数列

高中数学的数列、导数、曲线方程这三大部分,最难的是哪个?

难者不会,会者不难。这东西无从比较谁更难
u投在线2023-06-03 14:30:596

36和63的最大公因数和最小公倍数列竖式?

36=4*963=7*9最大公因数是9.最小公倍数是4*7*9=252
陶小凡2023-05-31 17:01:122

把51分解质因数列竖式

51分解质因数列竖式: 3×17
bikbok2023-05-31 08:31:123

成百分比excel表格里的数列,我怎样换算成百分制

用sum()求和,再用当前的数除以这个和,最后把单元格格式设置成百分比。如果数据在A列,B1公式:=a1/sum(a$1:a$10)或=a1/sum(a:a),$是绝对地址会号,可以让公式移动时,地址不变。
水元素sl2023-05-29 09:46:361

4道百分数应用题,和一道百分数列式题

1.设乙班的人数为1,则甲班的人数为(1+0.25)=1.25乙班的人数比甲班人数少:0.25/1.25=0.2即百分之二十2.实际每月烧煤:240*(1-0.125)=2103.设全程为1千米,则汽车的速度是1/3千米每小时,这辆汽车行驶五分之三小时后走了全程:(3/5)*(1/3)=1/5=0.2即百分之二十4.设箱子里共有x个兵乓球x*(1-0.25-2/5)=91x=2605.1右五分之一: 1.21右十分之三:1.3123% 125% 128%
ardim2023-05-29 09:42:561

求6年级百分数列式计算题

(1)某工厂生产一批玩具,完成任务的五分之三后,又增加了280件,这样还需要做的玩具比原来的多10%.原来要做多少玩具?(请写出计算过程) (2)某校办工厂这个月生产本子的增值额为3万元.如果按增值额的17%交纳增值税,这个月应交纳增值税多少元?(请写出计算过程) (3)爸爸这个月的工资是2100元,按规定工资在1600元以上的部分应缴纳所得税,如果按5%的税率缴纳个人收入调节税,爸爸这个月应交纳税多少元?他实际收入多少元?(请写出计算过程)
此后故乡只2023-05-28 21:47:151

成百分比excel表格里的数列,我怎样换算成百分制

用sum()求和,再用当前的数除以这个和,最后把单元格格式设置成百分比。如果数据在A列,B1公式:=a1/sum(a$1:a$10)或=a1/sum(a:a),$是绝对地址会号,可以让公式移动时,地址不变。
韦斯特兰2023-05-26 22:22:531

秩和检验可以比较两组数列是否有差异么

可以,但是准确度很差。能用t检验的,就一定不要用秩和检验。
北营2023-05-26 13:01:411

等比数列收敛的条件是什么

等比级数若收敛,则其公比q的绝对值必小于1。故当n趋向于无穷时,等比数列求和公式中q的n次方趋于0(|q|<1),此时Sn=a1/(1-q)。q大于1时等比级数发散。
康康map2023-05-25 18:52:141

高数中的数列收敛充要条件是什么?关于发散与收敛的问题。急求,谢谢

这个数列是柯西列。或:这个数列的任一子列都收敛到同一个数。
瑞瑞爱吃桃2023-05-25 18:52:133

数列收敛的必要条件是什么?

数列收敛是设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a)。如果数列{Xn}收敛,那么该数列必定有界。无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。扩展资料:用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。函数不一定有解析式,同样数列也并非都有通项公式。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
bikbok2023-05-25 18:52:111

高数中的数列收敛充要条件是什么?关于发散与收敛的问题。急求,谢谢

1)数列收敛的基本定义设{Xn}为一已知数列,A是一个常数。如果对于任意给定的正数ε,总存在一个正整数N=N(ε),使得当n>N时,有|Xn-A|<ε,则称数列{Xn}当n趋于无穷时以A为极限,或称数列{Xn}收敛于A。2)夹挤定理如果有三个数列{Pn}{Xn}{Qn}。且当n足够大以后,满足条件Pn≤Xn≤Qn。如果当n趋于无穷时,{Pn}和{Qn}都收敛于A,那么数列{Xn}也收敛于A。3)单调有界原理任何单调(单调递增或递减)且有界的数列都收敛。扩展资料收敛数列的性质:有界性定义:设有数列Xn,若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件保号性如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。相互关系收敛数列与其子数列间的关系子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{}收敛于a,那么它的任一子数列也收敛于a。参考资料百度百科——收敛数列
小白2023-05-25 18:52:111

数列收敛有哪些条件?

若数列{an}的各项满足an≤an+1(an≥an+1),则称{an}为递增(递减)数列。递增数列和递减数列统称为单调数列。定理2.9(单调有界定理):在实数系中,有界的单调数列必有极限,且其极限就是它的上(下)确界.证:若{an}为有上界的递增数列. 由确界原理可知,{an}有上确界,记a=sup {an}. 则对ε>0,有{an}中的某一项aN,使得a-ε<aN.∵{an}递增,∴当n≥N时,有a-ε<aN≤an.又{an}有上界,∴对一切an,都有an≤a<a+ε.综上,当n≥N时,有a-ε<an <a+ε, ∴lim(n→∞)an=a.若{an}为有下界的递减数列. 由确界原理可知,{an}有下确界,记b=inf {an}. 则对ε>0,有{an}中的某一项aN,使得b+ε>aN.∵{an}递减,∴当n≥N时,有b+ε>aN≥an.又{an}有下界,∴对一切an,都有an≥b>b-ε.综上,当n≥N时,有b-ε>an >b+ε, ∴lim(n→∞)an=b.例:证明数列√2, √(2+√2) ,…√(2+√(2+…+√2) )(n个根号) …收敛,并求其极限.证:记an=√(2+√(2+…+√2) ) ,且a1=√2<2, 可设an<2,则有a_(n+1)=√(2+an )<√(2+2)=2,从而对一切n,有an<2,即{an}有界。又a1=√2>0,a2=√(2+a1 )>√2=a1>0,可设an>a_(n-1),即an-a_(n-1)>0;则a_(n+1)-an=√(2+an)-√(2+a_(n-1))=(an-a_(n-1))/(√(2+a_n)+√(2+a_(n-1)))>0,∴{an}递增.由单调有界定理可知,数列{an}有极限,记为a.由a_(n+1)^2=2+an,对两边取极限得a^2=2+a,解得a= -1或a=2. 由数列极限的保不等式性知,a= -1不合理,舍去.∴lim( n→∞)√(2+√(2+…+√2)) =2.定理2.10(柯西收敛准则):数列{an}收敛的充要条件是:对任何ε>0,存在正整数N,使得当n,m>N时,有|an-am|<ε.柯西准则的条件称为柯西条件.例:证明:任一无限十进制小数a=0.b1b2…bn…的n位不足近似(n=1,2,…)所组成的数列:b1/10,b1/10+b2/10^2 ,…,b1/10+b2/10^2 +…+bn/10^n ,…满足柯西条件(从而必收敛),其中bk为0,1,2,…,9中的一个数,k=1,2,….证:记an=b1/10+b2/10^2 +…+bn/10^n , 不妨设n>m,则对任给的ε>0,要使|an-am|=b_(m+1)/10^(m+1) +b_(m+2)/10^(m+2) +…+bn/10^n≤9/10^(m+1) (1+1/10+…+1/10^(n-m-1) )=9/10^(m+1)((1-1/10^(n-m))/(1-1/10))=1/10^m (1-1/10^(n-m))<1/10^m <1/m<ε=1/(1/ε),只要取N=1/ε,则对一切n>m>N,有|an-am|<ε. 可见该数列满足柯西条件.
LuckySXyd2023-05-25 18:52:111

解释为什么不存在能判定所有级数是否绝对收敛的比较数列

简单的说级数是指无限数列的求和(或是部分和的极限),有的级数1+1+1+1+。。。就没有极限,但1,1,1,1,1,1。。。。。作为数列是有极限的,是1第二个问题一两句话解释不清,因为从有限项过渡到无限项时很多经验都失效了,建议楼主多看几遍高数书,多做题就容易理解了
Chen2023-05-25 18:52:032

该图片求级数 用等比数列级数方法 和几何数列级数方法都可以啊 为什么答案不一样

“等比数列求和”针对于有限项级数求和,n取值在(1,+∞),n∈Z,上是无限项级数求和,故只能使用几何级数法
余辉2023-05-25 18:52:033

数列nAn收敛,无穷级数∑n(An-An-1)收敛,证无限级数∑An也收敛

级数(n+1)(u[n+1]-u[n])收敛,那么前n项和(部分和)Sn" = 2(u[2]-u[1]) +3(u[3]-u[2])+。。。+(n+1)(u[n+1]-u[n]) = -2u[1]-u[2]-u[3]-。。。-u[n]+(n+1)u[n+1] = -u[1] -Sn + (n+1)u[n+1] 那么当zhin→∞时, S" = -u[1] - S + 0 其中0为nu[n]的极限。 故un收敛。按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an 项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。扩展资料等差数列的其他推论:① 和=(首项+末项)×项数÷2;②项数=(末项-首项)÷公差+1;③首项=2x和÷项数-末项或末项-公差×(项数-1);④末项=2x和÷项数-首项;⑤末项=首项+(项数-1)×公差;⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。
左迁2023-05-25 18:52:013

级数是数列无限多项的和吗?有限多项的和还算是级数吗?

定义是这样说的,级数是一个数列按顺序所作的和;有限多项的和可以算是级数,此时可视为后面加上了无限多个 0。
瑞瑞爱吃桃2023-05-25 18:52:001

高等数学中,求无限数列极限,具体有哪几种方法?

看不懂
kikcik2023-05-25 18:52:005

数列nAn收敛,无穷级数∑n(An-An-1)收敛,证无限级数∑An也收敛

简单计算一下即可,答案如图所示
小菜G的建站之路2023-05-25 18:51:592

数列nAn收敛,无穷级数∑(An-An-1)收敛,证无限级数∑An收敛。速度求思路~

没有具体一般向表达式,只能从收敛定义出发。 应用柯西审敛原理。用E-N 语言,就可以判定级数收敛。无穷级数∑(An-An-1)收敛,用柯西E-N 语言表达,而后通过放缩法,可以得到E/2,这样就可以判定∑An收敛。
Jm-R2023-05-25 18:51:592

无穷级数和数列到底有什么区别呀,我觉得就是数列。

数列是有限项,无穷级数是无限项,就相当于数列中的n趋于无穷大
wpBeta2023-05-25 18:51:591

利用极限存在的准则证明数列√2,√2+√2,√2+√2+√2,…的极限存在

完整过程如下: 证明:设数列为{An},显然A(n+1)=√(2+An)>0 ①:有界.数学归纳法A1<2,设Ak<2,则A(k+1)=√(2+Ak)<√(2+2)=2成立 故0<An<2,有界; ②:单调.A(n+1)=√(2+An)>√(An+An)=√2An>An 故A(n+1)>An,单调增; 由①②,根据单调有界数列极限判定准则,知该数列极限存在,设为A,等式两侧同取极限: √(2+A)=A.解出x是2或者-1(<0,舍去,此处用到了极限保号性). 因此极限就是2. 证明极限存在才是这个题的关键.
左迁2023-05-25 18:51:511

如何用极限证明数列极限的存在性?

当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x。时的极限。极限存在准则:有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A。不但能证明极限存在,还可以求极限,主要用放缩法。2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。3.柯西准则。数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。
左迁2023-05-25 18:51:501

利用极限存在的准则证明数列√2,√2+√2,√2+√2+√2,…的极限存在

完整过程如下:证明:设数列为{An},显然A(n+1)=√(2+An)>0①:有界。数学归纳法A1<2,设Ak<2,则A(k+1)=√(2+Ak)<√(2+2)=2成立 故0<An<2,有界;②:单调。A(n+1)=√(2+An)>√(An+An)=√2An>An 故A(n+1)>An,单调增;由①②,根据单调有界数列极限判定准则,知该数列极限存在,设为A,等式两侧同取极限:√(2+A)=A。解出x是2或者-1(<0,舍去,此处用到了极限保号性)。因此极限就是2. 证明极限存在才是这个题的关键。
九万里风9 2023-05-25 18:51:501

数列极限的存在准则是什么?

单调有界准则夹逼准则
豆豆staR2023-05-25 18:51:492

利用极限存在的准则证明数列√2,√2+√2,√2+√2+√2,…的极限存在

完整过程如下: 证明:设数列为{An},显然A(n+1)=√(2+An)>0 ①:有界.数学归纳法A1<2,设Ak<2,则A(k+1)=√(2+Ak)<√(2+2)=2成立 故0<An<2,有界; ②:单调.A(n+1)=√(2+An)>√(An+An)=√2An>An 故A(n+1)>An,单调增; 由①②,根据单调有界数列极限判定准则,知该数列极限存在,设为A,等式两侧同取极限: √(2+A)=A.解出x是2或者-1(<0,舍去,此处用到了极限保号性). 因此极限就是2. 证明极限存在才是这个题的关键.
瑞瑞爱吃桃2023-05-25 18:51:491

数列极限的存在准则有哪些?

极限存在准则即柯西极限存在准则,又叫柯西收敛原理,是用来判断某个式子是否收敛的充要条件(不限于数列),主要应用在数列、数项级数、函数、反常积分、函数列和函数项级数,每个方面都对应一个柯西准则。极限存在准则具体有两个,分别为:1、单调有界准则。如单调递增又有上界者,或者单调递减又有下界者。2、夹逼准则。如能找到比目标数列或者函数大而有极限的数列或函数并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。
苏萦2023-05-25 18:51:482

数列极限的定义

数列极限的含义是只要下标n充分大,An就充分接近A,即|An-A|充分小这样看来,(2)是正确的,当然应该将m改成n才行;至于(1)似乎没说清楚,数列B是什么东西,无法判断
大鱼炖火锅2023-05-25 18:51:353

数列极限的定义怎么理解

  常考数列极限定义怎么去理解?正在学习这个知识点的考生可以看看,下面我为你准备了“数列极限的定义怎么理解”,仅供参考,祝大家阅读愉快! 数列极限的定义怎么理解   极限就是当n无限增大时,an无限接近某个常数A;   也就是n足够大时,|an-A|可以任意小,小于我给定的正数E;   也就是当n大于某个正整数N时,|an-A|可以小于给定的正数E;   即:对于任意E>0,存在正整数N,当n>N时,|an-A|。   拓展阅读:数列极限定义与性质   数列极限定义   定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式|Xn - a|<ε都成立,那么就成常数a是数列|Xn|的极限,或称数列|Xn|收敛于a。记为lim Xn = a 或Xn→a(n→∞)。   数列极限的性质   1.唯一性:若数列的极限存在,则极限值是唯一的;   2.改变数列的有限项,不改变数列的极限。   几个常用数列的极限:   an=c 常数列 极限为c;   an=1/n 极限为0;   an=x^n 绝对值x小于1 极限为0。
阿啵呲嘚2023-05-25 18:51:341

阿贝尔求和公式是什么?怎么用?关于数列的

阿贝尔公式就是恒等式a1b1+a2b2+a3b3+a4b4+a5b5=a1(b1-b2)+(a1+a2)(b2-b3)+(a1+a2+a3)(b3-b4)+(a1+a2+a3+a4)(b4-b5)+(a1+a2+a3+a4+a5)b5。这是高等数学里面很重要的一个公式,当然这里不只有五个数,其个数还可推广至n。
阿啵呲嘚2023-05-25 12:15:552

阿贝尔求和公式是什么?怎么用?关于数列的

阿贝尔公式就是恒等式a1b1+a2b2+a3b3+a4b4+a5b5=a1(b1-b2)+(a1+a2)(b2-b3)+(a1+a2+a3)(b3-b4)+(a1+a2+a3+a4)(b4-b5)+(a1+a2+a3+a4+a5)b5。这是高等数学里面很重要的一个公式,当然这里不只有五个数,其个数还可推广至n。
gitcloud2023-05-25 12:15:532

C++类中为什么只有构造函数和拷贝构造函数有参数列表?

因为只有这两个函数能用于构造类对象的初始化,而参数列表只有初始化时才能用到,其他函数都是构造完对象之后才根据调用执行的
九万里风9 2023-05-24 07:49:012

为什么数列是特殊的函数

一般的函数的自变量的取值都是连续的而数列的取值范围只能是正数,是某一条函数的一部分对于同样的一道题Y=X+1AN=N+1X的取值就是正无穷到负无穷,函数的图形是一条直线而N的取值就是1,2,3...N,函数的图形是上面那条直线上的散点这样说会不会太复杂?能理解吗?
拌三丝2023-05-24 07:48:374

为什么数列是特殊的函数

因为数列可以看做自变量为项数n,因变量为数列第n项这样的函数。即an=f(n)这种思路有时候解题时会有帮助我再补充下吧,恋恋星辰间的意思和Skeeter2是一样的,就是说常见的函数,例如y=x+1,自变量x的取值是连续的,整个R。画出图像的话是一条连续的直线。但是把数列看做函数的话,自变量是正整数1,2,3……,因变量是a1,a2,a3……要画出这个图像的话,只能是一个一个的孤立的点。比如等差数列的前n项和构成的数列S1,S2,S3……可能关于n具有二次函数形式的解析式,但是其实这个“数列”函数只包括这个二次函数的抛物线上的一些孤立的点,这些点的横坐标是全体正整数
阿啵呲嘚2023-05-24 07:48:351

怎么全面理解数列是特殊的函数

数列是项数n与项值an对应的函数。这种对应与函数的定义是相同的。而但数列的定义域为正整数的集合,这与一般函数的定义域不相同,故数列是特殊的函数
九万里风9 2023-05-24 07:48:351

请问斐波那契数列如何递推?

斐波那契数列是由是意大利数学家列昂纳多·斐波那契命名的数列. 1,1,2,3,5,8. 递推方法:前两项的和就是第三项的值. 通项公式:(1/根号5)*[{(1+根号5)/2}^n-{(1-根号5)/2}^n]
康康map2023-05-24 07:48:231

三角形数列递推公式

数列1 3 6 10 15 21…的递推公式是an=an-1 + nan-a(n-1)= na(n-1)-a(n-2)= n-1a(n-2)-a(n-3)= n-2a(n-3)-a(n-4)= n-3.a3-a2= 3a2-a1= 2a1= 1an=1+2+3+.+(n-3)+(n-2+)+(n-1)+n=n(n+1)/2
大鱼炖火锅2023-05-24 07:48:231

斐波那契数列通项公式是怎么得来的???

【斐波那挈数列通项公式的推导】斐波那契数列:1,1,2,3,5,8,13,21……如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:F(1)=F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3)显然这是一个线性递推数列。通项公式的推导方法一:利用特征方程线性递推数列的特征方程为:X^2=X+1解得X1=(1+√5)/2,X2=(1-√5)/2.则F(n)=C1*X1^n+C2*X2^n∵F(1)=F(2)=1∴C1*X1+C2*X2C1*X1^2+C2*X2^2解得C1=1/√5,C2=-1/√5∴F(n)=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}【√5表示根号5】通项公式的推导方法二:普通方法设常数r,s使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]则r+s=1,-rs=1n≥3时,有F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]……F(3)-r*F(2)=s*[F(2)-r*F(1)]将以上n-2个式子相乘,得:F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]∵s=1-r,F(1)=F(2)=1上式可化简得:F(n)=s^(n-1)+r*F(n-1)那么:F(n)=s^(n-1)+r*F(n-1)=s^(n-1)+r*s^(n-2)+r^2*F(n-2)=s^(n-1)+r*s^(n-2)+r^2*s^(n-3)+r^3*F(n-3)……=s^(n-1)+r*s^(n-2)+r^2*s^(n-3)+……+r^(n-2)*s+r^(n-1)*F(1)=s^(n-1)+r*s^(n-2)+r^2*s^(n-3)+……+r^(n-2)*s+r^(n-1)(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)=(s^n-r^n)/(s-r)r+s=1,-rs=1的一解为s=(1+√5)/2,r=(1-√5)/2则F(n)=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}
水元素sl2023-05-24 07:48:231

求数列通项公式的方法大全

构造法求数列的通项公式在数列求通项的有关问题中,经常遇到即非等差数列,又非等比数列的求通项问题,特别是给出的数列相邻两项是线性关系的题型,在老教材中,可以通过不完全归纳法进行归纳、猜想,然后借助于数学归纳法予以证明,但新教材中,由于删除了数学归纳法,因而我们遇到这类问题,就要避免用数学归纳法。这里我向大家介绍一种解题方法——构造等比数列或等差数列求通项公式。构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助模型,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉.供参考。1、构造等差数列或等比数列由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法.例1设各项均为正数的数列的前n项和为Sn,对于任意正整数n,都有等式:成立,求的通项an.解:,∴,∵,∴.即是以2为公差的等差数列,且.∴例2数列中前n项的和,求数列的通项公式.解:∵当n≥2时,令,则,且是以为公比的等比数列,∴.2、构造差式与和式解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式.例3设是首项为1的正项数列,且,(n∈N*),求数列的通项公式an.解:由题设得.∵,,∴.∴.例4数列中,,且,(n∈N*),求通项公式an.解:∵∴(n∈N*)3、构造商式与积式构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法.例5数列中,,前n项的和,求.解:,∴∴4、构造对数式或倒数式有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.例6设正项数列满足,(n≥2).求数列的通项公式.解:两边取对数得:,,设,则是以2为公比的等比数列,.,,,∴例7已知数列中,,n≥2时,求通项公式.解:∵,两边取倒数得.可化为等差数列关系式.∴
真颛2023-05-24 07:48:232

倍数递推数列

数列递推公式就是数列中某一项与其前一项或前几项的一个关系,一般情况都是与前一项的关系。有了递推公式之后,只要知道数列中的首项或某一项,整个数列就确定了。
拌三丝2023-05-24 07:48:231

数列递推公式形如二次函数形式的如何求通项

它的通项只能是一个递推公式,如下书写即可:1当n=1时an=a^2(n-1),当n>1时给个资料你看,你会发现这题本法已是最简的表示法了简化形式xn+1=Pxn2+Q(P≠0)下面只讨论这个形式,暂时只研究P>0的情况.1§Q>0,这个非常难,不幸这个递推数列方程没有解析解(即无法通过初等函数来表达,要用无穷级数来表达,用级数表达难度很大,而其本身失去了简化运算的意义.)2§Q=0,这个形式最简单.两边取对数∴lnxn+1=lnP+2lnxn(xn>0)lnxn+1+lnP=ln(Pxn+1)=2ln(Pxn)注意:若x11)xn=x1(n=1)△3§Q0)
北营2023-05-24 07:48:231

高中数列八个递推式,要详解,有例子分析的加分

这讲不清楚的呀,不过方法有很多的,你只能看书呀,你把问题发上来吧基本数列是等差数列和等比数列一、等差数列一个等差数列由两个因素确定:首项a1和公差d.得知以下任何一项,就可以确定一个等差数列(即求出数列的通项公式):1、首项a1和公差d2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)3、任意两项a(n)和a(m),n,m为已知数等差数列的性质:1、前N项和为N的二次函数(d不为0时)2、a(m)-a(n)=(m-n)*d3、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)也是等差数列例题1:已知a(5)=8,a(9)=16,求a(25)解: a(9)-a(5)=4*d=16-8=8a(25)-a(5)=20*d=5*4*d=40a(25)=48 例题2:已知a(6)=13,a(9)=19,求a(12)解:a(6)、a(9)、a(12)成等差数列a(12)-a(9)=a(9)-a(6)a(12)=2*a(9)-a(6)=25二、等比数列一个等比数列由两个因素确定:首项a1和公差d.得知以下任何一项,就可以确定一个等比数列(即求出数列的通项公式):1、首项a1和公比r2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)3、任意两项a(n)和a(m),n,m为已知数等比数列的性质:1、a(m)/a(n)=r^(m-n)2、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)是等比数列3、等比数列的连续m项和也是等比数列即b(n)=a(n)+a(n+1)+...+a(n+m-1)构成的数列是等比数列。三、数列的前N项和与逐项差1、如果数列的通项公式是关于N的多项式,最高次数为P,则数列的前N项和是关于N的多项式,最高次数为P+1。(这与积分很相似)2、逐项差就是数列相邻两项的差组成的数列。如果数列的通项公式是关于N的多项式,最高次数为P,则数列的逐项差的通项公式是关于N的多项式,最高次数为P-1。(这与微分很相似)例子:1,16,81,256,625,1296 (a(n)=n^4)15,65,175,369,67150,110,194,30260,84,10824,24从上例看出,四次数列经过四次逐项差后变成常数数列。等比数列的逐项差还是等比数列四、已知数列通项公式A(N),求数列的前N项和S(N)。这个问题等价于求S(N)的通项公式,而S(N)=S(N-1)+A(N),这就成为递推数列的问题。解法是寻找一个数列B(N),使S(N)+B(N)=S(N-1)+B(N-1)从而S(N)=A(1)+B(1)-B(N)猜想B(N)的方法:把A(N)当作函数求积分,对得出的函数形式设待定系数,利用B(N)-B(N-1)=-A(N)求出待定系数。例题1:求S(N)=2+2*2^2+3*2^3+...+N*2^N解:S(N)=S(N-1)+N*2^NN*2^N积分得(N*LN2-1)*2^N/(LN2)^2因此设B(N)=(PN+Q)*2^N则 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N(P*N+P+Q)/2*2^N=-N*2^N因为上式是恒等式,所以P=-2,Q=2B(N)=(-2N+2)*2^NA(1)=2,B(1)=0因此:S(N)=A(1)+B(1)-B(N)=(2N-2)*2^N+2例题2:A(N)=N*(N+1)*(N+2),求S(N)解法1:S(N)为N的四次多项式,设:S(N)=A*N^4+B*N^3+C*N^2+D*N+E利用S(N)-S(N-1)=N*(N+1)*(N+2)解出A、B、C、D、E解法2:S(N)/3!=C(3,3)+C(4,3)+...C(N+2,3) =C(N+3,4)S(N)=N*(N+1)*(N+2)*(N+3)/4
苏萦2023-05-24 07:48:221

一阶、二阶线性递推数列是什么内容?

一阶线性递推是指x(n+1)=f(xn),其中 f 是一个线性函数,比如 x(n+1)=axn+b 二阶线性是指x(n+1)=f(xn)+g(x(n-1)),其中f和g都是线性函数. k阶的意思就是等式右端涉及到数列的k层数据,k是数列的层数 线性是指 所有的变量都是一次的. 如果本题有什么不明白的可以追问, 可以点击我的头像向我求助,请谅解.您的支持是我前进的动力,
墨然殇2023-05-24 07:48:221

递推数列的等和数列

“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。对一个数列,如果其任意的连续k(k≥2)项的和都相等,我们就把此数列叫做等和数列 an=Sn-Sn-1 (n≥2)累和法(an-an-1=... an-1 - an-2=... a2-a1=...将以上各项相加可得an)。逐商全乘法(对于后一项与前一项商中含有未知数的数列)。化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。 在等差数列中,总有Sn S2n-Sn S3n-S2n2(S2n-Sn)=(S3n-S2n)+Sn即三者是等差数列,同样在等比数列中。三者成等比数列不动点法(常用于分式的通项递推关系)不动点法求数列通项对于某些特定形式的数列递推式可用不动点法来求
FinCloud2023-05-24 07:48:221

老师给我们讲了一阶递推数列的通项公式求法!怎样理解“一阶”?“一阶递推数列”又是什么?

一阶就是说是一次的,比如,y=3X+5,这就是一阶的,An=A1+(N-1)d,这也是一阶的. 一阶递推数列,比如说:2 4 6 8 10 .2n. 这就是个一阶递推数列. 希望楼主搞懂了
瑞瑞爱吃桃2023-05-24 07:48:221

斐波纳契递推数列:a1=1,an=2(a1+a2+...+an-1) ,求通项公式。

当n>=2时, an=2Sn-1,a(n+1)=2Sn, 所以,由an=Sn-(Sn-1)知,(an+1)=3an,数列{ an }公比为3,an=3的n-1次方,i当n=1时,a1=1,故 an=3的n-1次方
可桃可挑2023-05-24 07:48:223

高中数学数列递推公式

将所有等式相加等式左边为A2+.........+A(n-1)+A(n)右边为A1+A2+.........+A(n-1)+f(1)+........+f(n-1)左右两边同时消去A2+.........+A(n-1)就得到A(n)=A1+f(1)+........+f(n-1)
u投在线2023-05-24 07:48:221

斐波那契数列通项公式是怎样推导出来的

数学归纳法
铁血嘟嘟2023-05-24 07:48:222

用数学归纳法证明斐波那契数列公式

给你点资料,看完自然就会了! 斐波那契数列,“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年.籍贯大概是比萨).他被人称作“比萨的列昂纳多”.1202年,他撰写了《珠算原理》(Liber Abaci)一书.他是第一个研究了印度和 *** 数学理论的欧洲人.他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个 *** 老师的指导下研究数学.他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学. 斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21…… 这个数列从第三项开始,每一项都等于前两项之和.它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】 很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的. 【该数列有很多奇妙的属性】 比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887…… 还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1. 如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到. 如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值. 斐波那契数列的第n项同时也代表了 *** {1,2,...,n}中所有不包含相邻正整数的子集个数. 【斐波那契数列别名】 斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”. 斐波那契数列 一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来.如果所有兔都不死,那么一年以后可以繁殖多少对兔子? 我们不妨拿新出生的一对小兔子分析一下: 第一个月小兔子没有繁殖能力,所以还是一对; 两个月后,生下一对小兔民数共有两对; 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对; ------ 依次类推可以列出下表: 经过月数:0123456789101112 兔子对数:1123581321345589144233 表中数字1,1,2,3,5,8---构成了一个数列.这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项. 这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.) 【斐波那挈数列通项公式的推导】 斐波那契数列:1,1,2,3,5,8,13,21…… 如果设F(n)为该数列的第n项(n∈N+).那么这句话可以写成如下形式: F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 显然这是一个线性递推数列. 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2, X2=(1-√5)/2. 则F(n)=C1*X1^n + C2*X2^n ∵F(1)=F(2)=1 ∴C1*X1 + C2*X2 C1*X1^2 + C2*X2^2 解得C1=1/√5,C2=-1/√5 ∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】 通项公式的推导方法二:普通方法 设常数r,s 使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)] 则r+s=1, -rs=1 n≥3时,有 F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)] F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)] F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)] …… F(3)-r*F(2)=s*[F(2)-r*F(1)] 将以上n-2个式子相乘,得: F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)] ∵s=1-r,F(1)=F(2)=1 上式可化简得: F(n)=s^(n-1)+r*F(n-1) 那么: F(n)=s^(n-1)+r*F(n-1) = s^(n-1) + r*s^(n-2) + r^2*F(n-2) = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3) …… = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1) = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1) (这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和) =[s^(n-1)-r^(n-1)*r/s]/(1-r/s) =(s^n - r^n)/(s-r) r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2 则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} 【C语言程序】 main() { long fib[40] = {1,1}; int i; for(i=2;i
Ntou1232023-05-24 07:48:221

数列an从第三项起任意一项等于前两项的和 a1=1 a2=2

an(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}具体证明如下:通项公式的推导方法一:利用特征方程线性递推数列的特征方程为:X^2=X+1解得X1=(1+√5)/2, X2=(1-√5)/2.则F(n)=C1*X1^n + C2*X2^n∵F(1)=F(2)=1∴C1*X1 + C2*X2C1*X1^2 + C2*X2^2解得C1=1/√5,C2=-1/√5∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】通项公式的推导方法二:普通方法设常数r,s使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]则r+s=1, -rs=1n≥3时,有F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]……F(3)-r*F(2)=s*[F(2)-r*F(1)]将以上n-2个式子相乘,得:F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]∵s=1-r,F(1)=F(2)=1上式可化简得:F(n)=s^(n-1)+r*F(n-1) 那么:F(n)=s^(n-1)+r*F(n-1)= s^(n-1) + r*s^(n-2) + r^2*F(n-2)= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)……= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)=(s^n - r^n)/(s-r)r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
FinCloud2023-05-24 07:48:221

递推数列求通项式

解: 据题意,4种尺寸披萨的价格分别是 8元 10.6元 14元 18.2元,可以看成是一个数列 a₁ a₂ a₃ a₄a₁=8, a₂=10.6, a₃=14, a₄=18.2 .....................为了得出递推公式,试着将a₂、a₃、a₄变化变化,用a₁表示出来: a₂=10.6=8+2.6=a₁+2.6a₃=14=10.6+2.6+0.8=(a₁+2.6)+2.6+0.8=a₁+2.6×2+0.8a₄=18.2=14+4.2=(a₁+2.6×2+0.8)+4.2=a₁+2.6×2+0.8+(2.6+0.8+0.8)=a₁+2.6×3+0.8×3=a₁+(2.6+0.8)×3=a₁+3.4×3=a₁+3.4×(4-1)由此可以推得 an=a₁+3.4×(n-1)设 n-1=p, 这个p表示第n种尺寸与第一种尺寸相差的数目,设 第n种尺寸为 k寸。 因为第一种尺寸是22寸,每两个相邻尺寸相差8寸, 所以, p=(k-22)/8, 所以 an=a₁+3.4p=a₁+3.4×(k-22)/8=a₁+1.7×(k-22)/4。改用披萨尺寸(k寸)与第n种尺寸的价格(设为y元)来表示,就是:Y=8+1.7×(k-22)/4 答: 披萨尺寸(k)与 价格(y)的关系公式是 y=8+1.7×(k-22)/4 。
无尘剑 2023-05-24 07:48:221

急求一道关于递推数列问题

f(n-2)=f(n-1-1)那么f(n)=(n-1).[f(n-1)+f(n-1-1)] =(n-1).[f(n-1).[1+f(-1)]]到这一步之后的应该会做了吧,把它稍微的变变形就可以求出来了!~
九万里风9 2023-05-24 07:48:222

什么是二阶递推?数列的

所谓二阶递推数列,就是已知前两项(一般都是),然后给出连续三项的之间的关系,然后让你确定通项公式。最熟悉的,最简单的二阶递推数列:这里的an是等差数列。还有就是斐波拉契数列,1,1,2,3,5,8……。高中阶段考试一般不作要求,如果考察的话,会是简化的,或者给以构造新数列提示的类型。在竞赛中有要求。
meira2023-05-24 07:48:221

数列的递推公式有哪几种? 数列的递推公式有哪几种? 递推公式的所有类型~能举几个例子更好~

1) 分数类的可以用.裂项求和 例题 1/1*2+1/2*3+1/3*14.1/n(n+1) =1-1/2+1/2-1/3+..+1/n-1/n+1 =n/n+1 只要是分式数列求和基本可以采用裂项法 裂项的方法是用分母中较小因式的倒数减去较大因式的倒数,通分后与原通项公式相比较就可以得到所需要的常数 2) 叠加法 1 3 6 10 15 .的通式是什么 a2-a1=2 a3-a2=3 a4-a3=4 a5-a4=5 3) an= a6-a5=6 .. an-a(n-1)=n a2-a1+(a3-a2)+(a4-a3)+(a5-a4)+(a6-a5)+..+(an-a(n-1)) =2+3+4+..+n an-a1=(n+2)(n-1)/2 an=(n^2+n)/2 3) 公式法 Sn=an^2+bn an=Sn-S(n-1) 例: a1=3 Sn=n^2+2n S(n-1)=(n-1)^2+2(n-1) an=2n+1, 4)拼凑法 an=3a(n-1)+2 (an+1)=3(a(n-1)+1) (an+1)/(a(n-1)+1)=3 an+1是个等比数列, 如: an=(a(n-1)/(2a(n-1)+2) 1/an=(2a(n-1)+2)/a(n-1) =2+2/a(n-1) (1/an+2)=2(1/a(n-1)+2) ((1/an)+2)是等比数列 还有很多==递推方法
Chen2023-05-24 07:48:221

高中数学~由数列递推式求通项

解:a(n+1)=1/[2-an]===>[1/a(n+1)]=2-an.===>[1/a(n+1)]-1=1-an.===>[1-a(n+1)]/a(n+1)=1-an.===>a(n+1)/[1-a(n+1)]=1/(1-an)===>[1/1-a(n+1)]-1/(1-an)=1.===>1/[1-an]=[1/(1-a1)]+(n-1).===>an=[(n-1)(1-a1)+a1]/[n-a1(n-1)]
大鱼炖火锅2023-05-24 07:48:224

高一数学【求数列1 2 4 8 16…的通项公式】

2^(n-1)
韦斯特兰2023-05-24 07:48:215

求递推数列通项公式的常用方法

形如:a(n+1)=(aan+b)/(can+d),a,c不为0的分式递推式都可用不动点法求。当f(x)=x时,x的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。典型例子:a(n+1)=(a(an)+b)/(c(an)+d)简单地说就是在递推中令an=x代入a(n+1)也等于x然后构造数列.(但要注意,不动点法不是万能的,有的递推式没有不动点,但可以用其他的构造法求出通项;有的就不能求出)令x=(ax+b)/(cx+d)即cx2+(d-a)x-b=0令此方程的两个根为x1,x2,若x1=x2则有1/(a(n+1)-x1)=1/(an-x1)+p其中p可以用待定系数法求解,然后再利用等差数列通项公式求解。若x1≠x2则有(a(n+1)-x1)/(a(n+1)-x2)=q((an-x1)/(an-x2)其中q可以用待定系数法求解,然后再利用等比数列通项公式求解。【注】形如:a(n+1)=(aan+b)/(can+d),a,c不为0的分式递推式都可用不动点法求。让a(n+1)=an=x,代入化为关于x的二次方程(1)若两根x1不等于x2,有{(an-x1)/(an-x2)}为等比数列,公比由两项商求出(2)若两根x1等于x2,有{1/(an-x1)}为等差数列,公差由两项差求出若无解,就只有再找其他方法了。并且不动点一般只用于分式型上下都是一次的情况,如果有二次可能就不行了。例1:在数列{an}中,a(n+1)=(2an+8)/an,a1=2,求通项【解】a(n+1)=(2an+8)/an,a(n+1)=2+8/an令an=x,a(n+1)=xx=2+8/xx^2-2x-8=0x1=-2,x2=4{(an-4)/(an+2)}为等比数列令(an-4)/(an+2)=bnb(n+1)/bn=[(a(n+1)-4)/(a(n+1)+2)]/[(an-4)/(an+2)]=-1/2b(n+1)=(-1/2)bnb1=-1/2bn=(-1/2)^n=(an-4)/(an+2)an=[4+2*(-1/2)^n]/[1-(-1/2)^n],n>=1例2:a1=1,a2=1,a(n+2)=5a(n+1)-6an,【解】特征方程为:y²=5y-6那么,m=3,n=2,或者m=2,n=3于是,a(n+2)-3a(n+1)=2[a(n+1)-3an](1)a(n+2)-2a(n+1)=3[a(n+1)-2an](2)所以,a(n+1)-3a(n)=-2^n(3)a(n+1)-2a(n)=-3^(n-1)(4)消元消去a(n+1),就是an,an=-3^(n-1)+2^n.
CarieVinne 2023-05-24 07:48:212

等差数列的递推公式是什么?

An=A1+(n-1)dAn是数列第n项A1是数列第一项n是项数d是公差。或者An=A(n-1)+dA(n-1)表示数列第(n-1)项的值
FinCloud2023-05-24 07:48:212

请问,数列x,y,z的通项公式是多少?

方程y"+y=0的通解为:y=C1cosx+C2sinx具体回答如下:特征方程:r+1=0可以解得:r1、2=±i所以通解为:y=C1cosx+C2sinx 所以答案是:y=C1cosx+C2sinx特征方程的高阶递推:对于更高阶的线性递推数列,只要将递推公式中每一个xn换成x,就是它的特征方程。最后我们指出。上述结论在求一类数列通项公式时固然有用,但将递推数列转化为等比(等差)数列的方法更为重要。如对于高阶线性递推数列和分式线性递推数列,我们也可借鉴前面的参数法,求得通项公式。
墨然殇2023-05-24 07:48:211

递推和数列

1+2=3 2+3=5 3+5=8 5+8=13 二项递推和数列 后一个数等于前两个数之和 8后面是13
陶小凡2023-05-24 07:48:211

平方递推数列

(1)b(n+1)=2a(n+1)+1=4[a(n)]^2+4a(n)+1=[2a(n)+1]^2=[b(n)]^2 {bn}是平方递推数列.(2)b(n)=[b(n-1)]^2=[b(n-4)]^4=…=[b(1)]^[2^(n-1)] 而:b(1)=2a(1)+1=5 ∴b(n)=5^[2^(n-1)] ∴a(n)={5^[2^(n-1)]-1}/2 Tn=5^[1+2+4+…+2^(n-1)]=5^(2^n-1).(3)用对数换底公式:logab=lnb/lna: Cn=logb(n)Tn=lnTn/lnb(n)=(2^n-1)/2^(n-1)=2-(1/2)^(n-1) Sn=2n-2+(1/2)^(n-1); Sn=2n-2+(1/2)^(n-1)>2008 考虑到1≥(1/2)^(n-1)>0 于是2n-2≥2008 n最小1003.
肖振2023-05-24 07:48:211

k阶递推数列的解?

要系统的了解K阶线性递推数列的解法,建议去查一下“差分方程”和“Z变换”的知识。如果你能掌握这些知识,那不管什么样的K阶递推数列都能搞定的。它的大体思路是这样的:a(n+k)=b1a(n+k-1)+b2a(n+k-2)+...+bnan称为差分方程。把它进行Z变换,变换时要用到a(1)到a(k)这k个初值。(这k个初值肯定是知道的,因为确定数列除了递推公式之外,必须还要有前K项的值才行)经过Z变换后,就是把数列“投影到另一个域中”,而在这个新的域里,数列元素之间的关系不再是“递推”,而会变得异常简单。我们就在这个新的域中进行运算处理,他一定能分解为“固定式子的加权和”。最后,这些“固定式子”都是能很简单的反变换到原来的域中的。我们只要把它们都变回到原来的域中,就得到通向公式了。******************************************这种方法的精髓在于借助一个新的域来做桥梁。大哥不是很恰当的比喻:我有电脑配件,但是不会组装。我就把它们送到电脑维修点,组装对于维修人员来说轻而易举,等他们吧电脑装好了再送还给我。
小菜G的建站之路2023-05-24 07:48:211

递推数列 1 , 1 , 2 , 5 , 27, 后面是什么

7342=1*1+15=2*2+127=5*5+2734=27*27+5
无尘剑 2023-05-24 07:48:214

不动点法求解析式和数列通项 是什么?求解释

通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解。假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点。至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书。但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的。 首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如:a[n+1]=a[n]+1/a[n]。其次,不动点有相异不动点和重合不动点。下面结合不动点法求通项的各种方法看几个具体的例子吧。例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项。【说明:这题是“相异不动点”的例子。】解:先求不动点∵a[n+1]=2/(a[n]+1)∴令 x=2/(x+1),解得不动点为:x=1 和 x=-2 【相异不动点】∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】 =(2/(a[n]+1)-1)/(2/(a[n]+1)+2) =(2-a[n]-1)/(2+2a[n]+2) =(-a[n]+1)/(2a[n]+4) =(-1/2)(a[n]-1)/(a[n]+2)∵a[1]=2∴(a[1]-1)/(a[1]+2)=1/4∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列∴(a[n]-1)/(a[n]+2)=1/4(-1/2)^(n-1)解得:a[n]=3/[1-(-1/2)^(n+1)]-2例2:已知数列{a[n]}满足a[1]=3,a[n]a[n-1]=2a[n-1]-1,求通项。【说明:这题是“重合不动点”的例子。“重合不动点”往往采用取倒数的方法。】 解:∵a[n]=2-1/a[n-1]∴采用不动点法,令:x=2-1/x即:x^2-2x+1=0∴x=1 【重合不动点】∵a[n]=2-1/a[n-1]∴a[n]-1=2-1/a[n-1]-1 【使用不动点】a[n]-1=(a[n-1]-1)/a[n-1]两边取倒数,得:1/(a[n]-1)=a[n-1]/(a[n-1]-1)即:1/(a[n]-1)-1/(a[n-1]-1)=1∵a[1]=3∴{1/(a[n]-1)}是首项为1/(a[1]-1)=1/2,公差为1的等差数列即:1/(a[n]-1)=1/2+(n-1)=(2n-1)/2∴a[n]=2/(2n-1)+1=(2n+1)/(2n-1)例3:已知数列{a[n]}满足a[1]=1/2,S[n]=a[n]n^2-n(n-1),求通项。【说明:上面两个例子中获得的不动点方程系数都是常数,现在看个不动点方程系数包含n的例子。】解:∵S[n]=a[n]n^2-n(n-1)∴S[n+1]=a[n+1](n+1)^2-(n+1)n将上面两式相减,得:a[n+1]=a[n+1](n+1)^2-a[n]n^2-(n+1)n+n(n-1)(n^2+2n)a[n+1]=a[n]n^2+2n(n+2)a[n+1]=na[n]+2a[n+1]=a[n]n/(n+2)+2/(n+2) 【1】采用不动点法,令:x=xn/(n+2)+2/(n+2)解得:x=1 【重合不动点】设:a[n]-1=b[n],则:a[n]=b[n]+1 【使用不动点】代入【1】式,得:b[n+1]+1=(b[n]+1)n/(n+2)+2/(n+2)b[n+1]=b[n]n/(n+2)即:b[n+1]/b[n]=n/(n+2)于是:【由于右边隔行约分,多写几行看得清楚点】b[n]/b[n-1]=(n-1)/(n+1) 【这里保留分母】b[n-1]/b[n-2]=(n-2)/n 【这里保留分母】b[n-2]/b[n-3]=(n-3)/(n-1)b[n-3]/b[n-4]=(n-4)/(n-2)......b[5]/b[4]=4/6b[4]/b[3]=3/5b[3]/b[2]=2/4 【这里保留分子】b[2]/b[1]=1/3 【这里保留分子】将上述各项左右各自累乘,得:b[n]/b[1]=(1*2)/[n(n+1)]∵a[1]=1/2∴b[1]=a[1]-1=-1/2∴b[n]=-1/[n(n+1)]∴通项a[n]=b[n]+1=1-1/[n(n+1)] 例4:已知数列{a[n]}满足a[1]=2,a[n+1]=(2a[n]+1)/3,求通项。【说明:这个例子说明有些题目可以采用不动点法,也可以采用其他解法。】解:∵a[n+1]=(2a[n]+1)/3求不动点:x=(2x+1)/3,得:x=1 【重合不动点】∴a[n+1]-1=(2a[n]+1)/3-1 【使用不动点】即:a[n+1]-1=(2/3)(a[n]-1)∴{a[n]-1}是首项为a[1]-1=1,公比为2/3的等比数列即:a[n]-1=(2/3)^(n-1)∴a[n]=1+(2/3)^(n-1)【又】解:∵a[n+1]=(2a[n]+1)/3∴3a[n+1]=2a[n]+1这时也可以用待定系数法,甚至直接用观察法,即可得到:3a[n+1]-3=2a[n]-2∴a[n+1]-1=(2/3)(a[n]-1)【下面同上】例5:已知数列{x[n]}满足x[1]=2,x[n+1]=(x[n]^2+2)/(2x[n]),求通项。【说明:现在举个不动点是无理数的例子,其中还要采用对数的方法。】解:∵x[n+1]=(x[n]^2+2)/(2x[n])∴采用不动点法,设:y=(y^2+2)/(2y)y^2=2解得不动点是:y=±√2 【相异不动点为无理数】∴(x[n+1]-√2)/(x[n+1]+√2) 【使用不动点】={(x[n]^2+2)/2x[n]-√2}/{(x[n]^2+2)/2x[n]+√2}=(x[n]^2-2√2x[n]+2)/(x[n]^2+2√2x[n]+2)={(x[n]-√2)/(x[n]+√2)}^2∵x[n+1]=(x[n]^2+2)/2x[n]=x[n]/2+1/x[n]≥2/√2=√2∴ln{(x[n+1]-√2)/(x[n+1]+√2)}=2ln{(x[n]-√2)/(x[n]+√2)} 【取对数】∵x[1]=2>√2∴(x[1]-√2)/(x[1]+√2)=3-2√2∴{ln((x[n]-√2)/(x[n]+√2))}是首项为ln(3-2√2),公比为2的等比数列即:ln{(x[n]-√2)/(x[n]+√2)}=2^(n-1)ln(3-2√2)(x[n]-√2)/(x[n]+√2)=(3-2√2)^[2^(n-1)]x[n]-√2=(3-2√2)^[2^(n-1)](x[n]+√2)x[n]-x[n](3-2√2)^[2^(n-1)]=√2(3-2√2)^[2^(n-1)]+√2∴x[n]=√2{1+(3-2√2)^[2^(n-1)]}/{1-(3-2√2)^[2^(n-1)]} 例6:已知数列{a[n]}满足a[1]=2,a[n+1]=(1+a[n])/(1-a[n]),求通项。【说明:现在举个不动点是虚数的例子,说明有些题目可以采用不动点法,但采用其他解法可能更方便。】解:求不动点:x=(1+x)/(1-x),即:x^2=-1,得:x[1]=i,x[2]=-i 【相异不动点为虚数,i为虚数单位】∴(a[n+1]-i)/(a[n+1]+i) 【使用不动点】={(1+a[n])/(1-a[n]-i}/{(1+a[n])/(1-a[n]+i}=(1+a[n]-i+a[n]i)/(1+a[n]+i-a[n]i)={(1+i)/(1-i)}{(a[n]-i)/(a[n]+i)}=i(a[n]-i)/(a[n]+i)∵a[1]=2∴{(a[n]-i)/(a[n]+i)}是首项为(a[1]-i)/(a[1]+i)=(2-i)/(2+i),公比为i的等比数列即:(a[n]-i)/(a[n]+i)=[(2-i)/(2+i)]i^(n-1)(a[n]-i)(2+i)=(a[n]+i)(2-i)i^(n-1)2a[n]-2i+ia[n]+1=(2a[n]+2i-ia[n]+1)i^(n-1){2+i-(2-i)(i)^(n-1)}a[n]=2i-1+(2i+1)i^(n-1)a[n]=[2i-1+(2i+1)i^(n-1)]/[2+i-(2-i)i^(n-1)]∴a[n]=[2i-1+(2-i)i^n]/[2+i-(2-i)i^(n-1)]【下面用“三角代换”,看看是否更巧妙一些。】解:∵a[n+1]=(1+a[n])/(1-a[n])∴令a[n]=tanθ,则a[n+1]=[tan(π/4)+tanθ]/[1-tan(π/4)tanθ]=tan(π/4+θ)∵θ=arctan(a[n]),π/4+θ=arctan(a[n+1])∴上面两式相减,得:arctan(a[n+1])-arctan(a[n])=π/4∵a[1]=2∴{arctan(a[n])}是首项为arctan(a[1])=arctan2,公差为π/4的等差数列即:arctan(a[n])=arctan2+(n-1)π/4∴a[n]=tan[(n-1)π/4+arctan2]
苏萦2023-05-24 07:48:211

高中数学数列递推常用(考)方法,求详细

公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法等等。 类型一归纳—猜想—证明 由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明. 类型二“逐差法”和“积商法” (1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子: a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1), 且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”. (2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即 a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,an/an-1=f(n-1),且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”. 类型三构造法 递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解. 类型四可转化为类型三求通项 (1)“对数法”转化为类型三. 递推式为an+1=qan�k(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为类型三. (2)“倒数法”转化为类型三. 递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb). 若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为类型三. 若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况. 类型五递推式为an+1/an=qn/n+k(q≠0,k∈N) 可先将等式(n+k)an+1=qnan两边同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)�6�1nan,则bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1. 从而bn+1=qbn,因此数列{bn}是公比为q,首项为b1=k(k-1)(k-2)…2�6�11�6�1a1=k!a1的等比数列,进而可求得an. 总之,由数列的递推公式求通项公式的问题比较复杂,不可能一一论及,但只要我们抓住递推数列的递推关系,分析结构特征,善于合理变形,就能找到解决问题的有效途径.类型一�归纳—猜想—证明 由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明. �例1�设数列{an}是首项为1的正项数列,且(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…),则它的通项公式是an=______________.(2000年全国数学卷第15题) 解:将(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…)分解因式得(an+1+an)〔(n+1)an+1-nan〕=0.��由于an>0,故(n+1)an+1=nan,即an+1=n/(n+1)an.��因此a2=(1/2)a1=(1/2),a3=(2/3)a2=(1/3),….猜想an=(1/n),可由数学归纳法证明之,证明过程略. 类型二�“逐差法”和“积商法” (1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子: a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1), 且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”. 例2�已知数列{an}满足a1=1,an=3n-1+an-1(n≥2),证明:an=(3n-1)/2. (2003年全国数学卷文科第19题) 证明:由已知得an-an-1=3n-1,故 an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=3n-1+3��n-2�+…+3+1=3n-1/2. 所以得证. (2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即 a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,a��n�/an-1�=f(n-1)�,�且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”. 例3�(同例1)(2000年全国数学卷第15题) 另解:将(n+1)a2n+1-nan2+an+1an=0(n�=1,2,3,…)化简,得(n+1)an+1=nan,即 an+1/an=n/(n+1).� 故an=an/an-1�6�1an-1/an-2�6�1an-2/an-3�6�1…�6�1a2/a1�=n-1/n�6�1n-2/n-1�6�1n-3/n-2�6�1 … �6�11/2�=1/n. 类型三�构造法 递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解. 例4�(同例2)(2003年全国数学卷文科第19题) 另解:由an=3n-1+an-1得3�6�1an/3n=an-1/3n-1+1. 令bn=an/3n,则有 bn=1/3bn-1+1/3. (*) 设bn+x=1/3(bn-1+x),则bn=1/3bn-1+1/3x-x,与(*)式比较,得x=-1/2,所以bn-1/2=1/3(bn-1-1/2).因此数列{bn-1/2}是首项为b1-1=a1/3=-1/6,公比为1/3的等比数列,所以bn-1/2=-1/6�6�1(1/3)n-1,即an/3n-1/2=-1/6(1/3)n-1.故an=3n〔1/2-1/6(1/3)n-1〕=3n-1/2. 例5�数列{an}中,a1=1,an+1=4an+3n+1,求an.� 解:令an+1+(n+1)x+y=4(an+nx+y),则 an+1=4an+3nx+3y-x,与已知an+1=4an+3n+1比较,得 3x=3, 所以 x=1, 3y-x=1, y=(2/3).故数列{an+n+(2/3)}是首项为a1+1+(2/3)=(8/3),公比为4的等比数列,因此an+n+(2/3)=(8/3)�6�14n-1,即 an=(8/3)�6�14n-1-n-(2/3). 另解:由已知可得当n≥2时,an=4an-1+3(n-1)+1,与已知关系式作差,有an+1-an=4(an-an-1)+3,即an+1-an+1=4(an-an-1+1),因此数列{an+1-an+1}是首项为a2-a1+1=8-1+1=8,公比为4的等比数列,然后可用“逐差法”求得其通项an=(8/3)�6�14n-1-n-(2/3). 类型四�可转化为 类型三求通项 (1)“对数法”转化为 类型三. 递推式为an+1=qan�k(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为 类型三. 例6�已知数列{an}中,a1=2,an+1=an2,求an. 解:由an+1=an2>0,两边取对数得lgan+1=2lgan.令bn=lgan则bn+1=2bn.因此数列{bn}是首项为b1=lga1=lg2,公比为2的等比数列,故bn=2n-1lg2=lg22n-1,即an=22n-1. (2)“倒数法”转化为 类型三. 递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb). 若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为 类型三. 若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况. 例7�在数列{an}中,已知a1=2,an+1=(3an+1)/(an+3),求通项an. 解:设an+1+x=y(an+x)/an+3,则an+1=(y-x)an+(y-3)x/an+3,结合已知递推式得 y-x=3, 所以 x=1, y-3=1, y=4,则有an+1+1=4(an+1)/an+3,令bn=an+1,则bn+1=4bn/bn+2,求倒数得1/bn+1=1/2�6�11/bn+1/4,即1/bn+1-1/2=1/2(1/bn-1/2). 因此数列{1/bn-1/2}是首项为1/b1-1/2=1/a1+1-1/2=-1/6,公比为1/2的等比数列. 故1/bn-1/2=(-1/6)(1/2)n-1,从而可求得an. 类型五�递推式为an+1/an=qn/n+k(q≠0,k∈N) 可先将等式(n+k)an+1=qnan两边同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)�6�1nan,则bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1. 从而bn+1=qbn,因此数列{bn}是公比为q,首项为b1=k(k-1)(k-2)…2�6�11�6�1a1=k!a1的等比数列,进而可求得an. 例8�(同例1)(2000年全国数学卷第15题) 另解:将(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,…),化简得(n+1)an+1=nan,令nan=bn,则bn+1=bn,所以数列{bn}是常数列,由于首项b1=1�6�1a1=1,所以bn=1,即nan=1,故an=1/n. 总之,由数列的递推公式求通项公式的问题比较复杂,不可能一一论及,但只要我们抓住递推数列的递推关系,分析结构特征,善于合理变形,就能找到解决问题的有效途径.
kikcik2023-05-24 07:48:201

数列递推公式是什么意思

就是给出某数列相邻两项(或者相邻三项甚至有的给定相邻四项)的关系式,并给出第一项(或前两项甚至前三项)的值据此让你来推知该数列的第n项与项数n之间存在的规律(即求通项公式)。
小菜G的建站之路2023-05-24 07:48:203

数列的递推法是什么意思?

电子营业执照由上海市工商行政管理局颁发。它作为企业在互联网上的身份标识,为企业上网办事(如:“网上年检”等)提供安全服务。因此,用户应予妥善保存。初次使用电子营业执照时,请先安装驱动程序,并使用驱动光盘内电子营业执照密码修改工具更改初始密码,初始密码为123456,更改后的密码请妥善保存,不要遗忘。如出现以下情况,请到所辖工商局处理:(1)密码遗失;(2)因连续六次输错密码导致设备锁定;(3)电子营业执照丢失或损坏。
苏州马小云2023-05-24 07:48:203

斐波那契数列是什么?

1、斐波那契数列斐波那契数列,又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,提出时间为1202年。2、递推数列递推数列是可以递推找出规律的数列,找出这个规律的通项式就是解递推数列。求递推数列通项公式的常用方法有:公式法、累加法、累乘法、待定系数法等共十种方法。3、Look-and-say 数列Look-and-say 数列是数学中的一种数列,它的名字就是它的推导方式:给定第一项之后,后一项是前一项的发音。4、帕多瓦数列帕多瓦数列是由帕多瓦总结而出的。它的特点为从第四项开始,每一项都是前面2项与前面3项的和。5、卡特兰数卡特兰数是组合数学中一个常出现在各种计数问题中的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名。参考资料来源:百度百科-斐波那契数列参考资料来源:百度百科-递推数列 参考资料来源:百度百科-Look-and-say 数列参考资料来源:百度百科-帕多瓦数列参考资料来源:百度百科-卡特兰数
无尘剑 2023-05-24 07:48:201

递推数列求前n项和

a(n)+a(n+1)=4n①,a(n-1)+an=4(n-1)②两式相减得a(n+1)-a(n-1)=4即每隔一项等差.公差为4an=a1+[(n-1)/2]*d=2n-1不知道这种做法可以伐.其实把a1=1带进去这个数列就是1,3,5,7…然后用数学归纳法,猜想公式为an=1+(n-1)*2,再证明一下就可以了。
tt白2023-05-24 07:48:201

一阶线性递推数列求通项公式

可以使用待定系数法。设a[n+1]=ka[n]+b,如果k=1就是等差数列,因此仅关注k不等于1的情况。注意到如果递推式可以化成a[n+1]+λ=k(a[n]+λ)的形式,a[n]+λ就是等比数列,从而可以得到a[n]+λ=(a[1]+λ)k^(n-1),进而得到a[n]=(a[1]+λ)k^(n-1)-λ。因此关键就是求λ。注意a[n+1]+λ=k(a[n]+λ)等价于a[n+1]=ka[n]+kλ-λ,对比a[n+1]=ka[n]+b可知kλ-λ=b,因此λ=b/(k-1)。综上,可求得a[n]=(a[1]+b/(k-1))k^(n-1)-b/(k-1)。
肖振2023-05-24 07:48:203

什么是数列的递推公式,什么是数列的通项公式?数列的递推公式与通项公式怎么理解,

递推公式:如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式。例如斐波纳契数列的递推公式为an=a(n-1)+a(n-2)等差数列递推公式:an=a(n-1)+d(d为公差)等比数列递推公式:bn=b(n-1)*q(q为公比)通项公式:如果一个数列的第n项an与其项数n之间的关系可用式子an=f(n)来表示,这个式子就称为该数列的通项公式。定义怕给错了,上面是摘的百度百科递推公式就是知道前几项用公式推出后一项(所谓“递推”)通项公式就是知道是第几项直接能得出此项的值(所以是“通”项)关系的话……有通项公式可以求出递推公式,有递推公式和首项(或前几项)可以得到递推公式【用数学归纳法】
北有云溪2023-05-24 07:48:201

已知一个数列的递推公式、如何求解它的通项公式。

公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法等等。 类型一归纳—猜想—证明 由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明. 类型二“逐差法”和“积商法” (1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子: a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1), 且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”. (2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即 a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,an/an-1=f(n-1),且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”. 类型三构造法 递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解. 类型四可转化为类型三求通项 (1)“对数法”转化为类型三. 递推式为an+1=qan�k(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为类型三. (2)“倒数法”转化为类型三. 递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb). 若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为类型三. 若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况. 类型五递推式为an+1/an=qn/n+k(q≠0,k∈N) 可先将等式(n+k)an+1=qnan两边同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)•nan,则bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1. 从而bn+1=qbn,因此数列{bn}是公比为q,首项为b1=k(k-1)(k-2)…2•1•a1=k!a1的等比数列,进而可求得an. 总之,由数列的递推公式求通项公式的问题比较复杂,不可能一一论及,但只要我们抓住递推数列的递推关系,分析结构特征,善于合理变形,就能找到解决问题的有效途径.类型一�归纳—猜想—证明 由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明. �例1�设数列{an}是首项为1的正项数列,且(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…),则它的通项公式是an=______________.(2000年全国数学卷第15题) 解:将(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…)分解因式得(an+1+an)〔(n+1)an+1-nan〕=0.��由于an>0,故(n+1)an+1=nan,即an+1=n/(n+1)an.��因此a2=(1/2)a1=(1/2),a3=(2/3)a2=(1/3),….猜想an=(1/n),可由数学归纳法证明之,证明过程略. 类型二�“逐差法”和“积商法” (1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子: a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1), 且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”. 例2�已知数列{an}满足a1=1,an=3n-1+an-1(n≥2),证明:an=(3n-1)/2. (2003年全国数学卷文科第19题) 证明:由已知得an-an-1=3n-1,故 an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=3n-1+3��n-2�+…+3+1=3n-1/2. 所以得证. (2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即 a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,a��n�/an-1�=f(n-1)�,�且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”. 例3�(同例1)(2000年全国数学卷第15题) 另解:将(n+1)a2n+1-nan2+an+1an=0(n�=1,2,3,…)化简,得(n+1)an+1=nan,即 an+1/an=n/(n+1).� 故an=an/an-1•an-1/an-2•an-2/an-3•…•a2/a1�=n-1/n•n-2/n-1•n-3/n-2• … •1/2�=1/n. 类型三�构造法 递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解. 例4�(同例2)(2003年全国数学卷文科第19题) 另解:由an=3n-1+an-1得3•an/3n=an-1/3n-1+1. 令bn=an/3n,则有 bn=1/3bn-1+1/3. (*) 设bn+x=1/3(bn-1+x),则bn=1/3bn-1+1/3x-x,与(*)式比较,得x=-1/2,所以bn-1/2=1/3(bn-1-1/2).因此数列{bn-1/2}是首项为b1-1=a1/3=-1/6,公比为1/3的等比数列,所以bn-1/2=-1/6•(1/3)n-1,即an/3n-1/2=-1/6(1/3)n-1.故an=3n〔1/2-1/6(1/3)n-1〕=3n-1/2. 例5�数列{an}中,a1=1,an+1=4an+3n+1,求an.� 解:令an+1+(n+1)x+y=4(an+nx+y),则 an+1=4an+3nx+3y-x,与已知an+1=4an+3n+1比较,得 3x=3, 所以 x=1, 3y-x=1, y=(2/3).故数列{an+n+(2/3)}是首项为a1+1+(2/3)=(8/3),公比为4的等比数列,因此an+n+(2/3)=(8/3)•4n-1,即 an=(8/3)•4n-1-n-(2/3). 另解:由已知可得当n≥2时,an=4an-1+3(n-1)+1,与已知关系式作差,有an+1-an=4(an-an-1)+3,即an+1-an+1=4(an-an-1+1),因此数列{an+1-an+1}是首项为a2-a1+1=8-1+1=8,公比为4的等比数列,然后可用“逐差法”求得其通项an=(8/3)•4n-1-n-(2/3). 类型四�可转化为 类型三求通项 (1)“对数法”转化为 类型三. 递推式为an+1=qan�k(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为 类型三. 例6�已知数列{an}中,a1=2,an+1=an2,求an. 解:由an+1=an2>0,两边取对数得lgan+1=2lgan.令bn=lgan则bn+1=2bn.因此数列{bn}是首项为b1=lga1=lg2,公比为2的等比数列,故bn=2n-1lg2=lg22n-1,即an=22n-1. (2)“倒数法”转化为 类型三. 递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb). 若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为 类型三. 若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况. 例7�在数列{an}中,已知a1=2,an+1=(3an+1)/(an+3),求通项an. 解:设an+1+x=y(an+x)/an+3,则an+1=(y-x)an+(y-3)x/an+3,结合已知递推式得 y-x=3, 所以 x=1, y-3=1, y=4,则有an+1+1=4(an+1)/an+3,令bn=an+1,则bn+1=4bn/bn+2,求倒数得1/bn+1=1/2•1/bn+1/4,即1/bn+1-1/2=1/2(1/bn-1/2). 因此数列{1/bn-1/2}是首项为1/b1-1/2=1/a1+1-1/2=-1/6,公比为1/2的等比数列. 故1/bn-1/2=(-1/6)(1/2)n-1,从而可求得an. 类型五�递推式为an+1/an=qn/n+k(q≠0,k∈N) 可先将等式(n+k)an+1=qnan两边同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)•nan,则bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1. 从而bn+1=qbn,因此数列{bn}是公比为q,首项为b1=k(k-1)(k-2)…2•1•a1=k!a1的等比数列,进而可求得an. 例8�(同例1)(2000年全国数学卷第15题) 另解:将(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,…),化简得(n+1)an+1=nan,令nan=bn,则bn+1=bn,所以数列{bn}是常数列,由于首项b1=1•a1=1,所以bn=1,即nan=1,故an=1/n. 总之,由数列的递推公式求通项公式的问题比较复杂,不可能一一论及,但只要我们抓住递推数列的递推关系,分析结构特征,善于合理变形,就能找到解决问题的有效途径.
苏州马小云2023-05-24 07:48:201

证明一道递推数列问题(大学数学)

作为初一学生,这道题实在看不懂,什么是自然对数?
九万里风9 2023-05-24 07:48:202

什么叫一阶线性递推数列

其他解释稍微有点复杂,通俗易懂的讲:一阶是只这个递推数列只针对前一项有效,例如 an+1=2an。如果是针对前两项,则叫二阶,比如斐波那契数列。线性说白了就是一次函数关系。
肖振2023-05-24 07:48:203

高中数学,递推数列求范围,要过程,谢谢!

基本都可观察出来(1)首先因为a1>0a2=正数/正数>0,同理所以a3>0,...所以an>0其次,(3+an-2)/(3+an)=1-2/(3+an)<1所以an<3所以0<an<3(2)因为x1=2,x2=2+1/x1>2x3=2+1/x2>2,...所以xn>=2然后因为xn>=2,所以1/xn<=1/2所以xn=2+1/xn-1<=2+1/2=5/2所以2<=xn<=5/2不明白可追问
水元素sl2023-05-24 07:48:201

数列a(n+1)=an^2+1,a1=1的通项公式是什么? a1=1

它的通项只能是一个递推公式,如下书写即可:1当n=1时an=a^2(n-1),当n>1时给个资料你看,你会发现这题本法已是最简的表示法了简化形式xn+1=Pxn2+Q(P≠0)下面只讨论这个形式,暂时只研究P>0的情况。1§Q>0,这个非常难,不幸这个递推数列方程没有解析解(即无法通过初等函数来表达,要用无穷级数来表达,用级数表达难度很大,而其本身失去了简化运算的意义。)2§Q=0,这个形式最简单。两边取对数∴lnxn+1=lnP+2lnxn(xn>0)lnxn+1+lnP=ln(Pxn+1)=2ln(Pxn)注意:若x1<0,要从x2开始,x2肯定大于0。{ln(Pxn)}就是等比数列∴ln(Pxn)=2n-2ln(Px2)xn=(Px2)^2n-2/P(n>1)xn=x1(n=1)△3§Q<0,为了方便讨论及记忆先指定其形式为xn+1=Pxn2-Q(P≠0,Q>0)这种比较难,对于高中生来说能想到线性变换化简都不错了,更后面的变换更难想到。这种题高考是考过的,竞赛更不用说了。(1)两边同时除以Q/2变换为2xn+1/Q=PQ/2(2xn/Q)2-2(P≠0,Q>0)于是形式上变成了rn+1=krn2-2(k>0),对于这个递推形式,容易证明从某项起,这个数列是递增数列,这儿不再详细证明。代换方法是令rn=bn+1/bn,bn+1=bn2(即bn=b1^2n-1)注意:rn,bn>0,若rn≤0,则要从使得rn>0的第m项rm开始,通过rm=bm+1/bm,算出bm,bn=bm^2n-m。数学需要严谨。前面的项是摆动的,无法直接求。这个是最简形式了,这个形式是有解的,可以想想为什么要化为-2。下面以一个例子来说明解这种最简形式的具体求解思路。例:an+1=an2-2,a1=-51/2。求an。令an=bn+1/bn。bn+1+1/bn+1+2=(bn+1/bn)2注意右边可化为(bn+11/2+1/bn+11/2)2=(bn+1/bn)2bn+11/2+1/bn+11/2=bn+1/bn注意这里我们只要满足上面那个等式就行了,具体bn有多少种解我们不关心,所以最简单,只要bn+11/2=bn就行了。显然lnbn+1=2lnbn,{lnbn}是等比数列,注意bn>0,需要an>0来保证,但第二项大于0,所以从第二项起。lnbn=2n-2lnb2a2=3=b2+1/b2,取一个根即可b2=(3+51/2)/2bn=[(3+51/2)/2]^2n-2an=bn+1/bn=[(3+51/2)/2]^2n-2+[(3-51/2)/2]^2n-2(n≥2)an=-51/2(n=1)P<0的情况,只需令yn=-xn就可化为yn=-Pyn2-Q(P<0),即转化成为xn+1=Pxn2+Q(P>0)的形式△综上所述:an+1=Aan2+Ban+C(A≠0,an≠an+1)的递推数列都可以通过线性变换将形式化简成xn+1=Pxn2+Q(P>0)的形式若Q<0,则可以进一步化简为xn+1=kxn2-2(k>0)这样的形式,若m项起xn>0,则通过xn=bn+1/bn,bn=bm^2n-m来求n≥m部分的通项公式(n<m的部分由于数列摆动难以求解)。若是特殊形式,还可以进行降次处理。但是,这只是在实数范围内的解法。如果扩展到复数范围,则完全可以不考虑an的正负,可以让Xn是复数。这样通项公式里就含有了i,但是求出的各项值却都是实数。原因是Xn的幂是2^n-1,含i的项都会有平方。这样完全不影响结果。而且还使通项公式n的取值范围增大。
再也不做站长了2023-05-24 07:48:201

哪些数列是以斐波那契数列为首项?

1、斐波那契数列斐波那契数列,又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,提出时间为1202年。2、递推数列递推数列是可以递推找出规律的数列,找出这个规律的通项式就是解递推数列。求递推数列通项公式的常用方法有:公式法、累加法、累乘法、待定系数法等共十种方法。3、Look-and-say 数列Look-and-say 数列是数学中的一种数列,它的名字就是它的推导方式:给定第一项之后,后一项是前一项的发音。4、帕多瓦数列帕多瓦数列是由帕多瓦总结而出的。它的特点为从第四项开始,每一项都是前面2项与前面3项的和。5、卡特兰数卡特兰数是组合数学中一个常出现在各种计数问题中的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名。参考资料来源:百度百科-斐波那契数列参考资料来源:百度百科-递推数列 参考资料来源:百度百科-Look-and-say 数列参考资料来源:百度百科-帕多瓦数列参考资料来源:百度百科-卡特兰数
北有云溪2023-05-24 07:48:201

什么是递归数列?

递归数列 是一种用归纳方法给定的数列. 例如,等比数列可以用归纳方法来定义,先定义第一项 a1 的值( a1 ≠ 0 ),对 于以后的项 ,用递推公式an+1=qan (q≠0,n=1,2,…)给出定义. 一般地,递归数列的前k项a1,a2,…,ak为已知数,从第k+1项起,由某一递推公式an+k=f(an,an+1,…,an+k-1) ( n=1,2,…)所确定.k称为递归数列的阶数.例如 ,已知 a1=1,a2=1,其余各项由公式an+1=an+an-1(n=2,3,…)给定的数列是二阶递归数列.这是斐波那契数列,各项依次为 1 ,1 ,2 ,3,5 ,8 ,13 ,21 ,…,同样 ,由递归式an+1-an =an-an-1( a1,a2 为已知,n=2,3,… ) 给定的数列,也是二阶递归数列,这是等差数列.
Jm-R2023-05-24 07:48:191

递推数列的单调性

递推数列单调性要看对应函数的单调性。用导数可以判断函数的单调性。导数不等于零时函数单调,导数等于零时函数不单调。这点可以从导数的几何意义看出。函数对应的曲线在导数为零处切线与x轴平行。所以函数不单调。导数不为零处切线与x轴相交,所以函数单调。导数大于零时单调递增。导数小于零时单调递减。
真颛2023-05-24 07:48:193

数列递推公式累加法怎么加

移项,得an-an-1=3n-2∴a2-a1=3*2-2a3-a2=3*3-2......an-an-1=3n-2可以看到,先消去的为减数,(如a2)an-a1=3(2+3+...+(n-1))-2*(n-1)整理,即可。
meira2023-05-24 07:48:192
 首页 上一页  10 11 12 13 14 15 16 17 18 19 20  下一页  尾页