边的平行四边形面积,即S=|a×b|。若a、b不共线,a×b是一个向量,其模是|a×b|=|a||b|sin<a,b>,a×b的方向为垂直于a和b,且a、b和a×b按次序构成右手系。若a、b共线,则a×b=0。若a=(x1,y1,0),b=(x2,y2,0),则有:向量积具有如下性质:a×a=0a‖b<=>a×b=0a×b=-b×a(λa)×b=λ(a×b)=a×(λb)(a+b)×c=a×c+b×c[3]混合积给定空间三向量a、b、c,向量a、b的向量积a×b,再和向量c作数量积(a×b)·c,所得的数叫做三向量a、b、c的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c混合积具有下列性质:三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1)上条性质的推论:三向量a、b、c共面的充要条件是(abc)=0(abc) = (bca) = (cab) = - (bac) = - (cba) = - (acb)[祝您步步高升期望你的采纳,谢谢
真颛2023-05-24 18:37:251

平面向量的基本定理概念

平面向量基本定理就是说一个任意的向量可以用一组基本向量e1,e2。表示此定理其实说明了平面向量可以沿任意指定的两方向分解,同时也说明了由任意两向量可以合成指定向量,即向量的合成与分解。当两个方向相互垂直时,其实就是把他们在直角坐标系中分解,此时(x,y)就称为此向量的坐标。所以此定理为向量的坐标表示提供了理论依据
bikbok2023-05-24 18:37:251

平面向量在高考数学中的地位?

学好对立体几何有帮助
北有云溪2023-05-24 18:37:255

平面向量的用处

平面向量也可以确定平面中的图形位置,如果函数图象的平移,我们初中就知道的“上加下减,左加右减”就是平面向量最直接的应用! 实际生活中来讲,还是在物理学中应用较广.
铁血嘟嘟2023-05-24 18:37:251

高中数学--平面向量!!

你这是问什么,光给一个平面向量,这该从何说起?
无尘剑 2023-05-24 18:37:252

平面向量的概念是什么?

平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。扩展资料:有关推论三角形ABC内一点O,OA·OB=OB·OC=OC·OA,则点O是三角形的垂心。若O是三角形ABC的外心,点M满足OA+OB+OC=OM,则M是三角形ABC的垂心。若O和三角形ABC共面,且满足OA+OB+OC=0,则O是三角形ABC的重心。三点共线:三点A,B,C共线推出OA=μOB+aOC(μ+a=1)平面三角形ABC内有一点O,则S△BCO*OA+S△ACO*OB+S△ABO*OC=0
瑞瑞爱吃桃2023-05-24 18:37:251

设平面向量a等于(-2,1),b等于(1,A),若a与b的夹角为钝角,则A的取值范围?

简单计算一下,答案如图所示
韦斯特兰2023-05-24 18:37:255

平面向量知识点有哪些?

知识点如图:平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。向量发展历程:向量(矢量)这个术语作为现代数学-物理学中的一个重要概念,首先是由英国数学家哈密顿使用的。向量的名词虽来自哈密顿,但向量作为一条有向线段的思想却由来已久。向量理论的起源与发展主要有三条线索:物理学中的速度和力的平行四边形法则、位置几何、复数的几何表示。物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。
康康map2023-05-24 18:37:251

平面向量怎么算?

平面向量的计算一般有两种方法,一种是直接利用几何关系,在一种是利用坐标关系。利用几何关系AB+BC=AC(这里用粗体字表示向量)在坐标系中我们设A、B、C坐标为别是(x1,y1),(x2,y2),(x3,y3)这样得到AB=(x2-x1,y2-y1),BC=(x3-x2,y3,-y2),AC=(x3-x1,y3-y1)这样AB+BC=(x2-x1,y2-y1)+(x3-x2,y3,-y2)=(x3-x1,y3-y1)=AC因此两种算法是统一的。在数学中,利用坐标解决向量问题更普遍。这样,利用向量就建立了几何和代数之间的关系,提供了一种利用代数解决几何问题的方法。另外,向量和复数之间也是有一一对应关系的比如一个复数z=a+bi,(这里i表示虚数单位满足i??=-1),这样z就对应着一个向量z=(a,b),因此利用复数的计算也可以进行向量计算。利用复数计算向量的好处就是,对于向量的旋转问题有比较简单的算法。根据欧拉公式复数z可以化成z=re^θ,其中r是z的模,θ是相角,也就是向量z和x轴正方向的夹角。若是把向量z逆时针转45°角度,得到的向量就可以直接表示为re^(θ-π/4),比利用向量的夹角公式要简便许多。
水元素sl2023-05-24 18:37:251

平面向量的运算

算法如图所示既有方向又有大小的量叫做向量.平面向量是工具性知识,平面向量的计算包括加法,减法和数乘的运算。求两个向量和的运算叫做向量的加法;求一个向量与另外一个向量的相反向量和的运算叫做向量的减法;求实数与向量积的运算叫做向量的数乘。1、相等向量具有传递性,非零向量的平行也具有传递性。2、共线向量即为平行向量,它们均与起点无关。3、向量可以平移,平移后的向量与原向量是相等向量。
wpBeta2023-05-24 18:37:251

已知两个向量的三坐标,如何求它们的叉积?已知量挑直线的参数方程,如何求它们的距离?

向量a=(a,b,c) 向量b=(d,e,f) 则,叉积=(bf-ce,cd-af,ae-bd)
北营2023-05-24 18:37:241

“向量积”的性质是什么?

几何意义及其运用叉积的长度 |a×b| 可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积 [a b c] = (a×b)·c可以得到以a,b,c为棱的平行六面体的体积。2.代数规则反交换律:a×b= -b×a加法的分配律:a× (b+c) =a×b+a×c与标量乘法兼容:(ra) ×b=a× (rb) = r(a×b)不满足结合律,但满足雅可比恒等式:a× (b×c) +b× (c×a) +c× (a×b) =0分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的 R3 构成了一个李代数。两个非零向量a和b平行,当且仅当a×b=0。3.拉格朗日公式(a×b)×c=b(a·c) -a(b·c)a× (b×c) =b(a·c) -c(a·b)4.矩阵形式给定直角坐标系的单位向量i,j,k满足下列等式:i×j=k;j×k=i ;k×i=j ;通过这些规则,两个向量的叉积的坐标可以方便地计算出来,不需要考虑任何角度:设a= [a1, a2, a3] =a1i+ a2j+ a3k;b= [b1,b2,b3]=b1i+ b2j+ b3k ;则a × b= [a2b3-a3b2,a3b1-a1b3, a1b2-a2b1]。5.高维情形七维向量的叉积可以通过八元数得到,与上述的四元数方法相同。七维叉积具有与三维叉积相似的性质:双线性性:x× (ay+ bz) = ax×y+ bx×z;(ay+ bz) ×x= ay×x+ bz×x;反交换律:x×y+y×x= 0;同时与 x 和 y 垂直:x· (x×y) =y· (x×y) = 0;拉格朗日恒等式:|x×y|² = |x|² |y|² - (x·y)²;不同于三维情形,它并不满足雅可比恒等式:x× (y×z) +y× (z×x) +z× (x×y) ≠ 0。向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。在应用方面:在物理学光学和计算机图形学中,叉积被用于求物体光照相关问题。求解光照的核心在于求出物体表面法线,而叉积运算保证了只要已知物体表面的两个非平行矢量(或者不在同一直线的三个点),就可依靠叉积求得法线。参考资料课程教材研究所.人教版高中数学必修4.北京:人民教育出版社,2007
meira2023-05-24 18:37:241

两单位向量叉积一定是单位向量吗?

若两个单位向量正交,则叉积是单位向量a*b=a模*b模*sin(a,b)正交的话,正弦值自然是1若两个向量非正交,则叉积不是单位向量例(1,0,0,)叉(1,0,0)就是0向量
FinCloud2023-05-24 18:37:242

向量的数量积表示什么?

一、向量的数量积格式:a*b=|a||b|cosθ,a,b表示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。二、拓展资料:关于向量积1、向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。2、两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。3、向量积可以被定义为: 。4、模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0° ≤ θ ≤ 180°),它位于这两个矢量所定义的平面上。)。5、方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)(参考资料:百度百科:向量积)
肖振2023-05-24 18:37:241

向量叉积的反对称性证明

先是长度a X b的模等于a的模乘b的模b X a的模也等于a的模乘b的模所以模长相等再是方向显然根据右手螺旋定则a X b方向与b X a方向相反所以a X b=- b X a
tt白2023-05-24 18:37:242

高分求一道大一的向量叉积问题。(a-b)×(a+b)=?

把式子展开得到原式=a×a+a×b-b×a-b×b叉乘的结果要用到右手定则四指先与x号前面的向量平行然后沿着小于90度的方向弯曲大拇指的方向即为叉积的方向a×b=a模×b模×sin<a,b>所以a×ab×b都为0向量原式=a×b-b×a=2a×b具体的只要根据ab的模及夹角来确定纯手打望采纳
bikbok2023-05-24 18:37:241

什么是平面向量?

既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。有向线段AB的长度叫做向量的模,记作|AB|。有向线段包含3个因素:起点、方向、长度。相等向量、平行向量、共线向量、零向量、单位向量:长度相等且方向相同的向量叫做相等向量。两个方向相同或相反的非零向量叫做平行向量,向量a、b平行,记作a∥b,零向量与任意向量平行,即0∥a,在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量共线就是指两条是平行向量)长度等于0的向量叫做零向量,记作0。零向量的方向是任意的;且零向量与任何向量都垂直。长度等于1个单位长度的向量叫做单位向量。
韦斯特兰2023-05-24 18:37:241

叉积法秒杀法向量是什么?

简单点说就是叉积表示平行四边形面积,而平四有方向,方向就是法向量。简单点说就是叉积表示平行四边形面积,而平四有方向,方向就是法向量。透彻点就是为了满足向量交换律的使用,这个学了线代估计你能理解。参考c=a×b的定义。易知,假如a与b不共线。则c垂直于a与b所在的平面。示的直线是两个平面的交线,所以分别得到两个平面的法向后,二者叉乘即为交线的方向向量,结果为(0,-1,-2)。注意,是直线的方向向量,而不是你说的法向量。相乘应该是叉乘。 向量的乘积有两种:一种是点积(又叫内积、数量积),结果是一个实数, 定义是:a=(a1,a2,a3) ,b=(b1,b2,b3) , 则 a*b=a1*b1+a2*b2+a3*b3 。 还有一种是叉积(又叫外积、向量积),结果是一个向量, a×b 是这样定义的:大小等于以 a、b 为邻边的平行四边形的面积。方向与 a、b 都垂直。 如果 a=(a1,a2,a3),b=(b1,b2,b3) , 则 a×b=(a2b3-a3b2,-(a1b3-a3b1),a1b2-a2b1) 。 如果直线的方程是交线式,那么,那两个平面的法向量的叉积正好是直线的方向向量。
Ntou1232023-05-24 18:37:231

什么叫做两向量的叉积?

两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0°≤θ≤180°),它位于这两个矢量所定义的平面上。)方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)扩展资料:向量积的代数规则:1、反交换律:a×b=-b×a2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。
苏州马小云2023-05-24 18:37:231

两个向量叉积是什么意思?

如下:a向量点积b向量,结果是个数,等于abcos<a,b>,<a,b>是a向量与b向量的夹角。a向量叉积b向量,结果是个向量,模等于absin<a,b>,方向与a向量和b向量所在平面垂直,并且遵守右手法则,a握向b,拇指方向就是叉积向量方向。点积的值:u的大小、v的大小、u,v夹角的余弦。在u,v非零的前提下,点积如果为负,则u,v形成的角大于90度;如果为零,那么u,v垂直;如果为正,那么u,v形成的角为锐角。两个单位向量的点积得到两个向量的夹角的cos值,通过它可以知道两个向量的相似性,利用点积可判断一个多边形是面向摄像机还是背向摄像机。向量的点积与它们夹角的余弦成正比,因此在聚光灯的效果计算中,可以根据点积来得到光照效果,如果点积越大,说明夹角越小,则物体离光照的轴线越近,光照越强。
大鱼炖火锅2023-05-24 18:37:231

向量积的叉积是怎么得到的?

一般而言,ijk分别代表x轴正方向、y轴正方向、z轴正方向的单位向量,如a=(2,1,-1)=2i+j-k。因为叉积的计算方法正好是三阶行列式的计算方法而已,所以这么写。向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。公式:向量积|c|=|a×b|=|a||b|sin<a,b>。即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。*运算结果c是一个伪向量。这是因为在不同的坐标系中c可能不同。
人类地板流精华2023-05-24 18:37:231

向量的叉积是怎样算出来的?

右手除姆指外的四指合并,姆指与其他四指垂直,四指由A向量的方向握向B向量的方向,这时姆指的指向就是A,B向量向量积的方向。就是说,AB向量积的方向垂直于AB向量确定的平面。几何意义:叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。扩展资料高维情形——七维向量的叉积可以通过八元数得到,与上述的四元数方法相同。七维叉积具有与三维叉积相似的性质:双线性性:x×(ay+bz)=ax×y+bx×z;(ay+bz)×x=ay×x+bz×x;反交换律:x×y+y×x=0;同时与x和y垂直:x·(x×y)=y·(x×y)=0;拉格朗日恒等式:|x×y|²=|x|²|y|²-(x·y)²;不同于三维情形,它并不满足雅可比恒等式:x×(y×z)+y×(z×x)+z×(x×y)≠0。
tt白2023-05-24 18:37:231

怎么计算向量叉积的行列式值?

向量积的行列式计算法:给定直角坐标系的单位向量i,j,k满足下列等式:i×j=k;j×k=i;k×i=j;通过这些规则,两个向量的叉积的坐标可以方便地计算出来,不需要考虑任何角度:设a=[a1,a2,a3]=a1i+a2j+a3k;b=[b1,b2,b3]=b1i+b2j+b3k;则a×b=[a2b3-a3b2,a3b1-a1b3,a1b2-a2b1]。扩展资料:向量积与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。在物理学光学和计算机图形学中,叉积被用于求物体光照相关问题。求解光照的核心在于求出物体表面法线,而叉积运算保证了只要已知物体表面的两个非平行矢量(或者不在同一直线的三个点),就可依靠叉积求得法线。
水元素sl2023-05-24 18:37:231

向量叉积的运算性质是什么?

向量的叉乘运算法则为|向量c|=|向量a×向量b|=|a||b|sin(a,b)。向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a。向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。理学中的应用在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。将向量用坐标表示(三维向量),若向量a=(a1,b1,c1),向量b=(a2,b2,c2),则向量a×向量b=| i j k ||a1 b1 c1||a2 b2 c2|=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。
Jm-R2023-05-24 18:37:231

向量积和叉乘的区别是什么?

叉乘几何意义就是:叉积等于由向量A和向量B构成的平行四边形的面积。叉积的长度|aXb|可以解释成这两个叉乘向量a, b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(aXb).c,可以得到以a,b,c为棱的平行六面体的体积,向量积。向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。向量积代数法则:1、反交换律: axb=-bxa2、加法的分配律: a×(b+c)=axb+axc3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)4、不满足结合律,但满足雅可比恒等式: ax(b×c)+b×(c×a)+c×(a×b)=O5、两个非零向量a和b平行,当且仅当a×b=0向量积的长度|a×b|可以解释成这两个叉乘向量a, b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)-c可以得到以a,b,c为棱的平行六面体的体积。
左迁2023-05-24 18:37:231

两向量a和b的叉积如何表示?

表示方法两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。 定义向量积可以被定义为:。模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0°≤θ≤180°),它位于这两个矢量所定义的平面上。)方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)也可以这样定义(等效):向量积|c|=|a×b|=|a||b|sin<a,b>即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。扩展资料:证明为了更好地推导,加入三个轴对齐的单位向量i,j,k。i,j,k满足以下特点:i=jxk;j=kxi;k=ixj;kxj=–i;ixk=–j;jxi=–k;ixi=jxj=kxk=0;(0是指0向量)由此可知,i,j,k是三个相互垂直的向量。它们刚好可以构成一个坐标系。这三个向量的特例就是i=(1,0,0)j=(0,1,0)k=(0,0,1)。对于处于i,j,k构成的坐标系中的向量u,v我们可以如下表示:u=Xu*i+Yu*j+Zu*k;v=Xv*i+Yv*j+Zv*k;那么uxv=(Xu*i+Yu*j+Zu*k)x(Xv*i+Yv*j+Zv*k)=Xu*Xv*(ixi)+Xu*Yv*(ixj)+Xu*Zv*(ixk)+Yu*Xv*(jxi)+Yu*Yv*(jxj)+Yu*Zv*(jxk)+Zu*Xv*(kxi)+Zu*Yv*(kxj)+Zu*Zv*(kxk)由于上面的i,j,k三个向量的特点,所以,最后的结果可以简化为uxv=(Yu*Zv–Zu*Yv)*i+(Zu*Xv–Xu*Zv)*j+(Xu*Yv–Yu*Xv)*k。参考资料:百度百科-向量积
hi投2023-05-24 18:37:231

向量叉积的方向怎么确定?

右手除姆指外的四指合并,姆指与其他四指垂直,四指由A向量的方向握向B向量的方向,这时姆指的指向就是A,B向量向量积的方向。就是说,AB向量积的方向垂直于AB向量确定的平面。几何意义:叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。扩展资料高维情形——七维向量的叉积可以通过八元数得到,与上述的四元数方法相同。七维叉积具有与三维叉积相似的性质:双线性性:x×(ay+bz)=ax×y+bx×z;(ay+bz)×x=ay×x+bz×x;反交换律:x×y+y×x=0;同时与x和y垂直:x·(x×y)=y·(x×y)=0;拉格朗日恒等式:|x×y|²=|x|²|y|²-(x·y)²;不同于三维情形,它并不满足雅可比恒等式:x×(y×z)+y×(z×x)+z×(x×y)≠0。
可桃可挑2023-05-24 18:37:231

向量积和叉乘的关系?

叉乘公式是:|向量c|=|向量a×向量b|=|a||b|sin<a,b>。向量叉乘公式原理是向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断,用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向。向量积数学中又称:外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。
西柚不是西游2023-05-24 18:37:231

向量叉积的行列式怎么计算?

向量积的行列式计算法:给定直角坐标系的单位向量i,j,k满足下列等式:i×j=k;j×k=i;k×i=j;通过这些规则,两个向量的叉积的坐标可以方便地计算出来,不需要考虑任何角度:设a=[a1,a2,a3]=a1i+a2j+a3k;b=[b1,b2,b3]=b1i+b2j+b3k;则a×b=[a2b3-a3b2,a3b1-a1b3,a1b2-a2b1]。扩展资料:向量积与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。在物理学光学和计算机图形学中,叉积被用于求物体光照相关问题。求解光照的核心在于求出物体表面法线,而叉积运算保证了只要已知物体表面的两个非平行矢量(或者不在同一直线的三个点),就可依靠叉积求得法线。
再也不做站长了2023-05-24 18:37:231
 首页 上一页  7 8 9 10 11 12 13 14 15 16 17  下一页  尾页