数列

求和 高阶等差*等比数列

裂项相消法最常见的就是an=1/n(n+1)=1/n-1/(n+1)sn=1/1*2+1/2*3+.....+1/n(n+1)=1-1/2+1/2-1/3+1/3-1/4+....+1/(n-1)-1/n+1/n-1/(n+1)(中间相消,最后只剩首尾两项)=1-1/(n+1)错位相减法这个在求等比数列求和公式时就用了sn=1/2+1/4+1/8+....+1/2^n两边同时乘以1/21/2sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些)两式相减1/2sn=1/2-1/2^(n+1)sn=1-1/2^n倒序相加法这个在证明等差数列求和公式时就应用了sn=1+2+..+nsn=n+n-1+....+2+1两式相加2sn=(1+n)+(2+n-1)+...+(n+1)=(n+1)*nsn=n(n+1)/2
wpBeta2023-05-21 08:46:201

一堆的数列求和定式?

1.定义:对于一个给定的数列,把它的连结两项an+1与an的差an+1-an记为bn,得到一个新数列,把数列bn你为原数列的一阶差数列,如果cn=bn+1-bn,则数列是的二阶差数列依此类推,可得出数列的p阶差数列,其中pÎN   2.如果某数列的p阶差数列是一非零常数列,则称此数列为p阶等差数列   3.高阶等差数列是二阶或二阶以上等差数列的统称   4.高阶等差数列的性质:   (1)如果数列是p阶等差数列,则它的一阶差数列是p-1阶等差数列   (2)数列是p阶等差数列的充要条件是:数列的通项是关于n的p次多项式   (3) 如果数列是p阶等差数列,则其前n项和Sn是关于n的p+1次多项式   5.高阶等差数列中最重要也最常见的问题是求通项和前n项和,更深层次的问题是差分方程的求解,解决问题的基本方法有:   (1)逐差法:其出发点是an=a1+   (2)待定系数法:在已知阶数的等差数列中,其通项an与前n项和Sn是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得   (3)裂项相消法:其出发点是an能写成an=f(n+1)-f(n)4)化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的[编辑本段]例题精讲   例1.数列的二阶差数列的各项均为16,且a63=a89=10,求a51   解:法一:显然的二阶差数列是公差为16的等差数列,设其首项为a,则bn=a+(n-1)×16,于是an= a1+   =a1+(n-1)a+16/2(n-1)(n-2)   这是一个关于n的二次多项式,其中n2的系数为8,由于a63=a89=10,所以   an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658   解:法二:由题意,数列是二阶等差数列,故其通项是n的二次多项式,又a63=a89=10,故可设an=A(n-63)(n-89)+10   由于是二阶差数列的各项均为16,所以(a3-a2)-(a2-a1)=16   即a3-2a2+a1=16,所以   A(3-63)(3-89)+10-2[A(2-63)(2-89)+10]+A(1-63)×(1-89)+10=16   解得:A=8   an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658   例2.一个三阶等差数列的前4项依次为30,72,140,240,求其通项公式   解:由性质(2),an是n的三次多项式,可设an=An3+Bn2+Cn+D   由a1=30、a2=72、a3=140、a4=240得   解得:   所以an=n3+7n2+14n+8   例3.求和:Sn=1×3×22+2×4×32+…+n(n+2)(n+1)2   解:Sn是是数列{n(n+2)(n+1)2}的前n项和,   因为an=n(n+2)(n+1)2是关于n的四次多项式,所以是四阶等差数列,于是Sn是关于n的五次多项式   k(k+2)(k+1)2=k(k+1)(k+2)(k+3)-2k(k+1)(k+2),故求Sn可转化为求   Kn=和Tn=   k(k+1)(k+2)(k+3)=[ k(k+1)(k+2)(k+3)(k+4)-(k-1) k(k+1)(k+2)(k+3)],所以   Kn==   Tn==   从而Sn=Kn-2Tn=   例4.已知整数列适合条件:   (1)an+2=3an+1-3an+an-1,n=2,3,4,…   (2)2a2=a1+a3-2   (3)a5-a4=9,a1=1   求数列的前n项和Sn   解:设bn=an+1-an,Cn=bn+1-bn   Cn=bn+1-bn= (an+2-an+1)-( an+1-an)=an+2-2an+1+an=(3an+1-3an+an-1) -2an+1+an=an+1-2an+an-1   =Cn-1 (n=2,3,4,…)   所以是常数列   由条件(2)得C1=2,则是二阶等差数列   因此an=a1+   由条件(3)知b4=9,从而b1=3,于是an=n2   例5.求证:二阶等差数列的通项公式为   证明:设的一阶差数列为,二阶差数列为,由于是二阶等差数列,故为常数列   又c1=b2-b1=a3-2a2+a1   所以   例6.求数列1,3+5+7,9+11+13+15+17,…的通项   解:问题等价于:将正奇数1,3,5,…按照“第n个组含有2n-1个数”的规则分组:   (1)、(3,5,7)、(9,11,13,15,17),… 然后求第n组中各数之和an   依分组规则,第n组中的数恰好构成以2为公差的项数为2n-1的等差数列,因而确定了第n组中正中央这一项,然后乘以(2n-1)即得an   将每一组的正中央一项依次写出得数列:1,5,13,25,…这个数列恰为一个二阶等差数列,不难求其通项为2n2-2n+1,故第n组正中央的那一项为2n2-2n+1,从而   an=(2n-2n+1)(2n-1)   例7.数列的二阶差数列是等比数列,且a1=5,a2=6,a3=9,a4=16,求的通项公式   解:易算出的二阶差数列是以2为首项,2为公比的等比数列,则cn=2n,   的一阶差数列设为,则b1=1且   从而   例8.设有边长为1米的正方形纸一张,若将这张纸剪成一边长为别为1厘米、3厘米、…、(2n-1)厘米的正方形,愉好是n个而不剩余纸,这可能吗?   解:原问题即是是否存在正整数n,使得12+32+…+(2n-1)2=1002   由于12+32+…+(2n-1)2=[12+22+…+(2n)2]-[22+42+…+(2n)2]=随着n的增大而增大,当n=19时=9129<10000,当n=20时=10660>10000   故不存在…   例9.对于任一实数序列A={a1,a2,a3,…},定义DA为序列{a2-a1,a3-a2,…},它的第n项为an+1-an,假设序列D(DA)的所有项均为1,且a19=a92=0,求a1   解:设序列DA的首项为d,则序列DA为{d,d+1,d+2,…},它的第n项是d+(n-1),因此序列A的第n项   显然an是关于n的二次多项式,首项等比数列为   由于a19=a92=0,必有   所以a1=819   摘自数学教育之窗   ---------------------------------------------------------------   五、公式法(缺少证明)只适用于“规则型高阶等差数列”   因为编辑问题,只能用描述的方法,如果有问提请留言    http://hi.baidu.com/w359405949/board  “an等于C(排列符号)上标:p-2下标:“n+(p-3)乘以(a1+(n-1)*d/(p-1) )……⑴式   说明:"p"和"d"的意义可暂不考虑,关于推导过程,有兴趣的联系,我可以给你解答,   下面只给出"p"和"d"的确定方法:   “ a1*p^2-(a1+2*a2)*P+2*a3=0”……⑵式   解出的p取整数且较小的那个并代入“d=a2-(p-1)a1” ……⑶式 求出d,将"p"和"d"代入上式,得到的方程为通项公式   例:1^2+2^2+3^2+4^2+……+n^2=?   a1=1^2=1 a2=1^2+2^2=5 a3=1^2+2^2+3^2=14   代入⑵式得:p^2-11p+28=0   解得p=4,p=7(舍去)   将p=4代入⑶式得:d=5-(4-1)*1=2   将p=4和d=2代入⑴式得:an=C上标2下标n+1乘以(1+(n-1)*2/(4-1))   整理得:an=C上标2下标n+1乘以(2n+1/3)   即:an=(n+1)*n*(2n+1)/6   ---------------------------------------------------------------   【r阶等差分布函数】(注明:以下内容独立于以上内容,但只是形式不同,二者之间是可以转化的)   建立:自然数直角坐标系O-xyz   定义:F(x,y)=z满足[1],[2] <==def==> F(x,y)=z是等差分布函数   [1]任意y∈N, F(0,y)=F(0,0)   [2]任意x,y∈N, F(x+1,y+1)=F(x,y)+F(x+1,y)   [1],[2]==>[3]任意x≥0, 第x列F(x,0),F(x,1),…F(x,n),…为x阶等差数列   [2]==>[4]任意x≥0,y≥0, F(x,y)+F(x,y+1)+F(x,y+2)+…F(x,y+n)=F(x+1,y+n+1)-F(x+1,y)   [2]==>[5]任意x≥0,y≥0, F(x+1,y)+F(x+2,y+1)+F(x+3,y+2)+…F(x+n,y+n-1)=F(x+n,y+n)-F(x,y)   �6�1当输入F(x_i,y)(任意i∈N). 即若在每一列的任意格内输入一个数,则F(x,y)=z就被确定下来   �6�1当输入F(0,0)=1,F(x_i,0)=0(i≥1)或输入F(x,x)=1(任意x≥0),则结果得出F(x,y)=z就是杨辉三角!
bikbok2023-05-21 08:46:201

杨辉三角 等差数列

 1.定义:对于一个给定的数列,把它的连结两项an+1与an的差an+1-an记为bn,得到一个新数列,把数列bn你为原数列的一阶差数列,如果cn=bn+1-bn,则数列是的二阶差数列依此类推,可得出数列的p阶差数列,其中pÎN  2.如果某数列的p阶差数列是一非零常数列,则称此数列为p阶等差数列  3.高阶等差数列是二阶或二阶以上等差数列的统称  4.高阶等差数列的性质:  (1)如果数列是p阶等差数列,则它的一阶差数列是p-1阶等差数列  (2)数列是p阶等差数列的充要条件是:数列的通项是关于n的p次多项式  (3) 如果数列是p阶等差数列,则其前n项和Sn是关于n的p+1次多项式  5.高阶等差数列中最重要也最常见的问题是求通项和前n项和,更深层次的问题是差分方程的求解,解决问题的基本方法有:  (1)逐差法:其出发点是an=a1+  (2)待定系数法:在已知阶数的等差数列中,其通项an与前n项和Sn是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得  (3)裂项相消法:其出发点是an能写成an=f(n+1)-f(n)  (4)化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的
苏州马小云2023-05-21 08:46:201

二阶等差数列的通项公式是什么形式?

等差数列的前n项和是 二次函数的形式 s=an^2+bn,通项公式是一次的
西柚不是西游2023-05-21 08:46:205

高中数学等差数列教案大全

  等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。接下来是我为大家整理的高中数学等差数列教案大全,希望大家喜欢!    高中数学等差数列教案大全一   “等差数列”教学设计   一、教学内容分析   等差数列是《普通高中课程标准实验教科书?数学5》(人教版)第二章数列第二节等差数列第一课时。   数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,?数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种 方法 ——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。   二、教学目标   1、通过本节课的学习使学生理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列。   2、引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生观察、分析、归纳、推理的能力。   3、在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。   三、教学重难点   重点:   ①等差数列的概念。   ②等差数列的通项公式的推导过程及应用。   难点:   ①理解等差数列“等差”的特点及通项公式的含义。   ②理解等差数列是一种函数模型。   四、学习者分析   普通高中学生经过一年的高中的学习生活,已经慢慢习惯的高中的学习氛围,大部分学生知识 经验 已较为丰富,且对数列的知识有了初步的接触和认识,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻,应用数学公式的能力逐渐加强。他们的智力发展已到了形式运演阶段,具备了较强的 抽象思维 能力和演绎推理能力。但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。   五、教学策略选择与设计   结合本节课的特点,我设计了从教法、学法两种方法对等差数列的通项公式进行推导,让学生更好的理解。通过引入实例来启发学生,挺高学生的学习兴趣,是学生更加形象、愉快的去学习这堂课。下面是我教学设计:   1.教法   ⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。   ⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。   ⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。   2.学法   引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。   六、教学资源与工具设计   (一)学习环境:多媒体教室   (二)用到的资源:   1 查找有关等差数列的实例   2 写出上课要提到的问题   3 制作相关PPT课件   七、教学过程   教学环境 教学内容与   教师活动 学生活动 设计意图或依据 情境导入   在南北朝时期《张邱建算经》中,有一道题“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金 四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更 给,问各得金几何,及未到三人复应得金几何“。 这个问题该怎样解决呢?   由学生观察分析并得出答案: 在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,___,___,___,___,?   水库的管理人员为了保证优质鱼 类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位 为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5   思考:同学们观察一下上面的这两个数列: 0,5,10,15,20, ① 18,15.5,13,10.5,8,5.5 ② 看这些数列有什么共同特点呢?   倾听和观察分析,发表各自的意见。   课堂引入,引向课题 探索与归纳   对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上两组等差数列,它们的公差依次是5,5,-2.5。   提问:如果在a与b中间插入一个数A,使a,A,b成等差数列数列,那么A应满足什么条件?   由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b   的等差中项。   不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。 如数列:1,3,5,7,9,11,13?中5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。看来,   从而可得到在一等差数列中,若m+n=p+q则   高中数学等差数列教案大全二   等差数列的教学设计   教学理念: 数学教学是思维过程的教学,如何引导学生参与到教学过程中来,尤其是在思维上深层次的 参与 ,是促进学生良好的认知结构,培养能力,全面提高素质的关键。数学教学中的探究式对培养和提高学生的自主性、能动性和创造性有着非常重要的意义。   设计思想: 本节借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。   一、教材分析:高考资源网   教学内容:   高中数学必修第五模块第二章第二节,等差数列,两课时内容,本节是第一课时,研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。   教学地位:   本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对 后续 内容的学习,无论在知识上,还是在方法上都具有积极的意义。高考资源网   教学重点:   理解等差数列概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题,体会等差数列与一次函数之间的关系。   教学难点:   对等差数列概念的理解及从函数、方程角度理解通项公式,概括通项公式推导过程中体现出的数学思想方法。   二、学习者分析:   高二学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的 逻辑思维 向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。   三、教学目标:高考资源网   知识目标:   理解等差数列定义,掌握等差数列的通项公式。   能力目标:高考资源网   培养学生观察、归纳能力,在学习过程中,体会数形结合思想、归纳思想和化归思想并加深认识;通过概念的引入与通项 公式 的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力。   情感目标:   ①通过个性化的学习增强学生的自信心和意志力。   ②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。   ③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。   四、教法和学法的分析:高考资源网   通过探究式 教学方法 充分利用现实 情景 ,尽可能的增加教学过程的趣味性、实践性。利用多媒体课件和实例等丰富学生的学习资源,强调学生动手操作试验和主动参与,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。   2、 在学法上,引导学生多角度,多层面认识事物,学会探究。教师是学生的学习的组织者、促进着、合作者,在本节课的备课和教学过程中,为学生的动手实践,自主探索与合作交流的机会搭建平台,鼓励学生提出自己的见解,学会提出问题解决问题,通过恰当的教学方式让学生学会自我调适,自我选择。   五、教学媒体和教学技术的选用   多媒体计算机和几何画板   通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。本节课打破传统的一言堂的格局代之以人为本、民主、开放、特色和建立在信息网络平台上的现代教学格局。   六、教学程序:   (一)设置问题,引导发现形成概念w。   师:看大屏幕。高考资源网   情景1(播放奥运会女子举重场面)   2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):   48,53,58,63   情景2 水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m)   18,15.5,13,10.5,8,5.5   情景3 我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:   本利和=本金 (1+利率 存期)   时间 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%,那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税)   各年末本利和(单位:元)高考资源网   10072,10144,10216,10288,10360   师:思考上述各组数据反映了什么样的信息?   每行数有何共同特点?请同学们互相讨论。   (学生纷纷议论,有的几个人在一起商量)高考资源网   (从宏观上 : 情景1 让学生体验成功申办奥运会的喜悦心情,激发勇于拼搏的坚强意志;情景2让学生认识到保护水资源,保护生态平衡的意识;情景3 倡导节约意识,纳税意识。)   从微观上,数学研究的对象是数,我们抛开具体的背景,从表格中抽象出一般数列。   48 53 58 63 18 15.5 13 10.5 8 5.5 10072 10144 10216 10288 10360 师:(启发学生)你能用数学语言来描述上述数列的共同特征吗?   学生1:后一项与它的前一项的差等于常数。   师:反例:1,3,5,6,12,这样的数列特征和上述数列的特征一样吗?   学生1:不一样,要加上同一个常数。   学生2:每一项与它的前一项的差等于同一个常数。   师:反例:1,3,4,5,6,7,这样的数列特征和上述数列的特征一样吗?   学生2:不一样,必须从第二项开始。   学生3:从第二项起,每一项与它的前一项的差等于同一个常数。   (教师把学生的回答写在黑板上,通过反例,使学生深刻理解几组数列的共同特征:   = 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起)   师:能不能用数学语言表示?   学生4:   师:等价吗?   学生4:应加上(d是常数), .   (让学生充分讨论,注意文字语言与数学符号语言的转化的严谨性)   师:对式子进行变形可得 。   这样的数列在生活中的例子,谁能再举几个?   学生5:某剧场前8排的座位数分别是   52,50,48,46,44,42,40,38.   学生6:全国统一鞋号中成年女鞋的各种尺码分别是   21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25   学生7:马路边的路灯,相邻两盏之间的距离构成的数列。   师:如何用数列表示?   学生8:设相邻两盏之间的距离为a,该数列为   a,a,a,a,……,为常数列,即常数列都具有这种特征。   (让学生举例,加深感性认识)   师:满足这种特征的数列很多,我们有必要为这样的数列取一个名字?   学生(共同):等差数列。   师:(学生叙述,板书定义)高考资源网   一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d为公差,a1为数列的首相。   提出课题《等差数列》   对定义进行分析,强调: = 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起。注意对概念严谨性的分析。   师:回到表格中,分别说出它们的公差。   学生9:依次是d=7,d=1,d=8,d=-6,d=5,d=-2.5,d=72.   师:在计算年末本利和的问题中求 时,能不能不按本利和=本金 (1+利率 存期)   求而按数列的特征求呢?   学生:若能求得通项公式,问题就很好解决。   (再提出问题,引导发现求通项公式的必要性)   (二)启发、引导推出等差数列的通项公式   师:把问题推广到一般情况。若一个数列 是等差数列,它的公差是d,那么数列 的通项公式是什么?高考资源网   启发学生:(归纳、猜想)可用首相与公差表示数列中任意一项。   学生10: 即:   即:   即:   由此可得:   师:从第几项开始归纳的?   学生10:第二项,所以n≥2。   师:n=1时呢?    高中数学等差数列教案大全三   一.设计思想   数学是思维的 体操 ,是培养学生分析问题、解决问题的能力及创造能力的载体,新课程倡导:强调过程,强调学生探索新知识的经历和获得新知的体验,不能在让教学脱离学生的内心感受,必须让学生追求过程的体验。基于以上认识,在设计本节课时,教师所考虑的不是简单告诉学生等差数列的定义和通项公式,而是创造一些数学情境,让学生自己去发现、证明。在这个过程中,学生在课堂上的主体地位得到充分发挥,极大的激发了学生的学习兴趣,也提高了他们提出问题解决问题的能力,培养了他们的创造力。这正是新课程所倡导的数学理念。   本节课借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。   二.教材分析   高中数学必修五第二章第二节,等差数列,两课时内容,本节是第一课时。研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。通过本节课的学习要求理解等差数列的概念,掌握等差数列的通项公式,并且了解等差数列与一次函数的关系。   本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。   三.学情分析   学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。同时思维的严密性还有待加强。   四.教学目标   1.知识目标:理解等差数列概念,掌握等差数列的通项公式,了解等差数列与一次函数的关系。   2.能力目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。   3.情感目标:体验从特殊到一般,又到特殊的认知规律,提高数学猜想、归纳的能力。   五.重点、难点   教学重点:等差数列的概念及通项公式的推导。   教学难点:对等差数列概念的理解及学会通项公式的推导及应用。   六.教学策略和手段   数学教学是数学活动的教学,是师生之间、学生之间交往互动共同发展的过程,结合学生的实际情况,及本节内容的特点,我采用的是“问题教学法”,其主导思想是以探究式教学思想为主导,由教师提出一系列精心设计的问题,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。   教学手段:多媒体计算机和传统黑板相结合。通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。而保留使用黑板则能让学生更好的经历整个教学过程。   七.课前准备   学生预习,教师做好课件并安装好。   八.教学过程   创设情景,引入概念   设计意图:希望学生能通过日常生活中的实际问题的分析对比,建立等差数列模型,体验数学发现和创造的过程。   师生活动:   情景1:   师—把班上学生学号从小到大排成一列 :   学生:   师—这是数列吗?你能归纳出它的通项公式吗?   学生—是,   师—把上面的数列各项依次记为 ,填空:   学生—填空并归纳出一般规律: ,( )   师—上面这个规律还有其他形式吗?   学生—或者写成 ,( )   注:要对强调 ,原因在于 有意义。   师—你能用普通语言概括上面的规律吗?   学生—自由发言,选择最恰当的语言。   上面的数列已找出这一特殊规律,下面再观察一些数列并也找出它们的规律。   情景2:看幻灯片上的实例   (1)2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):   48,53,58,63   (2)水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m)   18,15.5,13,10.5,8,5.5   (3)我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:   本利和=本金 (1+利率 存期)   时间 年初本金(元) 年末本利和(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年 10000 10360 例如,按活期存入10000元,年利率是0.72%, 那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税)   各年末本利和(单位:元)   10072,10144,10216,10288,10360   师:上面的三个数列又分别有什么规律呢?   学生—(1) , ,   (2) , ,   (3) , ,   师—归纳上面数列的共同特征:   (d是常数), , ,   师 —满足这种特征的数列很多,我们有必要为这样的数列取一个名字?   学生(共同)—等差数列。   提出课题《等差数列》   师—给出文字叙述的定义(学生叙述,板书定义):   一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d为公差,a1为数列的首项。   对定义进行分析,强调: = 1 GB3 ① 同一个常数; = 2 GB3 ② 从第二项起。   师—这样的数列在生活中的例子,谁能再举几个?   学生—某剧场前8排的座位数分别是   52,50,48,46,44,42,40,38.   学生—全国统一鞋号中成年女鞋的各种尺码分别是   21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25   抢答:观察下列数列是否为等差数列   1,2,4,6,8,10,12,……   0,1,2,3,4,5,6,……   3,3,3,3,3,3,3……   2,4,7,11,16,……   -8,-6,-4,0,2,4,……   3,0,-3,-6,-9,……   注:常数列也是等差数列,公差是0。   推进概念,发现性质   设计意图:概括等差中项的概念。 总结 等差中项公式,用于发现等差数列的性质。   师生活动:   师—想一想,一个等差数列最少有几项?它们之间有什么关系?   学生思考后回答,至少三项,然后老师引导学生概括等差中项的概念。   设三个数 成等差数列,则A叫a与b的等差中项。同时有A-a=b-A,   说明:(1)上面式子反过来也成立。   (2)等差数列中的任意连续三项都构成等差数列 ,反之亦成立。   (三)探究通项公式   设计意图:通过具体数列的通项公式,总结一般等差数列的通项公式,体会特殊到一般的数学思想方法。   师生活动:   师—对于一个数列,我们最关心的是每一项,而这就要求我们能知道它的通项公式。下面一起来研究等差数列的通项公式。   先写出上面引例中等差数列的通项公式。再推导一般等差数列的通项公式。   师—若一个数列 是等差数列,它的公差是d,那么数列 的通项公式是什么?   启发学生:(归纳、猜想)可用首项与公差表示数列中任意一项。   学生— 即:   即:   即:   由此可得:   师—从第几项开始归纳的?   学生—第二项,所以n≥2。   师—n=1时呢?   学生—当n=1时,等式也是成立,因而等差数列的通项公式   ( )   师—很好! 高中数学等差数列教案大全相关 文章 : 1. 高中数学等差数列知识点汇编 2. 高中数学集合教案设计 3. 高一数学等差数列练习题及答案技巧 4. 高二数学必修5等差数列知识点 5. 高中数学必修5等差数列复习 6. 高考数学集合教案大全 7. 高考数学数列基本概念及等差数列1 8. 高中数学必修4第三章等差数列复习资料 9. 高中数学教学计划 10. 高中数学教师教学工作总结
善士六合2023-05-21 08:46:201

关于等差数列

  等差数列是一个古老的数学课题。一个数列从第二项起,后项减去前项所得的差是一个相等的常数,则称此数列为 等差数列。  在数学发展的早期已有许多人研究过数列这一课题,特别是等差数列。例如早在公元前2700年以前埃及数学的《莱 因特纸草书》中,就记载着相关的问题。在巴比伦晚期的《泥板文书》中,也有按级递减分物的等差数列问题。其中有一个问题大意是:  10个兄弟分100两银子,长兄最多,依次减少相同数目。现知第八兄弟分得6两,问相邻两兄弟相差多少?  在我国公元五世纪写成的《张丘建算经》中,透过五个具体例子,分别给出了求公差、总和、项数的一般步骤。比 如卷上第23题(用现代语叙述):  有一女子不善织布,逐日所织布按数递减,已知第一日织5尺,最后一日织1尺,共织了30日,问共织布多少?  这是一个已知首项(a1)、末项(an ),以及项数(n)求总数(Sn)的问题,对此, 原书提出的解法是:总数等于首项加末项除2,乘以项数。它相当于现今代数里的求和公式:Sn=(a1+an).n/2。印度数学家婆罗摩笈多在公元七世纪也得出了这个公式,并 给出了求末项公式:an=a1+(n-1)d。  卷上第23题:有一女子善于织布,逐日所织布按同数递增,已知第一日织5尺,经一月共织39丈,问每日比前一日 增织多少?  这是一个已知首项(a1),总数(Sn )以及项数(n),求公差(d)的问题,对此原书给出的解 法是  d=(2Sn/n-2a1)/(n-1)。  等值于现在的求和公式:  Sn=n[2a+(n-1)d]/2  卷中第1题:今有某人拿钱赠人,第一人给3元,第二人给4元,第三人给5元,其余依次递增分给。给完后把这些人 所得的钱全部收回,再平均分派,结果每人得100元,问人数多少?  这是一个已知首项(a1),公差(d)以及 n项的平均数(m),求项数(n)的问题,对此原书给出的 解法是n=[2(m-a1)+d]/d。  我国自张邱建之后,对等差数列的计算日趋重视,特别是在天文学和堆栈求积等问题的推动下,从对一般的等差数 列的研究发展成为对高阶等差数列的研究。在北宋沉括( 1031-1095)的《梦溪笔谈》中,「隙积术」就是第一个关 于高级等差数列的求积法。
bikbok2023-05-21 08:46:191

等差数列6+、13+、20+、27+…问前31项的和是多少?

二阶等差数列通项的一般形式为:An=an2+bn+c,类似于二次函数解析式求法,我们可用待定系数法求出其通项公式。二阶等差数列是指后项与前项的差值是等差数列。例如:1,3,7,13,21,31,…,后项与前项的差值依次为:2,4,6,8,10,…,这些差值是等差数列,我们称数列1,3,7,13,21,31,…为二阶等差数列。扩展资料等差数列规律具有一次函数的一般形式,二阶等差数列具有二次函数的一般形式,凡是这样的数列,其通项公式均可以用待定系数法计算。观察下列等式,请写出第n个等式。第1个等式: 32-1=8×1,第2个等式: 52-1=24=8×3,第3个等式: 72-1=48=8×6,第4个等式: 92-1=80=8×10,分析:第一步:找变数与不变数。观察发现,等式左边的底数在变化 ,等式右边与8相乘的数在变化。第二步:左边底数依次为:3,5,7,9, …,显然是等差数列规律,其公差为2,首项减公差等于1,所以第n个底为为2n+1。第三步:右边与8相乘的数依次为1,3,6,10, …,后项与前项的差值依次为2,4,6, …,可判断出原数列为二阶等差数列。参考资料来源:百度百科-高阶等差数列
黑桃花2023-05-21 08:46:191

一个数列,8,8,6,2,问下一个数是多少

每三个数相加为17,所以后两个数相加为11就行了
LuckySXyd2023-05-21 08:46:193

词语造句:用等差数列造句(约30个)

等差数列拼音: deng cha shu lie 等差数列解释: 由第二项起,任一项与前一项的差恒等的数列,如10,14,18,22…。它的一般形式为a,a+d,a+2d,a+3d…。 等差数列造句: 1、等差是等差数列最核心的本质特征。 2、对广义等差数列的性质进行探讨,并提出广义等差数列的一阶递归表达式。 3、求阶等差数列的有限和通常是用数学归纳法的方法来解决,其求和公式的建立往往有一定的困难。 4、本文提出用等差数列和不等差数列法来产生新的纱线排列的方法,从而形成了从基础组织快速生成大循环组织的实用办法。 5、并研究了付款额呈高阶等差数列及倒虹式年金等某些特殊的年金变化形式,给出了其期初值和期末值。 6、用幂级数和函数的思想来给出阶等差数列求有限和的公式。 7、首先,简要介绍了三种主要的求和方法。然后,根据高阶等差数列通项的特性,利用新定义的形式导数列对其进行了有效的探讨。 8、本文就《义勇军进行曲》音调为例,运用数理分析方法,揭示其富于规律的数列结构特征 等差数列、等比数列、平衡对称结构等。
肖振2023-05-21 08:46:191

关于高阶等差数列的来源及历史背景

000000001414014014
苏州马小云2023-05-21 08:46:192

高阶等差数列的例题精讲

例1.数列的二阶差数列的各项均为16,且a63=a89=10,求a51 解:法一:显然{an}的二阶差数列{bn}是公差为16的等差数列,设其首项为a,则bn=a+(n-1)×16,于是=a1+(n-1)a+8(n-1)(n-2)这是一个关于n的二次多项式,其中n2的系数为8,由于a63=a89=10,所以an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658解:法二:由题意,数列是二阶等差数列,故其通项是n的二次多项式,又a63=a89=10,故可设an=A(n-63)(n-89)+10由于是二阶差数列的各项均为16,所以(a3-a2)-(a2-a1)=16即a3-2a2+a1=16,所以A(3-63)(3-89)+10-2[A(2-63)(2-89)+10]+A(1-63)×(1-89)+10=16解得:A=8an=8(n-63)(n-89)+10,得a51=8(51-63)(51-89)+10=3658例2.一个三阶等差数列的前4项依次为30,72,140,240,求其通项公式解:由性质⑵,an是n的三次多项式,可设an=An3+Bn2+Cn+D由a1=30、a2=72、a3=140、a4=240得A+B+C+D=30 A=18A+4B+2C+D=72 解得: B=727A+9B+3C+D=140 C=1464A+16B+4C+D=240 D=8所以an=n3+7n2+14n+8例3.求和:Sn=1×3×22+2×4×32+…+n(n+2)(n+1)2解:Sn是是数列{n(n+2)(n+1)2}的前n项和,因为an=n(n+2)(n+1)2是关于n的四次多项式,所以{an}是四阶等差数列,于是Sn是关于n的五次多项式k(k+2)(k+1)2=k(k+1)(k+2)(k+3)-2k(k+1)(k+2),故求Sn可转化为求Kn=和Tn=k(k+1)(k+2)(k+3)=[ k(k+1)(k+2)(k+3)(k+4)-(k-1) k(k+1)(k+2)(k+3)],所以Kn==Tn==从而Sn=Kn-2Tn=例4.已知整数列适合条件:⑴an+2=3an+1-3an+an-1,n=2,3,4,…⑵2a2=a1+a3-2⑶a5-a4=9,a1=1求数列{an}的前n项和Sn解:设bn=an+1-an,Cn=bn+1-bnCn=bn+1-bn= (an+2-an+1)-(an+1-an)=an+2-2an+1+an=(3an+1-3an+an-1) -2an+1+an=an+1-2an+an-1=Cn-1 (n=2,3,4,…)所以{ Cn}是常数列由条件⑵得C1=2,则{an}是二阶等差数列因此由条件⑶知b4=9,从而b1=3,于是an=n2,例5.求证:二阶等差数列的通项公式为证明:设{an}的一阶差数列为{bn},二阶差数列为{cn},由于{an}是二阶等差数列,故{cn}为常数列又c1=b2-b1=a3-2a2+a1所以===例6.求数列1,3+5+7,9+11+13+15+17,…的通项解:问题等价于:将正奇数1,3,5,…按照“第n个组含有2n-1个数”的规则分组:⑴、(3,5,7)、(9,11,13,15,17),… 然后求第n组中各数之和an依分组规则,第n组中的数恰好构成以2为公差的项数为2n-1的等差数列,因而确定了第n组中正中央这一项,然后乘以(2n-1)即得an将每一组的正中央一项依次写出得数列:1,5,13,25,…这个数列恰为一个二阶等差数列,不难求其通项为2n2-2n+1,故第n组正中央的那一项为2n2-2n+1,从而an=(2n-2n+1)(2n-1)例7.数列{an}的二阶差数列是等比数列,且a1=5,a2=6,a3=9,a4=16,求{an}的通项公式解:易算出的二阶差数列是以2为首项,2为公比的等比数列,则cn=2n,的一阶差数列设为bn,则b1=1且bn=,从而an=例8.设有边长为1米的正方形纸一张,若将这张纸剪成一边长为别为1厘米、3厘米、…、(2n-1)厘米的正方形,恰好是n个而不剩余纸,这可能吗?解:原问题即是是否存在正整数n,使得12+32+…+(2n-1)2=1002由于12+32+…+(2n-1)2=[12+22+…+(2n-1)2]-[22+42+…+(2n)2]=随着n的增大而增大,当n=19时=9129<10000,当n=20时=10660>10000故不存在…例9.对于任一实数序列A={a1,a2,a3,…},定义DA为序列{a2-a1,a3-a2,…},它的第n项为an+1-an,假设序列D(DA)的所有项均为1,且a19=a92=0,求a1解:设序列DA的首项为d,则序列DA为{d,d+1,d+2,…},它的第n项是d+(n-1),因此序列A的第n项显然an是关于n的二次多项式,首项等比数列为由于a19=a92=0,必有所以a1=819
肖振2023-05-21 08:46:191

等差数列问题

 1.定义:对于一个给定的数列,把它的连结两项an+1与an的差an+1-an记为bn,得到一个新数列,把数列bn你为原数列的一阶差数列,如果cn=bn+1-bn,则数列是的二阶差数列依此类推,可得出数列的p阶差数列,其中pÎN  2.如果某数列的p阶差数列是一非零常数列,则称此数列为p阶等差数列  3.高阶等差数列是二阶或二阶以上等差数列的统称  4.高阶等差数列的性质:  (1)如果数列是p阶等差数列,则它的一阶差数列是p-1阶等差数列  (2)数列是p阶等差数列的充要条件是:数列的通项是关于n的p次多项式  (3) 如果数列是p阶等差数列,则其前n项和Sn是关于n的p+1次多项式  5.高阶等差数列中最重要也最常见的问题是求通项和前n项和,更深层次的问题是差分方程的求解,解决问题的基本方法有:  (1)逐差法:其出发点是an=a1+  (2)待定系数法:在已知阶数的等差数列中,其通项an与前n项和Sn是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得  (3)裂项相消法:其出发点是an能写成an=f(n+1)-f(n)  (4)化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的
善士六合2023-05-21 08:46:191

什么是n^数列?什么是2^数列?什么是3^数列|

我学了4年数学都没见过呀!你在哪里见的?
CarieVinne 2023-05-21 08:46:194

求高阶等差数列求和法公式。我是四年级学生。

和 Sn首相 a1末项 an公差 d项数 n等差数列求和=(首项+末项)*项数/2
无尘剑 2023-05-21 08:46:194

关于高阶等差数列的的问题。。。高分求解!

我以为是高中等差数列,没想到是大学的
u投在线2023-05-21 08:46:195

高阶等差数列公式是什么意思

通项公式:an=a1+(n-1)d1+(n-1)(n-2)d2/2!+…+(n-1)(n-2)…(n-r)dr/r!求和公式可由通项公式推出,自己试试.
ardim2023-05-21 08:46:192

高阶等差数列,急~~

可以证明结果是5次表达式待定系数法就好了。
黑桃花2023-05-21 08:46:192

关于高阶等差数列的一些基础知识的疑问

1,相邻两个数的差相等,所以是等差。只减了一次,所以叫一阶。2,1,2,6,9,16,……一次阶差是1,4,3,7,……二次阶差是3,-1,4,……三次阶差是-4,5,……四次阶差是9,……几次阶差是常数列?3,例如数列1,8,27,64,125,216,……一次阶差是7,19,37,61,91……二次阶差是12,18,24,30,……三次阶差是6,6,6,……三次阶差是常数列,所以数列1,8,27,64,125,216,……是三阶等差数列。而数列7,19,37,61,91……一次阶差是12,18,24,30,……二次阶差是6,6,6,……二次阶差是常数列,所以数列7,19,37,61,91……是二阶等差数列。所以数列1,8,27,64,125,216,……的一次阶差是7,19,37,61,91……为二阶等差数列。
真颛2023-05-21 08:46:181

求高阶等差数列通项公式

an=a1+(n-1)dSn=(a1+an)n/2=na1+n(n-1)d/2
Chen2023-05-21 08:46:181

高阶等差数列性质证明

和=(前项+后项)×项数÷2
kikcik2023-05-21 08:46:181

求高阶等差数列求和法公式【公式中的字母含义麻烦解释一下,我是四年级学生】

天才学生,你真厉害啊
Jm-R2023-05-21 08:46:182

求高阶等差数列求和法公式。我是四年级学生。

(首项+末项)*项数/2=总和(末项-首项)*公差+1=项数首项+(N-1)*公差=第N项首项,一个等差数列中第一个数,末项,一个等差数列中最后一个数。项数,这个等差数列有几个数,公差,就是相邻两个数的差。
此后故乡只2023-05-21 08:46:181

求教一下,请问有没有高阶等差数列一说?

我记得上小学的奥数教程里就有,不过只是让找规律而已。呵呵
阿啵呲嘚2023-05-21 08:46:182

高阶等差数列怎么求

表示还没听说过高阶等差数列这个概念,难道是我孤陋寡闻么? 等差数列都是一次的,怎么可能会出现高阶呢? 麻烦你把你要问的问题表述清楚一点.
真颛2023-05-21 08:46:181

求和 高阶等差*等比数列 1+2^2n+3^2n^2+4^2n^3+……+k^2n^(k-1)=?

提示: 方法1. 令S=1+2^2n+3^2n^2+4^2n^3+……+k^2n^(k-1) 两边同乘n, nS=n+2^2n^2+3^2n^3+4^2n^4+……+k^2n^k 两个等式相减得 (1-n)S=1+3n+5nn+...+(2k-1)n^(k-1)-k^2n^k 再如上法,相减就可以得到一个等比数列求和,然后可以化简了. 方法2. 令f(x)=1+x+xx+...+x^k. 两边求导,得 f"(x)=1+2x+3xx+...+kx^(k-1). 两边同乘以x. f"(x)x=x+2xx+3xxx+...+kx^k 两边再求导,令x=n代入即可. 过程就不详述了.
北有云溪2023-05-21 08:46:181

实数列{an}满足条件a(n+2)=|a(n+1)|-an,n为整数,证明:存在某个正整数N,当n≥N,有a(n+9)=an

二阶等差数列 高一不学大学一般也不学,除非数学系某些专业。高阶等差数列基本知识  1.定义:对于一个给定的数列,把它的连结两项an+1与an的差an+1-an记为bn,得到一个新数列,把数列bn你为原数列的一阶差数列,如果cn=bn+1-bn,则数列是的二阶差数列依此类推,可得出数列的p阶差数列,其中pÎN  2.如果某数列的p阶差数列是一非零常数列,则称此数列为p阶等差数列  3.高阶等差数列是二阶或二阶以上等差数列的统称  4.高阶等差数列的性质:  (1)如果数列是p阶等差数列,则它的一阶差数列是p-1阶等差数列  (2)数列是p阶等差数列的充要条件是:数列的通项是关于n的p次多项式  (3) 如果数列是p阶等差数列,则其前n项和Sn是关于n的p+1次多项式  5.高阶等差数列中最重要也最常见的问题是求通项和前n项和,更深层次的问题是差分方程的求解,解决问题的基本方法有:  (1)逐差法:其出发点是an=a1+  (2)待定系数法:在已知阶数的等差数列中,其通项an与前n项和Sn是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得  (3)裂项相消法:其出发点是an能写成an=f(n+1)-f(n)  (4)化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的 [编辑本段]例题精讲   例1.数列的二阶差数列的各项均为16,且a63=a89=10,求a51  解:法一:显然的二阶差数列是公差为16的等差数列,设其首项为a,则bn=a+(n-1)×16,于是an= a1+  =a1+(n-1)a+16/2(n-1)(n-2)  这是一个关于n的二次多项式,其中n2的系数为8,由于a63=a89=10,所以  an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658  解:法二:由题意,数列是二阶等差数列,故其通项是n的二次多项式,又a63=a89=10,故可设an=A(n-63)(n-89)+10  由于是二阶差数列的各项均为16,所以(a3-a2)-(a2-a1)=16  即a3-2a2+a1=16,所以  A(3-63)(3-89)+10-2[A(2-63)(2-89)+10]+A(1-63)×(1-89)+10=16  解得:A=8  an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658  例2.一个三阶等差数列的前4项依次为30,72,140,240,求其通项公式  解:由性质(2),an是n的三次多项式,可设an=An3+Bn2+Cn+D  由a1=30、a2=72、a3=140、a4=240得  解得:  所以an=n3+7n2+14n+8  例3.求和:Sn=1×3×22+2×4×32+…+n(n+2)(n+1)2  解:Sn是是数列的前n项和,  因为an=n(n+2)(n+1)2是关于n的四次多项式,所以是四阶等差数列,于是Sn是关于n的五次多项式  k(k+2)(k+1)2=k(k+1)(k+2)(k+3)-2k(k+1)(k+2),故求Sn可转化为求  Kn=和Tn=  k(k+1)(k+2)(k+3)=[ k(k+1)(k+2)(k+3)(k+4)-(k-1) k(k+1)(k+2)(k+3)],所以  Kn==  Tn==  从而Sn=Kn-2Tn=  例4.已知整数列适合条件:  (1)an+2=3an+1-3an+an-1,n=2,3,4,…  (2)2a2=a1+a3-2  (3)a5-a4=9,a1=1  求数列的前n项和Sn  解:设bn=an+1-an,Cn=bn+1-bn  Cn=bn+1-bn= (an+2-an+1)-( an+1-an)=an+2-2an+1+an=(3an+1-3an+an-1) -2an+1+an=an+1-2an+an-1  =Cn-1 (n=2,3,4,…)  所以是常数列  由条件(2)得C1=2,则是二阶等差数列  因此an=a1+  由条件(3)知b4=9,从而b1=3,于是an=n2  例5.求证:二阶等差数列的通项公式为  证明:设的一阶差数列为,二阶差数列为,由于是二阶等差数列
LuckySXyd2023-05-21 08:46:181

如何利用高阶等差数列来解决堆垛问题。

堆垛问题一般都可以用归纳法归纳为高阶等差数列的问题!三角垛求积法医,茭草垛求积法!
hi投2023-05-21 08:46:182

学习高阶等差数列之前要先学习什么,,

一阶的等差数列总的学呀,简单的等比数列的知道吧,很多都会转化为这两种呀!
Chen2023-05-21 08:46:183

求复杂数列通项公式求法,怎么才能使1,5,13,25 这种的数列通项公式好求点?

事实上,LZ所给出的数列是一个“二阶等差数列”,是一种“高阶等差数列”所谓二阶差数列就是将这个数列前后项之差作为一个新数列的项比如就以这题为例:{5-1,13-5,25-13}={4,8,12}为等差数列,那么我们就把这个数列称之为二阶等差数列有这样一个定理可为解此类数列提供依据“p阶等差数列是关于n的P次多项式”也就是说这一题的二阶差数列是关于n的2次多项式,即可设an=An^2+Bn+C(ABC为待定系数)至此,LZ可以把a1a2a3a4等项代入an=An^2+Bn+C中求出待定系数也可以“拼凑”出同样形式的通项公式:a1=2*1^1-2*1+1=1a2=2*2^2-2*2+1=5a3=2*3^2-2*3+1=13a4=2*4^2-2*4+1=25……an=2*n^2-2n+1当然,“拼凑”法需要有一定题量的训练才能较熟练地掌握推荐还是先适应待定系数法若LZ还有什么不明白的地方可追问希望我的回答对你有帮助另外回复仨X不等于四:二阶差是an-a(n-1)=kn+b那三阶差呢?an-a(n-1)=an^2+bn+cn求和已经有难度了四阶差五阶差以至更高阶差就更不用说了递推累和求二阶差可行,速度也比较快但因为任意p阶差数列的递推累和都会用到Σi^(p-1)以及以下的一些公式所以递推累和用于求高阶段等差数列就不见得那么好求了
真颛2023-05-21 08:46:181

数列的方法

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,且每一项都不为0(常数),这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差通常用字母d表示。如果{cn},cn=an·bn,其中{an}为等差数列,{bn}为等比数列,那么这个数列就叫做差比数列.高阶等差数列r阶差等比数列的定义通过对某一数列应用逐差法,使得若干阶差后得到一等比数列。该数列又称为高阶差等比数列。定义 若一数列应用逐差法运算时,其前r阶差不是等比数列,而r+1阶差时是等比数列,则称该数列为r阶差等比数列 。通项公式:设数列(1)为r阶差等比数列,其各阶差首项分别为d1,…,dr ;且r+1阶差为等比数列,其首项为b,公比为q.则数列(1)的通项公式为(1)等比数列的通项公式是:若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。(2) 任意两项am,an的关系为=(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。性质:①若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;②在等比数列中,依次每 k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.(5) 等比数列前n项之和Sn=a1(1-q^n)/(1-q)或Sn=(a1-an*q)/(1-q)(q≠1) Sn=n*a1 (q=1)在等比数列中,首项a1与公比q都不为零.注意:上述公式中A^n表示A的n次方。等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式---复利。即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是人们通常说的利滚利。按照复利计算本利和的公式:本利和=本金*(1+利率)^存期
bikbok2023-05-21 08:46:181

高阶等差数列的基本知识

⒈定义:一般地,如果{an+1-an}是K阶等差数列,就称原数列{an}为K+1阶等差数列,二阶以及高于二阶的等差数列统称为高阶等差数列。 ⒉如果某数列的p阶差数列是一非零常数列,则称此数列为p阶等差数列⒊高阶等差数列是二阶或二阶以上等差数列的统称⒋高阶等差数列的性质:⑴如果数列是p阶等差数列,则它的一阶差数列是p-1阶等差数列⑵数列是p阶等差数列的充要条件是:数列的通项是关于n的p次多项式⑶ 如果数列是p阶等差数列,则其前n项和Sn是关于n的p+1次多项式⒌高阶等差数列中最重要也最常见的问题是求通项和前n项和,更深层次的问题是差分方程的求解,解决问题的基该方法有:⑴逐差法:其出发点是⑵待定系数法:在已知阶数的等差数列中,其通项an与前n项和Sn是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得⑶裂项相消法:其出发点是an能写成an=f(n+1)-f(n)⑷化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的
CarieVinne 2023-05-21 08:46:171

关于高阶等差数列……

设A(n)=an^2+bn+c,其中a,b,c为常数 则每相邻两项的差: B(n)=A(n+1)-A(n) =a(n+1)^2+b(n+1)+c-(an^2+bn+c) =a(2n+1)+b 则C(n)=B(n+1)-B(n)=a(2(n+1)+1)+b-(a(2n+1)+b)=2a为常数, 所以A(n)为二阶等差数列 反之 设C(n)=d为常数 B(n)为公差为d的等差数列 则B(n)=B(1)+(n-1)*d 则基于一阶等差数列B(n)的二阶等差数列A(n)的通项为 A(n)=A(1)+B(1)+B(2)+...+B(n-1) =A(1)+B(1)+(B(1)+d)+...+(B(1)+(n-2)*d) =A(1)+(n-1)*B(1)+d*(1+2+...+(n-2)) =A(1)+(n-1)*B(1)+d*(n-2)*(n-1)/2 =d/2*n^2+(B(1)-3d/2)*n+A(1)+d 其中d、A(1)、B(1)为常数 所以A(n)的通项为一个关于n的二次三项式 所有高次多项式都可以表达一个高阶等差数列的通项可以用数学归纳法证明A(n)={-5,-4,1,10,23,40……} 设B(n)=A(n+1)-A(n) B(n)={1,5,9,13,17.....} 设C(n)=B(n+1)-B(n) C(n)={4,4,4,4...} 所以B(n)=1+(n-1)*4 A(n)=-5+(B(1)+B(2)+...+B(n-1)) =-5+(1+5+...+(1+(n-2)*4)) =-5+1*(n-1)+4*(n-2)(n-1)/2 =2n^2-5n-2
豆豆staR2023-05-21 08:46:171

高阶等差数列与差分方法

对一个给定的数列 的相邻两项作差,得到一个新数列 这个数列称为 的一阶差数列.如果记该数列为 ,其中 ,那么再求 的相邻两项之差,所得数列 称为原数列 的二阶差数列. 依此类推,对任意 ,可以定义数列 的 阶差数列. 如果 的 阶差数列是一个非零常数数列,那么称它为 阶等差数列.特别地,一阶等差数列就是我们通常说的等差数列,二阶及二阶以上的等差数列统称为高阶等差数列. 注意到,数列是定义在 上的函数,将上述作差思想予以推广就得到了差分的概念. 设 是定义在 上的函数,令 ,则 也是定义在 上的函数,它称为 的一阶差分,与上类似,我们可以递推地定义 的二阶,三阶, , 阶差分 利用数学归纳法易证下面的定理: 定理1 设 是定义在 上的函数,则 如果函数 是关于 的 次多项式,那么 是关于 的 次多项式, 是关于 的 次多项式, , 是关于 的零次多项式,且 (这里 是 的首项系数),而当 , 时, . 反过来,对函数 ,如果 ,那么 是关于 的一个次数不超过 的多项式. 将这些结论应用于高阶等差数列,我们有 定理2 数列 是一个 阶等差数列的充要条件是数列的通项 为 的一个 次多项式.
Ntou1232023-05-21 08:46:171

中国古代数学家求数列和的方法

“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用a_表示。著名的数列有斐波那契数列,三角函数,卡特兰数,杨辉三角等。
陶小凡2023-05-21 08:45:351

《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有

设该妇子织布每天增加d尺,由题意知S30=30×5+30×292d=390,解得d=1629.故该女子织布每天增加1629尺.故答案为:1629
康康map2023-05-21 08:45:061

设limXn=0,且数列Yn有界,求证limXnYn=0

九万里风9 2023-05-20 22:09:454

如何理解数列极限的定义

数列有极限,即当n趋向无穷大时,数列的项Xn无限趋近于或等于a, 任意取一个值ε,是表明无论ε是多小的数,Xn与a的差总小于ε,换句话说就是Xn无限趋近于或等于a。 看n>N时,注意原话是:……对于任意小的ε,总存在正整数N,使得当n>N时,|Xn-a|<ε ,……。这是表明,无论ε多小,当n足够大时,都可以满足|Xn-a|<ε。换句话说,就是即使ε小到非常小(趋近于0),当n大到足够大的程度(趋向于无穷大)也会满足Xn与a的差小于ε(趋近于0)。 这么说的目的是给出一个准确的、可严格进行推导的定义,因此才没有采用我答的第一句话这种说法,而是使用了一个用数学式子表示出的定义。这并没有什么特殊的含义.
kikcik2023-05-20 22:09:4410

什么叫一等差数列?

等差数列就是 后一项减前一项的差为定值,这个差叫做这个等差数列的公差
小菜G的建站之路2023-05-20 17:39:153

等差数列概念

等差数列的解释数学用语。从第二项始,以下任一项与前一项的差恒等的数列,如10,14,18,22,26……。它可以用a,a+d,a+2d,a+3d……的形式来表示。 词语分解 等差的解释 ∶等级差别 ∶差数相等详细解释等级次序;等级差别。《礼记·燕义》:“俎豆、牲体、荐羞皆有等差,所以明贵贱也。” 北齐 颜之推 《颜氏 家训 · 归心 》:“星与日月,形色同尔,但以大小为其等差。” 宋 数列的解释 依照 某种 法则排列的一列数。如:、、、……;、、、……等。数列分有限数列和无限数列两种。
铁血嘟嘟2023-05-20 17:39:151

等差数列的概念

题库内容:等差数列的解释数学用语。从第二项始,以下任一项与前一项的差恒等的数列,如10,14,18,22,26……。它可以用a,a+d,a+2d,a+3d……的形式来表示。 词语分解 等差的解释 ∶等级差别 ∶差数相等详细解释等级次序;等级差别。《礼记·燕义》:“俎豆、牲体、荐羞皆有等差,所以明贵贱也。” 北齐 颜之推 《颜氏 家训 · 归心 》:“星与日月,形色同尔,但以大小为其等差。” 宋 数列的解释 依照 某种 法则排列的一列数。如:、、、……;、、、……等。数列分有限数列和无限数列两种。
bikbok2023-05-20 17:39:151

等差数列的通项公式是什么?

等差数列的基本性质:1,公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。2,公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd。3,若{an}{bn}为等差数列,则{ an ±bn }与{kan +bn}(k、b为非零常数)也是等差数列。4,对任何m、n ,在等差数列中有:an = am + (n-m)dm、n∈N+),特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性。5、一般地,当m+n=p+qm,n,p,q∈N+)时,am+an=ap+aq。6,公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差)。7,下表成等差数列且公差为m的项ak.ak+m.ak+2m.....(k,m∈N+)组成公差为md的等差数列。8,在等差数列中,从第二项起,每一项(有穷数列末项除外)都是它前后两项的等差中项。9,当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数。等差数列前n项和公式S的基本性质:1,数列为等差数列的充要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数)。2,在等差数列中,当项数为2n (n N )时,S -S = nd, = ;当项数为(2n-1) (n )时,S-S =a。3,若数列为等差数列,则S ,S -S ,S -S 仍然成等差数列,公差为等差数列。4,若两个等差数列的前n项和分别是S 、T (n为奇数)。5,在等差数列中,S = a,S = b (n>m),则S = (a-b)。6,等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上。7,记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小。
Ntou1232023-05-20 17:39:151

等差数列公式怎么推导?

Sn=n(a1+an)/2Sn=na1+n(n-1)d/2=dn^2/2+(a1-d/2)n通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。扩展资料:等差数列的公式:公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数);项数=(末项-首项来)÷公差+1;末项=首项+(项数-1)×公差;前n项的和Sn=首项×n+项数(项数-1)公差/2;第n项的值an=首项+(项数-1)×公差;等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列;等差数列的和=(首项+末项)×项数÷2;an=am+(n-m)d,若已知某一项am,可列出与d有关的式子求解an。
小菜G的建站之路2023-05-20 17:39:151

等差数列是什么

1、3、5、7、9…… 数列中相邻两个数只差都是相等的
hi投2023-05-20 17:39:156

等差数列的各个公式是什么?

(首项+末项)乘项数除以2
余辉2023-05-20 17:39:152

什么是等差数列的意思概念介绍

  等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?以下是由我整理关于什么是等差数列的内容,希望大家喜欢!   什么是等差数列   等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。   例如:1,3,5,7,9……2n-1。   通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。   前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。   注意:以上n均属于正整数。   等差中项   等差中项即等差数列头尾两项的和的一半。但求等差中项不一定要知道头尾两项。   等差数列中,等差中项一般设为A(r)。当A(m),A(r),A(n)成等差数列时。   A(m)+A(n)=2×A(r),所以A(r)为A(m),A(n)的等差中项,且为数列的平均数。并且可以推知n+m=2×r。   且任意两项a(m),a(n)的关系为:a(n)=a(m)+(n-m)*d,(类似p(n)=p(m)+(n-m)*b(1),相当容易证明   它可以看作等差数列广义的通项公式。   等差数列的应用日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。   若为等差数列,且有a(n)=m,a(m)=n。则a(m+n)=0。   其实,中国古代南北朝的张丘建早已在《张丘建算经》提到等差数列了:   今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?   书中的解法是:并初、末日织布数,半之,余以乘织讫日数,即得。   这相当于给出了S(n)=(a(1)+a(n))/2*n的求和公式。   等差数列的基本性质   (1)数列为等差数列的重要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数).   (2)在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶=an÷a(n+1);当项数为(2n-1)(n∈ N+)时,S奇—S偶=a(中),S奇-S偶=项数*a(中) ,S奇÷S偶 =n÷(n-1).   (3)若数列为等差数列,则Sn,S2n -Sn ,S3n -S2n,…仍然成等差数列,公差为n^2d .   (4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则am/bm=S2m-1/T2m-1。   (5)在等差数列中,S = a,S = b (n>m),则S = (a-b).   (6)等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.   (7)记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且an+1≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且an+1≥0时,S 最小.   (8)若等差数列S(p)=q,S(q)=p,则S(p+q)=-(p+q)   r次等差数列   为什么等差数列的学习中,对公差和首项特别的关注,因为公差和首项可以作为等差数列一切变化的切入点。当我们有更好的切入点后,我们可以毫不犹豫的抛弃公差和首项。   假设一个基En(x)=[1,x,x^2,。。。,x^k],转换矩阵A为k+1阶方阵,b=[b0,b1,b2,。。。,bk]。b同En的长度一样(k+1)。b"表示b的转置。当k=1时,我们可以称为一次数列。k=r时,我们可以称为r次数列。(x,k只能取自然数)   p(x)=En(x)*b"   s(x)=x*En(x)*A*b"   m+n=p+q(m、n、p、q∈N*)则am+an=ap+aq
kikcik2023-05-20 17:39:151

等比数列的通项公式是什么?

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(Geometric Sequences)。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)且等比数列a1≠ 0。。注:q=1时, 为常数列。(1)通项公式:(2)求和公式:Sn=(a1-anq)/1-q求和公式用文字来描述就是:Sn=(首项-末项*公比)÷(1-公比)任意两项 , 的关系为 ;在运用等比数列的前n项和时,一定要注意讨论公比q是否为1.(3)从等比数列的定义、通项公式、前n项和公式可以推出:(4)等比中项:若 ,那么 为 等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1。另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。等比中项定义:从第二项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项。等比中项公式: 或者 。(5)无穷递缩等比数列各项和公式:无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和。(6)由等比数列组成的新的等比数列的公比:{an}是公比为q的等比数列1.若A=a1+a2+……+anB=an+1+……+a2nC=a2n+1+……a3n则,A、B、C构成新的等比数列,公比Q=q^n2.若A=a1+a4+a7+……+a3n-2B=a2+a5+a8+……+a3n-1C=a3+a6+a9+……+a3n则,A、B、C构成新的等比数列,公比Q=q性质(1)若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。(2)在等比数列中,依次每k项之和仍成等比数列。(3)若“G是a、b的等比中项”则“G^2=ab(G≠0)”。(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。(5)等比数列中,连续的,等长的,间隔相等的片段和为等比。(6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。(7) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)在等比数列中,首项A1与公比q都不为零。注意:上述公式中A^n表示A的n次方。(8)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)*q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。求通项方法(1)待定系数法:已知a(n+1)=2an+3,a1=1,求an?构造等比数列a(n+1)+x=2(an+x)a(n+1)=2an+x,∵a(n+1)=2an+3 ∴x=3∴(a(n+1)+3)/(an+3)=2∴{an+3}为首项为4,公比为2的等比数列,所以an+3=a1*q^(n-1)=4*2^(n-1),an=2^(n+1)-3(2)定义法:已知Sn=a·2^n+b,,求an的通项公式?∵Sn=a·2^n+b∴Sn-1=a·2^n-1+b∴an=Sn-Sn-1=a·2^n-1应用等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金*(1+利率)^存期。
Ntou1232023-05-20 17:39:141

等比数列的偶数项是什么?

等比数列的偶数项,就是第2、4、6……项即a2、a4、a6……也就是首项为a2、公比为q²,构成的一个新的等比数列
Chen2023-05-20 17:39:142

等比数列的性质

①若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…(can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。(4)按原来顺序抽取间隔相等的项,仍然是等比数列。(5)等比数列中,连续的,等长的,间隔相等的片段和为等比。(6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。(7)等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)(8)数列{An}是等比数列,An=pn+q,则An+K=pn+K也是等比数列,在等比数列中,首项A1与公比q都不为零.注意:上述公式中A^n表示A的n次方。(9)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
苏州马小云2023-05-20 17:39:148

等比数列性质

等比数列的性质:(1)若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。(2)在等比数列中,依次每k项之和仍成等比数列。(3)若“G是a、b的等比中项”则“G^2=ab(G≠0)”。(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。(5)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。(6)等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)在等比数列中,首项A1与公比q都不为零。注意:上述公式中A^n表示A的n次方。(7)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)*q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
hi投2023-05-20 17:39:141

等比数列 红圈式子如何得来 要详细

因式分解: (x-2)(x-3)=0 x=2或3 够详细不? 不够详细继续追问
bikbok2023-05-20 17:39:144

什么是等差数列

等差数列  一、 等差数列   如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。   等差数列的通项公式为:an=a1+(n-1)d (1)  前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)   以上n均属于正整数。  从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。   在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。  且任意两项am,an的关系为:an=am+(n-m)d  它可以看作等差数列广义的通项公式。   从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}   若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。  和=(首项+末项)×项数÷2   项数=(末项-首项)÷公差+1   首项=2和÷项数-末项  末项=2和÷项数-首项  末项=首项+(项数-1)×公差  等差数列的应用:  日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别  时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。  若为等差数列,且有an=m,am=n.则a(m+n)=0。  3.等差数列的基本性质   ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.   ⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.   ⑶若、为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列.   ⑷对任何m、n ,在等差数列中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.   ⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当为等差数列时,有:a + a + a + … = a + a + a + … .   ⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差).   ⑺如果是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列中,a -a = a -a = md .(其中m、k、 )   ⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.   ⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.   ⑽设a 1,a 2,a 3为等差数列中的三项,且a1 与a2 ,a 2与a 3的项距差之比 = d( d≠-1),则2a2 = a1+a3.   5.等差数列前n项和公式S 的基本性质   ⑴数列为等差数列的充要条件是:数列的前n项和S 可以写成S = an + bn的形式(其中a、b为常数).   ⑵在等差数列中,当项数为2n (n N )时,S -S = nd, = ;当项数为(2n-1) (n )时,S -S = a , = .   ⑶若数列为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为 .   ⑷若两个等差数列、的前n项和分别是S 、T (n为奇数),则 = .   ⑸在等差数列中,S = a,S = b (n>m),则S = (a-b).   ⑹等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.   ⑺记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小.
九万里风9 2023-05-20 17:39:141

等差数列的基本公式是什么?

1、等差数列基本公式: 末项=首项+(项数-1)*公差 项数=(末项-首项)÷公差+1 首项=末项-(项数-1)*公差 和=(首项+末项)*项数÷2 末项:最后一位数 首项:第一位数 项数:一共有几位数 和:求一共数的总和。2、Sn=na(n+1)/2 n为奇数sn=n/2(A n/2+A n/2 +1) n为偶数3、等差数列如果有奇数项,那么和就等于中间一项乘以项数,如果有偶数项,和就等于中间两项和乘以项数的一半,这就是中项求和。4、公差为d的等差数列{an},当n为奇数是时,等差中项为一项,即等差中项等于首尾两项和的二分之一,也等于总和Sn除以项数n。将求和公式代入即可。当n为偶数时,等差中项为中间两项,这两项的和等于首尾两项和,也等于二倍的总和除以项数n.扩展资料1、用前n项和公式法判定等差数列等差数列的前n项和公式与函数的关系给出了一种判断数列是 否为等差数列的方法:若数列{an }的前n项和S =an^2+bn+c,那 么当且仅当c = 0时,数列{an }是以a + b为首项, 2a为公差的等差 数列;当c ≠ 0时,数列{an} 不是等差数列。2、求解等差数列的通项及前n项和 对称项设法.当等差数列{an }的项数为奇数时,可设中间一项为a,再以 公差为d向两边分别设项: ⋯, a − 2d, a − d, a, a + d, a + 2d, ⋯;当 等差数列{an }的项数为偶数时,可设中间两项分别为a − d, a + d, 再以公差为2d向两边分别设项: ⋯, a − 3d, a − d, a + d, a + 3d, ⋯
CarieVinne 2023-05-20 17:39:141

等差数列到底是什么?

首项加末项的和乘以项数除以2~~~就弄么简单~~~~~~~~
tt白2023-05-20 17:39:142

等差数列的概念

1.等差数列的概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫作等差数列的公差,符号表示为an+1-an=d(n∈N*,d为常数).(2)等差中项:数列a,A,b成等差数列的充要条件是A=2(a+b),其中A叫作a,b的等差中项.在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项.2.等差数列的有关公式(1)通项公式:an=a1+(n-1)d.(2)前n项和公式:Sn=na1+2(n(n-1))d=2(n(a1+an)).
拌三丝2023-05-20 17:39:141

等差数列怎么求项数

项数=(末项-首项)÷公差+1。例: 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。原式=(11+31)×21÷2=441。在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到项数=(末项-首项)÷公差+1,末项=首项+公差×(项数-1)。扩展资料等差数列的应用日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有则其实,中国古代南北朝的张丘建早已在《张丘建算经》提到等差数列了:今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?书中的解法是:并初、末日织布数,半之,余以乘织讫日数,即得。这相当于给出了的求和公式。
黑桃花2023-05-20 17:39:141

等差数列的详细公式

在等差数列{}中,a4+a7+a10+a13=20,问a16=多少。此题根据等差数列中项来计算设通项公式为an=a1+(n-1)da4+a13=a7+a10=a1+a16=10a4+a13=2a1+15d=10条件不足只能得出a16+a1=10我再想想a在等差数列{}中,a1+a2+a3+a4=68,a7+a8+a9+a10=30,问a10=多少。设an=a1+(n-1)da1+a2+a3+a4=68,=>4a1+6d=68a7+a8+a9+a10=30=>4a1+30d=30联立解得a1=155/8,d=-19/12a10=155/8+9*-19/12=5+1/8...展开在等差数列{}中,a4+a7+a10+a13=20,问a16=多少。此题根据等差数列中项来计算设通项公式为an=a1+(n-1)da4+a13=a7+a10=a1+a16=10a4+a13=2a1+15d=10条件不足只能得出a16+a1=10我再想想a在等差数列{}中,a1+a2+a3+a4=68,a7+a8+a9+a10=30,问a10=多少。设an=a1+(n-1)da1+a2+a3+a4=68,=>4a1+6d=68a7+a8+a9+a10=30=>4a1+30d=30联立解得a1=155/8,d=-19/12a10=155/8+9*-19/12=5+1/8已知等差数列110,116,122.....,则大于450而不大于602的各项之和为多少。已经等差数列公差为6,首项为110通项公式为an=6n+104450评论00加载更多
FinCloud2023-05-20 17:39:142

等差数列的公式都有哪些?

等差数列基本的5个公式如下:1、an=a1+(n-1)*d;2、an=a1+(n-1)*d;3、Sn=a1*n+【n*(n-1)*d】/2;4、Sn=【n*(a1+an)】/2;5、Sn=d/2*n+(a1-d/2)*n。等差数列的常用性质1、数列是{an}等差数列,则数列{an+p}、{pan}(p是常数)都是等差数列。2、在等差数列中,等距离取出若干项也构成一个等差数列。3、公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。4、若{an}{bn}为等差数列,则{ an ±bn }与{kan +bn}(k、b为非零常数)也是等差数列。5、公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差)。6、当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数。
wpBeta2023-05-20 17:39:141

等差数列通项公式

简单分析一下,详情如图所示
北境漫步2023-05-20 17:39:142

什么是等差数列?

一个数列 中有许多数字 设为a1 a2 a3等等每后一个比前一个多一个固定的数值如a3-a2=x;a2-a1=x;x可以随便取但x都是固定的
u投在线2023-05-20 17:39:146

等差数列是啥

1,2,3,4,5.。。。。。2,4,6,8.。。。都是等差数列
Ntou1232023-05-20 17:39:1410

什么是等比数列,等比中项,等比中项公式?

等比中项:当r满足p+q=2r时,那么则有  ,即  为  与  的等比中项。等差中项:G=(a+b)除以2等比数列的通项公式是: 若通项公式变形为  (n∈N*),当q>0时,则可把  看作自变量n的函数,点(n,  )是曲线  上的一群孤立的点。等比求和: ①当q≠1时,  或 ②当q=1时, ,记  ,则有 在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。扩展资料:等比数列前n项之和:①当q≠1时,  或 ②当q=1时, 在等比数列中,首项a1与公比q都不为零.注意:上述公式中a^n表示A的n次方。等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式---复利。即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是人们通常说的利滚利。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期
小菜G的建站之路2023-05-20 17:39:131

什么是等比数列?

1、等比数列的定义  如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示.注意2、等比数列的通项公式  由a2=a1q,a3=a2q=a1q2,a4=a3q=a1q3,……,归纳得出an=a1qn-1.此公式对n=1也成立.注意3、等比中项  如果在a与b中间插入一个数g,使a,g,b成等比数列,那么g叫做a与b的等比中项.注意4、等比数列的判定方法(1)、an=an-1·q(n≥2),q是不为零的常数,an-1≠0{an}是等比数列.(2)、an2=an-1·an+1(n≥2,an-1,an,an+1≠0){an}是等比数列.(3)、an=c·qn(c,q均是不为零的常数){an}是等比数列.5、等比数列的性质  设{an}为等比数列,首项为a1,公比为q.(1)、当q>1,a1>0或01,a1<0或00时,{an}是递减数列;当q=1时,{an}是常数列;当q<0时,{an}是摆动数列.(2)、an=am·qn-m(m、n∈n*).(3)、当m+n=p+q(m、n、q、p∈n*)时,有am·an=ap·aq.(4)、{an}是有穷数列,则与首末两项等距离的两项积相等,且等于首末两项之积.(5)、数列{λan}(λ为不等于零的常数)仍是公比为q的等比数列;若{bn}是公比为q′的等比数列,则数列{an·bn}是公比为qq′的等比数列;数列是公比为的等比数列;{|an|}是公比为|q|的等比数列.(6)、在{an}中,每隔k(k∈n*)项取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为qk+1.(7)、当数列{an}是各项均为正数的等比数列时,数列{lgan}是公差为lgq的等差数列.(8)、{an}中,连续取相邻两项的和(或差)构成公比为q的等比数列.(9)、若m、n、p(m、n、p∈n*)成等差数列时,am、an、ap成等比数列.6、等比数列的前n项和公式  设等比数列a1,a2,a3,…,an,…,它的前n项和是sn=a1+a2+…+an,根据等比数列的通项公式可将sn写成sn=a1+a1q+a1q2+…+a1qn-1.…①①两边乘以q得qsn=a1q+a1q2+a1q3+…+a1qn…②两式相减得(1-q)sn=a1-a1qn,由此得q≠1时等比数列{an}的前n项和的公式.因为an=a1qn-1,所以上面公式还可以写成.当q=1时,sn=na1.注意7、等比数列前n项和的一般形式  一般地,如果a1,q是确定的,那么8、等比数列的前n项和的性质(1)、若某数列前n项和公式为sn=an-1(a≠0,±1),则{an}成等比数列.(2)、若数列{an}是公比为q的等比数列,则(ⅰ)、sn+m=sn+qn·sm.(ⅱ)、在等比数列中,若项数为2n(n∈n*),则(ⅲ)、sn,s2n-sn,s3n-s2n成等比数列.
u投在线2023-05-20 17:39:131

等比数列公式全部内容是什么?

等比数列前n项和公式为:等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。等比数列:通项公式:an=a1q^(n-1)。求和公式1:sn=a1(1-q^n)/(1-q)(q≠1)。求和公式2:sn=(a1-anq)/(1-q)(q≠1)。中间公式:如果m+n=2k;m,n,k∈n;则对于等比数列有:(ak)²=am*an。相等公式:如果m+n=p+q;m,n,p,q∈n,则对于等差数列:am*an=ap*aq。
北有云溪2023-05-20 17:39:131

等比数列的公式 等比数列的公式有哪些

1、等比数列公式:q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q);q=1时,Sn=na1。(a1为首项,an为第n项,q为等比)。 2、等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。
大鱼炖火锅2023-05-20 17:39:131

等比数列概念

①若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…(can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。(5)等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)在等比数列中,首项A1与公比q都不为零.注意:上述公式中A^n表示A的n次方。(6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
豆豆staR2023-05-20 17:39:131

等比数列的公式和具体求法

通项:an=a1*q的(n-1)次方前n项和:sn=(a1-an*q)/(1-q)=a1(1-q^n)/(1-q)求等比数列通项公式an的方法:  (1)待定系数法:已知a(n+1)=2an+3,a1=1,求an  构造等比数列a(n+1)+x=2(an+x)  a(n+1)=2an+x,∵a(n+1)=2an+3∴x=3  所以a(n+1)+3/an+3=2  ∴{an+3}为首项为4,公比为2的等比数列,所以an+3=a1*q^(n-1)=4*2^(n-1),an=2^(n+1)-3采纳哦
mlhxueli 2023-05-20 17:39:131

什么是等比例数列

等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。性质(1)若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。(2)在等比数列中,依次每k项之和仍成等比数列。(3)若“G是a、b的等比中项”则“G2=ab(G≠0)”。(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an×bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。生活中的应用等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。随着房价越来越高,很多人没办法像这样一次性将房款付清,总是要向银行借钱,既可以申请公积金也可以申请银行贷款,但是如果还款到一定时间后想了解自己还得还多少本金时,也可以利用数列来自己计算。众所周知,按揭贷款(公积金贷款)中一般实行按月等额还本付息。
余辉2023-05-20 17:39:131

等比数列的公式 等比数列的公式有哪些

1、等比数列公式:q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q);q=1时,Sn=na1。(a1为首项,an为第n项,q为等比)。 2、等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。
mlhxueli 2023-05-20 17:39:131

如何判断一个数列是等比数列?

等比中项:当r满足p+q=2r时,那么则有  ,即  为  与  的等比中项。等差中项:G=(a+b)除以2等比数列的通项公式是: 若通项公式变形为  (n∈N*),当q>0时,则可把  看作自变量n的函数,点(n,  )是曲线  上的一群孤立的点。等比求和: ①当q≠1时,  或 ②当q=1时, ,记  ,则有 在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。扩展资料:等比数列前n项之和:①当q≠1时,  或 ②当q=1时, 在等比数列中,首项a1与公比q都不为零.注意:上述公式中a^n表示A的n次方。等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式---复利。即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是人们通常说的利滚利。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期
小菜G的建站之路2023-05-20 17:39:131

《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列:

66/67
meira2023-05-20 17:39:122

数列1/n收敛吗?它和调和级数1/n有什么区别吗?

这是两个不同的概念数列1/n收敛,收敛于0调和级数1/n发散,这指的是∑1/n(级数收敛指:当部分数列和{Sn}收敛于s时收敛)建议别在百度知道问问题,作业帮里的人比这靠谱多了
小菜G的建站之路2023-05-20 17:38:213

求高中数列的全部解题方法,公式

你可以在百度上搜或买本书一般回答的都是从网页上粘贴下来的
gitcloud2023-05-20 17:38:005

几何级数就是等比数列吗

算术级数就是等差数列 几何级数就是等比数列 算术级数中任意连续两项的差相同,这个差值叫做这个算术级数的公差 算术级数前n项的和:(首项+末项)*(项数n)/2 第n项:首项+公差*(n-1)
u投在线2023-05-20 08:55:441

己知数列√3,√5,√7,3,√11……,该数列的8项??分析过程

第8项是√17每项平方后是3 5 7 9 11.......依次下去就能知道了
苏萦2023-05-20 08:55:425

数列与级数

等差数列的前n项和称为一个等差级数,也称算术级数。例:1,3,5,7,9为一个等差数列,而1+3+5+7+9则为一个等差级数。推导:等比级数,表示等比数列的前n项和,又称为几何级数。 推导:只有当值是收敛时,无穷级数的结果才是有限的。所以:
善士六合2023-05-20 08:55:401

调和数列1+1/2+1/3+...+1/n的求和公式是ln(n)+C(欧拉常数)吗

自然数的倒数组成的数列,称为调和数列,即:1/1+1/2+1/3+...+1/n 这个数组是发散的,所以没有求和公式,只有一个近似的求解方法: 1+1/2+1/3+......+1/n ≈ lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用)当n很大时,有:1+1/2+1/3+1/4+1/5+1/6+...1/n = 0.57721566490153286060651209 + ln(n)//C++里面用log(n),pascal里面用ln(n) 0.57721566490153286060651209叫做欧拉常数 to GXQ: 假设;s(n)=1+1/2+1/3+1/4+..1/n 当 n很大时 sqrt(n+1) = sqrt(n*(1+1/n)) = sqrt(n)*sqrt(1+1/2n) ≈ sqrt(n)*(1+ 1/(2n)) = sqrt(n)+ 1/(2*sqrt(n)) 设 s(n)=sqrt(n), 因为:1/(n+1)<1/(2*sqrt(n)) 所以: s(n+1)=s(n)+1/(n+1)< s(n)+1/(2*sqrt(n)) 即求得s(n)的上限 1+1/2+1/3+…+1/n是没有好的计算公式的,所有计算公式都是计算近似值的,且精确度不高。 自然数的倒数组成的数列,称为调和数列.人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时): 1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用)
NerveM 2023-05-19 20:19:351

数列1/n求和逼近什么常数

欧拉常数
北营2023-05-19 20:19:356

数列通项公式为an=1/n的数列前n项和sn

这个数列没有前n项和sn的公式,如果是要证明SN大于或者小于某个数,只有用放缩法来做!!
无尘剑 2023-05-19 20:19:353

数列通项公式 通和公式

你是高中生吧,这个求和凭高中知识无法求出
人类地板流精华2023-05-19 20:19:352

数列求和:An=1/n,求和

这个问题你可以问陈景润
大鱼炖火锅2023-05-19 20:19:343
 首页 上一页  14 15 16 17 18 19 20 21 22  下一页  尾页