是不是所有数列都可以求得通项? 若非,什么样的不可以? 如何判定?
无规律的数列不可求通项,如随机数列。。。Ntou1232023-05-24 07:48:192
求数列的通项公式的方法
在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的检验,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键。 求数列通项公式常用以下几种方法: 一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。 例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。 解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。 二、已知数列的前n项和,用公式 S1 (n=1) Sn-Sn-1 (n2) 例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5 (A) 9 (B) 8 (C) 7 (D) 6 解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B) 此类题在解时要注意考虑n=1的情况。 三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。 例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。 解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -, 再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以, - (n=1) - (n2) 四、用累加、累积的方法求通项公式 对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。 例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式 解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0 又∵{an}是首项为1的正项数列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-, 又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)五、用构造数列方法求通项公式 题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有 an(或Sn)的式子,使其成为等比或等差数列,从而求出an(或Sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。 例:已知数列{an}中,a1=2,an+1=(--1)(an+2),n=1,2,3,…… (1)求{an}通项公式 (2)略 解:由an+1=(--1)(an+2)得到an+1--= (--1)(an--) ∴{an--}是首项为a1--,公比为--1的等比数列。 由a1=2得an--=(--1)n-1(2--) ,于是an=(--1)n-1(2--)+- 又例:在数列{an}中,a1=2,an+1=4an-3n+1(n∈N*),证明数列{an-n}是等比数列。 证明:本题即证an+1-(n+1)=q(an-n) (q为非0常数) 由an+1=4an-3n+1,可变形为an+1-(n+1)=4(an-n),又∵a1-1=1, 所以数列{an-n}是首项为1,公比为4的等比数列。 若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。 又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略 解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1 解题方略mlhxueli 2023-05-24 07:48:192
递归数列与递推数列的区别
他们都是一个意思,没有什么区别。都是通过已知的项和递推式,得到一个无穷多项的数列。望采纳,谢谢hi投2023-05-24 07:48:192
什么是二阶递推数列?什么是二阶线性递推数列?
二阶递推数列,是指以这样的方式定义出的数列:给出数列前两项,然后给出用第n-2项和第n-1项来表示第n项的关系式,即an=f(an-1,an-2)。二阶线性递推数列是一种特殊的二阶递推数列,因为其递推关系限定在线性函数中,即:an=A(an-1)+B(an-2),其中A,B都是非零常数。hi投2023-05-24 07:48:191
数列的递推公式
概念如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式。例如斐波纳契数列的递推公式为an=an-1+an-2等差数列递推公式:an=d(n-1)+a(d为公差 a为首项)等比数列递推公式:bn=q(n-1)*b (q为公比 b为首项)由递推公式写出数列的方法:1. 根据递推公式写出数列的前几项,依次代入计算即可;2.若知道的是末项,通常将所给公式整理成用后面的项表示前面的项的形式。递推列亦称递归列。由前面的项能推出后面的项的数列。指对所有n>p,满足形如an=f(an-1,an-2,…,an-p)的关系式的序列{an},其中f为某个函数。p是某个固定的正整数,a1,a2,…,ap为已知数。p称为这个递推列的阶数.上述关系式称为递推公式,给定a1,a2,…,ap,可以从它得到所有an。形如an+c1an-1+c2an-2+…+cpan-p=0(c1,c2,…,cp是常数)的递推公式称为线性递推公式,相应的序列称为线性递推列。最简单的递推列是一阶递推列,即满足an=f(an-1)的序列{an}.它又称迭代列。等差数列与等比数列都是线性的迭代列hi投2023-05-24 07:48:191
如何求递推数列的通项公式?
方程y"+y=0的通解为:y=C1cosx+C2sinx具体回答如下:特征方程:r+1=0可以解得:r1、2=±i所以通解为:y=C1cosx+C2sinx 所以答案是:y=C1cosx+C2sinx特征方程的高阶递推:对于更高阶的线性递推数列,只要将递推公式中每一个xn换成x,就是它的特征方程。最后我们指出。上述结论在求一类数列通项公式时固然有用,但将递推数列转化为等比(等差)数列的方法更为重要。如对于高阶线性递推数列和分式线性递推数列,我们也可借鉴前面的参数法,求得通项公式。gitcloud2023-05-24 07:48:191
数列的递推公式
数列的递进公式,如下所示:数列的递推公式=n/n+1。如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式。例如斐波纳契数列的递推公式为 an=an-1+an-2。等差数列递推公式:an=d(n-1)+a(d为公差,a为首项)。等比数列递推公式:bn=q(n-1)*b (q为公比 b为首项)。由递推公式写出数列的方法:1. 根据递推公式写出数列的前几项,依次代入计算即可。2.若知道的是末项,通常将所给公式整理成用后面的项表示前面的项的形式。数列的含义:数列是以正整数集或它的有限子集为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项,通常也叫做首项,排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。水元素sl2023-05-24 07:48:191
什么是数列的递推公式,什么是数列的通项公式
递推公式:如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式.例如斐波纳契数列的递推公式为an=a(n-1)+a(n-2)等差数列递推公式:an=a(n-1)+d(d为公差)等比数列递推公式:bn=b(n-1)* q (q为公比)通项公式:如果一个数列的第n项an与其项数n之间的关系可用式子an=f(n)来表示,这个式子就称为该数列的通项公式.北有云溪2023-05-24 07:48:192
数列的递推法是什么意思
数列的递推法是什么意思就是用等式给出一个数列任意相邻项之间存在的规律,称之为递推公式,是对数列规律的一种呈现方式.最简单的是给出任意相邻两项之间的规律,并给出第一项的值;也有给出任意相邻三项之间的规律,并给出第一项和第二项的值.根据这样的递推公式,我们可以依次求出已知项的后一项,再后一项……,还可以求出数列的通项公式.递推公式与通项公式的相同之处都是揭示数列存在的规律;不同之处在于前者揭示的是任意相邻项之间的规律,后者揭示的是任一项与项数之间的规律.墨然殇2023-05-24 07:48:181
数列递推的基础和依据分别是什么?
数列递推的基础是可以递推找出规律的数列,找出这个规律的通项式就是解递推数列。求递推数列通项公式的依据分别有:公式法、累加法、累乘法、待定系数法等共十种方法。再也不做站长了2023-05-24 07:48:181
递推数列求和
递推数列是可以递推找出规律的数列,找出这个规律的通项式就是解递推数列。求递推数列通项公式的常用方法有:公式法、累加法、累乘法、待定系数法等共十种方法。首先数列的定义是:按一定次序排列的一列数称为数列(sequence of number)。数列中的每一个数都叫做这个数列的项。排在第一位的数列称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项。所以,数列的一般形式可以写成 a1,a2,a3,…,an,…简记为{an}。通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。数列中数的总数为数列的项数。特别地,数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n)。如果可以用一个公式来表示,则它的通项公式是an=f(n).递推公式递推公式:如果数列{a[n]}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。用递推公式表示的数列就叫做递推数列比如等比数列An=A1*q(n-1)可以表示为:An=q*A(n-1)Chen2023-05-24 07:48:181
什么是递推积数列
积递推数列是指数列中前两项相乘得到第三项,即a_n ·a_n+1 =a_n+2 (n∈正整数)。积递推数列变式的特点是数列中前两项相乘经过变化之后得到第三项,这种变化可能是加减乘除某一常熟,或者每两项相乘与项数之间具有某种关系,或者前两项相乘得到一个等差数列、等比数列、平方数列、立方数列的形式。很高兴为您解答有用请采纳可桃可挑2023-05-24 07:48:181
求数列 线性递推原理和公式
一阶线性递推数列主要有如下几种形式:1.这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和). 当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时,则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0.2.这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积). 当为常数时,用累乘法可求得等比数列的通项公式.3.;这类数列通常可转化为,或消去常数转化为二阶递推式.例1已知数列中,,求的通项公式.解析:解法一:转化为型递推数列.∵∴又,故数列{}是首项为2,公比为2的等比数列.∴,即.解法二:转化为型递推数列.∵=2xn-1+1(n≥2) ① ∴=2xn+1 ②②-①,得(n≥2),故{}是首项为x2-x1=2,公比为2的等比数列,即,再用累加法得.解法三:用迭代法.当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.例2 已知函数的反函数为求数列的通项公式.解析:由已知得,则.令=,则.比较系数,得.即有.∴数列{}是以为首项,为公比的等比数列,∴,故.评析:此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之.(4)若取倒数,得,令,从而转化为(1)型而求之.(5);这类数列可变换成,令,则转化为(1)型一阶线性递推公式.例3 设数列求数列的通项公式.解析:∵,两边同除以,得.令,则有.于是,得,∴数列是以首项为,公比为的等比数列,故,即,从而.例4 设求数列的通项公式.解析:设用代入,可解出.∴是以公比为-2,首项为的等比数列.∴,即.(6)这类数列可取对数得,从而转化为等差数列型递推数列.二、可转化为等差、等比数列或一些特殊数列的二阶递推数列 例5 设数列求数列的通项公式.解析:由可得设故即用累加法得 或例6 在数列求数列的通项公式.解析:可用换元法将其转化为一阶线性递推数列.令使数列是以为公比的等比数列(待定).即∴对照已给递推式,有即的两个实根.从而∴ ①或 ②由式①得;由式②得.消去.例7 在数列求.解析:由 ①,得②.式②+式①,得,从而有.∴数列是以6为其周期.故==-1.三、特殊的n阶递推数列例8 已知数列满足,求的通项公式.解析:∵ ① ∴②②-①,得.∴故有将这几个式子累乘,得又例9 数列{}满足,求数列{}的同项公式.解析:由①,得②.式①-式②,得,或,故有.∴,.将上面几个式子累乘,得,即.∵也满足上式,∴.阿啵呲嘚2023-05-24 07:48:182
什么叫一阶线性递推数列?二阶线性递推数列呢?它们的定义是什么?
以下所有的n,n+1,n-1均是指下标 一阶线性递推是指x(n+1)=f(xn),其中 f 是一个线性函数,比如 x(n+1)=axn+b 二阶线性是指x(n+1)=f(xn)+g(x(n-1)),其中f和g都是线性函数. k阶的意思就是等式右端涉及到数列的k层数据,k是数列的层数 线性是指 所有的变量都是一次的.瑞瑞爱吃桃2023-05-24 07:48:181
递推数列 1 ,1 ,2 ,5 ,27,后面是什么
a1=1 a2=1 a3=(a2)²+a1=2 a4=(a3)²+a2=5 a5=(a4)²+a3=27 …… an=[a(n-1)]²+a(n-2) a6=(a5)²+a4=27²+5=734hi投2023-05-24 07:48:181
什么叫一阶线性递推数列
ax+b形式的数列u投在线2023-05-24 07:48:182
k阶递推数列的解?
要系统的了解K阶线性递推数列的解法,建议去查一下“差分方程”和“Z变换”的知识。如果你能掌握这些知识,那不管什么样的K阶递推数列都能搞定的。它的大体思路是这样的:a(n+k)=b1 a(n+k-1) + b2 a (n+k-2) + ... + bn an 称为差分方程。把它进行Z变换,变换时要用到a(1)到a(k)这k个初值。(这k个初值肯定是知道的,因为确定数列除了递推公式之外,必须还要有前K项的值才行)经过Z变换后,就是把数列“投影到另一个域中”,而在这个新的域里,数列元素之间的关系不再是“递推”,而会变得异常简单。我们就在这个新的域中进行运算处理,他一定能分解为“固定式子的加权和”。最后,这些“固定式子”都是能很简单的反变换到原来的域中的。我们只要把它们都变回到原来的域中,就得到通向公式了。******************************************这种方法的精髓在于借助一个新的域来做桥梁。大哥不是很恰当的比喻:我有电脑配件,但是不会组装。我就把它们送到电脑维修点,组装对于维修人员来说轻而易举,等他们吧电脑装好了再送还给我。Jm-R2023-05-24 07:48:182
二次递推数列如何求通项公式
非常重要的二次递推数列求法形如an+1=aan2+ban+c(a≠0,an≠an+1)的递推数列,难度很大。让人大跌眼镜的是某几个省高考居然考了,所以发上来解法,只针对基础很好的同学。其通解要讨论n多种情况,有点混沌的味道。恕我水平有限,现阶段只想出这些特殊情况。an+1=aan2+ban+c(a≠0,an≠an+1)基本思路通过线性变换(线性变换是最基本的形式简化方式)xn=an+b/(2a),即化为完全平方将形式简化为xn+1=axn2+[(4ac-b2+2b)/(4a)]即简化形式xn+1=pxn2+q(p≠0)下面只讨论这个形式,暂时只研究p>0的情况。1、q>0,这个非常难,不幸这个递推数列方程没有解析解(即无法通过初等函数来表达,要用无穷级数来表达,用级数表达难度很大,而其本身失去了简化运算的意义。)2、q=0,这个形式最简单。两边取对数∴lnxn+1=lnp+2lnxn(xn>0)lnxn+1+lnp=ln(pxn+1)=2ln(pxn)注意:若x1<0,要从x2开始,x2肯定大于0。{ln(pxn)}就是等比数列∴ln(pxn)=2n-2ln(px2)xn=(px2)^2n-2/p(n>1)xn=x1(n=1)△3§q<0,为了方便讨论及记忆先指定其形式为xn+1=pxn2-q(p≠0,q>0)这种比较难,对于高中生来说能想到线性变换化简都不错了,更后面的变换更难想到。这种题高考是考过的,竞赛更不用说了。(1)两边同时除以q/2变换为2xn+1/q=pq/2(2xn/q)2-2(p≠0,q>0)于是形式上变成了rn+1=krn2-2(k>0),对于这个递推形式,容易证明从某项起,这个数列是递增数列,这儿不再详细证明。代换方法是令rn=bn+1/bn,bn+1=bn2(即bn=b1^2n-1)注意:rn,bn>0,若rn≤0,则要从使得rn>0的第m项rm开始,通过rm=bm+1/bm,算出bm,bn=bm^2n-m。数学需要严谨。前面的项是摆动的,无法直接求。这个是最简形式了,这个形式是有解的,可以想想为什么要化为-2。下面以一个例子来说明解这种最简形式的具体求解思路。例:an+1=an2-2,a1=-51/2。求an。令an=bn+1/bn。bn+1+1/bn+1+2=(bn+1/bn)2注意右边可化为(bn+11/2+1/bn+11/2)2=(bn+1/bn)2bn+11/2+1/bn+11/2=bn+1/bn注意这里我们只要满足上面那个等式就行了,具体bn有多少种解我们不关心,所以最简单,只要bn+11/2=bn就行了。显然lnbn+1=2lnbn,{lnbn}是等比数列,注意bn>0,需要an>0来保证,但第二项大于0,所以从第二项起。lnbn=2n-2lnb2a2=3=b2+1/b2,取一个根即可b2=(3+51/2)/2bn=[(3+51/2)/2]^2n-2an=bn+1/bn=[(3+51/2)/2]^2n-2+[(3-51/2)/2]^2n-2(n≥2)an=-51/2(n=1)p<0的情况,只需令yn=-xn就可化为yn=-pyn2-q(p<0),即转化成为xn+1=pxn2+q(p>0)的形式△综上所述:an+1=aan2+ban+c(a≠0,an≠an+1)的递推数列都可以通过线性变换将形式化简成xn+1=pxn2+q(p>0)的形式若q<0,则可以进一步化简为xn+1=kxn2-2(k>0)这样的形式,若m项起xn>0,则通过xn=bn+1/bn,bn=bm^2n-m来求n≥m部分的通项公式(n评论000加载更多康康map2023-05-24 07:48:182
数列递推公式 [高考中常见的递推数列问题及解题策略]
数列是高考数学中考查的重点,在高考解答题中,求数列的通项公式,是考查的一个热点。然而,已知条件中,往往是以递推数列的形式给出,通过递推数列形式,考查学生方程思想、化归思想,观察能力、整理能力及待定系数法等思想方法。那么,高考中的常见递推数列的模型有哪些呢?相应的模型又有怎样的解决策略呢?现归纳总结如下: 一、形如αn+1=αn+f(n)(n∈N*)型 这类问题实质上是将等差数列的递推模型(即αn+1=αn+d(n∈N*)一般化。解决这类问题的一般策略是:累加法,即αn=α1+(α2-α1)+(α3-α2)+…+(αn-αn-1) =α1+[f(1)+f(2)+f(3)+…+f(n-1) ] (其中,α1已知,f(n)可求和) 例1、(2009年全国卷Ⅰ理)在数列 {αn}中α1=1,。设,求数列{bn}的通项公式。 分析:由已知有 利用累加法即可求出数列{bn}的通项公式: (n∈N*)。 二、形如αn+1=f(n)・αn(n∈N*)型 这类问题实质上是将等比数列的递推模型(即αn+1=q・αn(n∈N*)一般化。解决问题的一般策略是:累乘法,即 (其中α1已知) 例2、(2004年全国卷Ⅰ理)已知数列{αn}满足α1=1,αn=α1+2α2+3α3+…+(n-1)αn-1(n≥2),则{αn}的通项。 解析:∵αn=α1+2α2+3α3+…+(n-1)αn-1(n≥2)① ∴αn+1=α1+2α2+3α3+…+nαn(n≥2)② ②-①得:αn+1-αn=nαn, 即 三、形如αn+1=p・αn+q(p,q为常数,且p≠0,1,q≠0,n∈N*)型 这类问题实质上是等差、等比数列递推公式的综合与一般化。解决问题的策略是:待定系数法,即αn+1=pαn+q一定可化为:αn+1-t=p(αn-t)(t为参数,可用待定系数法求得), 从而数列{αn-t}是首项为α1-t,公比为p的等比数列,然后利用等比数列的通项公式求出数列{αn}的通项公式。 例3、(07年全国Ⅱ理21(1))设数列{αn}的首项 求 {αn}的通项公式。 解:由 整理得. 又1-α1≠0,所以{1-αn}是首项为1-α1,公比为的等比数列,得 。 四、形如αn+1=p・αn+qn+1(p,q为常数,且pq≠0,1,n∈N*)型 这类问题是将上述形式三中的q一般化成q的指数形式而得,因此可转化成模型三进行分析。解决问题的一般策略是:指数常数化,即 将αn+1=p・αn+qn+1化成,然后用模型三的方法求出数列{}的通项公式,进一步求出通项αn。 例4、(07年北京16题改编)在数列 {αn}中,α1=2,αn=4αn-1+2n(n≥2,n∈N*).求数列{αn}的通项公式。 解:由α1=2,αn=4αn-1+2n,等式两边同时除以2n, 得,则 bn=2bn-1+1 ∴bn+1=2(bn-1+1) ∴数列{bn+1}是以为首项,2为公比的等比数列, ∴bn+1=2・2n-1, ∴bn=2n-1 ∴αn=2n・bn=4n-2n。 五、形如 型 这类问题是通过等式两边同时取倒数,转化成模型三的问题来解决。解决策略是:取倒数法,即 由得, 即, 进一步转化成,利用整体思想转化成等比数列,从而达到求出通项αn。 例5、(2008年陕西卷22(1))已知数列{αn}的首项 .求{αn}的通项公式; 解:∵,, 又是以为首项,为公比的等比数列. , . 六、形如 型 解决这类问题,要想办法把 的指数放在系数的位置上来,从而想到利用对数函数的性质,通过等式两边同时取对数的形式来解决,因此,解决策略是:取对数法,即 由αn+1=p・αn+q得logααn+1=logα,即logααn+1=q・logααn+logαp,从而转化成模型三的问题来求解,进一步求出通项αn。 例6、(2006年山东卷改编)已知α1=2,点(αn,αn+1)在函数f(x)=x2=2x的图象上,其中m=1,2,3,…求数列{αn}的通项αn。 解:∵点(α1,αn+1)在函数f(x)=x2+2x的图象上, ∴αn+1=αn2 +2αn,∴1+αn+1=(1+αn)2, 又α1=2,∴αn>0 上式两边同时取以3为底的对数得:log3(1+αn+1)=log3(1+αn)2, 即:log3(1+αn+1)=2log3(1+αn), ∴数列{log3(1+αn)}是以log3(1+α1)=log3(1+2)=1为首项,2为公比的等比数列, ∴log3(1+αn)=1・2n-1, 即αn=32n-1-1(n∈N*)。 七、形如αn+2=p・αn+1+q・αn(p,q≠0)型 对于这类问题,可将αn+2=p・αn+1+q・αn① 变形为αn+2-ααn+1=β(αn+1-ααn),即αn+2=(α+β)αn+1-αβα n②, 由①②得解出α,β,于是 是公比为β的等比数列,从而转化成模型一或模型四求解,这种方法叫特征根法。 例7、(08天津卷20改编)在数列 {αn}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).求数列{αn}的通项公式。 解:由题设an+1=(1+q)an-qan(n≥2),得 an+1-an=q(an-an-1), 令bn=an+1-an, 则bn=qbn-1,n≥2. 又b1=a2-a1=1,q≠0,所以{bn}是首项为1,公比为q的等比数列. ∴bn=qn-1,即an+1-an=qn-1(n≥2) ∴a2-a1=1, a3-a2=q, …… an-an-1=qn-1,(n≥2). 将以上各式相加,得an-a1=1+q+…+qn-2(n≥2). 所以当n≥2时, 上式对n=1显然成立. 八、形如Sn=f(an)型 这类问题主要是利用公式进行转化,要么将已知式转化成关于an的递推模型,要么将已知条件转化成关于Sn的递推模型,再用上述模型之一进行转化求出αn或Sn,称之为公式转化法。 例8、(08全国Ⅱ20(1))设数列{αn}的前n项和为Sn.已知a1=1,an+1=Sn+3n,.求数列{αn}的通项公式。 解:依题意,Sn+1-Sn=an+1=Sn+3n,即Sn+1=2Sn+3n, 由此得Sn+1-3n+1=2(Sn-3n), 设bn=Sn-3n,则bn+1=2bn, ∴数列{bn}是首项为b1=s1-3=a-3,公比为2的等比数列, ∴,bn=Sn-3n=(a-3)2n-1,.① ∴Sn=(a-3)・2n-1+3, ∴an+1=(a-3)・2n-1+2・3n() 故。 例9、(09全国Ⅱ理改编)设数列 的前n项和为Sn,已知a1=1,Sn+1=4an+2求数列{an}的通项公式。 解:∵a1=1及Sn+1=4an+2, 当n=1时,a1+a2=4a1+2,a2=3a1+2=5 当n≥2时, 由Sn+1=4an+2, ① 得Sn=4an-1+2, ② ①-②得an+1=4an-1,∴an+1=2(an-2an-1) 令bn=an+1-2an,则bn=2bn-1 ∴{bn}是首项b1=3,公比为2的等比数列. ∴bn=an+1-2an=3・2n-1, ∴数列是首项为,公差为的等比数列. ∴, ∴。 总之,已知数列的递推关系,求数列的通项公式,是高考理科数学解答题中考查的重点和热点,也是难点。要突破这一难点,必须熟悉常见的递推模型及解决策略,充分利用题目中所给的“梯度数列”,通过变形及整体思想,转化为等差、等比数列问题,从而求出数列的通项公式。 本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文kikcik2023-05-24 07:48:181
数列解题有何技巧?
解答题?选择题?几何?代数?什么都不说,哪会有什么技巧可桃可挑2023-05-24 07:48:182
求这个递推数列的单调性,该怎么求呢?
0<a1<π a2=sina1∈(0,1)在区间(0,1)中 sinx <x数学归纳可知 0<a[n+1]<a[n] 单调下降,极限为0meira2023-05-24 07:48:181
关于用特征方程法求数列通项
我之前在网上找的。正好没删。感觉比楼上的实用。有例题,建议你自已把例题推一下。其实感觉高考不用掌握特征根的。不过掌握了更好==============================数列{An}:满足An+2 + s*An+1 + t*An=0 则其对应的特征方程为:x^2 +sx+t=0 ,设其两根为α、β 1).当α≠β时,An=k*α^(n-1) + m*β^(n-1) 2).当α=β时,An=(kn+m)*α^(n-2) 其中k、m的值的求法,用A1、A2的值代入上面的通项公式中,建立方程组解之即可 (1).数列{An}满足:An+2 -4*An+1 +4An=0 ,A1=1 ,A2=2 ,求通项An 解:特征方程为 (x-2)^2=0 ,所以α=β=2 设An=(kn+m)*α^(n-2) , 所以(k+m)/2 = 1 ,(2k+m)=2 ,解得:k=2 ,m=0 所以An=(kn+m)*α^(n-2)=n*2^(n-1) (2).裴波那契数列{An}满足:An+2 -An+1 -An=0 ,A1=1 ,A2=1 ,求通项An 解:特征方程为 x^2 -x-1=0 ,所以α=(1-√5)/2 ,β=(1+√5)/2 设An=k*α^(n-1) + m*β^(n-1) ,则有 k + m = 1 ,k*(1-√5)/2 + m*(1+√5)/2 = 1 解得:k=-(√5/5)*α ,m=(√5/5)*β 所以An= (√5/5)*β^n - (√5/5)*α^nNtou1232023-05-24 07:48:186
数列的递推公式
数列的递推公式=n/n+1。如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式。例如斐波纳契数列的递推公式为an=an-1+an-2。数列是以正整数集或它的有限子集为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项,通常也叫做首项,排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。人类地板流精华2023-05-24 07:48:171
什么是递推积数列
一般说来,递推公式更能反映数列的本质。递推公式和初始条件可以确定一个数列。通项公式an=f(n)虽然能直接揭示数列项an与项数n的关系,但是一般来说,并非每个数列都可以通过递推关系求出通项公式来。对于常系数线性递归数列,可以用特征根法求解通项,但其他情况求通项往往都比较困难,甚至不可能求出。比方说,等差数列a(n+1)=an+d和等比数列b(n+1)=qbn就是线性递归的,通项公式是众所周知的。gitcloud2023-05-24 07:48:172
数列的递推法是什么意思?
就是用等式给出一个数列任意相邻项之间存在的规律,称之为递推公式,是对数列规律的一种呈现方式.最简单的是给出任意相邻两项之间的规律,并给出第一项的值;也有给出任意相邻三项之间的规律,并给出第一项和第二项的值....豆豆staR2023-05-24 07:48:171
关于递推数列
公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法等等。 类型一归纳—猜想—证明 由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明. 类型二“逐差法”和“积商法” (1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子: a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1), 且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”. (2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即 a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,an/an-1=f(n-1),且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”. 类型三构造法 递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解. 类型四可转化为类型三求通项 (1)“对数法”转化为类型三. 递推式为an+1=qan�k(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为类型三. (2)“倒数法”转化为类型三. 递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb). 若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为类型三. 若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况. 类型五递推式为an+1/an=qn/n+k(q≠0,k∈N) 可先将等式(n+k)an+1=qnan两边同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)�6�1nan,则bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1. 从而bn+1=qbn,因此数列{bn}是公比为q,首项为b1=k(k-1)(k-2)…2�6�11�6�1a1=k!a1的等比数列,进而可求得an. 总之,由数列的递推公式求通项公式的问题比较复杂,不可能一一论及,但只要我们抓住递推数列的递推关系,分析结构特征,善于合理变形,就能找到解决问题的有效途径.类型一�归纳—猜想—证明 由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明. �例1�设数列{an}是首项为1的正项数列,且(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…),则它的通项公式是an=______________.(2000年全国数学卷第15题) 解:将(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…)分解因式得(an+1+an)〔(n+1)an+1-nan〕=0.��由于an>0,故(n+1)an+1=nan,即an+1=n/(n+1)an.��因此a2=(1/2)a1=(1/2),a3=(2/3)a2=(1/3),….猜想an=(1/n),可由数学归纳法证明之,证明过程略. 类型二�“逐差法”和“积商法” (1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子: a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1), 且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”. 例2�已知数列{an}满足a1=1,an=3n-1+an-1(n≥2),证明:an=(3n-1)/2. (2003年全国数学卷文科第19题) 证明:由已知得an-an-1=3n-1,故 an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=3n-1+3��n-2�+…+3+1=3n-1/2. 所以得证. (2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即 a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,a��n�/an-1�=f(n-1)�,�且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”. 例3�(同例1)(2000年全国数学卷第15题) 另解:将(n+1)a2n+1-nan2+an+1an=0(n�=1,2,3,…)化简,得(n+1)an+1=nan,即 an+1/an=n/(n+1).� 故an=an/an-1�6�1an-1/an-2�6�1an-2/an-3�6�1…�6�1a2/a1�=n-1/n�6�1n-2/n-1�6�1n-3/n-2�6�1 … �6�11/2�=1/n. 类型三�构造法 递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解. 例4�(同例2)(2003年全国数学卷文科第19题) 另解:由an=3n-1+an-1得3�6�1an/3n=an-1/3n-1+1. 令bn=an/3n,则有 bn=1/3bn-1+1/3. (*) 设bn+x=1/3(bn-1+x),则bn=1/3bn-1+1/3x-x,与(*)式比较,得x=-1/2,所以bn-1/2=1/3(bn-1-1/2).因此数列{bn-1/2}是首项为b1-1=a1/3=-1/6,公比为1/3的等比数列,所以bn-1/2=-1/6�6�1(1/3)n-1,即an/3n-1/2=-1/6(1/3)n-1.故an=3n〔1/2-1/6(1/3)n-1〕=3n-1/2. 例5�数列{an}中,a1=1,an+1=4an+3n+1,求an.� 解:令an+1+(n+1)x+y=4(an+nx+y),则 an+1=4an+3nx+3y-x,与已知an+1=4an+3n+1比较,得 3x=3, 所以 x=1, 3y-x=1, y=(2/3).故数列{an+n+(2/3)}是首项为a1+1+(2/3)=(8/3),公比为4的等比数列,因此an+n+(2/3)=(8/3)�6�14n-1,即 an=(8/3)�6�14n-1-n-(2/3). 另解:由已知可得当n≥2时,an=4an-1+3(n-1)+1,与已知关系式作差,有an+1-an=4(an-an-1)+3,即an+1-an+1=4(an-an-1+1),因此数列{an+1-an+1}是首项为a2-a1+1=8-1+1=8,公比为4的等比数列,然后可用“逐差法”求得其通项an=(8/3)�6�14n-1-n-(2/3). 类型四�可转化为 类型三求通项 (1)“对数法”转化为 类型三. 递推式为an+1=qan�k(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为 类型三. 例6�已知数列{an}中,a1=2,an+1=an2,求an. 解:由an+1=an2>0,两边取对数得lgan+1=2lgan.令bn=lgan则bn+1=2bn.因此数列{bn}是首项为b1=lga1=lg2,公比为2的等比数列,故bn=2n-1lg2=lg22n-1,即an=22n-1. (2)“倒数法”转化为 类型三. 递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb). 若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为 类型三. 若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况. 例7�在数列{an}中,已知a1=2,an+1=(3an+1)/(an+3),求通项an. 解:设an+1+x=y(an+x)/an+3,则an+1=(y-x)an+(y-3)x/an+3,结合已知递推式得 y-x=3, 所以 x=1, y-3=1, y=4,则有an+1+1=4(an+1)/an+3,令bn=an+1,则bn+1=4bn/bn+2,求倒数得1/bn+1=1/2�6�11/bn+1/4,即1/bn+1-1/2=1/2(1/bn-1/2). 因此数列{1/bn-1/2}是首项为1/b1-1/2=1/a1+1-1/2=-1/6,公比为1/2的等比数列. 故1/bn-1/2=(-1/6)(1/2)n-1,从而可求得an. 类型五�递推式为an+1/an=qn/n+k(q≠0,k∈N) 可先将等式(n+k)an+1=qnan两边同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)�6�1nan,则bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1. 从而bn+1=qbn,因此数列{bn}是公比为q,首项为b1=k(k-1)(k-2)…2�6�11�6�1a1=k!a1的等比数列,进而可求得an. 例8�(同例1)(2000年全国数学卷第15题) 另解:将(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,…),化简得(n+1)an+1=nan,令nan=bn,则bn+1=bn,所以数列{bn}是常数列,由于首项b1=1�6�1a1=1,所以bn=1,即nan=1,故an=1/n. 总之,由数列的递推公式求通项公式的问题比较复杂,不可能一一论及,但只要我们抓住递推数列的递推关系,分析结构特征,善于合理变形,就能找到解决问题的有效途径.豆豆staR2023-05-24 07:48:171
数列递推公式
在一个数列中,如果可以用一个固定的公式来表示某项与它之前的一项或几项之间的关系,这个公式就叫做数列的递推公式。等差数列的通项公式:(d为公差)等比数列的通项公式:(q为公比)等差数列递推公式:an=d(n-1)+a(d为公差 a为首项)等比数列递推公式:bn=q(n-1)*b (q为公比 b为首项)递推公式是数列所特有的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可.----还需要一个结论。就是一个规律。真颛2023-05-24 07:48:171
数列递推关系的几种常见类型
求递推数列通项公式的常用方法有:公式法、累加法、累乘法、待定系数法等共十种方法。首先数列的定义是:按一定次序排列的一列数称为数列(sequence of number)。数列中的每一个数都叫做这个数列的项。排在第一位的数列称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项。所以,数列的一般形式可以写成a1,a2......an等差数列相关定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列(arithmetic sequence),等差数列可以缩写为A.P.。这个常数叫做等差数列的公差(common difference),公差通常用字母d表示。由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项应用日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有an=m,am=n.则a(m+n)=0。九万里风9 2023-05-24 07:48:171
什么是递推数列,递推数列的概念,什么是解递推数列?
可以递推找出规律的数列就是递推数列,找出这个规律的通项式就是解递推数列按一定次序排列的一列数称为数列(sequence of number)。数列中的每一个数都叫做这个数列的项。排在第一位的数列称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项。所以,数列的一般形式可以写成 a1,a2,a3,…,an,… 简记为{an},项数有限的数列为“有穷数列”(finite sequence),项数无限的数列为“无穷数列”(infinite sequence)。 从第2项起,每一项都大于它的前一项的数列叫做递增数列; 从第2项起,每一项都小于它的前一项的数列叫做递减数列; 从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列; 各项呈周期性变化的数列叫做周期数列(如三角函数); 各项相等的数列叫做常数列。 通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。 递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。 数列中数的总数为数列的项数。特别地,数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n)。 如果可以用一个公式来表示,则它的通项公式是a(n)=f(n).陶小凡2023-05-24 07:48:171
数列递推算法的原理
数学归纳法真颛2023-05-24 07:48:172
数列递推公式是什么意思?
我的理解:an=f(n)或者是a(n+1)=f(an)善士六合2023-05-24 07:48:175
什么是数列的递推公式,什么是数列的通项公式
问题太笼统了。一般说来,递推公式更能反映数列的本质。递推公式和初始条件可以确定一个数列。通项公式an=f(n)虽然能直接揭示数列项an与项数n的关系,但是一般来说,并非每个数列都可以通过递推关系求出通项公式来。对于常系数线性递归数列,可以用特征根法求解通项,但其他情况求通项往往都比较困难,甚至不可能求出。比方说,等差数列a(n+1)=an+d和等比数列b(n+1)=qbn就是线性递归的,通项公式是众所周知的。CarieVinne 2023-05-24 07:48:172
请问递推数列的通解是什么?
方程y"+y=0的通解为:y=C1cosx+C2sinx具体回答如下:特征方程:r+1=0可以解得:r1、2=±i所以通解为:y=C1cosx+C2sinx 所以答案是:y=C1cosx+C2sinx特征方程的高阶递推:对于更高阶的线性递推数列,只要将递推公式中每一个xn换成x,就是它的特征方程。最后我们指出。上述结论在求一类数列通项公式时固然有用,但将递推数列转化为等比(等差)数列的方法更为重要。如对于高阶线性递推数列和分式线性递推数列,我们也可借鉴前面的参数法,求得通项公式。无尘剑 2023-05-24 07:48:161
数列递推公式
数列的递推公式=n/n+1。如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式。例如斐波纳契数列的递推公式为an=an-1+an-2。递推数列是可以递推找出规律的数列,找出这个规律的通项式就是解递推数列。求递推数列通项公式的常用方法有:公式法、累加法、累乘法、待定系数法等共十种方法。数列分类:1、按照项数是否有限分为有穷数列和无穷数列。1)项数有限的数列为"有穷数列"。2)项数无限的数列为"无穷数列"。2、按照项与项的大小关系分为递增数列、递减数列和摆动数列。1)从第2项起,每一项都不小于它的前一项的数列叫做递增数列。2)从第2项起,每一项都不大于它的前一项的数列叫做递减数列。3)从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列。3、按照有界性分为有界数列和无界数列。一个数列每一项的绝对值都小于某个正数(即|An|<a, a∈R+)这个数列是有界数列,反之为无界数列。4、一些特殊的数列:1)各项呈周期性变化的数列叫做周期数列(如三角函数)。2)各项相等的数列叫做常数列。苏萦2023-05-24 07:48:161
递推数列公式是怎样来的呢?
齐次方程y"+y=0的特征方程是r^2+1=0则特征根是daor=±i (二复数根)此特征方程的通解是y=C1cosx+C2sinx (C1,C2是任意常数)设原方程的解为y=Ax+B则代入原方程化简得 (A+1)x+B=0 ==>A+1=0,B=0 ==>A=-1,B=0 y=-x是原方程的一个特解扩展资料:求一类数列通项公式时固然有用,但将递推数列转化为等比(等差)数列的方法更为重要。如对于高阶线性递推数列和分式线性递推数列,我们也可借鉴前面的参数法,求得通项公式。如果已知数列 的第1项(或前几项),且任一项 与它的前一项 (或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。LuckySXyd2023-05-24 07:48:161
欧拉函数数列的前10项
欧拉函数数列的前10项:1、2、2、4、3、6 、4、6、4 、10在数论,对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目。数列(sequence of number),是以正整数集(或它的有限子集)为定义域的一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列(arithmetic sequence),这个常数叫做等差数列的公差(common difference),公差通常用字母d表示,前n项和用Sn表示。等差数列可以缩写为A.P.(Arithmetic Progression)递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。数列递推公式特点:有些数列的递推公式可以有不同形式,即不唯一。有些数列没有递推公式,即有递推公式不一定有通项公式。北境漫步2023-05-23 22:48:131
离散数学中如何判断一个数列是不是无向简单图的度数列
首先要求所有数(度)之和是偶数,其次判断是否为简单图,方法:依次删去度最大的点,递归下去,最后可确定是否是简单图。肖振2023-05-23 12:58:143
数学中,级数和数列有什么关系?
数列是:按照一定顺序排列起来的一列数 级数是:数列的各须的和例如,数列“1,3,5,……,2n-1”是等差数列,hi投2023-05-22 18:14:381
级数和数列的关系?
新年好!Happy Chinese New Year ! 1、级数跟数列的简单区别是: 级数是由函数所组成,数列是由数字所组成. 2、它们并无本质区别,请参见下面的图片说明. 点击放大后,图片会非常清晰.北营2023-05-22 18:14:371
谁能说说“数列”和“级数”有什么区别和联系,谢谢
我的理解数列有极限即可-2+1/n级数前n项和的极限存在,通项的极限趋于零。真颛2023-05-22 18:14:342
级数和数列有区别吗?
数列有N项,级数就是N趋于无穷的时候墨然殇2023-05-22 18:14:335
谁能详解一下函数列与函数项级数的概念,区别与联系
数列就是按照一定规律排成的一列数,那么函数列就是按照一定规律排成的一列函数。“级数”的实质就是一个无限求和。数项级数就是一列无限个数的求和。这列数或者有规律或者没有规律,但一般是有规律的一列数。数项级数通常也就是含有无限个数的数列的求和。那么,函数项级数就是一列无限个函数的求和,(当然要求函数在定义域内的求和)函数项级数通常也就是含有无限个函数的函数列的求和。瑞瑞爱吃桃2023-05-22 18:13:082
调和级数是柯西数列吗
调和级数是柯西数列吗?调和级数是柯西数列的。此后故乡只2023-05-22 18:13:001
单调有界数列一定收敛?那调和级数为什么发散?
数列的收敛和级数的收敛是不一样的,级数收敛是指它的部分和的极限存在北境漫步2023-05-22 18:13:004
高斯函数[x]表示不超过x的最大整数,如[-2]=-2,[2]=1,已知数列{xn}中,x1=1,xn=xn-1+1+3{[n?15]-[n?25
①当n=5k,5k+2,5k+3,5k+4时,[n?15]?[n?25]=0;②当n=5k+1时,[n?15]?[n?25]=1.∴x2=x1+1=2,x3=x2+1=3,x4=x3+1=4,x5=x4+1=5,x6=x5+4=9,x7=x6+1….因此可得:x2013=2013+3×20105=3219.故答案为3219.ardim2023-05-22 18:12:361
什么是递归?怎么用它来实现斐波那契数列?
如果一个函数在内部可以调用其本身,那么这个函数就是递归函数。 简单的说 递归就是函数的内部自己调用自己,这个函数就是递归函数。 递归函数不断的一遍又一遍的调用自己,效果类似于循环,同样也和循环有一样的特点,那就是怕死循环。 在递归中叫"栈溢出"错误(stack overflow),所以必须要加退出条件 return。 再来个栗子: 刚开始的我会把fn(n-1)这里写成 n+1 想当然的觉得 1 2 或者 2 3 这样的不也是一样吗 但是执行完发现显示的是栈溢出 到这我才发现我还是不理解递归的返回条件 于是我自己分析了一下: 发现了吗 没有条件的中断与返回 自己觉得就是求一下3的阶乘 但实际求的是从3开始的和3++的阶乘 而写成n-1 求的是从3开始 与3--的阶乘 一直求到有一个中断条件 n==1 返回了1为止 这样的话 可以在上限加一个中断返回值 这样的话 算的就是从2到5的阶乘结果是和n-1那个 fn(5)的值是一样的 值都是120 那么说到递归就自然而然的要说到斐波那契数列(兔子序列)了: 简单的说就是前两项相加的值等于后面那个数的值 1、1、2、3、5、8、13、21...... 要求:用户输入一个数字n就可以求出 这个数字对应的兔子序列的值 于是 自恃天才的我 想到了为什么不直接写 renturn fn(n-1)+fn(n)呢? 我输出了一下 又是栈溢出! 现实是啪啪的打脸 玛德制杖 自己推算一下 搜戴斯内... fn(3)算个没完没了 我们并没有终结它 在这里我用自己的语言 浅显的、简单的总结一下 正确的递归 要有初始值 还要明确结束值 递归的方向也要清楚 递归的方向就是中断的条件 就是结束值的方向 朝着中断的条件总不会错 就如同X轴 Y轴的折线图一样 比如上面那个阶乘 我的n*fn(n+1)的错误在于没有弄清楚方向 让它一直走一个向上的箭头 向上还没有封顶 它自然会栈溢出 。 再比如刚才这个斐波那契数列 我是让它在X轴水平向右无限延伸 水平方向我也没有设置中断 它也会栈溢出 但愿今晚的两杯酒饮料不至于让我在这说胡话 [苦笑]bikbok2023-05-21 22:11:001
如何编写递归函数,实现整数列表的逆转,并以L[1,2,3]对其进行调用?
可以参考下面的代码:#include<stdio。h>voidprintData(intdata)if(data==0)return;printf("%d",data%10);printData(data/10);intmain()intdata;printf("Enteranumber:");scanf("%d",&data);return0;介绍在数理逻辑和计算机科学中,递归函数或μ-递归函数是一类从自然数到自然数的函数,它是在某种直觉意义上是"可计算的" 。事实上,在可计算性理论中证明了递归函数精确的是图灵机的可计算函数。递归函数有关于原始递归函数,并且它们的归纳定义(见下)建造在原始递归函数之上。但是,不是所有递归函数都是原始递归函数 — 最著名的这种函数是阿克曼函数。wpBeta2023-05-21 22:10:571
用C语言函数的递归调用实现求数列1,1,2,3,5,8……..前30项之和。
代码如下:#include <stdio.h>int acculate(int n){ if(n==1) return 1; else if(n==2) return 2; else if(n==3) return 4; else return 2*acculate(n-1)-acculate(n-3);}void main(){ int n,sum; n=30; sum=acculate(n); printf("%d ",sum);}拌三丝2023-05-21 22:10:573
C语言编程:用函数递归法求Fibonacci数列的前n项·
#include#defineCOL10//一行输出10个longscan(){//输入求fibonacci函数的第N项intn;printf("InputtheN=");scanf("%d",&n);returnn;}longfibonacci(intn){//fibonacci函数的递归函数if(0==n||1==n){//fibonacci函数递归的出口return1;}else{returnfibonacci(n-1)+fibonacci(n-2);//反复递归自身函数直到碰到出口处再返回就能计算出第n项的值}}intmain(void){inti,n;n=scan();printf("Fibonacci数列的前%d项 ",n);for(i=0;i{printf("%-10ld",fibonacci(i++));//调用递归函数并且打印出返回值if(i%COL==0){//若对COL取余等于0就换行,也就是控制每行输出多少个,//而COL=10就是每行输出10个printf(" ");}}printf(" ");return0;}此后故乡只2023-05-21 22:10:551
vb 编程输出fibonacci数列的前N项
这题主要考察递归函数的思想。代码如下:#include<stdio.h>int fbi(int i);//递归函数:输出数列的第i项数据,这里i从0开始计算。int main(){int i,N;scanf("%d",&N);for(i=0;i<N;i++)printf("%d ",fbi(i));return 0;}int fbi(int i)//递归函数:输出数列的第i项数据。这里i从0开始计算。 {if(i<2){return i;}else{return fbi(i-1)+fbi(i-2);}}扩展资料一个函数可以调用其他函数。如果这个函数在内部调用它自己,那么这个函数就叫递归函数。递归函数的作用和循环的方法效果一样,即递归函数本质上是一个方法的循环调用,注意:有可能会出现死循环。因此,使用递归函数时,一定要定义递归的边界(即什么时候退出循环)。注意:在实际使用中,递归函数由于消耗时间比较长(相比for循环和while循环),所以很少使用。要使递归函数有用,则递归函数必须有一个方法来控制递归调用的次数。每次函数调用自己时,循环都会重复。现在应该能发现该函数的问题,因为它没有办法停止递归调用。这个函数就像一个无限循环,因为没有代码阻止它重复。参考资料来源:百度百科——递归函数大鱼炖火锅2023-05-21 22:10:551
常见勾股数列表有?
3 ,4 , 55 ,12 ,137 ,24 , 259 ,40 ,4111,60 ,61……2n+1,2n²+2n ,2n²+2n+1看一组数是否为勾股数,首先除去最大公约数,再看较大的两个数是否相差1,且较大的两数之和是最小数的平方。例如:39,252,255,首先除去最大公约数3,变成13,84,85,再看较大的两个数84,85相差1,且84,85之和是169恰好是最小数13的平方,因此39,252,255是一组勾股数。勾股数又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a²+b²=c²)扩展资料:公式a=m,b=(m^2 / k - k) / 2,c=(m^2 / k + k) / 2 ①其中m ≥3⒈ 当m确定为任意一个 ≥3的奇数时,k={1,m^2的所有小于m的因子}⒉ 当m确定为任意一个 ≥4的偶数时,k={m^2 / 2的所有小于m的偶数因子}基本勾股数与派生勾股数可以由完全一并求出。例如,当m确定为偶数432时,因为k={432^2 / 2的所有小于432的偶数因子}= {2,4,6,8,12,16,18,24,32,36,48,54,64,72,96,108,128,144,162,192,216,288,324,384}。将m=432及24组不同k值分别代入b=(m^2 / k - k) / 2,c=(m^2 / k + k) / 2;即得直角边a=432时,具有24组不同的另一直角边b和斜边c,基本勾股数与派生勾股数一并求出。而勾股数的组数也有公式能直接得到。算术基本定理:一个大于1的正整数n,如果它的标准分解式为n=p1^m1×p2^m2×……×pr^mr,那么它的正因数个数为N=(m1+1)×(m2+1)×……×(mr+1);依据定理,易得以下结论:当a给定时,不同勾股数组a,b,c的组数N等于①式中k的可取值个数。⒈ 取奇数a=p1^m1×p2^m2×……×pr^mr,其中k={1,a^2的所有小于a的因子},则k的可取值个数:N=[(2m1+1)×(2m2+1)×……×(2mr+1)-1]/2⒉ 取偶数a=2^m0×p1^m1×p2^m2×……×pr^mr,其中k={a^2 / 2的所有小于a的偶数因子},则k的可取值个数:N=[(2m0-1)×(2m1+1)×(2m2+1)×……×(2mr+1)-1]/2其中,p1,p2,……,pr为互不相同的奇素数,m0,m1,……,mr为幂指数。参考资料:百度百科——勾股数小白2023-05-21 22:10:181
如何运用数形结合的方法求解等比数列的和
等比数列求和公式如下图,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。注:q=1 时,an为常数列。利用等比数列求和公式可以快速的计算出该数列的和。求和公式推导(1)Sn=a1+a2+a3+...+an(公比为q)(2)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+an+a(n+1)(3)Sn-q*Sn=(1-q)Sn=a1-a(n+1)(4)a(n+1)=a1*q^n(5)Sn=a1(1-q^n)/(1-q)(q≠1)性质①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;等比数列的性质②在等比数列中,依次每 k项之和仍成等比数列;③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2;④ 若G是a、b的等比中项,则G^2=ab(G ≠ 0);⑤在等比数列中,首项a1与公比q都不为零.⑥在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为q^k+1⑦数列{An}是等比数列,An=pn+q,则An+K=pn+K也是等比数列,在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。 ⑧当数列{an}使各项都为正数的等比数列,数列{lgan}是lgq的等差数列。韦斯特兰2023-05-21 22:10:171
什么叫数形结合 梯形面积 等差数列
数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而实现优化解题途径的目的。梯形是指只有一组对边平行的四边形。梯形面积就是指这种图形的面积等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列望采纳!铁血嘟嘟2023-05-21 22:10:151
怎样才能确定是不是数列收敛
收敛是数列的通项在n趋向于无穷大时数列的通项趋向于一个数,即有极限。其实高中数学很简单,数列中只学简单的递减递增。数列的收敛性与前面有限项无关:即数列去掉有限项或增加有限项不影响数列的收敛性;如果数列收敛,也不影响数列的极限值. 收敛数列的有界性:如果数列{an}收敛于a,则数列{an}有界,即存在M>0,使得| an|≤M恒成立。同时也说明:(1)如果数列{an}收敛于a,则对任意给定的正数ε,an 最多只有有限项落在以a为中心,ε为半径的邻域U(a,ε)外。(2) 如果数列{an}收敛a,则在此数列中一定有最大数或最小数,但不一定同时有最大数和最小数.(3) 数列收敛一定有界,但是有界的数列不一定收敛!收敛数列的保号性:(1)如果an≥0,数列{an}收敛于a,则a≥0。可桃可挑2023-05-21 12:53:271
请问收敛数列有界吗?
证明如下:设lim xn = a,lim xn = b当n > N1,|xn - a| < E当n > N2,|xn - b| < E取N = max {N1,N2},则当n > N时有|a-b|=|(xn - b)-(xn - a)|收敛数列定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|。收敛数列的性质:如果数列收敛,那么它的极限唯一;如果数列收敛,那么数列一定有界;保号性;与子数列的关系一致.发散的数列有可能有收敛的子数列。北有云溪2023-05-21 12:53:271
数列收敛的定义是什么?
数列收敛是设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a)。收敛数列与其子数列间的关系:子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{Xn}收敛于a,那么它的任一子数列也收敛于a。相互关系收敛数列与其子数列间的关系子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{}收敛于a,那么它的任一子数列也收敛于a。以上内容参考:百度百科-收敛数列余辉2023-05-21 12:53:271
收敛数列是怎么定义的
1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。3、加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如 1/n * sin(1/n) 用1/n^2 来代替 4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。拓展资料:收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。收敛数列令{}为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|-A|<b恒成立,就称数列{}收敛于A(极限为A),即数列{}为收敛数列。函数收敛定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。收敛的定义方式很好的体现了数学分析的精神实质。如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项 级数 ,因而有一确定的和s。这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0迭代算法的敛散性1.全局收敛对于任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk+1=φ(Xk)在[a,b]上收敛于X*。2.局部收敛若存在X*在某邻域R={X| |X-X*|<δ},对任何的X0∈R,由Xk+1=φ(Xk)所产生的点列收敛,则称Xk+1=φ(Xk)在R上收敛于X*。参考资料:百度百科:收敛kikcik2023-05-21 12:53:271
怎么证明数列收敛?收敛的定义是啥
数列收敛的定义:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。证明数列收敛通常是落实到定义上或者证明数列的极限是固定值。比如数列an=a0+1/n,随着n增大,lim(an)=a0,因此可证明数列{an}是收敛的。拌三丝2023-05-21 12:53:271
收敛数列有哪些性质?
性质1、唯一性思维导图如果数列Xn收敛,每个收敛的数列只有一个极限。2、有界性定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件3、保号性若数列某项起Xn>0(或Xn<0)且{Xn}收敛于a,则a>0(或a<0),扩展资料:收敛数列,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。Ntou1232023-05-21 12:53:271
一个等比数列收敛吗?
第一个其实就是正项的等比数列的和,公比小于1,是收敛的。第二个项的极限是∞,必然不收敛。拓展资料:简单的说有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。例如:f(x)=1/x 当x趋于无穷是极限为0,所以收敛。f(x)= x 当x趋于无穷是极限为无穷,即没有极限,所以发散。收敛数列与其子数列间的关系子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{ }收敛于a,那么它的任一子数列也收敛于a。发散级数指不收敛的级数。一个数项级数如果不收敛,就称为发散,此级数称为发散级数。一个函数项级数如果在(各项的定义域内)某点不收敛,就称在此点发散,此点称为该级数的发散点。按照通常级数收敛与发散的定义,发散级数是没有意义的。然而为了实际的需要,可以确立一些法则,对某些发散级数求它们的“和”,或者说某个发散级数在特定的极限过程中,逐渐逼近某个数。但是在实际的数学研究以及物理等其它学科的应用中,常常需要对发散级数进行运算,于是数学家们就给发散级数定义了各种不同的“和”,比如Cesàro和,Abel和,Euler和等,使得对收敛级数求得的这些和仍然不变,而对某些发散级数,这种和仍然存在。康康map2023-05-21 12:53:271
数列收敛到底是什么意思 数列收敛是什么意思
1、数列收敛到底是什么意思:数列收敛就是当n趋于正无穷时,这个数列的极限存在,举个例子:数列 a(n) 收敛到A,这里A是一个有限数。 2、它的定义是:数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|。 3、数列收敛的性质: (1)唯一性:如果数列xn收敛,每个收敛的数列只有一个极限。 (2)有界性定义:设有数列xn , 若存在M>0,使得一切自然数n,恒有|Xn|折叠收敛数列与其子数列间的关系:子数列也是收敛数列且极限为a恒有Xn|若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。小白2023-05-21 12:53:271
数列收敛的判别方法
数列收敛的判别方法:有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。当n无穷大时,判断Xn是否是常数,是常数则收敛,加减的时候,把高阶的无穷小直接舍去,乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小。具体方法:1、设数列{Xn},如果存在常数a,对于任意给定的正数q,总存在正整数N,使得n>N时,恒有|Xn-a|。2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。3、加减的时候,把高阶的无穷小直接舍去,如1+1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小,如1/n*sin(1/n)用1/n^2来代替。4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。陶小凡2023-05-21 12:53:271
常数列是收敛数列吗?
常数列也是收敛数列,满足收敛数列的定义。收敛数列 定义:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。 性质1 极限唯一 、性质2 有界性 、性质3 保号性、性质4 子数列也是收敛数列且极限为a。补充:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。凡尘2023-05-21 12:53:272
求证收敛数列加发散数列为发散数列
用反证法设{an+bn}收敛根据收敛的定义,an数列和an+bn数列都有极限所以可以设lim(n→∞)an=clim(n→∞)(an+bn)=d那么根据极限是四则运算,有lim(n→∞)bn=lim(n→∞)[(an+bn)-an]=lim(n→∞)(an+bn)-lim(n→∞)an=d-c所以bn也有极限,bn也收敛这和题目规定bn发散矛盾所以an+bn也发散。Jm-R2023-05-21 12:53:274
数列收敛与级数收敛有什么区别
设数列Un,级数∑Un,再设级数∑Un的前n项的和为Sn,则 数列收敛是指Un的极限LimUn存在; 级数收敛是指Sn的极限LimSn存在. 这对于数列Un来说,【区别】就是“极限LimUn存在”与“极限Lim(U1+U2+...+Un)存在”的区别.meira2023-05-21 12:53:271
什么是收敛数列和发散数列?
收敛数列不一定有界,有界数列不一定收敛,发散数列也可能有界如:(–1)的n次方 ––±1;无界数列一定发散,如: lim (2n)( n 趋于无穷)=±无穷小菜G的建站之路2023-05-21 12:53:273
数列收敛是什么意思?
数列收敛是设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a)。如果数列{Xn}收敛,那么该数列必定有界。无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。扩展资料:用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。函数不一定有解析式,同样数列也并非都有通项公式。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。ardim2023-05-21 12:53:271
收敛数列都有哪些,能给举几个例子嘛?
!!!人类地板流精华2023-05-21 12:53:271
为什么数列是收敛数列?
收敛数列 如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。 性质1 极限唯一收敛和发散是互补的,发散的定义是没有极限摆动数列如-1,1,-1,1.。。是没有极限的,因为无穷处有-1和1,不逼近于一点,所以发散 性质2 有界性 性质3 保号性 性质4 子数列也是收敛数列且极限为a 谢谢采纳Jm-R2023-05-21 12:53:261
数列收敛是什么意思
收敛的解释(1) [retrain oneself]∶减轻 放纵 的 程度 碰了钉子以后,他 收敛 些了 (2) [convergence]∶会聚于一点;向某一值 靠近 收敛 级数 (3) [fade;weaker;lessen;disappear]∶减弱或 消失 笑容从他脸上 收敛 (4) [astringent]∶使 有机 体 组织 收缩、 减少 腺体分泌 收敛 剂 (5) [tax]∶征收租税 收敛 租谷 (6) [gather together]∶ 聚拢 ;收集 收敛 关市之利以实官府 详细解释 亦作“ 收歛 ”。1.收获农作物。 《庄子·让王》 :“春耕种,形 足以 劳动 ;秋 收敛 ,身足以休食。” 宋 陆游 《 晚晴 》 诗:“农家筑塲罢,竭作事 收敛 。” 明 张宁 《方洲杂言》 :“盖自来生长草野世无服役,不过垦植 收敛 。” (2).征收租税。 《礼记·月令》 :“﹝孟秋之月﹞命百官,始 收敛 。” 《北史·崔浩传》 :“列置守宰, 收敛 租谷。” 《东周列国志》 第二回:“ 襃珦 之子 洪德 ,偶因 收敛 ,来到乡间。” (3).聚敛;收集。 《墨子·尚贤中》 :“收歛关市山 林泽 梁之利,以实官府。” 《晋书· 儒林 传·徐邈》 :“﹝帝﹞好为手诏诗章以赐侍臣…… 邈 每应时 收敛 ,还省刊削。” 《宋书·王镇恶传》 :“ 镇恶 极意 收敛 , 子女 玉帛,不可胜计。” (4).归总。 宋 周密 《齐东野语·道学》 :“ 朱公 尤渊洽精诣,盖其以至高之才,至博之学,而一切 收敛 ,归诸义理。” (5).检点行为, 约束 身心。 清 李渔 《比目鱼·狐威》 :“用豪奴,使狠仆,非是我 不知 收歛。” 浩然 《艳阳天》 第八六章:“反击 马之悦 ,就能使落后的富裕中农 收敛 。” (6).停止;消失。 唐 樊宗师 《绛守居园池记》 :“可四时合奇士,观风云霜露雨雪所为发生 收敛 ,赋歌诗。” 清 孙枝蔚 《张良进履》 诗:“莫言豪气全收歛,无限恩仇气未平。” 巴金 《家》 四:“她想到这里,便又 收敛 了笑容。” 郁达夫 《迟桂花》 :“白天的热度,日落之后, 忽然 收敛 了。” (7).医学用语。谓通过药物作用,使肌体皱缩、腺液分泌减少。 宋 张世南 《游宦纪闻》 卷七:“龙涎入香,能 收敛 。” 《医宗 金鉴 ·外科心法要诀·枯筋箭》 “枯筋箭由肝失荣、筋气外发赤豆形”注:“以 月白 珍珠散掺之,其疤 收敛 。” (8).收殓。 《东观汉记·桓典传》 :“相 王吉 以罪被诛, 故人 亲戚 莫敢至者, 典 独弃官 收敛 归葬。” 宋 周密 《癸辛杂 识别 集·杨髠发陵》 :“事竟, 罗铣 买棺制衣 收敛 ,大恸垂绝。” 鲁迅 《呐喊·明天》 :“ 收敛 的时候,给他穿上顶新的 衣裳 。” 见“ 收敛 ”。 词语分解 收的解释 收 ō 接到,接受:收发。收信。收支。收讫。收益。 藏或放置妥当:这是 重要 东西 ,要收好了。 割断 成熟 的农作物:收割。收成。麦收。 招回:收兵。收港。 聚,合拢:收容。收理。收集。 结束:收尾。收煞。收 敛的解释 敛 (敛) ǎ 收拢, 聚集 :敛钱。敛足(收住脚步, 不住 前进)。敛容。敛衣(用收集来的碎布制成的衣)。收敛。聚敛。 征收:横征暴敛。 收束,约束:敛迹。敛手(.缩手,表示 不敢 恣意 妄为;. 拱手 ,表示 恭敬 )陶小凡2023-05-21 12:53:261
收敛数列与有界数列
不是 例如油界数列取1 -1 1 -1 1 -1...小菜G的建站之路2023-05-21 12:53:266
什么是收敛数列?
收敛数列是指:设数列{Xn},如果存在常数a,那么对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称为数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。收敛数列与其子数列间的关系为:子数列也是收敛数列且极限为a恒有Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。收敛数列的推论为:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。凡尘2023-05-21 12:53:261
怎么样才算是高中数学数列收敛?
收敛是数列的通项在n趋向于无穷大时数列的通项趋向于一个数,即有极限。其实高中数学很简单,数列中只学简单的递减递增。数列的收敛性与前面有限项无关:即数列去掉有限项或增加有限项不影响数列的收敛性;如果数列收敛,也不影响数列的极限值. 收敛数列的有界性:如果数列{an}收敛于a,则数列{an}有界,即存在M>0,使得| an|≤M恒成立。同时也说明:(1)如果数列{an}收敛于a,则对任意给定的正数ε,an 最多只有有限项落在以a为中心,ε为半径的邻域U(a,ε)外。(2) 如果数列{an}收敛a,则在此数列中一定有最大数或最小数,但不一定同时有最大数和最小数.(3) 数列收敛一定有界,但是有界的数列不一定收敛!收敛数列的保号性:(1)如果an≥0,数列{an}收敛于a,则a≥0。苏州马小云2023-05-21 12:53:261
收敛数列为什么“收敛”
还有发散数列,如sin(2n+1)水元素sl2023-05-21 12:53:268
如何判断数列的收敛性与发散性?
数列是否收敛或者发散:1、设数列{Xn},如果存在常数,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。3、加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如 1/n * sin(1/n) 用1/n^2 来代替。4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。扩展资料:1、数列收敛与存在极限的关系:数列收敛则存在极限,这两个说法是等价的;2、数列收敛与有界性的关系:数列收敛则数列必然有界,但是反过来不一定成立。例如:Xn=1,-1,1,-1,.....|Xn|<=1,是有界的,但是Xn不收敛。设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散,数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。可桃可挑2023-05-21 12:53:261
证明数列收敛的基本方法
因为数列{Xn}有界所以不妨假设|Xn|LuckySXyd2023-05-21 12:53:263
收敛数列有什么性质?
收敛数列有个保号性,就是:如果数列极限为正数,那么该数列从某项后的所有项都是正数;如果数列极限为负数,那么该数列从某项后的所有项都是负数。LuckySXyd2023-05-21 12:53:262
收敛数列的定义
敛收的解释(1). 收敛 ,收缩。 宋 赵抃 《次韵王宪中秋不见月》 :“ 明月 幸无亏损处,浮云应有敛收时。” 明 无名氏 《鸣凤记·秋夜 女工 》 :“二更月皎云敛收,寒衣乘此裁就。” (2). 约束 。 宋 苏轼 《入寺》 诗:“闲看树转午,坐到钟鸣昏;敛收 平生 心,耿耿聊自温。” 词语分解 敛的解释 敛 (敛) ǎ 收拢, 聚集 :敛钱。敛足(收住脚步, 不住 前进)。敛容。敛衣(用收集来的碎布制成的衣)。收敛。聚敛。 征收:横征暴敛。 收束,约束:敛迹。敛手(.缩手,表示 不敢 恣意 妄为;. 拱手 ,表示 恭敬 ) 收的解释 收 ō 接到,接受:收发。收信。收支。收讫。收益。 藏或放置妥当:这是 重要 东西 ,要收好了。 割断 成熟 的农作物:收割。收成。麦收。 招回:收兵。收港。 聚,合拢:收容。收理。收集。 结束:收尾。收煞。左迁2023-05-21 12:53:261
数列收敛什么意思啊?看不懂
简单地说,收敛是数列的通项在n趋向于无穷大时数列的通项趋向于一个数,即有极限。“那一直加下去”是全n项和,并不是通项,理解错了。hi投2023-05-21 12:53:263
如何理解如果数列收敛,则其任一子数列也收敛
具体的证明可以参照教材,如果您需要,我也可以给你列出证明过程。这里不做严格证明,我觉得你可以这样理解:数列{an}极限是a,说明它每一项“越来越”接近a。那么{an}的任意一个子列,它的每一项都来自于{an}这个母体,所以越往后的每一项,肯定也“越来越”接近a。子列怎么可能越来越接近另一个数b呢?韦斯特兰2023-05-21 12:53:263