线性代数 向量组及其线性组合 求详细过程?
这就是标准的非齐次线性方程组,用α1,α2,α3做为列向量构成系数矩阵A。这题就变成球Ax=β的非齐次线性方程组。方法就是将扩展矩阵(A|β)化成阶梯状,然后得出解。解即为线性表示的表示系数。康康map2023-05-24 18:37:333
向量组线性相关的三条性质
设向量,对于任意实数,表达式称为向量组的一个线性组合.称为这个线性组合的系数设向量组和向量,若存在一组数,使得,则称向量可由向量组线性表示(向量能由向量组线性表示,也就是线性方程组有解)向量能由向量组线性表示的充分必要条件是矩阵的秩等于矩阵的秩.设向量组及向量组,若向量组中的每个向量都能由向量组线性表示,则称向量组B能由向量组A线性表示.若向量组可互相线性表示,则称这两个向量组等价向量组的等价性具有下列性质:反身性:任一向量组与其自身等价;对称性:如果向量组与向量组等价,则向量组与向量组等价;传递性:如果向量组与向量组等价,且向量组与向量组等价,则向量组与向量组等价。苏州马小云2023-05-24 18:37:331
什么是矩阵的列向量的线性组合 大一线性代数的矩阵与方程组中
向量就是一维矩阵,列向量就是将矩阵的任意一列看做向量形成的矩阵 比如A=[A1,A2,A3,A4...] A1~An就是大小为m行1列的列向量 在这句话里,线性组合指的是由A1~An组成的一次多项式 如果取任意数列k1~kn 那么列向量的线性组合就是k1*A1+k2*A2+...+kn*An北境漫步2023-05-24 18:37:331
如何判断一个向量是一组向量的线性组合?一个向量是一组向量的线性组合的定义是什么
所谓线性组合就是有一组系数,使得a=c1b1+c2b2+...+cnbn至于怎么找,一般都可以直接看出来,复杂点的就是普通的多元一次线性方程求解c1,c2,...,cn黑桃花2023-05-24 18:37:331
向量组线性相关的充要条件是什么?
两个向量组可以互相线性表出,即是第一个向量组中的每个向量都能表示成第二个向量组的向量的线性组合,且第二个向量组中的每个向量都能表示成第一二个向量组的向量的线性组合。向量组等价的基本判定是:两个向量组可以互相线性表示。需要重点强调的是:等价的向量组的秩相等,但是秩相等的向量组不一定等价。向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。向量组等价和矩阵等价是两个不同的概念。前者是从能够互相线性表出的角度给出定义;后者是从初等变换的角度给出定义。向量组(必须包含向量个数相同)等价能够推出矩阵等价。但是矩阵等价不一定能推出向量组等价。向量组等价,是两向量组中的各向量,都可以用另一个向量组中的向量线性表示。矩阵等价,是存在可逆变换(行变换或列变换,对应于1个可逆矩阵),使得一个矩阵之间可以相互转化。如果是行变换,相当于两矩阵的列向量组是等价的。如果是列变换,相当于两矩阵的行向量组是等价的。由于矩阵的行秩,与列秩相等,就是矩阵的秩,在行列数都相等的情况下,两矩阵等价实际上就是秩相等,反过来,在这种行列数都相等情况下,秩相等,就说明两矩阵等价。铁血嘟嘟2023-05-24 18:37:331
如何求向量组线性相关?
1、定义法令向量组的线性组合为零(零向量),研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关;若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。2、向量组的相关性质(1)当向量组所含向量的个数与向量的维数相等时,该向量组构成的行列式不为零的充分必要条件是该向量组线性无关;(2)当向量组所含向量的个数多于向量的维数时,该向量组一定线性相关;(3)通过向量组的正交性研究向量组的相关性;(4)通过向量组构成的齐次线性方程组解的情况判断向量组的线性相关性;线性方程组有非零解向量组就线性相关,反之,线性无关。(5)通过向量组的秩研究向量组的相关性。若向量组的秩等于向量的个数,则该向量组是线性无关的;若向量组的秩小于向量的个数,则该向量组是线性相关的。扩展资料:线性重要性质1、向量组B=(β1,β2,……,βm)能由向量组A=(α1,α2,……,αm)线性表示的充要条件是矩阵A=(α1,α2,……,αm)的秩等于矩阵(α1,α2,……,αm,B)的秩。2、向量组B能由向量组A线性表示,则向量组B的秩不大于向量A的秩。反之不一定成立。3、零向量可由任一组向量线性表示。4、向量组α1,α2,……,αm中每个向量都可由向量组本身线性表示。5、设α1,α2,……,αm线性无关,而α1,α2,……,αm,ß线性相关,则β可由α1,α2,……,αm线性表示,且表示是唯一的。bikbok2023-05-24 18:37:331
向量的线性关系式是什么
向量的线性关系式是R(A) = R(A,b)。向量组A线性相关,就是齐次线性方程组Ax=0有非零解。我们之前介绍齐次线性方程组的时候曾经介绍过,齐次线性方程组要有非零解的条件是R(A) < n。如果R(A) = n,那么齐次线性方程组没有非零解,也就是说向量组A线性无关。向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。瑞瑞爱吃桃2023-05-24 18:37:331
向量组线性相关的条件是什么?
定义设S是一个n维向量组,α1,α2,...αr 是S的一个部分组,如果(1) α1,α2,...αr 线性无关;(2) 向量组S中每一个向量均可由此部分组线性表示,那么α1,α2,...αr 称为向量组S的一个极大线性无关组,或极大无关组。基本性质只含零向量的向量组没有极大无关组;一个线性无关向量组的极大无关组就是其本身;极大线性无关组对于每个向量组来说并不唯一,但是每个向量组的极大线性无关组都含有相同个数的向量;齐次方程组的解向量的极大无关组为基础解系。任意一个极大线性无关组都与向量组本身等价。一向量组的任意两个极大线性无关组都是等价的。若一个向量组中的每个向量都能用另一个向量组中的向量线性表出,则前者极大线性无关向量组的向量个数小于或等于后者。相关定理定理一设a1,a2,…,ar与b1,b2,…,bs是两个向量组,如果(1)向量组 a1,a2,…,ar可以经b1,b2,…,bs线性表出,(2)r>s,那么 向量组a1,a2,…,ar必 线性相关。推论1如果 向量组a1,a2,…,ar可以经b1,b2,…,bs线性表出,且a1,a2,…,ar线性无关,那么r≤s。推论2任意n+1个n维 向量必 线性相关。推论3两个线性无关的 等价向量组,必含有相同个数的向量。定理二一 向量组的极大线性无关组都含有向量的个数相同。定理三一 向量组线性无关的 充分必要条件是,它的秩与它所含向量的个数相同。推论4等价的向量组必有相同的秩。阿啵呲嘚2023-05-24 18:37:331
向量组的线性组合是一个向量吗
向量组的线性组合是一个向量。根据相关资料查询显示,向量组就是一组向量,多个向量:这些向量都是同维度的,也就是行数一致,可以称为一个向量。苏萦2023-05-24 18:37:331
线性代数(三)向量组
n维向量:n个数构成的一个有序数组称为一个n维向量,记为 ,并称α为n维行向量, 称为n维列向量。 设 是n维向量, 是一组实数,则称 是 的线性组合 设向量 能表示成向量组 的线性组合,即存在 ,使得 则称向量 能被向量组 线性表出 对n维向量 ,如果存在不全为零的数使得 则称向量组 线性相关,否则,则称向量组 线性无关 含有零向量或者有成比例的向量的向量组必定线性相关 向量组 线性相关的充要条件是向量组中至少有一个向量可以由其余的n-1个向量线性表出 若向量组 线性无关,而向量组 线性相关,则 能被向量组 线性表出 如果向量组 可以由向量组 线性表示,且t>s则 线性相关 设m个n维向量 ,其中则向量组 线性相关的是齐次线性方程组 有非零解,其中量 能被向量组 线性表出 非齐次线性方程组 有解如果向量组 中有一部分向量线性相关,则整个向量组也线性相关 如果一组 维向量 线性无关,那么把这些向量各任意添加 个分量所得到的新向量 ( 维)组 也是线性无关的;如果 线性相关,那么它们各去掉相同的若干个分量所得到的新向埋组也是线性相关的. 在向量组 中,若存在r个向量 满足 则称 是向量组 的一个极大线性无关组 设有两个向量组(Ⅰ) ;(Ⅱ) 如果(Ⅰ)中的每个向量都可由(Ⅱ)中的向量线性表出,则称向量组(Ⅰ)可以由向量组(Ⅱ)线性表出。如果(Ⅰ)(Ⅱ)这两个向量组可以互相线性表出,则称这两个向量组等价,记作 向量组 的极大线性无关组 中所含的向量的个数r称为这个向量组的秩,记作 等价向量组等秩,反之未必成立. 设向量组 及 若 均可由 线性表出,则若 是 维向量空间 中的线性无关的有序向量组,则任一向量 均可由 ,线性表出,记表出式为 称有序向量组 是 的一个基,基向量的个数 称为向量空间的维数,而 ( ) 称为向量 在基 下的坐标,或称为 的坐标行(列)向量.则上式称为矩阵由基 到基 的基变换公式,矩阵C称为由基 到基 的过渡矩阵。C的第i列即是 在基 下的坐标列向量,且过渡矩阵C是可逆矩阵又基 到基 的过渡矩阵为 ,即 则 得 上式称为左边变换公式大鱼炖火锅2023-05-24 18:37:331
困扰了很多高中生的数学难题,向量组的线性表示究竟是怎样的?
向量组的这个线性其实表现的就是一个生物上的,一个化学的一个计算方式,而且很多孩子们都搞不懂,可能就是它的这个变相太复杂了。mlhxueli 2023-05-24 18:37:332
怎样求向量的线性无关组?
将向量组作为列向量构造矩阵用初等行变换将矩阵化为梯矩阵梯矩阵的非零行数即向量组的秩非零行的首非零元所在列对应的向量是向量组的一个极大无关组例:α1=(4,-1,-5,-6)^T,α2=(1,-3,-4,-7)T,α3=(1,2,1,3)^T,α4=(2,1,-1,0)^T解:(α1,α2,α3,α4)=4112-1-321-5-41-1-6-730r4-r2-r3,r3+r1-r2,r1+4r20-1196-1-32100000000α1,α2是极大无关组北有云溪2023-05-24 18:37:332
线性相关的向量组如何列方程组求解?
1 2 3 1 2 32 4 6 = D=0 0 02 5 6 2 5 6∵第二行45 6与第一行的2倍,所以,D=0或:因为 |A| = 0所以 A 的行(列)向量组线性相关所以 A中至少有一行(列) 可由其余行(列)线性表示那么 这一行(列)即可被化为全0扩展资料:对于任一向量组而言,,不是线性无关的就是线性相关的。向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。包含零向量的任何向量组是线性相关的。含有相同向量的向量组必线性相关。增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)【局部相关,整体相关】参考资料来源:百度百科-线性相关肖振2023-05-24 18:37:331
向量组 线性表示
R(A)是A中线性独立组中包括的向量的最大数目。如果R(A)=2,则说明三个向量中至少有一个可以用另外两向量线性表示。R(A,B)是把A和B的向量放在一起,其线性独立的向量最大数目。B组的向量都可由A组表示,说明B组向量对R(A,B)没有贡献,该组的最大独立向量都可由A中向量提供。把B放到组合(A,B)与否与R(A,B)无关,所以R(A,B)=R(A). A组向量不能由B组表示,说明A内的独立向量比B内独立向量多。一般来说增加向量会增加组合的秩,R(A,B)>=R(A),R(A,B)>=R(B).如果R(A,B)=R(A)>R(B),说明增加B中向量不增加独立向量,即新加入的向量都可以用原来向量表示。hi投2023-05-24 18:37:331
线性相关的向量组是什么意思?
向量组的行列式等于0,那就说明通过线性变换可以得到向量组之间的关系为:k1*a1+ k2*a2+ ··· + km*am=0,k1, k2, ···,km为不全为零的数所以此向量组就是线性相关的向左转|向右转拓展资料:注意:对于任一向量组而言,,不是线性无关的就是线性相关的。小白2023-05-24 18:37:331
空间向量两点间的距离公式
1 √[(y1-x1)^2+(y2-x2)^2]2 √(a1^2+a2^2)3 (a1b1+a2b2)/√[(a1-b1)^2+(a2-b2)^2]4 同1水元素sl2023-05-24 18:37:323
空间向量有哪些运算规律?
|其实空间向量的运算与平面向量的运算是一样的:设:a=(1,2,3),b=(2,1,2),则:a·内b=(1,2,3)·(2,1,2)=2+2+6=10| i j k |a×容b=|1 2 3 |=4i+6j+k-4k-3i-2j=i+4j-3k=(1,4,-3)| 2 1 2 |向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。扩展资料:1、共线向量定理两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb2、共面向量定理如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by3、空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。参考资料来源:百度百科-空间向量铁血嘟嘟2023-05-24 18:37:321
三个向量作为空间基底需要什么条件
解:A、B、C三点确定一个平面α∵{向量AB,向量AC,向量AD}不能构成空间第一个基底∴D在平面α上∵{向量AB,向量AC,向量AE}不能构成空间第一个基底∴E在平面α上∴A、B、C、D、E五点共面∴123正确,4错误ABC应该不共线才行,共线没有正确答案了,我跟你想得一样bikbok2023-05-24 18:37:322
怎样用空间向量解决问题?
空间向量公式如下:1、空间向量线面夹角公式是cosθ=(ab的内积)/(|a||b|)。2、|a|=√(x1^2+y1^2+z1^2),|b|=√(x2^2+y2^2+z2^2)。3、空间向量的模公式:空间向量(x,y,z),其中x,y,z分别是三轴上的坐标,模长是:²√x²+y²+z²,平面向量(x,y),模长是:²√x²+y²。空间向量基本定理:1、共线向量定理两个空间向量a、b向量,a∥b的充要条件是存在唯一的实数λ,使a=λb。2、共面向量定理如果两个向量a、b不共线,则向量c与向量a、b共面的充要条件是:存在唯一的一对实数x、y,使c=ax+by。3、空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。凡尘2023-05-24 18:37:321
空间向量与立体几何知识点
空间向量与立体几何知识点:共线向量:如果表示空间向量的有向线段所在的直线平行或重合,这些向量也叫作共线向量或平行向量,a平行于b,记作b//a。共线向量定理:空间任意两个向量a、b(b≠0),a//b,存在实数λ,使a=λb。空间向量的概念:在空间,把具有大小和方向的量叫作向量,向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。向量具有平移不变性。基本定理1、共线向量定理两个空间向量a,b向量(b向量不等于0),a//b的充要条件是存在唯一的实数λ,使a=λb。2、共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by。3、空间向量分解定理:如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc,任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。大鱼炖火锅2023-05-24 18:37:321
空间向量怎样建系
1.比较对称的图形,可以用中点,你感觉最中心的点作为远点,这个你明白2.墙角3.多做题,常用的几个图形就那么几个4.不一定要用坐标,大多数用坐标的题目可以直接用向量(很多都可以),但是用向量技术含量高点,你也要多做题,坐标是把向量数字化善士六合2023-05-24 18:37:322
空间向量平行公式
空间向量平行公式坐标公式:d=|Ax0+By0+C|/√A^2+B^2。空间中具有大小和方向的量叫作空间向量。向量的大小叫作向量的长度或模(modulus)。规定:长度为0的向量叫作零向量,记为0。空间向量平行判断方法:设一向量的坐标为(x,y,z),另外一向量的坐标为(a,b,c)。如果(x/a)=(y/b)=(z/c)=常数,则两向量平行,如果ax+by+cz=0,则两向量垂直。如果设a=(x,y),b=(x",y")如果a•b=0(a和b的数量级)即xx"+yy"=0,则a⊥b。如果a×b=0,则向量a平行与向量b;λa=b,a与b也平行。铁血嘟嘟2023-05-24 18:37:321
空间向量的运算怎么运算?
|其实空间向量的运算与平面向量的运算是一样的:设:a=(1,2,3),b=(2,1,2),则:a·内b=(1,2,3)·(2,1,2)=2+2+6=10| i j k |a×容b=|1 2 3 |=4i+6j+k-4k-3i-2j=i+4j-3k=(1,4,-3)| 2 1 2 |向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。扩展资料:1、共线向量定理两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb2、共面向量定理如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by3、空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。参考资料来源:百度百科-空间向量墨然殇2023-05-24 18:37:321
平面向量与空间向量有联系吗?
当然,二者其实是统一的,和谐的空间向量只不过比平面向量多了一维而已。是平面向量的一个延伸.令空间向量最后一个坐标为0,就得到了平面向量.豆豆staR2023-05-24 18:37:321
空间向量中怎么求法向量?
下面我用几何法和向量法两种方法解几何法:过e点作ef⊥ad交ad于f,再作fg⊥ac交ab于g,然后过g作gh平行且等于ef,连接eh,则四边形efgh是矩形。。。因为fg⊥pa,fg⊥ac。所以eh⊥ac。eh⊥ap。所以eh⊥面pac,则h就是要求的那个点(即n)。因为ap=2,所以ef=1,所以hg=1。所以h到ab的距离是1。因为∠bac=30°,所以∠afg=30°。因为af=1/2所以ag=√3/6。所以h到ap的距离是√3/6向量法:以a为坐标原点(下面的矩形abcd哦用的顺时针)。ab为x轴,ad为y轴,ap为z轴建系。因为n在面pab内,所以设其坐标为(x,0,z)p(0,0,2)a(0,0,0,)c(√3,1,0)e(0,1/2,1)向量ap=(0,0,2)向量ac=(√3,1,0)向量eh=(x,-1/2,z-1)..因为向量eh*ap=0eh*ac=0。。能够得到x=√3/6,z=1..所以。。。跟上面一样CarieVinne 2023-05-24 18:37:322
空间向量乘积公式
空间向量乘积公式是:向量a=(x1,y1),向量b=(x2,y2),a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)。空间中具有大小和方向的量叫做空间向量。向量的大小叫做向量的长度或模。规定,长度为0的向量叫做零向量,记为0。模为1的向量称为单位向量。与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a方向相等且模相等的向量称为相等向量。大鱼炖火锅2023-05-24 18:37:321
空间向量计算方法
两点间的距离公式,若A(x1,x2)B(Y1,Y2),则AB的模的绝对值= 根号[(x1-Y1)^2+(x2-Y2)^2]向量的长度公式,若a的模=(a1,a2),则a的模的绝对值=根号(a1^2+a2^2)两向量夹角的坐标公式,若A(a1,a2)B(b1,b2),则cos<a,b>=(A*B)/(|A|*|B|) (就是向量的乘积除以模的乘积)所以,cos<a,b>= (a1b1+a2b2)/[根号(a1^2+a2^2)*根号(b1^2+b2^2)]设A(x1,x2)B(Y1,Y2),则AB的绝对值=|A*B|=| x1Y1+x2Y2 | ( 因为向量的乘积是常量,所以常量的绝对值就是绝对值了,没其他公式啦!)凡尘2023-05-24 18:37:323
空间向量
希望对你能有所帮助。阿啵呲嘚2023-05-24 18:37:321
空间向量(步骤齐全异一定采纳)
2 |AB|=√[(-3-1)^2+(x+2)^2+(2-4)^2]=√29 ,x^2+4x-5=0 ,x= 1 或 x= -5 。4 e=±a/|a|=±(6,7,-6)/√(36+49+36)=±(6/11,7/11,-6/11) 。6 cos<α,β>=α*β/(|α|*|β|)=12/20=3/5 ,因此 sin<α,β>=4/5 ,所以 |α×β|=|α|*|β|*sin<α,β>=16 。8 3(x-3)-7(y-0)+5(z+1)=0 ,化简得 3x-7y+5z-4=0 。10 2x-y+3z=12 ,x/6+y/(-12)+z/4=1 。Chen2023-05-24 18:37:322
空间向量中怎么求法向量
是高中的平面几何吗?? 是的话你还是多看看定义, 没实例不好解释》NerveM 2023-05-24 18:37:322
空间向量
你画出图来 然后根据 方向倒ardim2023-05-24 18:37:322
空间向量的应用
空间向量的应用是例举立体几何问题的解法。空间向量是空间中具有大小和方向的量。向量的大小叫做向量的长度或模。规定,长度为0的向量叫做零向量,记为0.模为1的向量称为单位向量。与向量a长度相等而方向相反的向量,称为a的相反向量。记为- a方向相等且模相等的向量称为相等向量。三个坐标面把 空间分成八个部分,每个部分叫做一个 卦限。含有x轴 正半轴、y轴正半轴、z轴正半轴的卦限称为第一卦限,其他第二、三、四卦限,在xoy面的上方,按 逆时针方向确定。在第一、二、三、四卦限下面的部分分别称为第五、六、七、八卦限。左迁2023-05-24 18:37:321
数学空间向量及其运算方法
空间向量及其运算 ●考试目标 主词填空 1.空间向量基本定理及应用 空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p存在惟一的有序实数组x、y、z,使p=x a+ y b+ z c. 2.向量的直角坐标运算: 设a=(a1,a2,a3), b=(b1,b2,b3), A(x1,y1,z1),B(x2,y2,z2). 则a+b= . a-b= . ab= . 若a、b为两非零向量,则a⊥b ab=0 =0. ●题型示例 点津归纳 【例1】已知空间四边形OABC中,∠AOB=∠BOC= ∠AOC,且OA=OB=OC.,N分别是OA,BC的中点,G是 N的中点. 求证:OG⊥BC. 【解前点津】 要证OG⊥BC,只须证明 即可. 而要证 ,必须把 、 用一组已知的空间基向量表示.又已知条为∠AOB=∠BOC=∠AOC,且OA=OB=OC,因此可选 为已知的基向量. 【规范解答】 连ON由线段中点公式得: 又 , 所以 ) 因为 . 且 ,∠AOB=∠AOC. 所以 =0,即OG⊥BC. 【解后归纳】 本题考查应用平面向量、空间向量和平面几何知识证线线垂直的能力. 【例2】 在棱长为a的正方体ABCD—A1B1C1D1中,求:异面直线BA1与AC所成的角. 【解前点津】 利用 ,求出向量 与 的夹角〈 , 〉,再根据异面直线BA1,AC所成角的范围确定异面直线所成角. 【规范解答】 因为 , 所以 因为AB⊥BC,BB1⊥AB,BB1⊥BC, 例2图 所以 =0, =-a2. 所以 =-a2. 又 所以〈 〉=120°. 所以异面直线BA1与AC所成的角为60°. 【解后归纳】 求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量表示. 【例3】 如图,在正方体ABCD—A1B1C1D1中,E、F分 别是BB1、DC的中点. (1)求AE与D1F所成的角; (2)证明AE⊥平面A1D1F. 【解前点津】 设已知正方体的棱长为1,且 =e1, =e2, =e3,以e1,e2,e3为坐标向量,建立空间直角坐标系D—xyz, 则:(1)A(1,0,0),E(1,1, ),F(0, ,0),D1(0,0,1), 所以 =(0,1, ), =(0, ,-1). 所以 =(0,1 ),(0, ,-1)=0. 所以 ⊥ ,即AE与D1F所成的角为90°. (2)又 =(1,0,0)= , 且 =(1,0,0)(0,1, )=0. 所以 AE⊥D1A1,由(1)知AE⊥D1F,且D1A1∩D1F=D1. 所以AE⊥平面A1D1F. 【解后归纳】本题考查应用空间向量的坐标运算求异面直线所成的角和证线面垂直的方法. 【例4】 证明:四面体中连接对棱中点的三条直线交于一点且互相平分(此点称为四面体的重心). 【规范解答】∵E,G分别为AB,AC的中点, ∴EG ,同理HF ,∴EG HF . 从而四边形EGFH为平行四边形,故其对角线EF, GH相交于一点O,且O为它们的中点,连接OP,OQ. 只要能证明向量 =- 就可以说明P,O,Q三点共线且O 为PQ的中点,事实上, ,而O为GH的中点, 例4图 ∴ CD,QH CD, ∴= =0. ∴ =,∴PQ经过O点,且O为PQ的中点. 【解后归纳】本例要证明三条直线相交于一点O,我们采用的方法是先证明两条直线相交于一点,然后证明 两向量共线,从而说明P、O、Q三点共线进而说明PQ直线过O点. ●对应训练 分阶提升 一、基础夯实 1.在下列条中,使与A、B、C一定共面的是( ) A. B. C. D. 2.与向量a=(12,5)平行的单位向量是( ) A. B. C. D. 3.若向量{a, b,c}是空间的一个基底,向量m=a+b,n=a-b,那么可以与m、n构成空间另一个基底的向量是( )? A.a B.b ? C. c D.2a? 4. a、b是非零向量,则〈a,b〉的范围是 ( )? A.(0, ) B.[0, ]? C.(0,π)? D.[0,π]? 5.若a与b是垂直的,则ab的值是( )? A.大于0 B.等于零? ?C.小于0 D.不能确定 6.向量a=(1,2,-2),b=(-2,-4,4),则a与b( ) A.相交 B.垂直? C.平行 ?D.以上都不对 7. A(1,1,-2)、B(1,1,1),则线段AB的长度是( )? A.1 B.2 C.3 D.4 8. m={8,3,a},n={2b,6,5},若m∥n,则a+b的`值为( ) A.0 B. C. D.8 9. a={1,5,-2},b={m,2,m+2},若a⊥b,则m的值为( )? A.0B.6 C.-6 D.±6 10. A(2,-4,-1),B(-1,5,1),C(3,-4,1),令a= ,b= ,则a+b对应的点为( ) A.(5,-9,2) B.(-5,9,-2) C.(5,9,-2) D.(5,-9,2) 11. a=(2,-2,-3),b=(2,0,4),则a与b的夹角为( ) A.arc cos B. C. D.90° 12.若非零向量a={x1,y1,z1},b={x2,y2,z2},则 是a与b同向或反向的( ) A.充分不必要条 B.必要非充分条? C.充要条 D.不充分不必要条 二、思维激活 13.已知向量a, b, c满足a+b+c=0,a=3, b=1, c=4.则ab+bc+ca= .? 14.已知a=2 ,b= ,ab=- ,则a、b所夹的角为 . 15.已知空间三点A、B、C坐标分别为(0,0,2),(2,2,0),(-2,-4,-2),点P在xOy平面上且PA⊥AB,PA⊥AC,则P点坐标为 . 16.已知a={8,-1,4},b={2,2,1},则以a、b为邻边的平行四边形的面积为 . 三、能力提高 17.已知线段AB在平面α内,线段AC⊥α,线段BD⊥AB,且与α所成的角是30°,如果AB=a,AC=BD=b,求C、D之间的距离. 18.长方体ABCD—A1B1C1D1中,E、F分别为AB、B1C1中点,若AB=BC=2,AA1=4,试用向量法求: (1) 的夹角的大小. (2)直线A1E与FC所夹角的大小. 19.在正方体ABCD—A1B1C1D1中,E、F分别为BB1、DC的中点,求证:D1F⊥平面ADE. 20.如图所示,已知 ABCD,O是平面AC外的一点, ,求证:A1,B1,C1,D1四点共面. 空间向量及其运算习题解答 1.C 由向量共线定义知.? 2.C 设此向量为(x,y),∴ ,?∴ 3.C 4.D 根据两向量所成的角的定义知选D. 5. B 当a⊥b时,ab=0(cos 〈a, b〉=0)? 6.C a=(1,2,-2)=- b ∴a∥b. 7.C AB= =3.? 8.C ∵m∥n,故(8,3,a)=k(2b,6,5),?∴8=2bk,3=6k,a=5k,? ∴k= 故a= ,b=8,∴a+b= +8= 9.B ∵a⊥b ∴1m+52-2(m+2)=0. ∴m=6. 10.B =(-1,0,-2), =(-4,9,0),∴a+b=(-5,9,-2). 11.C cos(ab)= =- . 12.A?若 ,则a与b同向或反向,反之不成立. 13.-13 ∵a+b+c=0,∴(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0,? ∴ab+bc+ca=- (a2+b2+c2)=- (9+1+16)=-13. 14. ?cos〈a, b〉= .∴a,b所夹的角为 . 15.(-8,6,0) 由向量的数量的积求得. 16.9 S=absin〈a, b〉求得. 17.如图,由AC⊥α,知AC⊥AB.? 过D作DD′⊥α,D′为垂足,则∠DBD′=30°, 〈 〉=120°, ∴CD2= =b2+a2+b2+2b2cos120°=a2+b2. ∴CD= 点评:本题把线段转化成向量表示,然后利用向量进行运算. 18.如图,建立空间坐标系,则D(0,0,0)、A(2,0,0),B(2,2,0) 、C(0,2,0)、A1(2,0,4)、B1(2,2,4)、C1(0,2,4). 由题设可知E(2,1,0),F(1,2,4). (1)令 的夹角为θ,? 则cosθ= . ∴ 的夹角为π-arccos . (2)∴直线A1E与FC的夹角为arccos 19.如图所示,不妨设正方体的棱长为1,且设 =i, =j, =k, 以i、j、k的坐标向量建立空间直角坐标系D—xyz, 则 =(-1,0,0), =(0, ,-1),? =(-1,0,0)(0, ,-1)=0,∴AD⊥D1F. 又 =(0,1, ), =(0, ,-1), ∴ =(0,1, )(0, ,-1)= - =0. ∴AE⊥D1F,又AE∩AD=A, ∴D1F⊥平面ADE. 点评:利用向量法解决立体几何问题,首先必须建立适当的坐标系. 20.证明:∵ =2 ∴A1,B1,C1,D1四点共面.Ntou1232023-05-24 18:37:321
关于空间向量
空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。以下用向量法求解的简单常识:1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同)2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC(其中x+y+z=1),则四点P、A、B、C共面.3、利用向量证a‖b,就是分别在a,b上取向量(k∈R).4、利用向量证在线a⊥b,就是分别在a,b上取向量.5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题.6、利用向量求距离就是转化成求向量的模问题:.7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.首先该图形能建坐标系如果能建则先要会求面的法向量求面的法向量的方法是1。尽量在空中找到与面垂直的向量2。如果找不到,那么就设n=(x,y,z)然后因为法向量垂直于面所以n垂直于面内两相交直线可列出两个方程两个方程,三个未知数然后根据计算方便取z(或x或y)等于一个数然后就求出面的一个法向量了会求法向量后1。二面角的求法就是求出两个平面的法向量可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积:cos<a,b>=|n·n1|/|n|如过在两面的同一边可以看到两向量的箭头或箭尾相交那么二面角就是上面求的两法向量的夹角的补角2。点到平面的距离就是求出该面的法向量在平面上任取(除被求点在该平面的射影外)一点,求出平面外那点和你所取的那点所构成的向量记为n1点到平面的距离就是法向量与n1的数量积的绝对值除以法向量的模即得所求设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为μ,ν则线线平行l∥m<=>a∥b<=>a=kb;线面平行l∥α<=>a⊥μ<=>a·μ=0;面面平行α∥β<=>μ∥ν<=>μ=kν线线垂直l⊥m<=>a⊥b<=>a·b=0;线面垂直l⊥α<=>a∥μ<=>a=kμ;面面垂直α⊥β<=>μ⊥ν<=>μ·ν=0北有云溪2023-05-24 18:37:313
空间向量加法坐标运算结果是什么
向量a=(x1,y1,z1),向量b=(x2,y2,z2)。向量a+向量b=(x1+x2,y1+y2,z1+z2)。瑞瑞爱吃桃2023-05-24 18:37:311
空间向量加减法怎么算
空间向量加减法的运算方法为:设a=(x1,y1,z1),b=(x2,y2,z2),则a+b=(x1+x2,y1+y2,z1+z2);a-b=(x1-x2,y1-y2,z1-z2)。空间向量(space vector)是一个数学名词,是指空间中具有大小和方向的量。立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行。二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。mlhxueli 2023-05-24 18:37:311
向量空间的介绍
向量空间又称线性空间,是线性代数的中心内容和基本概念之一。在解析几何里引入向量概念后,使许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域相联系的向量空间概念。譬如,实系数多项式的集合在定义适当的运算后构成向量空间,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。向量空间它的理论和方法在科学技术的各个领域都有广泛的应用。再也不做站长了2023-05-24 18:37:311
空间向量的运算怎么做?
|其实空间向量的运算与平面向量的运算是一样的:设:a=(1,2,3),b=(2,1,2),则:a·内b=(1,2,3)·(2,1,2)=2+2+6=10| i j k |a×容b=|1 2 3 |=4i+6j+k-4k-3i-2j=i+4j-3k=(1,4,-3)| 2 1 2 |向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。扩展资料:1、共线向量定理两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb2、共面向量定理如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by3、空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。参考资料来源:百度百科-空间向量meira2023-05-24 18:37:311
空间向量问题
空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。以下用向量法求解的简单常识:1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得或对空间一定点O有2、对空间任一点O和不共线的三点A,B,C,若:(其中x+y+z=1),则四点P、A、B、C共面.3、利用向量证a‖b,就是分别在a,b上取向量(k∈R).4、利用向量证在线a⊥b,就是分别在a,b上取向量.5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题.6、利用向量求距离就是转化成求向量的模问题:.7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.首先该图形能建坐标系如果能建则先要会求面的法向量求面的法向量的方法是1。尽量在空中找到与面垂直的向量2。如果找不到,那么就设n=(x,y,z)然后因为法向量垂直于面所以n垂直于面内两相交直线可列出两个方程两个方程,三个未知数然后根据计算方便取z(或x或y)等于一个数然后就求出面的一个法向量了会求法向量后1。二面角的求法就是求出两个面的法向量可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积如过在两面的同一边可以看到两向量的箭头或箭尾相交那么二面角就是上面求的两法向量的夹角的补角如果只能看到其中一个的箭头和另一个的箭尾相交那么上面两向量的夹角就是所求2。点到平面的距离就是求出该面的法向量然后在平面上任取一点(除平面外那点在平面内的射影)求出平面外那点和你所取的那点所构成的向量记为n1点到平面的距离就是法向量与n1的数量积的绝对值除以法向量的模即得所求左迁2023-05-24 18:37:311
怎么判断两个空间向量相互垂直,只能靠画图吗?
相乘Jm-R2023-05-24 18:37:315
1 空间向量在高中数学中具有怎样的地位和作用?
用空间向量处理某些立体几何问题,可以为学生提供新的视角.在空间特别是空间直角坐标系中引入空间向量,可以为解决三维图形的形状、大小及位置关系的几何问题增加一种理想的代数工具,从而提高学生的空间想象能力和学习效率. 高中数学新教材中讲述空间向量的部分约占14课时(当然它的应用不止在这14课时),它被包含在第九章“直线、平面、简单几何体”(简称“9(B)”)中,含有空间向量的高二下学期的数学教科书简称“第二册(下B)”;与它平行,仍用传统方法来阐述高中立体几何内容的教科书简称“第二册(下A)”.两本教科书第九章的章名一样,并且都用36课时进行教学. 综上,“空间向量”这部分内容具有“必学”和“选学”两重性.按照大纲第10页的脚注规定“直线、平面、简单几何体的教学内容和教学目标在9(A)和9(B)两个方案中只选一个执行”,9(B)具有选学的性质;但大纲把“直线、平面、简单几何体”作为必学内容,如果学生不按“第二册(下A)”教科书来学习,那么空间向量对于他们就是必学内容. “空间向量”这部分内容,大致可分成“空间向量及其运算”与“空间向量的应用”这两个模块. (1)空间向量及其运算.包括: ①经历向量及其运算由平面向空间推广的过程. ②理解空间向量的概念,掌握空间向量的加法、减法、数乘及其坐标表示,了解空间向量基本定理及其意义;掌握空间坐标系,能将空间向量用坐标轴上的单位向量线性表示,掌握空间向量的坐标表示. ③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线或垂直. (2)空间向量的应用.包括: ①理解直线的方向向量、平面的法向量、向量在平面内的射影等概念. ②能用向量语言表述线线、线面、面面的垂直、平行关系. ③能用向量方法证明有关线、面位置关系的一些定理. ④能用空间坐标系与向量方法解决夹角与距离的计算问题,体会向量方法在研究几何问题中的作用. 教学中,应引导学生运用类比的方法,经历向量及其运算由平面向空间推广的过程,应注意由于维数增加所带来的影响.豆豆staR2023-05-24 18:37:311
在三维空间中,向量a与b共面吗?
在空间中,任意三个向量,如果它们不在同一平面上,且两两不共线,则在空间中的任意一向量都可用它们表示,这三个向量即为空间向量基底。两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb。如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by。扩展资料:三个坐标面把空间分成八个部分,每个部分叫做一个卦限。含有x轴正半轴、y轴正半轴、z轴正半轴的卦限称为第一卦限,其他第二、三、四卦限,在xoy面的上方,按逆时针方向确定。在第一、二、三、四卦限下面的部分分别称为第五、六、七、八卦限。空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB。对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面。利用向量证a∥b,就是分别在a,b上取向量a=λb(λ∈R),利用向量证a⊥b,就是分别在a,b上取向量a·b=0。参考资料来源:百度百科--空间向量Chen2023-05-24 18:37:311
空间向量里的基底是什么意思啊请回答详细些
就是一组由三个空间向量构成的线性无关向量组,这三个向量两两都不共面,含义是对于向量空间的任意元向量都可以唯一表示成这组向量的线性组合真颛2023-05-24 18:37:313
如何理解空间向量的意义?
空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键. 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得或对空间一定点O有 2、对空间任一点O和不共线的三点A,B,C,若:(其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.铁血嘟嘟2023-05-24 18:37:311
空间向量怎么运算?
|其实空间向量的运算与平面向量的运算是一样的:设:a=(1,2,3),b=(2,1,2),则:a·内b=(1,2,3)·(2,1,2)=2+2+6=10| i j k |a×容b=|1 2 3 |=4i+6j+k-4k-3i-2j=i+4j-3k=(1,4,-3)| 2 1 2 |向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。扩展资料:1、共线向量定理两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb2、共面向量定理如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by3、空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。参考资料来源:百度百科-空间向量meira2023-05-24 18:37:311
空间向量的方法
空间向量的方法:首先要熟知共线向量定理、共面向量定理、空间向量分解定理。1.共线向量定理:两个空间向量a,b向量(b向量不等于0),a//b的充要条件是存在唯一的实数λ,使a=λb。2.共面向量定理:如果两个向量a,b不共线,则向量p与向量a,b共面的充要条件是,存在唯一的一对实数x,y,使p=ax+by。3.空间向量分解定理:如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。然后利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标。我们在知道定理之后,就要多做一些不同的题型,以此来巩固和加深知识,然后才可以灵活运用知识。bikbok2023-05-24 18:37:301
空间向量
(1/5,-1,-32/5)左迁2023-05-24 18:37:302
空间向量坐标怎么看?
空间向量是三维空间中的一个有向线段,可以用一组三个实数表示其在空间中的位置和方向。这组三个实数被称为空间向量的坐标或分量,通常用三个大写字母表示,如A(x,y,z)。具体来说,空间向量的坐标可以通过以下步骤计算:确定坐标系。在三维空间中,我们通常使用笛卡尔坐标系,也就是直角坐标系,来表示空间向量的位置和方向。笛卡尔坐标系由三个相互垂直的坐标轴组成,分别为x轴、y轴和z轴。确定空间向量的起点和终点。空间向量的起点可以任意选择,但是其终点必须确定,通常可以通过给出空间向量的长度和方向角来确定。计算空间向量的坐标。对于起点为原点的空间向量A(x,y,z),其坐标可以通过以下公式计算:x = x₂ - x₁y = y₂ - y₁z = z₂ - z₁其中,(x₁,y₁,z₁)为起点的坐标,(x₂,y₂,z₂)为终点的坐标。需要注意的是,不同的坐标系和不同的起点选择可能会导致不同的坐标表示。此外,对于同一个向量,其长度和方向角不同也会导致不同的坐标表示。因此,在实际应用中,需要根据具体的需求和情况选择合适的坐标表示方式。善士六合2023-05-24 18:37:301
空间向量及其运算分别是?
sinBAD/BD=sinBDA/c,sinCAD/CD=sinADC/b,sinBAD=sinCAD,sinBDA=sinADC。有:BD/c=CD/b,BD/c=CD/b=(BD+CD)/(b+c)=BC/(b+c),BD=c/(b+c)*BC,r=c/(b+c)。运算,数学上,运算是一种行为,通过已知量的可能的组合,获得新的量。运算的本质是集合之间的映射。一般说来,运算都指代数运算,它是集合中的一种对应。对于集合A中的一对按次序取出的元素a、b,有集合A中唯一确定的第三个元素c和它们对应,叫作集合A中定义了一种运算。由这个运算可以得出两个运算,就是把a、b中的一个当作所求的,而把c当作已知的,这样得出的运算,叫作原来运算的逆运算。基本概念例如,算术中的加法 5 + 3 = 8,这里 5 和 3 是输入,8 是结果,而加号“+”表明这是一个加法运算。这是一个常见的二元运算,本质上是A×B→C形式的映射。其他常见的运算包括绝对值、三角函数、反三角函数、逻辑非等等,这些都是一元运算,本质上是A→B形式的映射。代数运算都是二元运算。二元运算的例子有很多。象数与数之间的加、减、乘、除、乘方、开方、对数;集合与集合之间的交、并、补、差、笛卡尔积;逻辑且、逻辑或等。无尘剑 2023-05-24 18:37:301
空间向量公式总结有哪些?
两点间的距离公式,若A(x1,x2)B(Y1,Y2),则AB的模的绝对值= 根号[(x1-Y1)^2+(x2-Y2)^2]。空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。基本定理:1、共线向量定理两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb。2、共面向量定理如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by。黑桃花2023-05-24 18:37:301
空间向量的概念
空间向量是一个数学名词,是指空间中具有大小和方向的量。具有大小和方向的量叫做向量。1、空间的一个平移就是一个向量。2、向量一般用有向线段表示,同向等长的有向线段表示同一或相等的向量。3、空间的两个向量可用同一平面内的两条有向线段来表示。这是高三数学的知识点。小菜G的建站之路2023-05-24 18:37:301
空间向量如何计算?
空间中具有大小和方向的量叫做空间向量。向量的大小叫做向量的长度或模(moduius)。规定,长度为0的向量叫做零向量,记为0.模为1的向量称为单位向量。与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a方向相等且模相等的向量称为相等向量。第一步:按照图形建立三维坐标系O-xyz之后,将点的坐标带进去,求出所需向量的坐标。第二步:求平面的法向量:令法向量n=(x,y,z)因为法向量垂直于此平面所以n垂直于此面内两相交直线(其方向向量为a,b)可列出两个方程 n·a=0,n·b=0两个方程,三个未知数然后根据计算方便取z(或x或y)等于一个数(如:1,√2等)代入即可求出面的一个法向量n的坐标了.会求法向量后1.斜线与平面所成的角就是求出斜线的方向向量与平面的法向量n的夹角,所求角为上述夹角的余角或者夹角减去π/2.2.点到平面的距离就是求出该面的法向量n在平面上任取(除被求点在该平面的射影外)一点,求出平面外那点和你所取的那点所构成的向量,记为a点到平面的距离就是法向量n与a的数量积的绝对值|n·a|除以法向量的模|n|即得所求.3.二面角的求法就是求出两个平面的法向量可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积 :cos<n,m>=|n·m|/(|n||m|)那么二面角就是上面求的两法向量的夹角或者它的补角。4.设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为μ,ν 则线线平行 l∥m<=>a∥b <=> a=kb线面平行 l∥α<=>a⊥μ <=>a·μ=0面面平行 α∥β<=>μ∥ν <=>μ=kν线线垂直 l⊥m<=>a⊥b <=>a·b=0线面垂直 l⊥α <=>a∥μ <=> a=kμ面面垂直 α⊥β<=> μ⊥ν <=>μ·ν=05.向量的坐标运算:设a=(x1,y1),b=(x2,y2),则1.|a|=√(x1²+y1²)2.a+b=(x1+x2,y1+y2)3.a-b=(x1-x2,y1-y2)4.ka=k(x1,y1)=(kx1,ky1)5.a·b=x1x2+y1y26.a∥b<=> x1y2=x2y1(一般写为:x1y2-x2y1=0)7.a⊥b<=> a·b=0<=>x1x2+y1y2=08.cos<a,b>=(a·b)/(|a|·|b|)=(x1x2+y1y2) / [ √(x1²+y1²)·√(x2²+y2²) ]注:x1中的1为下标,以此类推左迁2023-05-24 18:37:304
空间向量是必修几?
空间向量是高中数学必修二的,空间中具有大小和方向的量叫做空间向量。向量的大小叫做向量的长度或模(modulus)。规定:1.长度为0的向量叫做零向量,记为0。2.模为1的向量称为单位向量。3.与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a。4.方向相等且模相等的向量称为相等向量。Jm-R2023-05-24 18:37:301
空间向量的公式
1解题时先用几何法,找一找题目中的题点2几何法不好解,就立即用向量法看看需要建系不,好建系就用坐标法最简单陶小凡2023-05-24 18:37:304
空间向量是必修几
空间向量是高中数学必修二中的。空间向量是指空间中具有大小和方向的量。空间向量基本定理是用数学方式表达的一种空间概念,表达式为p=xa+yb+zc d=AB*AB*n。若存在三个不共面向量a,b,c,那么对空间任一向量p,存在唯一有序实数组{x,y,z}使得成立。空间向量的教学要求:了解空间向量的基本概念;掌握空间向量的加、减、数乘、及数量积的运算;了解空间向量共面的概念及条件;理解空间向量基本定理。理解空间直角坐标系的概念,会用坐标来表示向量;理解空间向量的坐标运算;掌握空间中两点间距离、两向量的夹角公式及∥的坐标表示;会求平面的法向量。苏萦2023-05-24 18:37:301
空间向量的定义与运算知识要点
空间向量(space vector)是空间中具有大小和方向的量。向量的大小叫做向量的长度或模(modulus)。 规定,长度为0的向量叫做零向量,记为 0. 模为1的向量称为单位向量。 与向量 a长度相等而方向相反的向量,称为 a的相反向量。记为- a 方向相等且模相等的向量称为相等向量。中文名空间向量外文名space vector基本定理1共线向量定理两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的 实数λ,使a=λb2共面向量定理如果两个向量a,b不共线,则向量c与向量a,b共面的 充要条件是:存在唯一的一对实数x,y,使c=ax+by3 空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。卦限三个坐标面把 空间分成八个部分,每个部分叫做一个卦限。含有x轴 正半轴、y轴正半轴、z轴正半轴的卦限称为第一卦限,其他第二、三、四卦限,在xoy面的上方,按 逆时针方向确定。在第一、二、三、四卦限下面的部分分别称为第五、六、七、八卦限。[1]空间向量的八个卦限的符号 ⅠⅡⅢⅣⅤⅥⅦⅧx+--++--+y++--++--z++++----问题立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。常识以下用向量法求解的简单常识:1、空间一点P位于平面MAB的充要条件是存在唯一的 有序实数对x、y,使得PM=xPA+yPB2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC(其中x+y+z=1),则四点P、A、B、C共面.3、利用向量证a∥b,就是分别在a,b上取向量a=λb(λ∈R).4、利用向量证a⊥b,就是分别在a,b上取向量a·b=0 .5、利用向量求两直线a与b的夹角,就是分别在a,b上取a,b,求:<a,b>的问题.6、利用向量求距离即求向量的模问题.7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.计算第一步:按照图形建立三维坐标系O-xyz空间向量之后,将点的坐标带进去,求出所需向量的坐标。第二步:求平面的法向量:令法向量n=(x,y,z)因为法向量垂直于此平面所以n垂直于此面内两相交直线(其方向向量为a,b)可列出两个方程n·a=0,n·b=0两个方程,三个未知数然后根据计算方便取z(或x或y)等于一个数(如:1,√2等)代入即可求出面的一个法向量n的坐标了.会求法向量后1.斜线与平面所成的角就是求出斜线的方向向量与平面的法向量n的夹角,所求角为上述夹角的余角或者夹角减去π/2.2.点到平面的距离就是求出该面的法向量n在平面上任取(除被求点在该平面的射影外)一点,求出平面外那点和你所取的那点所构成的向量,记为a点到平面的距离就是法向量n与a的数量积的绝对值|n·a|除以法向量的模|n|即得所求.3.二面角的求法就是求出两个平面的法向量可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积 :cos<n,m>=|n·m|/(|n||m|)那么二面角就是上面求的两法向量的夹角或者它的补角。4.设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为μ,ν则线线平行 l∥m<=>a∥b<=>a=kb线面平行 l∥α<=>a⊥μ<=>a·μ=0面面平行α∥β<=>μ∥ν<=>μ=kν空间向量线线垂直 l⊥m<=>a⊥b<=>a·b=0线面垂直 l⊥α<=>a∥μ<=>a=kμ面面垂直α⊥β<=>μ⊥ν<=>μ·ν=05.向量的坐标运算:设a=(x1,y1),b=(x2,y2),则1.|a|=√(x1²+y1²)2.a+b=(x1+x2,y1+y2)3.a-b=(x1-x2,y1-y2)4.ka=k(x1,y1)=(kx1,ky1)5.a·b=x1x2+y1y26.a∥b<=>x1y2=x2y1(一般写为:x1y2-x2y1=0)7.a⊥b<=>a·b=0<=>x1x2+y1y2=08.cos<a,b>=(a·b)/(|a|·|b|)=(x1x2+y1y2) / [ √(x1²+y1²)·√(x2²+y2²) ]注:x1中的1为下标,以此类推Chen2023-05-24 18:37:301
空间向量基底是什么意思?
在空间中,任意三个向量,如果它们不在同一平面上,且两两不共线,则在空间中的任意一向量都可用它们表示,这三个向量即为空间向量基底。两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb。如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by。扩展资料:三个坐标面把空间分成八个部分,每个部分叫做一个卦限。含有x轴正半轴、y轴正半轴、z轴正半轴的卦限称为第一卦限,其他第二、三、四卦限,在xoy面的上方,按逆时针方向确定。在第一、二、三、四卦限下面的部分分别称为第五、六、七、八卦限。空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB。对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面。利用向量证a∥b,就是分别在a,b上取向量a=λb(λ∈R),利用向量证a⊥b,就是分别在a,b上取向量a·b=0。参考资料来源:百度百科--空间向量hi投2023-05-24 18:37:301
空间向量及其运算有哪些?
运算如下:1、共线向量定理。两个空间向量a,b向量(b向量不等于0),a//b的充要条件是存在唯一的实数λ,使a=λb。2、共面向量定理。如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by。3、空间向量分解定理。如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。相关问题立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。NerveM 2023-05-24 18:37:301
空间向量的乘法计算
那要看你是点乘还是叉乘呢meira2023-05-24 18:37:306
空间向量平行公式坐标公式是什么?
空间向量平行公式坐标公式:d=|Ax0+By0+C|/√A^2+B^2。空间中具有大小和方向的量叫作空间向量。向量的大小叫作向量的长度或模(modulus)。规定:长度为0的向量叫作零向量,记为0。空间向量平行判断方法:设一向量的坐标为(x,y,z),另外一向量的坐标为(a,b,c)。如果(x/a)=(y/b)=(z/c)=常数,则两向量平行,如果ax+by+cz=0,则两向量垂直。如果设a=(x,y),b=(x",y")如果a•b=0(a和b的数量级)即xx"+yy"=0,则a⊥b。如果a×b=0,则向量a平行与向量b;λa=b,a与b也平行。CarieVinne 2023-05-24 18:37:301
高考对于“空间向量”这一内容是怎样要求的?
概念:空间中具有大小和方向的量叫做空间向量。向量的大小叫做向量的长度或模。规定,长度为0的向量叫做零向量,记为0。要求是:(一),熟练掌握空间向量的有关定理。1共线向量定理两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb2共面向量定理如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by3空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。(二),会用空间向量进行运算。1,是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行。2,是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。bikbok2023-05-24 18:37:292
空间向量的几何表示法
空间向量的:在空间,我们把具有大小和方向的量叫做向量。向量的表示:几何表示:用有向线段表示用有向线段的起点与终点字母:→AB豆豆staR2023-05-24 18:37:291
空间向量有什么性质?
空间向量的夹角公式:cosθ=a*b/(|a|*|b|)。1、a=(x1,y1,z1),b=(x2,y2,z2)。a*b=x1x2+y1y2+z1z2。2、|a|=√(x1^2+y1^2+z1^2),|b|=√(x2^2+y2^2+z2^2)。3、cosθ=a*b/(|a|*|b|),角θ=arccosθ。长度为0的向量叫做零向量,记为0。模为1的向量称为单位向量。与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a方向相等且模相等的向量称为相等向量。共面向量定理:若两个向量a和B不共线,那么向量C和向量a和B共面当且仅当存在唯一的实数对x和y,使得C=ax如果三个向量a、B和C不共面,那么对于空间中的任何向量p,存在唯一的有序实数组x、y和Z,使得P=Xa、Yb和ZC。任意三个非共面向量都可以作为空间的基,零向量的表示是唯一的。meira2023-05-24 18:37:291
空间向量
这么多题,一点奖励也没有么?难怪这么长时间没人帮你。建议你以后一题一问,有的放矢,便于人们解答。1、(a,b,c) 关于 XOY 面的对称点是(a,b,-c),关于 YOZ 面的对称点是(-a,b,c),关于 XOZ 面的对称点是(a,-b,c),关于 x 轴的对称点是(a,-b,-c),关于 y 轴的对称点是(-a,b,-c),关于 z 轴的对称点是(-a,-b,c)。2、设点坐标为 D(0,b,c),由两点间距离公式得 |AD|^2=|BD|^2 ====> 9+(b-1)^2+(c-2)^2=16+(b+2)^2+(c+2)^2 ,-------------①|BD|^2=|CD|^2 ====> 16+(b+2)^2+(c+2)^2=(b-5)^2+(c-1)^2 ,------------②以上两式解得 b=1 ,c= -2 ,因此所求点坐标为 D(0,1,-2)。3、AB=(3,5,-4),因此 |AB|=√(9+25+16)=5√2 ,方向余弦为 cosα=3/(5√2)=3√2/10 ,cosβ=5/(5√2)=√2/2 ,cosγ= -4/(5√2)= -2√2/5 。4、M1M2=(-1,0,1),M1M3=(0,-1,1),与 M1M2、M1M3 都垂直的向量为 M1M2×M1M3=(1,1,1),单位化可得所求向量为 ±(√3/3,√3/3,√3/3)。5、连接两点向量为 v1=(2,2,2),平面法向量为 v2=(1,2,3),因此所求平面法向量为 n=v1×v2=(2,-4,2),所以,所求平面方程为 2(x-2)-4(y+1)+2(z-3)=0 ,化简得 x-2y+z-7=0 。陶小凡2023-05-24 18:37:291
关于空间向量的问题?
平面向量基本定理是任一向量都可以由两个不共线的向量线性表出;空间向量共面定理是任意向量都可以经平移使其在同一个平面上!此后故乡只2023-05-24 18:37:293
空间向量的数量积运算
空间向量的数量积公式是λa·b=a·λb,空间中具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模。规定长度为0的向量叫做零向量,记为0,模为1的向量称为单位向量。与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a方向相等且模相等的向量称为相等向量。三个坐标面把空间分成八个部分,每个部分叫做一个卦限。含有x轴正半轴、y轴正半轴、Z轴正半轴的卦限称为第一卦限,其他第二、三、四卦限,在xoy面的上方,按逆时针方向确定。在第一、二、三、四卦限下面的部分分别称为第五、六、七、八卦限。基本定理1、共线向量定理两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb。2、共面向量定理如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by。3、空间向量分解定理如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。小白2023-05-24 18:37:291
空间向量中怎么求法向量?
高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果a,那么向量a叫做平面的法向量。平面的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面的法向量(,,1)nxy[或(,1,)nxz,或(1,,)nyz],在平面内任找两个不共线的向量,ab。由n,得0na且0nb,由此得到关于,xy的方程组,解此方程组即可得到n。第一种是最常规的做法,列两个方程,然后取值求解。第二种是建立空间直角坐标系,然后再求需要求法向量的平面的平面方程,然后可以直接看出。第三种是利用叉乘法,知道平面内相交的两条边的空间向量,就可以利用公式直接套。法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。hi投2023-05-24 18:37:291
空间向量如何计算?
a、b的叉乘a×b仍是一个向量,这个向量与a、b都垂直,且长度|a×b|=|a||b|sin<a,b>。如果a、b同向,则夹角为0,因此叉乘也是0。小菜G的建站之路2023-05-24 18:37:294
向量空间是什么意思
向量空间又称线性空间,是线性代数的中心内容和基本概念之一。在解析几何里引入向量概念后,使许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域相联系的向量空间概念。譬如,实系数多项式的集合在定义适当的运算后构成向量空间,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。向量空间它的理论和方法在科学技术的各个领域都有广泛的应用。扩展资料向量空间的定理:1、向量加法结合律:u + (v + w) = (u + v) + w;2、向量加法交换律:v + w = w + v;3、向量加法的单位元:V 里有一个叫做零向量的 0,∀ v ∈ V , v + 0 = v;4、向量加法的逆元素:∀v∈V, ∃w∈V,使得 v + w = 0;5、标量乘法分配于向量加法上:a(v + w) = a v + a w;6、标量乘法分配于域加法上: (a + b)v = a v + b v;7、标量乘法一致于标量的域乘法: a(b v) = (ab)v;8、标量乘法有单位元: 1 v = v, 这里 1 是指域 F 的乘法单位元。参考资料来源:百度百科-向量空间再也不做站长了2023-05-24 18:37:291
空间向量计算方法
两点间的距离公式,若A(x1,x2)B(Y1,Y2),则AB的模的绝对值=根号[(x1-Y1)^2+(x2-Y2)^2]向量的长度公式,若a的模=(a1,a2),则a的模的绝对值=根号(a1^2+a2^2)两向量夹角的坐标公式,若A(a1,a2)B(b1,b2),则cos<a,b>=(A*B)/(|A|*|B|)(就是向量的乘积除以模的乘积)所以,cos<a,b>=(a1b1+a2b2)/[根号(a1^2+a2^2)*根号(b1^2+b2^2)]设A(x1,x2)B(Y1,Y2),则AB的绝对值=|A*B|=|x1Y1+x2Y2|(因为向量的乘积是常量,所以常量的绝对值就是绝对值了,没其他公式啦!)水元素sl2023-05-24 18:37:291
如何求一个空间向量在另一个空间向量上的投影
a在b上的投影是|a|cos<a,b>=a*b/|b|如:a=(1,2,3)b=(2,1,4)a在b上的投影为:a*b=2+2+12=16|b|=√(2^2+1^2+4^2)=√21a在b上的投影为:16/√21tt白2023-05-24 18:37:294
什么是三维向量,什么是二维向量
比如一个m*1阶矩阵,就称m维列向量。1*n阶矩阵,就称n维行向量。凡尘2023-05-24 18:37:294
空间向量中的单位向量怎么表示啊?
直接设c=(m,n,p)(1)根据三个条件列方程组2m-3n+p=0m-2n+3p=0m²+n²+p²=1(这个就是单位向量就满足的条件)(2)同理列方程组2m-3n+p=0m-2n+3p=02m+n-7p=10分别解这两个三元方程组即得满足条件的向量c黑桃花2023-05-24 18:37:291
大学求空间法向量的方法
是用向量叉乘求,估计高中只讲了点乘吧。叉乘时还会用到三阶行列式的知识。北有云溪2023-05-24 18:37:293
空间向量 求平面方程
向量AB=(3,-4,6),AB与平面垂直,故是平面的法向量,3*(x-2)+(-4)*(y+2)+6*(z-11)=0,∴平面方程为:3x-4y+6z-80=0,设y轴向量为n1=(0,1,0),设平面法向量AB和Y轴夹角为α1,n1·AB=-4,|n1|=1,|AB|=√61,cosα1=-4/√61,取锐角,cosα2=4/√61,设Y轴和平面所成角为α,α+α2=π/2,∴sinα=4/√61,∴平面与y轴之间夹角为arcsin(4√61/61)。豆豆staR2023-05-24 18:37:291
空间向量的基本关系?
设一向量的坐标为(x,y,z),另外一向量的坐标为(a,b,c)。如果(x/a)=(y/b)=(z/c)=常数,则两向量平行,如果ax+by+cz=0,则两向量垂直。如果设a=(x,y),b=(x",y")如果a•b=0(a和b的数量级)即xx"+yy"=0,则a⊥b。如果a×b=0,则向量a平行与向量b;λa=b,a与b也平行。扩展资料:注意事项:在遇到实际向量问题时作图可以直观明了地解决问题,特别是空间向量。平时解题就平手做图,而考试时应当运用直尺铅笔做图,待那道题解完之后记得用中性笔加黑加粗铅笔所做图。在做空间向量的题的时候要选好法向量,规定好其方向,运用好其中的关系。参考资料来源:百度百科-空间向量参考资料来源:百度百科-平行向量铁血嘟嘟2023-05-24 18:37:291
向量空间是什么意思
有一个非空集合v和一个数域F,在v中定义了两种运算,叫加法运算+和乘法运算,在v与F上定义了一种运算,叫数乘运算λα。1,任意α,β∈v,有α+β=β+α2,任意的α,β,γ∈v,有……(加法结合律)3,乘法交换律4,乘法结合律5,任意λ∈F,有λ(α+β)=λα+λβ6,存在0∈v,使得任意α∈v有α+0=α7,对应任意α∈v,存在-α∈v,使得α+(-α)=08,存在单位向量1∈v,使得任意α∈v有α×1=α我们就说v构成了数域F上的向量空间阿啵呲嘚2023-05-24 18:37:295
空间向量运算的坐标表示
设d(x,y)因为a(-1,2)b(2,8)所以向量da=(-1-x,2-y),向量ba=(-3,-6)因为向量da=负三分之一向量ba所以有-1-x=1,2-y=2解得x=-2,y=0所以d的坐标为(-2,0)韦斯特兰2023-05-24 18:37:291
空间向量有什么作用?
在空间中,任意三个向量,如果它们不在同一平面上,且两两不共线,则在空间中的任意一向量都可用它们表示,这三个向量即为空间向量基底。两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb。如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by。扩展资料:三个坐标面把空间分成八个部分,每个部分叫做一个卦限。含有x轴正半轴、y轴正半轴、z轴正半轴的卦限称为第一卦限,其他第二、三、四卦限,在xoy面的上方,按逆时针方向确定。在第一、二、三、四卦限下面的部分分别称为第五、六、七、八卦限。空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB。对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面。利用向量证a∥b,就是分别在a,b上取向量a=λb(λ∈R),利用向量证a⊥b,就是分别在a,b上取向量a·b=0。参考资料来源:百度百科--空间向量陶小凡2023-05-24 18:37:281
空间向量的定义
空间向量 (英语:euclidean vector,物理、工程等也称作矢量 、欧几里得向量)是数学、物理学和工程科学等多个自然科学中的基本概念。指一个同时具有大小和方向,且满足平行四边形法则的几何对象。理论数学中向量的定义为任何在向量空间中的元素。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。LuckySXyd2023-05-24 18:37:281