二维随机变量独立的充要条件
二维随机变量(X,Y)独立的定义式为:F(x,y)=F(x)*F(y )等价的命题如下:二维离散型随机变量X,Y独立的充分必要条件为 :对(X,Y)任意可能的取值(xi,yj)均有P(X=xi,Y=yj)=P(X=xi)*P(Y=yj)2. 二维连续型随机变量X,Y独立的充分必要条件为 :f(x,y)=f(x)*f(y )这里,f(x,y)为(X,Y)的联合概率密度函数,f(x)为一维随机变量X的概率密度函数,f(y )为一维随机变量Y的概率密度函数。参考资料百度知道:https://zhidao.baidu.com/question/565021512959105724.htmlCarieVinne 2023-06-06 08:01:271
求二维随机变量的概率密度
解:对于二维连续变量的分布函数F(x,y),一般应用其概率密度函数f(x,y)的定积分求解;对于非连续变量,需要分别累加求得【与一维随机变量的求法相仿】。∴本题中,当x∈(0,∞)、y∈(0,∞)时,分布函数F(x,y)=∫(-∞,x)du∫(-∞,y)f(u,v)dv=∫(0,x)du∫(-0,y)2e^(-2u-v)dv=∫(0,x)2e^(-2u)du∫(-0,y)e^(-v)dv=[1-e^(-2x)][1-e^(-y)]。当xu2209(0,∞)、yu2209(0,∞)时,分布函数F(x,y)=∫(-∞,0)du∫(-∞,0)f(u,v)dv=0。供参考。无尘剑 2023-06-06 08:01:261
二维随机变量x=y的概率如何求
可利用联合概率密度的二重积分为1,求出k=2。边际密度函数的求解,本质就是考察积分,只要记住边缘概率密度就是对联合密度函数求积分,当我们求关于Y的边际密度函数时就是对于f(x,y)的联合密度函数关于X求积分,求Y的边际密度函数则同理。第二部分是求随机变量函数的密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度。韦斯特兰2023-06-06 08:01:261
连续性二维随机变量数学期望
全班都不会,你们班……豆豆staR2023-06-06 08:01:262
二维随机变量的条件分布函数是怎么定义的
简单说就是F(x|y) ={ p(x,y)/pY(y) 对x的积分,积分限在[负无穷,x]区间 } 这时候它的条件密度函数是p(x|y) = p(x,y)/pY(y) 这是对连续型随即变量而言 离散的一般不谈分布列,谈条件密度会更方便一些苏萦2023-06-06 08:01:261
如何求解二维随机变量的分布函数?
解:对于二维连续变量的分布函数F(x,y),一般应用其概率密度函数f(x,y)的定积分求解;对于非连续变量,需要分别累加求得【与一维随机变量的求法相仿】。∴本题中,当x∈(0,∞)、y∈(0,∞)时,分布函数F(x,y)=∫(-∞,x)du∫(-∞,y)f(u,v)dv=∫(0,x)du∫(-0,y)2e^(-2u-v)dv=∫(0,x)2e^(-2u)du∫(-0,y)e^(-v)dv=[1-e^(-2x)][1-e^(-y)]。当xu2209(0,∞)、yu2209(0,∞)时,分布函数F(x,y)=∫(-∞,0)du∫(-∞,0)f(u,v)dv=0。供参考。北有云溪2023-06-06 08:01:251
二维随机变量举个例子
例如一种产品分为一等品(A1),二等品(A2),三等品(A3)和不合格品(A4),比率分别为0.15,0.70,0.10,0.05。则从该产产品种抽出N个(这N个为一个一个的独立抽出,且N远远小于总的数量),分别以X1~X4记为N个产品中一等品,二等品,三等品和不合格的个数,则可以X=(X1,……X4)满足M(N;0.15,0.70,0.10,0.05)当只存在两种可能性A1、A2的时候,这是A1就是A2的对立事件,X1+X2=N,则X1唯一的决定X2,这就是第一篇笔记中的二项分布情况。扩展资料:二维随机变量(X,Y)的性质不仅与X 、Y 有关,而且还依赖于这两个随机变量的相互关系。因此,逐个地来研究X或Y的性质是不够的,还需将(X,Y)作为一个整体来研究。有一个班(即样本空间)体检,指标是身高和体重,从中任取一人(即样本点),一旦取定,都有唯一的身高和体重(即二维平面上的一个点)与之对应,这就构造了一个二维随机变量。由于抽样是随机的,相应的身高和体重也是随机的,所以要研究其对应的分布。bikbok2023-06-06 08:01:241
二维随机变量的DX如何算
二维随机变量的DX计算方法:DX=EX^2-(EX)^2。二维随机变量的方差描述了随机变量的取值与其数学期望的偏离程度。对于多维随机变量的情况,协方差与相关系数刻画了每个随机变量的相关性。二维随机变量的性质:数学期望是一阶原点矩;方差是二阶中心矩;协方是二阶混合中心距。通过矩,可以定义协方差矩阵,简化多维随机变量的概率密度函数的处理。最后介绍多维正态随机变量的四条重要性质,这些性质是数理统计和随机过程的重要理论基础。Ntou1232023-06-06 08:01:201
设二维随机变量的概率密度函数f(x,y)=2,0
p_X (x)=∫(x~1)f(x,y)dy=2(1-x) p_Y (y)=∫(0~y)f(x,y)dx=2y EX=∫(0~1)xp_X(x)dx=1/3 EY=∫(0~1)yp_Y(y)dy=2/3大鱼炖火锅2023-06-06 08:01:201
已知二维随机变量(X,Y)的联合分布律如图片所示,则X与Y的协方差COV(X,Y)=
解:E(Y)=0×(0.3+0.1)+1×(0.2+0.4)=0.6E(X)=2×(0.3+0.2)+3×(0.1+0.4)=2.5E(XY)=2*0*0.3 + 3*0*0.1 + 2*1*0.2+3*1*0.4=1.6则cov(X,Y)=E(XY)-E(x)E(Y)=1.6-2.5*0.6=0.1小菜G的建站之路2023-06-06 08:01:192
二维随机变量x=y怎么求
1、首先分布律就是做个表,把值和概率对应的填进去就可以了。至于边缘分布律,以x为例,x取的概率是1/6,取-1概率是1/3+1/12=5/12,取2的概率就是5/12。2、其次那么做一个表,回第一行是可能的取值0,1,2第二行把相应概率填进去。3、最后求X的边缘分布律就是把每一纵列相加,把y全部积分,x不积分,0+0.2=0.2,0.2+0.3=0.5,0.2+0.1=0.3即可。墨然殇2023-06-06 08:01:191
概率论二维随机变量求参数
书本来就没读好问题太深奥。人类地板流精华2023-06-06 08:01:191
二维随机变量(X,Y)的相关性,独立性,证明。
P(X=-1)=1/3,P(X=0)=1/3,P(X=1)=1/3P(Y=0)=1/3,P(Y=1)=2/3因0=P(X=-1,Y=0)≠P(X=-1)*P(Y=0)=1/3*1/3=1/9,故不独立E(X)=-1*1/3+0*1/3+1*1/3=0E(Y)=0*1/3+1*2/3=2/3E(XY)=0*0*1/3+(-1)*1*1/3+1*1*1/3=0故cov(X,Y)=E(XY)-E(X)*E(Y)=0-0*2/3=0,故不相关LuckySXyd2023-06-06 08:01:182
随机变量K(x)的分布律是什么?
由于分布律中各个概率bai之和为1,因此K=1/8。联合分布函数以二维情形为例,若(X,Y)是二维随机向量,x、y是任意两个实数,则称二元函数。设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:F(x,y) = P{(X<=x) 交 (Y<=y)} => P(X<=x, Y<=y);随机变量X和Y的联合分布函数是设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:F(x,y) = P{(X<=x) 交 (Y<=y)} => P(X<=x, Y<=y)称为二维随机变量(X,Y)的分布函数。扩展资料:在概率论中, 对两个随机变量X和Y,其联合分布是同时对于X和Y的概率分布。设E是一个随机试验,它的样本空间是S={e}。设X=X(e)和Y=Y(e)是定义在S上的随机变量,由它们构成的一个向量(X,Y),叫做二维随机向量或二维随机变量。连续变量类,对连续随机变量而言,联合分布概率密度函数为fX,Y(x, y),其中fY|X(y|x)和fX|Y(x|y)分别代表X = x时Y的条件分布以及Y = y时X的条件分布;fX(x)和fY(y)分别代表X和Y的边缘分布。苏萦2023-06-06 08:01:181
二维随机变量均匀分布的概率密度是?
在该三角形内的概率相等,所以应该是其面积分之一,那就是2。f(x,y)就是二维变量的概率密度函数f(x,y)=1/S 在三角形的范围内成立。所以1除以1/2等于2。边际密度函数的求解,本质就是考察积分,只要记住边缘概率密度就是对联合密度函数求积分,当求关于Y的边际密度函数时就是对于f(x,y)的联合密度函数关于X求积分,求Y的边际密度函数则同理。扩展资料:有些随机现象需要同时用多个随机变量来描述。例如对地面目标射击,弹着点的位置需要两个坐标才能确定,因此研究它要同时考虑两个随机变量,一般称同一概率空间(Ω,F,p)上的n个随机变量构成的n维向量X=(x1,x2,…,xn)为n维随机向量。随机变量可以看作一维随机向量。称n元x1,x2,…,xn的函数为X的(联合)分布函数。又如果(x1,x2)为二维随机向量,则称x1+ix2(i2=-1)为复随机变量。参考资料来源:百度百科-随机变量小白2023-06-06 08:01:171
设二维连续型随机变量(X,Y)的联合概率密度为f(x,y)=6xy,0
先求 关于X的边缘密度fX(x)=12x(1-x)^2E(x)=xfX(x)从0-1积分 得出2/5E(xy)=xyf(x,y)先积Y从0-2(1-X) 后积X从0-1 最后得出4/15我不确定我算的是否正确,具体步骤是这样的韦斯特兰2023-06-06 08:01:172
设二维随机变量X,Y概率密度为f(x,y)=1,0
大学题???ardim2023-06-06 08:01:173
二维随机变量的定义域是怎样的?
二维随机变量(X,Y)独立的定义式为:F(x,y)=F(x)*F(y)这里F(x,y)为(X,Y)的联合分布函数,F(x)为一维随机变量X的分布函数,F(y )为一维随机变量Y的分布函数。二维连续型随机变量X,Y独立的充分必要条件为 :f(x,y)=f(x)*f(y ),这里f(x,y)为(X,Y)的联合概率密度函数,f(x)为一维随机变量X的概率密度函数,f(y )为一维随机变量Y的概率密度函数。事件的概率是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。扩展资料:设随机事件A在n次重复试验中发生的次数为nA,若当试验次数n很大时,频率nA/n稳定地在某一数值p的附近摆动,且随着试验次数n的增加,其摆动的幅度越来越小,则称数p为随机事件A的概率,记为P(A)=p。随机事件是事件空间S的子集,它由事件空间S中的单位元素构成,用大写字母A,B,C...表示。例如在掷两个骰子的随机试验中,设随机事件A="获得的点数和大于10",则A可以由下面3个单位事件组成:A={(5,6),(6,5),(6,6)}。 如果在随机试验中事件空间中的所有可能的单位事件都发生,这个事件被称为必然事件。参考资料来源:百度百科——概率论凡尘2023-06-06 08:01:162
二维随机变量服从正态分布,括号里面的5个数字分别代表什么?
X,Y~N(μ1,u2,σ1,σ2,ρ),五个参数依次表示X的期望,Y的期望,X的均方差,Y的均方差,X和Y的相关系数。北境漫步2023-06-06 08:01:162
二维随机变量的分布函数是什么公式?
对于二维连续变量的分布函数F(x,y),一般应用其概率密度函数f(x,y)的定积分求解;对于非连续变量,需要分别累加求得【与一维随机变量的求法相仿】。∴本题中,当x∈(0,∞)、y∈(0,∞)时,分布函数F(x,y)=∫(-∞,x)du∫(-∞,y)f(u,v)dv=∫(0,x)du∫(-0,y)2e^(-2u-v)dv=∫(0,x)2e^(-2u)du∫(-0,y)e^(-v)dv=[1-e^(-2x)][1-e^(-y)]。当xu2209(0,∞)、yu2209(0,∞)时,分布函数F(x,y)=∫(-∞,0)du∫(-∞,0)f(u,v)dv=0。扩展资料:随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。事件随机发生的机率,对于均匀分布函数,概率密度等于一段区间(事件的取值范围)的概率除以该段区间的长度,它的值是非负的,可以很大也可以很小。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。离散型随机变量的分布律和它的分布函数是相互唯一决定的。它们皆可以用来描述离散型随机变量的统计规律性,但分布律比分布函数更直观简明,处理更方便。因此,一般是用分布律(概率函数)而不是分布函数来描述离散型随机变量。参考资料来源:百度百科——二维随机变量meira2023-06-06 08:01:151
二维随机变量的函数是几维的
二维随机变量的函数可以是二维的也可以是一维的。如(X,Y)是二维随机变量,Z=X+Y是一维随机变量。真颛2023-06-06 08:01:151
二维随机变量
u04d9是偏导的意思。dx知道吧?就是对x求导,现在二维随机变量有两个变量,如果假定其中一个变量不变(视为常数),则对另一个变量求导称为对此变量的求偏导。例如f(x.y)=xy, u04d9f/u04d9x 表示f函数对x求偏导,你只要把y变为变量,当成求x的导数就行了,所以 u04d9f/u04d9x =y你的题目中的先求了y的偏导,再求一次x的偏导,所以表示成u04d9x*u04d9y念法嘛,好像是对什么什么求偏导,我忘了怎么念,meira2023-06-06 08:01:151
二维随机变量的数学意义是什么?
考虑这样一个实验:现在有一个班(即样本空间)体检,指标是身高和体重,从中任取一人(即样本点),一旦取定,都有唯一的身高和体重(即二维平面上的一个点)与之对应,这实际上就构造了一个二维随机变量!由于抽样是随机的,相应的身高和体重也是随机的,所以要研究其对应的分布(即在任意一个[严格来说,伯莱尔可测]集合取值的概率)!ardim2023-06-06 08:01:151
什么是二维随机变量
所谓二维随机变量就是指一个平面上点的坐标。它的坐标值都是随机变量。阿啵呲嘚2023-06-06 08:01:141
二维随机变量的积分公式是什么?
计算公式为E(XY)=∫∫xyf(x,y)dxdy,积分范围是整个平面,其中f(x,y)是联合概率密度。二维随机变量( X,Y)的性质不仅与X 、Y 有关,而且还依赖于这两个随机变量的相互关系。因此,逐个地来研究X或Y的性质是不够的,还需将(X,Y)作为一个整体来研究。设E是一个随机试验,它的样本空间是S={e},设X=X(e)和Y=Y(e)S是定义在S上的随机变量,由它们构成的一个向量(X,Y)。扩展资料:如果随机变量X的所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任一点的随机变量。例如,一批电子元件的寿命、实际中常遇到的测量误差等都是连续型随机变量。一个事件的概率为1,并不意味这个事件一定是必然事件。当提到一个随机变量X的概率分布,指的是它的分布函数,当X是连续型时指的是它的概率密度,当X是离散型时指的是它的分布律。参考资料来源:百度百科--二维随机变量LuckySXyd2023-06-06 08:01:141
下列函数中可以作为某一随机变量的概率密度的是( )麻烦给出每个选项可以或不可以的原因
希望能够帮到您大鱼炖火锅2023-06-06 08:00:512
设随机变量X的概率密度为 f(x)= 2(1-1/x^2),1
当x≤1,F(x)=0当1<x<2F(x)=∫2(1-1/x^2)dx,其中积分上限为x,下限为1.=2x+2/x-4当x≧2F(x)=1ardim2023-06-06 08:00:502
设随机变量X1,X2,…Xn相互独立,且都服从(0,θ)上的均匀分布。求U=max{X1,X2,…
具体过程如图,点击可放大:LuckySXyd2023-06-06 08:00:503
问: 设离散型随机变量X的概率分布为P{X=k}=c(2/3)k次方,k=1,2,3??求c求详细
具体回答如图:当随机变量的可取值全体为一离散集时称其为离散型随机变量,否则称其为非离散型随机变量,这是很大的一个类,其中有一类是极其常见的,随机变量的取值为一(n)维连续空间。扩展资料:随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性。参考资料来源:百度百科--离散型随机变量真颛2023-06-06 08:00:501
设二维随机变量(X,Y)的概率密度为:f(x,y)=12y^2,0
EX=∫∫[0ardim2023-06-06 08:00:491
设随机变量X~N(1,4),已知标准正态分布函数值Φ(1)=0.8413,为使P{X
根据转化公式,可以得到P{|X|<3}=Φ【(3-1)/2】-Φ【(-3-1)/2】=Φ(1)-Φ(-2)=Φ(1)-(1-Φ(2))=Φ(1)+Φ(2)-1=0.8413+0.9772-1=0.8641扩展资料按照随机变量可能取得的值,可以把它们分为两种基本类型:离散型离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。连续型连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。豆豆staR2023-06-06 08:00:491
设随机变量X与Y相互独立,且服从区间[1,3]上的均匀分布,则p{max(X,Y)
1/9解题过程如下:max{X,Y}≤1实际上就等价于X和Y都小于等于1,而随机变量X与Y互相独立,于是P(max{X,Y}≤1)=P(X≤1) * P(Y≤1)而X和Y均服从区间 [0,3] 上的均匀分布故P(X≤1) = P(Y≤1) =1/3,所以P(max{X,Y}≤1)=P(X≤1) * P(Y≤1)=1/3 * 1/3=1/9扩展资料按照随机变量可能取得的值,可以把它们分为两种基本类型:离散型离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。连续型连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。小白2023-06-06 08:00:491
什么是二维随机变量的边缘分布函数?
如果二维随机变量X,Y的分布函数F{x,y}为已知,那么因此边缘分布函数FX(x),FY(y)可以由(X,Y)的分布函数所确定。如果二维随机变量X,Y的分布函数F{x,y}为已知,那么随机变量x,y的分布函数FU0001d5d1{x}和Fu028f{y}可由F{x,y}求得。则FU0001d5d1{x}和Fu028f{y}为分布函数F{x,y}的边缘分布函数。扩展资料:离散型随机变量:在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。连续型型随机变量:在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。再也不做站长了2023-06-06 08:00:491
设随机变量X与Y相互独立,且服从区间[1,3]上的均匀分布,则p{max(X,Y)
1/9解题过程如下:max{X,Y}≤1实际上就等价于X和Y都小于等于1,而随机变量X与Y互相独立,于是P(max{X,Y}≤1)=P(X≤1) * P(Y≤1)而X和Y均服从区间 [0,3] 上的均匀分布故P(X≤1) = P(Y≤1) =1/3,所以P(max{X,Y}≤1)=P(X≤1) * P(Y≤1)=1/3 * 1/3=1/9扩展资料按照随机变量可能取得的值,可以把它们分为两种基本类型:离散型离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。连续型连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。北有云溪2023-06-06 08:00:481
设X与Y是相互独立的随机变量,且X在区间[0,1]上服从均匀分布,Y服从参数为1的指数分布
(1)由已知,f(x)=1, (0<=x<=1),f(y)=e^(-y), (y>=0),Z大于0那么F(z)=P(X+Y<z)在坐标轴上画出积分区间即0<=z<1时,x积分区间为(0,z),y积分区间为(0,z-x)z>=1时,x积分区间为(0,1),y积分区间为(0,z-x)在以上区间对f(x)*f(y)=e^(-y)积分,有0<=z<1时,F(z)=e^(-z)+z-1z>=1时,F(z)=e^(-z)-e^(1-z)+1求导,有0<=z<1时,f(z)=1-e^(-z)z>=1时,f(z)=e^(1-z)-e^(-z)因此,Z的概率密度函数为f(z)=0,z<0f(z)=1-e^(-z),0<=z<1f(z)=e^(1-z)-e^(-z),z>=1时(2)F(z))=P(-2lnX<z)=P(X>e^(-z/2))当z<0时,F(z)=0当z>=0时,对f(x)从e^(-z/2)到1积分,得F(z)=1-e^(-z/2)求导,有f(z)=e^(-z/2)/2因此,Z的概率密度函数为f(z)=0,z<0f(z)=e^(-z/2)/2,z>=0铁血嘟嘟2023-06-06 08:00:482
设随机变量X~U【0,6】,Y~B(12,1/4),且X,Y相互独立,试用切比雪夫不等式估计概率P
先求出Y-X的期望与方差如图,再用切比谢夫不等式估计概率。经济数学团队帮你解答,请及时采纳。谢谢!tt白2023-06-06 08:00:482
二维随机变量x,y,若x>
P(X/Y<0)=0.5本题使用正态分布与独立性分析:(x,y)~N(0,0,1,1,0)说明X~N(0,1),Y~N(0,1)且X与Y独立X/Y<0,即X与Y反号所以 P(X/Y<0)=P(X>0,Y<0)+P(X<0,Y>0)=P(X>0)P(Y<0)+P(X<0)P(Y>0)=0.5×0.5+0.5×0.5=0.5二维随机变量( X,Y)的性质不仅与X 、Y 有关,而且还依赖于这两个随机变量的相互关系。因此,逐个地来研究X或Y的性质是不够的,还需将(X,Y)作为一个整体来研究。扩展资料:在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。在实际问题中通常用它来表征多个独立操作的随机试验结果或多种有独立来源的随机因素的概率特性,因此它对于概率统计的应用是十分重要的。参考资料来源:百度百科——二维随机变量黑桃花2023-06-06 08:00:481
设随机变量X~B(n,p),且E(X)=2.4,D(X)=1.1.68,则n,p=?
你好!根据公式有E(X)=np=2.4,D(X)=np(1-p)=1.68,求解得出n=8,p=0.3。经济数学团队帮你解答,请及时采纳。谢谢!瑞瑞爱吃桃2023-06-06 08:00:482
设X和Y是相互独立的随机变量,其概率密度为fX(x)=
简单计算一下即可,答案如图所示再也不做站长了2023-06-06 08:00:472
设随机变量X~U(1,4),现在对X进行三次独立试验,求至少有两次观察值大于2的概率
每一次取到的观察值都相互独立,假设用Y来表示事件,3次里每一次取值大于2的概率为2/3。那么三次之中至少有两次的概率为C(3,2) (2/3)^2 * (1/3) + C(3,3) (2/3)^3 = 20/27在第n次伯努利试验中,试验k次才得到第一次成功的机率,详细的说是:前k-1次皆失败,第k次成功的概率。如果事件发生的概率是p,则不发生的概率q=1-p。在n次独立重复试验中,用ξ表示事件A发生的次数,如果事件发生的概率是p,则不发生的概率 q=1-p,N次独立重复试验中发生k次的概率。扩展资料:将试验E重复进行n次,若各次试验的结果互不影响,则称这n次试验是相互独立的。设A、B为任意两个随机事件,且P(A)>0。则A与B相互独立P(B|A)=P(B)。随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。参考资料来源:百度百科--独立试验CarieVinne 2023-06-06 08:00:471
一食品店有三种蛋糕出售,由于售出哪种蛋糕是随机的。因而,售出一只蛋糕的价格是一个随机变量,
0.5北营2023-06-06 08:00:472
设随机变量X,Y的联合密度为f(x,y)=(1/y)*e^-(y+x/y),x>0,y>0.求E(X),E(Y)E(XY)
这个答案中间的过程简直就是乱来,看不懂豆豆staR2023-06-06 08:00:475
随机变量的不相关性与独立性的关系是?
语义上来讲,独立是指变量之间完全没有关系,但是不相关则仅要求变量之间没有线性关系,因而独立的要求更高,独立的变量一定是不相关的,但是不相关的不一定是独立的,即独立是不相关的充分不必要条件。举例说明:X,Y均匀分布在单位圆上,因为是圆是对称的,画一条线性回归的线,线的斜率可以为任意值且均匀分布。所以X和Y是不相关的,但是X,Y不是独立的,因为X、Y的取值对彼此有决定性影响。扩展资料:随机变量的类型:1、离散型离散型随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。2、连续型连续型随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。参考资料来源:百度百科-独立随机变量参考资料来源:百度百科-不相关随机变量陶小凡2023-06-06 08:00:461
请问两个独立同分布的随机变量X和Y,P(X>Y)等于1/2吗?为什么呢?
设密度函数为f(x),分布函数为F(x)P(X<=Y)=(x<=y积分)∫∫(x<=y积分)f(x)f(y)dxdy=∫(-∞,+∞)f(x)dx∫(x,+∞)f(y)dy=∫(-∞,+∞)f(x)[1-F(x)]dx=∫(-∞,+∞)[1-F(x)]dF(x)=-[1-F(x)]^2/2|(-∞,+∞)=1/2按照随机变量可能取得的值,可以把它们分为两种基本类型:离散型离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。连续型连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。扩展资料随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。如分析测试中的测定值就是一个以概率取值的随机变量,被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性。ardim2023-06-06 08:00:461
设随机变量XY相互独立,且服从以1为参数的指数分布,求Z=Y/X的概率密度。求详细解答,谢谢!
阿啵呲嘚2023-06-06 08:00:462
随机变量X~N(u,σ^2),则P{X
P{u-2σ 所以P{X 作业帮用户 2017-10-14 举报小白2023-06-06 08:00:462
设随机变量X和Y相互独立,且X~N(3,4) Y~(2,9)则Z=3X-Y~( )
正确答案是N(7,45),(7,21)是错的。余辉2023-06-06 08:00:464
求,设随机变量X在[2,6]上服从均匀分布,现对X进行4次独立观测,求至多有3次观测值大于3的概率
一次独立观测,观测值大于3的概率是2/3,进行三次独立观测,则x服从二项分布。那么p(x>=2)=p(x=2)+p(x=3)=20/27希望你能看懂小白2023-06-06 08:00:463
设随机变量X和Y相互独立,且X~N(3,4) Y~(2,9)则Z=3X-Y~( )
设随机变量X和Y相互独立,且X~N(3,4) Y~(2,9)则Z=3,X-Y~(4,5)E(X)=3,E(Y)=2D(X)=4.D(Y)=9E(Z)=3E(X)-E(Y)=7D(Z)=9D(X)+D(Y)=45随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。扩展资料按照随机变量可能取得的值,可以把它们分为两种基本类型:离散型离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。连续型连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。无尘剑 2023-06-06 08:00:461
设随机变量x~n(20,40^2),则e(x)= d(x)=
你好!根据公式,若X~N(20,40^2),则E(X)=20,D(X)=40^2。经济数学团队帮你解答,请及时采纳。谢谢!meira2023-06-06 08:00:452
设随机变量X~U(1,4),现在对X进行三次独立试验,求至少有两次观察值大于2的概率
姑且认为进行三次实验可以用中心极限定理,那你这个式子求的其实是样本均值大于2的概率,你发现没。其实,这种问有多少次大于几的,显然是伯努力问题。每一次实验,观测值大于2 的概率是2/3,那么三次之中至少有两次的概率为C(3,2) (2/3)^2 * (1/3) + C(3,3) (2/3)^3 = 20/27再也不做站长了2023-06-06 08:00:442
指出下面的分布中,哪一种不是连续型随机变量的分布
这个是换元积分,另x=(t-b)/a,dx=1/adt,相应的积分上下限改变,这个是属于高数积分部分的内容北有云溪2023-06-06 08:00:442
求概率论大神!设随机变量X~P(入)且P{X=1}=P{X=2},求P{X=4}
黑桃花2023-06-06 08:00:442
高数题:已知随机变量X~b(n1,p),Y~b(n2,p)证明Z=X+Y~b(n1+n2,p)
用它们的特征函数,参数为p伯努利随机变量T特征函数为:f(t)=q+p*e^(it),所以X的特征函数:(f(t))^n1,同理Y的特征函数:(f(t))^n2,如果X,Y独立,那么X+Y特征函数:(f(t))^(n1+n2),这就说明了X+Y服从你给的2项分布。如果你对特征函数一无所知可以参考《概率论》苏淳。还有好多类似的题,比如《数理统计》韦来生第2章习题一,都是用特征函数。 一楼方法貌似可以,不专业。小白2023-06-06 08:00:443
随机变量b是什么分布
随机变量b是二项分布。事件发生的概率为p,重复n次。它的期望E=np,方差为np(1-p)。在概率论和统计学中,二项分布是n个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。事件的概率表示了一次试验中某一个结果发生的可能性大小。若要全面了解试验,则必须知道试验的全部可能结果及各种可能结果发生的概率,即随机试验的概率分布。随机变量的两种类型:离散型随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。连续型随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。北营2023-06-06 08:00:431
什么是随机变量x, y的分布函数?
如果二维随机变量X,Y的分布函数F{x,y}为已知,那么因此边缘分布函数FX(x),FY(y)可以由(X,Y)的分布函数所确定。如果二维随机变量X,Y的分布函数F{x,y}为已知,那么随机变量x,y的分布函数FU0001d5d1{x}和Fu028f{y}可由F{x,y}求得。则FU0001d5d1{x}和Fu028f{y}为分布函数F{x,y}的边缘分布函数。扩展资料:离散型随机变量:在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。连续型型随机变量:在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。NerveM 2023-06-06 08:00:431
随机变量P(X,Y)=0.5的值是多少?
P(X/Y<0)=0.5本题使用正态分布与独立性分析:(x,y)~N(0,0,1,1,0)说明X~N(0,1),Y~N(0,1)且X与Y独立X/Y<0,即X与Y反号所以 P(X/Y<0)=P(X>0,Y<0)+P(X<0,Y>0)=P(X>0)P(Y<0)+P(X<0)P(Y>0)=0.5×0.5+0.5×0.5=0.5二维随机变量( X,Y)的性质不仅与X 、Y 有关,而且还依赖于这两个随机变量的相互关系。因此,逐个地来研究X或Y的性质是不够的,还需将(X,Y)作为一个整体来研究。扩展资料:在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。在实际问题中通常用它来表征多个独立操作的随机试验结果或多种有独立来源的随机因素的概率特性,因此它对于概率统计的应用是十分重要的。参考资料来源:百度百科——二维随机变量北营2023-06-06 08:00:431
随机变量X的期望、方差、标准差如何计算?
如图所示:因为,(X,Y)是二维离散型随机变量。所以,xy也是离散型随机变量。先求出xy的概率分布列。再求xy的期望:比如 P(x=0)=1/2,P(x=1)=1/2 P(y=0)=1/2,P(y=1)=1/2 则,P(xy=0)=3/4 P(xy=1)=1/4 所以,E(XY)=0×(3/4)+1×(1/4)=1/4。当随机变量的可取值全体为一离散集时称其为离散型随机变量,否则称其为非离散型随机变量,这是很大的一个类,其中有一类是极其常见的,随机变量的取值为一(n)维连续空间。计算方法:随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。墨然殇2023-06-06 08:00:431
设随机变量X的概率密度为 f(x)=e^-x,x>0 求Y=2X,Y=e^-2x的数学期望 写出详细过程,谢谢!
解:(1).EY=2E(X)=2(2)E(Y)=∫(-∞,+∞)f(x)e^(-2x)dx=1/3如有意见,欢迎讨论,共同学习;如有帮助,请选为满意回答!bikbok2023-06-06 08:00:434
怎样用matlab 表示满足伯努利分布的随机变量
二项分布?系统有自带函数binopdfY = binopdf(X,N,P)例如binopdf(0,200,0.02)结果输出为 0.0176康康map2023-06-06 08:00:421
随机变量X~U(2,4)是啥意思?有什么数学含义?
表示X是连续型随机变量,满足区间(2,4)上的均匀分布。具体来说就是X的值可以在区间(2,4)上随机选取,选到每个值的概率相等。随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。扩展资料:随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。一个随机变量所取的值可以是离散的(如掷一颗骰子的点数只取1到6的整数,电话台收到的呼叫次数只取非负整数),也可以充满一个数值区间,或整个实数轴(如液体中悬浮的微粒沿某一方向的位移)。参考资料来源:百度百科——随机变量北营2023-06-06 08:00:421
随机变量的独立性判断方法
随机变量的独立性判断方法为:通过联合分布函数和边缘分布函数,或者联合概率密度和边缘概率密度来进行判断。两个随机变量的独立性只能通过联合分布函数和边缘分布函数,或者联合概率密度和边缘概率密度来进行判断。随机变量X, Y相互独立可以推出E(XY)=E(X)E(Y) ,也就是可以推导出两者不线性相关,但不能排除其它非线性相关性,也就不能说明两者相互独立。可见,两个随机变量不相关并非一定能推得两者相互独立的结论。随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。随机变量的基本类型:1、离散型。离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。2、连续型。连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。真颛2023-06-06 08:00:421
在求随机变量的分布列中,若随机变量X变到2X+1,则概率为什么没变
例如:Y=2X+1 离散型随机变量中,P{X=1}=1/2 由于X=1时必定有Y=3,所以事件{X=1}与{Y=3}等价,因此P{X=1}=P{Y=3}=1/2hi投2023-06-06 07:59:041
已知随机变量分布列为d(x)与e(x)怎么算
D , .拌三丝2023-06-06 07:59:041
离散型随机变量分布列的性质:概率P(i)大于O,是否要等于O?
把概率小于0.03的被称为小概率事件,计算中近似为零。但它们发生的可能性的确存在,不能认为它们为零。在非离散型概率中不可能事情概率为零。希望能帮上你tt白2023-06-06 07:59:042
下列表中所列出的是某个随机变量的分布列,其中正确的为
概率和即P的和是1就行了。第一个为1.1不对;第二个为0.7不对;第三个等比数列和为3/4(1-(1/3)^n),n无穷大时此值趋于3/4,不对;第四个等比数列和为1-(1/2)^n,n无穷大时此值趋于1,正确。铁血嘟嘟2023-06-06 07:59:041
随机变量分布列,求常数,具体求解过程
利用归一化概率为1,Σc/2^k=c/2/(1-0.5)=c=1阿啵呲嘚2023-06-06 07:59:031
设随机变量X的分布列为P=(X=k)=1/n(k=1,2,3,…,n),求D(X)
EX=(1+2+3+……+n)/n=(n+1)/2 E(X^2)=(1^2+2^2+……+n^2)/n=(n+1)(2n+1)/6 所以 DX=E(X^2)-(EX)^2=(n+1)(2n+1)/6-(n+1)^2/4=(n^2-1)/12康康map2023-06-06 07:59:031
设随机变量X的分布列为P=(X=k)=1/n(k=1,2,3,…,n),求D(X)
∵随机变量x的分布列为p(x=k)=2λk(k=1,2,3…,n,…),∴limn→∞[2(λ+λ2+…+λn )]=1,∴limn→∞λ(1?λn)1?λ=12,∵0<λ<1,∴λ1?λ=12,解得λ=13.故答案为:13.肖振2023-06-06 07:59:031
已知随机变量的分布列P(X=k)=1/3,k=1,2,3,则D(3x+5)=?
X P1 1/32 1/33 1/3期望值E(x)=1*(1/3)+2*(1/3)+3*(1/3)=2D(x)=E(X^2)-[E(X)]^2X^2 P1 1/34 1/39 1/3E(x*2)=14/3所以D(x)=14/3-2^2=2/3因为D(ax+b)=a^2D(x)所以 D(3x+5)=9D(x)=6小菜G的建站之路2023-06-06 07:59:031
若随机变量的分布列为P(X=k)=1/n(k=1,2,3`````n)则E(X)和V(X)
E(X)=∑(k=1-->n)k/n=(n+1)/2E(X^2)=∑(k=1-->n)k^2/n=n(n+1)(2n+1)/6n=(n+1)(2n+1)/6(平方和公式即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6)V(X)=E(X^2)-(E(X))^2=(n^2-1)/12Ntou1232023-06-06 07:59:031
已知随机变量X的分布列为:P(X=k)=1/3,k=1,2,3,则E(3X+5)等于?
因为 E(x)=1*1/3+2*1/3+3*1/3=2 , 所以 E(3x+5)=3E(x)+5=3*2+5=11 .ardim2023-06-06 07:59:031
已知二维随机变量分布列,E(XY)怎么求
既然是分布列那么就与概率密度即针对连续型变量的不同而分布率是针对离散型的分布列表示概率在所有的可能发生的情况中的分布计算XY的所有可能值再得到各个值的概率计算得到EXY=∑pi (XY)i 即可Chen2023-06-06 07:59:031
设二维离散型随机变量分布列为,求p{Y
P(Y<3)=P(Y=1)+P(Y=2);也就是前两列的概率加起来;P=0.1+0.05+0.1+0+0.15+0.2=0.25+0.35=0.6;不懂再追问,满意请点个采纳,上一道题目也是你问的吧?北境漫步2023-06-06 07:59:031
离散型随机变量的分布列与二项分布有何区别
离散型随机变量分布列自从实行新的课程改革以来,一直受到高考命题者的青睐,成为继二面角之后高考的又一个热点,因此如何解答好离散型随机变量分布列问题,便成为决胜高考的一个重要指标.本文想从三个方面谈起,以利于帮助学生很好的解决离散型随机变量分布列的问题.一.正确理离散型随机变量的含义.离散型随机变量分布列其主要构成包含两方面的内容,一是随机变量的可能取值,二是取该值时对应的概率值.正确理解离散型随机变量的含义,为我们求解相应的概率奠定了基础.例如(06全国Ⅱ)某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(Ⅰ)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望;(Ⅱ)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率.第一问中明确指出ξ是在抽检过程中6件产品中二等品的个数,不难发现ξ的取值为0,1,2,3.但这里的ξ取0是指在第一箱、第二箱、第三箱中分别取到2件二等品;ξ取1是指在第一箱、第三箱中分别取2件一等品同时在第二箱中取1件一等品1件二等品或在第三箱中取1件一等品1件二等品同时在第一箱、第二箱中各取2件一等品;ξ取2是指在第一箱中取2件一等品同时在第二箱、第三箱中各取1件一等品1件二等品或在第一箱、第二箱中各取2件一等品同时在第三箱中取到2件二等品;ξ取3是指在第一箱取2件一等品,在第二箱中取1件一等品1件二等品同时在第三箱中取2件二等品.而不是在包含3件二等品的15件产品中抽取6件产品时含0件、1件、2件、3件二等品这种情形.二、分清类型,正确理解二项分布与几何分布分布列的求解中一要重视抽取中有无放回,二要正确理解二项分布与几何分布,找出它们的异同.它们的共同特点是每次观察中出现的概率相等,且都为独立重复试验,不同点是二项分布所考虑的试验是一个只有两个结果的有限次试验,而几何分布中是一个在依次试验中只有两个结果的无限次试验,因而在二项分布中变量的取值是从0到n,而在几何分布中变量取值是从1开始的非零自然数,当然我们还可以通过“恰好”、“第一次”、“首次”这些字眼上加以区分二项分布和几何分布.三、求解相应的概率不容忽略细节.分布列的求解,其关键在于对响应取值时概率的计算,而往往可能因为忽略其细节,致使概率求解出错.如(05全国)甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率0.6.本场比采取五局三胜制,即先胜三局的队获胜,比赛结束,设各局比赛相互之间没有影响,今令ξ为本场比赛的局数,求ξ的分布列和数学期望(精确到0.0001)显然对于ξ的取值应为3、4、5三个,而在当ξ取4时相应概率计算可能会忽略甲取胜或乙取胜 无论甲胜还是乙胜、4场比赛中第4场一定要胜,可能甲,也可能乙胜因而概率的计算过程中前三场中甲恰好胜两场或乙恰好胜两场 .总之对离散型随机变量分布列问题的求解,方法可能多种多样,但我们必须认真阅读,抓住要害,准确把握随机变量的含义,分清所属类型、解答中不忽略细节,才可能在分布列求解问题中获胜,为高考取胜增加比重.Chen2023-06-06 07:59:031
已知随机变量的分布列为-4 -1 0 0。1/2 1/4 1:8 1/8
cos0 = 1 cosπ/2 =0 cosπ=-1 分布列为 1 0 -1 1/4 1/2 1/4黑桃花2023-06-06 07:59:031
求随机变量的分布列与数学期望
1.显然每个人去甲游戏的概率是1/3,去乙游戏的概率是2/3独立重复事件:去甲的2人,去乙的2人,(1/3)^2*(2/3)^2=4/81 2.显然去参加甲游戏的的人数大于去参加乙游戏的人数只有两种情况,3人或全部(1/3)^3*(2/3)+(1/3)^4=1/27FinCloud2023-06-06 07:59:021
离散型随机变量分布列的性质?
离散型随机变量的分布列有下列两个性质:①对于随机变量ξ的任何取值x,其概率值都是非负的,即P≥0,i=1,2,…;②对于随机变量的所有可能的取值,其相应的概率之和都是1,即P+P+…=1.小菜G的建站之路2023-06-06 07:59:021
若随机变量的分布列为P(X=k)=1/n(k=1,2,3`````n)则E(X)和V(X)
E(X)=∑(k=1-->n)k/n=(n+1)/2 E(X^2)=∑(k=1-->n)k^2/n=n(n+1)(2n+1)/6n=(n+1)(2n+1)/6 (平方和公式即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6) V(X)=E(X^2)-(E(X))^2=(n^2-1)/12tt白2023-06-06 07:59:021
为什么离散型随机变量分布列概率可以为0
离散型随机变量的概率可以为0,但是不写在分布列中的。因为对于离散型随机变量,关心的是可能的取值,那当然其概率是非零的了。wpBeta2023-06-06 07:59:021