斐波那契

对数螺线与斐波那契螺线的关系

这种螺旋线有很多特点,其中最突出的一点则是它的形状,无论你把它放大或缩小都不会改变。就像我们不能把角放大或缩小一样。 这螺旋线还有一个特点。如果你用一根有弹性的线绕成一个对数螺线的图形,再把这根线放开来,然后拉紧放开的那部分,那么线的运动的一端就会划成一个和原来的对数螺线完全相似的螺线,只是变换了一下位置。这个定理是一位名叫杰克斯.勃诺利的数学教授发现的,他死后,后人把这条定理刻在他的墓碑上,算是他一生中最为光荣的事迹之一。
ardim2023-08-04 11:14:361

用python函数写斐波那契数列是什么?

fruits = ["banana", "apple", "mango"]for index in range(len(fruits)): print (" : %s" % fruits[index]) print ("Good bye!")
可桃可挑2023-07-22 14:08:301

请问斐波那契数列如何递推?

斐波那契数列是由是意大利数学家列昂纳多·斐波那契命名的数列. 1,1,2,3,5,8. 递推方法:前两项的和就是第三项的值. 通项公式:(1/根号5)*[{(1+根号5)/2}^n-{(1-根号5)/2}^n]
康康map2023-05-24 07:48:231

斐波那契数列通项公式是怎么得来的???

【斐波那挈数列通项公式的推导】斐波那契数列:1,1,2,3,5,8,13,21……如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:F(1)=F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3)显然这是一个线性递推数列。通项公式的推导方法一:利用特征方程线性递推数列的特征方程为:X^2=X+1解得X1=(1+√5)/2,X2=(1-√5)/2.则F(n)=C1*X1^n+C2*X2^n∵F(1)=F(2)=1∴C1*X1+C2*X2C1*X1^2+C2*X2^2解得C1=1/√5,C2=-1/√5∴F(n)=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}【√5表示根号5】通项公式的推导方法二:普通方法设常数r,s使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]则r+s=1,-rs=1n≥3时,有F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]……F(3)-r*F(2)=s*[F(2)-r*F(1)]将以上n-2个式子相乘,得:F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]∵s=1-r,F(1)=F(2)=1上式可化简得:F(n)=s^(n-1)+r*F(n-1)那么:F(n)=s^(n-1)+r*F(n-1)=s^(n-1)+r*s^(n-2)+r^2*F(n-2)=s^(n-1)+r*s^(n-2)+r^2*s^(n-3)+r^3*F(n-3)……=s^(n-1)+r*s^(n-2)+r^2*s^(n-3)+……+r^(n-2)*s+r^(n-1)*F(1)=s^(n-1)+r*s^(n-2)+r^2*s^(n-3)+……+r^(n-2)*s+r^(n-1)(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)=(s^n-r^n)/(s-r)r+s=1,-rs=1的一解为s=(1+√5)/2,r=(1-√5)/2则F(n)=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}
水元素sl2023-05-24 07:48:231

斐波那契数列通项公式是怎样推导出来的

数学归纳法
铁血嘟嘟2023-05-24 07:48:222

用数学归纳法证明斐波那契数列公式

给你点资料,看完自然就会了! 斐波那契数列,“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年.籍贯大概是比萨).他被人称作“比萨的列昂纳多”.1202年,他撰写了《珠算原理》(Liber Abaci)一书.他是第一个研究了印度和 *** 数学理论的欧洲人.他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个 *** 老师的指导下研究数学.他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学. 斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21…… 这个数列从第三项开始,每一项都等于前两项之和.它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】 很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的. 【该数列有很多奇妙的属性】 比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887…… 还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1. 如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到. 如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值. 斐波那契数列的第n项同时也代表了 *** {1,2,...,n}中所有不包含相邻正整数的子集个数. 【斐波那契数列别名】 斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”. 斐波那契数列 一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来.如果所有兔都不死,那么一年以后可以繁殖多少对兔子? 我们不妨拿新出生的一对小兔子分析一下: 第一个月小兔子没有繁殖能力,所以还是一对; 两个月后,生下一对小兔民数共有两对; 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对; ------ 依次类推可以列出下表: 经过月数:0123456789101112 兔子对数:1123581321345589144233 表中数字1,1,2,3,5,8---构成了一个数列.这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项. 这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.) 【斐波那挈数列通项公式的推导】 斐波那契数列:1,1,2,3,5,8,13,21…… 如果设F(n)为该数列的第n项(n∈N+).那么这句话可以写成如下形式: F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 显然这是一个线性递推数列. 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2, X2=(1-√5)/2. 则F(n)=C1*X1^n + C2*X2^n ∵F(1)=F(2)=1 ∴C1*X1 + C2*X2 C1*X1^2 + C2*X2^2 解得C1=1/√5,C2=-1/√5 ∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】 通项公式的推导方法二:普通方法 设常数r,s 使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)] 则r+s=1, -rs=1 n≥3时,有 F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)] F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)] F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)] …… F(3)-r*F(2)=s*[F(2)-r*F(1)] 将以上n-2个式子相乘,得: F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)] ∵s=1-r,F(1)=F(2)=1 上式可化简得: F(n)=s^(n-1)+r*F(n-1) 那么: F(n)=s^(n-1)+r*F(n-1) = s^(n-1) + r*s^(n-2) + r^2*F(n-2) = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3) …… = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1) = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1) (这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和) =[s^(n-1)-r^(n-1)*r/s]/(1-r/s) =(s^n - r^n)/(s-r) r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2 则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} 【C语言程序】 main() { long fib[40] = {1,1}; int i; for(i=2;i
Ntou1232023-05-24 07:48:221

斐波那契数列是什么?

1、斐波那契数列斐波那契数列,又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,提出时间为1202年。2、递推数列递推数列是可以递推找出规律的数列,找出这个规律的通项式就是解递推数列。求递推数列通项公式的常用方法有:公式法、累加法、累乘法、待定系数法等共十种方法。3、Look-and-say 数列Look-and-say 数列是数学中的一种数列,它的名字就是它的推导方式:给定第一项之后,后一项是前一项的发音。4、帕多瓦数列帕多瓦数列是由帕多瓦总结而出的。它的特点为从第四项开始,每一项都是前面2项与前面3项的和。5、卡特兰数卡特兰数是组合数学中一个常出现在各种计数问题中的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名。参考资料来源:百度百科-斐波那契数列参考资料来源:百度百科-递推数列 参考资料来源:百度百科-Look-and-say 数列参考资料来源:百度百科-帕多瓦数列参考资料来源:百度百科-卡特兰数
无尘剑 2023-05-24 07:48:201

哪些数列是以斐波那契数列为首项?

1、斐波那契数列斐波那契数列,又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,提出时间为1202年。2、递推数列递推数列是可以递推找出规律的数列,找出这个规律的通项式就是解递推数列。求递推数列通项公式的常用方法有:公式法、累加法、累乘法、待定系数法等共十种方法。3、Look-and-say 数列Look-and-say 数列是数学中的一种数列,它的名字就是它的推导方式:给定第一项之后,后一项是前一项的发音。4、帕多瓦数列帕多瓦数列是由帕多瓦总结而出的。它的特点为从第四项开始,每一项都是前面2项与前面3项的和。5、卡特兰数卡特兰数是组合数学中一个常出现在各种计数问题中的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名。参考资料来源:百度百科-斐波那契数列参考资料来源:百度百科-递推数列 参考资料来源:百度百科-Look-and-say 数列参考资料来源:百度百科-帕多瓦数列参考资料来源:百度百科-卡特兰数
北有云溪2023-05-24 07:48:201

什么是递归?怎么用它来实现斐波那契数列?

如果一个函数在内部可以调用其本身,那么这个函数就是递归函数。 简单的说 递归就是函数的内部自己调用自己,这个函数就是递归函数。 递归函数不断的一遍又一遍的调用自己,效果类似于循环,同样也和循环有一样的特点,那就是怕死循环。 在递归中叫"栈溢出"错误(stack overflow),所以必须要加退出条件 return。 再来个栗子: 刚开始的我会把fn(n-1)这里写成 n+1 想当然的觉得 1 2 或者 2 3 这样的不也是一样吗 但是执行完发现显示的是栈溢出 到这我才发现我还是不理解递归的返回条件 于是我自己分析了一下: 发现了吗 没有条件的中断与返回 自己觉得就是求一下3的阶乘 但实际求的是从3开始的和3++的阶乘 而写成n-1 求的是从3开始 与3--的阶乘 一直求到有一个中断条件 n==1 返回了1为止 这样的话 可以在上限加一个中断返回值 这样的话 算的就是从2到5的阶乘结果是和n-1那个 fn(5)的值是一样的 值都是120 那么说到递归就自然而然的要说到斐波那契数列(兔子序列)了: 简单的说就是前两项相加的值等于后面那个数的值 1、1、2、3、5、8、13、21...... 要求:用户输入一个数字n就可以求出 这个数字对应的兔子序列的值 于是 自恃天才的我 想到了为什么不直接写 renturn fn(n-1)+fn(n)呢? 我输出了一下 又是栈溢出! 现实是啪啪的打脸 玛德制杖 自己推算一下 搜戴斯内... fn(3)算个没完没了 我们并没有终结它 在这里我用自己的语言 浅显的、简单的总结一下 正确的递归 要有初始值 还要明确结束值 递归的方向也要清楚 递归的方向就是中断的条件 就是结束值的方向 朝着中断的条件总不会错 就如同X轴 Y轴的折线图一样 比如上面那个阶乘 我的n*fn(n+1)的错误在于没有弄清楚方向 让它一直走一个向上的箭头 向上还没有封顶 它自然会栈溢出 。 再比如刚才这个斐波那契数列 我是让它在X轴水平向右无限延伸 水平方向我也没有设置中断 它也会栈溢出 但愿今晚的两杯酒饮料不至于让我在这说胡话 [苦笑]
bikbok2023-05-21 22:11:001

斐波那契数列取自哪本书

《算盘书》。美国数学会从1963 年起出版了以《斐波那契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果,斐波那契数列取自《算盘书》。《算盘书》 丢番图曾游历各国, 学习各地的数学并学会了 印度—阿拉伯数码, 于 1202年写成著名的《算盘书》。
苏萦2023-05-19 20:16:391

斐波那契数列Fb(n)的递归定义

应该不是要求编程吧?斐波纳契数列以如下被递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)。
无尘剑 2023-05-16 14:52:391