为什么对磁通量求导是电压?
因为交变的磁通量会感生出感应电动势,即电压,这是楞次定律决定的。真颛2023-08-08 08:49:011
数学,二次求导,这个怎么来的?
对y中的x求一次导,然后再对结果中的x求一次导陶小凡2023-08-07 09:10:304
高数微分的问题 这个题后面怎么做啊。。是求出dxdx后再对1-t2求导吗
豆豆staR2023-08-07 09:10:263
{g(x)e^{p(x)dxdx求导 花括号是不定积分号?
这个是什么东西啊?看不明白哦。苏州马小云2023-08-07 09:10:242
已知函数,怎么求导数?
1.把y′变形成函数乘积与常数的和差形式;2.用函数乘积求导法则求导;3.再把y'代入其中并化简即可.4.具体步骤如下图:余辉2023-08-05 17:38:461
给一个函数,怎样求导函数
书上有公式瑞瑞爱吃桃2023-08-05 17:38:434
求导的具体过程
陶小凡2023-08-05 17:38:431
函数怎么求导
如图所示,都是基本求导公式肖振2023-08-05 17:38:411
怎样对函数积分,求导
积分与求导是逆运算,只不过积分多了一个常数而已!瑞瑞爱吃桃2023-08-05 17:38:412
指数函数、幂函数的求导公式是什么?
指数函数和幂函数的求导公式如下:1. 指数函数的求导公式:如果 y = a^x,其中 a 是常数且 a > 0,那么它的导数是 dy/dx = ln(a) * a^x。2. 幂函数的求导公式:如果 y = x^n,其中 n 是常数,那么它的导数是 dy/dx = n * x^(n-1)。Chen2023-08-05 17:38:403
函数的求导
解如下图所示kikcik2023-08-05 17:38:404
带根号的怎么求导
你把根号转换一下可以看成(1+x2)的二分之一次方,在求导就行了mlhxueli 2023-08-05 17:38:392
如何计算一个函数对另一个函数求导
计算一个函数对另一个函数求导具体公式:y=c(c为常数) y"=0 2.y=x^n y"=nx^(n-1) 3.y=a^x y"=a^xlna y=e^x y"=e^x 4.y=logax y"=logae/x y=lnx y"=1/x 5.y=sinx y"=cosx 6.y=cosx y"=-sinx 7.y=tanx y"=1/cos^2x 8.y=cotx y"=-1/sin^2x 9.y=arcsinx y"=1/√1-x^2 10.y=arccosx y"=-1/√1-x^2 11.y=arctanx y"=1/1+x^2 12.y=arccotx y"=-1/1+x^2 求导是数学计算中的一个计算方法,导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。北营2023-08-05 17:38:383
求导是什么意思?
当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。凡尘2023-08-05 17:38:372
函数求导是什么意思?
求导是数学计算中的一个计算方法,导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。数学中的名词,即对函数进行求导,用f"(x)表示。人类地板流精华2023-08-05 17:38:351
如何求函数对x求导?
例如:lny = e^(x+y)........................(1)其中:y = y(x)................................(2)y 是x 的函数,隐含在(1)式之中!为求y对x的导数,(1)式两边对x求导数:y"/y = (1+y") e^(x+y)........................(3)整理(3)式并解出:y" = ye^(x+y) / {1-ye^(x+y)}..............(4)复合函数求导就是这么个过程(仅举一例)。北营2023-08-05 17:38:351
带根号的函数怎么求导
“1、外层函数就是一个根号,按根号求一个导数。 2、然后在求内层函数也就是根号里面的函数的导数。 3、两者相乘就行了。 举例说明: √(x+3)求导=1/2×1/√(x+3)×(x+3)=1/2√(x+3)。 其实根号就是1/2次方,你会求x平方导数就会带根号的求导了。 拓展资料1、求导...”韦斯特兰2023-08-05 17:38:325
如何对变限积分函数求导?
变限积分求导过程与复合函数求导类似.阿啵呲嘚2023-08-05 17:38:323
如何给函数求导?
高数常见函数求导公式如下图:求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。扩展资料:导数与微分:微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f"(x)dx。NerveM 2023-08-05 17:38:321
函数求导问题?
题目相当求复合函数的导数,即两次复合。y=f(u),u=e^t,t=sinxdy/dx=y"=f"(u)u"=f"(e^sinx)*e^sinx*(sinx)"=f"(e^sinx)*e^sinx*cosxJm-R2023-08-05 17:38:304
什么是函数求导公式
解答:dx:是x的无穷小的增量;dy:是y的无穷小的增量;dy/dx:是y对x的导数,是dy对dx的微分的商,简称微商。意义:随着x的无穷小增量,引起y无穷小的增量,这两个增量的比率。也就是,y随x的无穷小变化所导致的相对变化率、牵连变化率。几何意义:在原函数上任意一点x处的切线的斜率。y":国内的教学,对y"一往情深,对dy/dx弃如敝屣。这样完全一边倒的教学法,就葬送了许多学生对微积分的基本悟性。y"唯一的好处就是书写简便,它埋葬了微商的特性,尤其是解微分方程的直觉。y"×dx:就是微分,y"在定义上是dy/dx,在表达形式上是一个函数y",y"×dx就是表示由于x的增量导致的y的增量的大小。也就是(dy/dx)dx,在形式上是f"(x)dx,在意义上是dy,这就是导数公式与微分公式的关系。北境漫步2023-08-05 17:38:301
二次函数如何求导?
用导数定义人类地板流精华2023-08-05 17:38:303
函数求导的问题
第7题是吗?首先secx=1/cosx,因此y=(2+secx)sinx=2sinx+tanx.再进行求导,tanx"=secxtanx,y"=2cosx+secxtanx北营2023-08-05 17:38:302
如何对函数求导
其实就是应用复合函数的求导法则,将y看成是复合函数y=y(x)然后对方程两边的x求导即可,再得出y"的一次方程,解之即可。比如x^2+y^2=5两边对x求导:2x+2yy"=0得:y"=-x/y瑞瑞爱吃桃2023-08-05 17:38:292
指数函数求导公式
指数函数求导公式是微积分中的重要公式之一,用于计算指数函数的导数。指数函数的一般形式为y = a^x,其中a是常数且大于0,x是自变量。求导公式如下:dy/dx = (ln(a)) * a^x其中ln(a)表示以自然对数e为底的a的对数。这个公式可以用来求解任意底数为正实数的指数函数的导数。为了理解这个公式,我们可以通过一些推导和解释来说明。首先,我们将指数函数转化为自然指数函数的形式:y = a^x = e^(ln(a^x)) = e^(x * ln(a))然后,我们对等式两边同时求导数:dy/dx = d/dx (e^(x * ln(a)))为了求导,我们可以使用链式法则。链式法则可以表达为:如果y = f(g(x)),其中f(u)和g(x)都是可微函数,那么:dy/dx = f"(g(x)) * g"(x)在这个例子中,f(u) = e^u,其中u = x * ln(a)。我们已经知道f"(u) = e^u。接下来,我们需要计算g"(x)。根据导数的定义,我们有:g"(x) = d/dx (x * ln(a)) = ln(a)将这些结果代入链式法则,我们得到:dy/dx = f"(g(x)) * g"(x) = e^(x * ln(a)) * ln(a) = a^x * ln(a)因此,指数函数的导数公式为:dy/dx = (ln(a)) * a^x这个公式可以用于计算任意底数为正实数的指数函数的导数。需要注意的是,当底数a等于e时,公式简化为:dy/dx = e^x * ln(e) = e^x这就是自然指数函数e^x的导数公式。指数函数求导公式在微积分中具有广泛的应用,例如在金融、自然科学和工程学等领域中,常常需要计算指数函数的导数来解决实际问题。北有云溪2023-08-05 17:38:081
f (x )=e ∧x 的反函数求导数
f(x)=e^x的反函数x=e^y y=lnx(x>0)导数 y"=1/x北有云溪2023-08-05 17:38:044
3的反求导是什么
反导数就是求不定积分,各种公式参考导数的公式.1/[(2x+1)^3] 的反导数(不定积分)就是谁的导数是1/[(2x+1)^3] ,是求导的逆运算.即1/[(2x+1)^2] +a(常数)的导数是1/[(2x+1)^3] .1/[(2x+1)^3] 的反导数是1/[(2x+1)^2] +a(常数)真颛2023-08-05 17:37:541
函数里的dx和d表示什么意思? Dx表示求导还是求原函数? 2xdx?D2x?
dx意思是对x的微分,计算法则上和求导你可以理解差不多,但是意义不一样,比如对x^2求微分就是dx^2=2xdx.同样倒过来就是2xdx=x^2这样就是求原函数了.苏萦2023-08-04 10:57:551
函数里的dx和d表示什么意思? Dx表示求导还是求原函数? 2xdx?D2x?
dx意思是对x的微分,计算法则上和求导你可以理解差不多,但是意义不一样,比如对x^2求微分就是dx^2=2xdx.同样倒过来就是2xdx=x^2这样就是求原函数了.人类地板流精华2023-08-04 10:57:421
d2x求导能求吗
可以 d(2x)=2dxgitcloud2023-08-04 10:57:401
求微分与求导
1、求导、求微分,在英文中,是没有区别的,都是differentiate。区别是我们汉译时, 硬生生地加进去的。 2、我们把求导、求微分作了这样的区别: dy/dx,是求导,国内以绝对的优势比例,压倒性地使用y‘,对dy/dx,兴趣缺缺; dx、dy,是微分。 所以,求微分时,必须先求导。 例如, y = sinx,dy = cosx dx,看上去是微分,其实cosx的来源,就是求导的结果。 3、lim(f(x+△x)-f(x)) 这是求导的定义式中的分子部分,当然也可以当成是微分的定义式。 如果当成微分的定义式,那么lim(f(x+△x)-f(x)) = f"(x) dx 4、为什么△x=dx? △x 是有限小的增量, dx 是无限小的增量,也就是无穷小的增量。 当△x 趋向于0时,就等于dx 。△x 中的 △ 表示的是增量,是 increasement。Ntou1232023-07-30 09:41:021
求微分与求导
1、求导、求微分,在英文中,是没有区别的,都是differentiate。区别是我们汉译时, 硬生生地加进去的。 2、我们把求导、求微分作了这样的区别: dy/dx,是求导,国内以绝对的优势比例,压倒性地使用y‘,对dy/dx,兴趣缺缺; dx、dy,是微分。 所以,求微分时,必须先求导。 例如, y = sinx,dy = cosx dx,看上去是微分,其实cosx的来源,就是求导的结果。 3、lim(f(x+△x)-f(x)) 这是求导的定义式中的分子部分,当然也可以当成是微分的定义式。 如果当成微分的定义式,那么lim(f(x+△x)-f(x)) = f"(x) dx 4、为什么△x=dx? △x 是有限小的增量, dx 是无限小的增量,也就是无穷小的增量。 当△x 趋向于0时,就等于dx 。△x 中的 △ 表示的是增量,是 increasement。陶小凡2023-07-30 09:40:521
π求导是0吗
嗯 ,常数的导数都是零,不管什么常数hi投2023-07-26 13:56:065
抛物线准线方程求导
因为抛物线的准线是一条直线,所以其求导就是准线的斜率值。瑞瑞爱吃桃2023-07-26 13:11:202
对数求导法怎么用?
余割函数cscx=1/sinxsinx*ln(sinx)≠sinx^sinx,是等于ln[sinx^sinx],已经不能再化简了tt白2023-07-21 08:58:192
数学中,“对数函数”求导是不是就是将函数变成“隐函数”后求导?
不是。幂指函数的形式是g(x)^f(x),底数与指数都是一个函数,因此不能直接套用基本函数的求导公式。我们取对数变换为e^[f(x)*ln{g(x)}],此时就成了基本函数复合的函数,套用复合函数求导公式即可。bikbok2023-07-21 08:58:182
弱弱的问下..对数函数和指数函数的求导公式怎么用?
这是一个复合函数,复合函数求导的时候要对外层函数和内层函数分别求导相乘,y=In(2x^2+3x+1)相当于是y=In(g(x)),其中g(x)=2x^2+3x+1,求导时先对lng(X)求导,在对g(x)求导,前者的导数是1/(2x^2+3x+1)后面是(2x^2+3x+1)",两者相乘即是结果。没明白的话,多看看课本里面关于复合函数的求导法则,多联系就会明白的左迁2023-07-21 08:58:181
函数y=lnx/x怎么求导
方法如下,请作参考:若有帮助,请采纳。康康map2023-07-21 08:58:131
什么时候用对数求导法
1.多个多项式相乘. 2.幂函数的指数上有X. 对数求导法是一种求函数导数的方法。取对数的运算可将幂函数、指数函数及幂指函数运算降格成为乘法运算,可将乘法运算或除法运算降格为加法或减法运算,使求导运算计算量大为减少。 扩展资料 函数f(x)是乘积形式、商的形式、根式、幂的.形式、指数形式或幂指函数形式的情况,求导时比较适用对数求导法,这是因为:取对数可将乘法运算或除法运算降格为加法或减法运算,取对数的运算可将根式、幂函数、指数函数及幂指函数运算降格成为乘除运算。NerveM 2023-07-21 08:58:111
对数怎么求导?比如lnx的对数怎么求?要步骤方法哈!
建议看看复合函数求导的公式CarieVinne 2023-07-21 08:58:106
对数求导法怎么用
对数求导法,是对于一些复杂函数式,先取对数再求导的求导方法。人类地板流精华2023-07-21 08:58:102
用对数求导法求函数的导数
lny=1/2ln(x+2)+4ln(3-x)-5ln(x+1)两边求导 1/y*y"=1/2x+4-4/3-x+5/x+1所以y‘=y[1/2x+4-4/3-x+5/x+1]Jm-R2023-07-21 08:58:091
对数函数求导,要具体求导步骤
变量是哪个?怎么求导?hi投2023-07-21 08:58:082
怎么使用对数求导法 帮帮忙啊
对数的性质及推导用^表示乘方,用log(a)(b)表示以a为底,b的对数*表示乘号,/表示除号定义式:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1.a^(log(a)(b))=b2.log(a)(MN)=log(a)(M)+log(a)(N);3.log(a)(M/N)=log(a)(M)-log(a)(N);4.log(a)(M^n)=nlog(a)(M)推导1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)2.MN=M*N由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N)3.与2类似处理MN=M/N由基本性质1(换掉M和N)a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]由指数的性质a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(M/N)=log(a)(M)-log(a)(N)4.与2类似处理M^n=M^n由基本性质1(换掉M)a^[log(a)(M^n)]={a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)]=a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)其他性质:性质一:换底公式log(a)(N)=log(b)(N)/log(b)(a)推导如下N=a^[log(a)(N)]a=b^[log(b)(a)]综合两式可得N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}又因为N=b^[log(b)(N)]所以b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}所以log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的}所以log(a)(N)=log(b)(N)/log(b)(a)性质二:(不知道什么名字)log(a^n)(b^m)=m/n*[log(a)(b)]推导如下由换底公式[lnx是log(e)(x),e称作自然对数的底]log(a^n)(b^m)=ln(a^n)/ln(b^n)由基本性质4可得log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}再由换底公式log(a^n)(b^m)=m/n*[log(a)(b)]--------------------------------------------(性质及推导完)公式三:log(a)(b)=1/log(b)(a)证明如下:由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1=1/log(b)(a)还可变形得:log(a)(b)*log(b)(a)=1Chen2023-07-21 08:58:072
用两边取对数的方法求导
lny=lnx*lnsinxy`*1/y=1/x*lnsinx+cotxlnxy`=y(1/x*lnsinx+cotxlnx)=(sin x)^(ln x)(1/x*lnsinx+cotxlnx)苏州马小云2023-07-21 08:58:012
偏导数可以用对数求导法则来
偏导数可以用对数求导法则来做?是的。例如:U(x,y) = x^yU = x^y lnU = ylnx 两边对x求导U"x/U = y/x U"x = yU/x = yx^(y-1) U"x 是U 对x的偏导数NerveM 2023-07-21 08:58:011
用对数求导法求函数的导数两道题
如图小白2023-07-21 08:57:591
对数求导,。
方法如下图所示,请认真查看,祝学习愉快,学业进步!韦斯特兰2023-07-21 08:57:582
利用取对数求导法求函数的导数y = (sinx)^cosx?
y=(sinx)^(cosx) 两边取对数: lny=cosxln(sinx) 两边分别求导: y"/y=(-sinx)ln(sinx)+cosx*cosx/sinx 所以 y"=[cosx^2/sinx-sinxln(sinx)]*y =[cosx^2/sinx-sinxln(sinx)]*sinx^(cosx),6,两边取对数。lny=(cosx)ln(sinx)。两边求导。 y"/y=(-sinx)ln(sinx)+(cosx)*ctanx y"=y*[-sinx)ln(sinx)+(cosx)*ctanx] y"=[(sinx)^(cosx)]*[-sinx)ln(sinx)+(cosx)*ctanx],2,两边取对数则 lny = sinx*lncosx 再两边求导,因为y是复合函数。则 1/y*y" = cosx*lncosx+(sinx)^2/cosx 则 y" = [cosx*lncosx+(sinx)^2/cosx ]*y 即 y" = [cosx*lncosx+(sinx)^2/cosx ]*(sinx)^cosx 对这...,2,211,0,y = (sinx)^cosx lny=cosx ln sinx 两边对y求导 (y")/y=-sinx * ln sinx+cosx/sinx*cosx=-sinxlnsinx+(cosx)^2/sinx y"=[-sinxlnsinx+(cosx)^2/sinx]*y =[-sinxlnsinx+(cosx)^2/sinx]*(sinx)^cosx,0,两边取对数得 lny = cosx*lnsinx 同时求导得: 1/y = -sinx*lnsinx+(1/sinx)*cosx*cosx 再倒数化简 其中用到了:(lny)" =1/y和 乘法运算的导数 以及 (lnsinx)"=(1/sinx)*(sinx)",也就是复合函数的导数,0,阿啵呲嘚2023-07-21 08:57:571
取对数求导法
:熟记基本求导公式表(我可是帮你们总结了考研过程中最全面的)下面我们来做一道既考察导数定义又考察求导公式的经典例题同学们,思考片刻再看答案哦看过小哥哥昨天内容的同学一定会发现这是一个求一点的导数问题,那肯定用定义法啊。能想到这一步就提出表扬了。但是当你真正用定义法去解题的时候是不是被第一部分就恶心到了。这里小姐姐要告诉大家一个解题技巧。每当你看到一大堆带着根号乘除的式子,一定要记住取对数试一试,你会发现这个世界还是很美好的。然后我们对u取对数是不是眼前一亮,这时我们再求导就很方便了我们把x=1代入得到我们再来看v的部分,直接用求导公式吧,不是不可以,就是太麻烦,具体有多麻烦呢,你自己试试看。当x=1的时候我们会发康康map2023-07-21 08:57:544
对数对时间如何求导
是这样的:“两边分别求导”这句话省略了两个字,应该是“两边分别对x求导”.如果:lny对y求导,当然是1/y,但是,现在是对x求导,这里由于y是x的函数,所以应用复合函数的求导法则,先求出lny对y的导数1/y,然后乘以y对x的导数y",即lny对x的导数是:y"/y.在求导的时候应该注明自变量是什么,否则容易出错,这里自变量是x,并且y是x的函数.按您的理解,左边就是对y求导,而右边却是对x求导,这样岂会正确?北有云溪2023-07-21 08:57:532
取对数求导法
首先 自然对数就是对e求对数即ln对数运算有几个规律1.ln(x*y)=lnx+lny2.ln(x/y)=lnx-lny3.ln(x^y)=y*lnx这样一来你应该就明白了吧lny=ln{[(x^2)/(x^2-1)]*[(x+2)/(x-2)^2]^(1/3)}=ln(x^2)-ln(x^2-1)+ln(x+2)^(1/3)-ln(x-2)^2^(1/3)=2lnx-ln(x^2-1)+[ln(x+2)]/3-2[ln(x-2)]/3苏州马小云2023-07-21 08:57:522
Y=x^x用对数求导法求函数导数
两边同时取对数可得lnY=xlnx两边对x求导可得Y"/Y=x"lnx+x*(lnx)"=lnx+1∴Y"=Y(lnx+1)即Y=(x^x)×(lnx+1)九万里风9 2023-07-21 08:57:524
logax对数求导法则公式
logax对数求导法则公式:(logax)"=1/(xlna)。一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1真数>0。并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0韦斯特兰2023-07-21 08:57:511
取对数求导法
是这样的:“两边分别求导”这句话省略了两个字,应该是“两边分别对x求导”.如果:lny对y求导,当然是1/y,但是,现在是对x求导,这里由于y是x的函数,所以应用复合函数的求导法则,先求出lny对y的导数1/y,然后乘以y对x的导数y",即lny对x的导数是:y"/y.在求导的时候应该注明自变量是什么,否则容易出错,这里自变量是x,并且y是x的函数.按您的理解,左边就是对y求导,而右边却是对x求导,这样岂会正确?善士六合2023-07-21 08:57:492
利用对数求导法求函数y=x^(√x)的导数,希望详细一点?
lny=√x*lnx y"/y=(1/(2√x))lnx+√x/x y"=y(lnx+2)/(2√x ),8, 恋上你锝唇 举报 不是很明白? 先取对数得:lny=√x*lnx 两边对x求导:lny的导数是y"/y,lny=√x*lnx y"/y=(1/(2√x))lnx+√x/x y"=y(lnx+2)/(2√x ),2,其为复合函数求导,应先将函数分解“y-x^u u=√x ,分别将他们求导,再相乘 y"=ux^(u-1) u"=1/2x^(-1/2) 则y"=1/2√x *x^(√x -3/2),1,苏萦2023-07-21 08:57:481
对数函数求导的方法
1、利用反函数求导:设y=loga(x)则x=a^y。2、根据指数函数的求导公式,两边x对y求导得:dx/dy=a^y*lna3、所以dy/dx=1/(a^y*lna)=1/(xlna)。4、如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。5、一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。6、其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。更多关于对数函数求导的方法,进入:https://www.abcgonglue.com/ask/ec22cf1615826601.html?zd查看更多内容九万里风9 2023-07-21 08:57:471
对数函数求导的方法 详解求解过程
1、利用反函数求导:设y=loga(x) 则x=a^y。 2、根据指数函数的求导公式,两边x对y求导得:dx/dy=a^y*lna 3、所以dy/dx=1/(a^y*lna)=1/(xlna)。 4、如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。 5、一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。 6、其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。mlhxueli 2023-07-21 08:57:471
对数求求导
解:函数两边同时取对数:lny=ln[(x^2+5)^arctanx]=arctanxln(x^2+5);对两边同时求导:y"/y=ln(x^2+5)/(1+x^2)+2xarctanx/(x^2+5)y"=y[ln(x^2+5)/(1+x^2)+2xarctanx/(x^2+5)]=(x^2+5)^arctanx*[ln(x^2+5)/(x^2+1)+2xarctanx/(x^2+5)]=[(x^2+5)^arctanx]ln(x^2+5)/(x^2+1)+2xarctanx(x^2+5)^(arctanx-1)NerveM 2023-07-21 08:57:451
对数的求导法则?
具体回答如下:xy=e^(xy)yxy'=[e^(xy)](1y')y'=[e^(xy)-y]/[x-e^(xy)]常数求导均变为零,对于e^y+xy-e=0e^y 求导得 e^y * y " (复合函数求导法则)求导的意义:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。在经济活动中会大量涉及此类函数,注意到它很特别。既不是指数函数又不是幂函数,它的幂底和指数上都有自变量x,所以不能用初等函数的微分法处理了。这里介绍一个专门解决此类函数的方法,对数求导法。再也不做站长了2023-07-21 08:57:451
自然对数求导?过程!!
//大鱼炖火锅2023-07-21 08:57:457
基础对数求导公式
比如基本对数函数y=lnx。则y"=1/x。具体推导过程:因为y=lnx,则x=e^y。则dx=e^y*dy,则dx=xdy。则y"=dy/dx=1/x。如果底数不是e,是其他的数a,可以先转换,比如logax=lnx/lna。则y=logax。y"=1/xlna。北营2023-07-21 08:57:442
Y=x^x用对数求导法求函数导数?
设y=x^x,则ln y=xln x,两边隐函数求导得y"/y=ln x+x/x=ln x+1, 将y=x^x代入,得y"=x^x(ln x+1).,9,两边同时取对数可得 lnY=xlnx 两边对x求导可得 Y"/Y=x"lnx+x*(lnx)"=lnx+1 ∴Y"=Y(lnx+1)即Y=(x^x)×(lnx+1),1,两边取对数得到 lnY=xlnx 两边对x求微分,得到 Y‘/Y=x"lnx+x*(lnx)"=lnx+1 于是Y‘=Y(lnx+1)=x^x(lnx+1),0,对数求导法主要是利用(lny)"=y"/y;其中的y因为函数本身可以直接用x的函数代替,因此可以使用x的函数把y"表示出来 本题中对左右两边取对数后求导 左边=(lny)"=y"/y 右边=(lnx^x)"=(xlnx)"=lnx+x*1/x=lnx+1 左边=右边 即 y"/y=lnx+1,其中y又等于x^x y"=x^x*(lnx+1),0,gitcloud2023-07-21 08:57:441
用对数求导法则求下列函数的导数 y=(sinx)^lnx
两边同时取对数:lny=lnx*ln(sinx)两边同时求导数:1/y*y′=1/x*ln(sinx) + lnx*1/sinx*cosxy′=y{1/x*ln(sinx) + lnx*1/sinx*cosx }=(sinx)∧lnx*{1/x*ln(sinx) + lnx*1/sinx*cosx}=善士六合2023-07-21 08:57:441
用对数分别对两边x求导
是这样的: “两边分别求导”这句话省略了两个字,应该是“两边分别对x求导”. 如果:lny对y求导,当然是1/y,但是,现在是对x求导,这里由于y是x的函数,所以应用复合函数的求导法则,先求出lny对y的导数1/y,然后乘以y对x的导数y",即lny对x的导数是:y"/y. 在求导的时候应该注明自变量是什么,否则容易出错,这里自变量是x,并且y是x的函数. 按您的理解,左边就是对y求导,而右边却是对x求导,这样岂会正确?再也不做站长了2023-07-21 08:57:441
对数函数求导公式推导过程
用的是极限中的一个结论:x趋近于0时ln(1+x)和x是等价无穷小。h趋近于0时,ln(1+h/x)和h/x是等价无穷小。例如:对数函数的推导需要利用反函数的求导法则指数函数的求导,定义法:f(x)=a^xf"(x)=lim(detaX->0)[(f(x+detaX)-f(x))/detax]=lim(detaX->0)[(a^(x+detaX)-a^x/)detax]=(a^x).........(x)=lim(h->0)[f(x+h)-f(x)]/h=lim(h->0)[loga(x+h)-logax]/h=lim(h->0)1/hloga[(x+h)/x]=1/xIna扩展资料:在实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。对数函数的底数为什么要大于0且不为1?【在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)】参考资料来源:百度百科-对数函数铁血嘟嘟2023-07-21 08:57:431
基础对数求导公式
ln(x/2)的求导为复合函数的求导可以设t=x/2则[ln(x/2)]"=(lnt)"那么(lnt)"=(1/t)*t"=(2/x)*(1/2)=1/x小菜G的建站之路2023-07-21 08:57:432
我想问一下对数函数求导的方法
1、利用反函数求导:设y=loga(x)则x=a^y。2、根据指数函数的求导公式,两边x对y求导得:dx/dy=a^y*lna3、所以dy/dx=1/(a^y*lna)=1/(xlna)。4、如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。5、一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。6、其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。更多关于对数函数求导的方法,进入:https://www.abcgonglue.com/ask/ec22cf1615826601.html?zd查看更多内容铁血嘟嘟2023-07-21 08:57:401
对数函数求导公式
对数函数求导公式:(Inx)" = 1/x(ln为自然对数);(logax)" =x^(-1) /lna(a>0且a不等于1)。 对数的运算性质 当a>0且a≠1时,M>0,N>0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n∈R) (6)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1) 设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a) log(a)a^b=b 证明:设a^log(a)N=X,log(a)N=log(a)X,N=X 基本初等函数求导公式 对数与指数之间的关系 当a大于0,a不等于1时,a的X次方=N等价于log(a)N=x log(a^k)(M^n)=(n/k)log(a)(M)(n属于R) 换底公式(很重要) log(a)(N)=log(b)(N)/log(b)(a)=lnN/lna=lgN/lga ln自然对数以e为底e为无限不循环小数(通常情况下只取e=2.71828) lg常用对数以10为底水元素sl2023-07-21 08:57:401
一个关于三次多项式求导数。
secx等于1/cosx,对于1/cos,分子分母同乘上cosx便等价与cosx除以【1-(sinx)的平方】;这下就好办了:你不妨将cosx放入积分号内部变为d(sinx),令t=sinx;原式子化为1/【1-(t)的平方】关于t的积分,将分式拆开,利用1/y关于y的不定积分为lny +c就求出来了..最后别忘了把最后式子中的t 还原为sinx... 这个结果应该是1/2乘以ln【(1+sinx)/(1-sinx)】+C...Chen2023-07-21 08:48:281
带根号的求导公式
计算公式:成立条件:a≥0,n≥2且n∈N。成立条件:a≥0, b≥0, n≥2且n∈N。成立条件:a≥0,b>0,n≥2且n∈N。成立条件:a≥0,b>0,n≥2且n∈N。扩展资料:根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若au207f=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。根号的非负性:在实数范围内,(1)偶次根号下不能为负数,其运算结果也不为负。(2)奇次根号下可以为负数。不限于实数,即考虑虚数时,偶次根号下可以为负数,利用【i=√-1】即可参考资料:百度百科—根号tt白2023-07-21 08:41:292
135度角的三角函数值求导公式
解:sin135°=sin45°=√2/2cos135°=-cos45°=-√2/2tan135°=-tan45°=-1积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]墨然殇2023-07-20 08:41:521
反三角函数求导公式?
反三角函数求导是设arccotx=y,则coty=x两边求导,(-cscy)·y′=1,即y′=-1/cscy=-1/(1+coty),因此,y′=f′(x)=-1/(1+x)。1、反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。2、反三角函数是一种基本初等函数。它并不能狭义的理解为三角函数的反函数,是个多值函数。 三角函数,正常情况下是y=sinx,也就是说我们知道一个角度,可以查表或者计算出所对应的值。3、反正弦函求导公式,设×=siny为直接函数,则y=arcsinx是它的反函数,我们知道,函数×=siny在区间-π/2<y<π/2内单调、可导,而且(siny)"=cosy>0瑞瑞爱吃桃2023-07-20 08:41:521
三角函数求导 f(x)=cos(根号下3*x+a)
令√(3x+a)=t 则原式为f(x)=cost 导数为(-sint)*(√(3x+a))"=-3sint/2√(3x+a)mlhxueli 2023-07-20 08:41:491
反三角函数中又有复合函数怎样求导
先对反三角函数利用反三角函数的规则求导,再乘以对复合函数求导的值如Arctanx2的值为2x/(1+x2),式中的第一个和第三个2是指数幂gitcloud2023-07-20 08:41:481
数学三角函数求导公式
tanα 61cotα=1sinα 61cscα=1cosα 61secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2αsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβtan(α+β)=—————— 1-tanα 61tanβ tanα-tanβtan(α-β)=—————— 1+tanα 61tanβ 2tan(α/2)sinα=—————— 1+tan2(α/2) 1-tan2(α/2)cosα=—————— 1+tan2(α/2) 2tan(α/2)tanα=—————— 1-tan2(α/2)sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanαtan2α=————— 1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα 3tanα-tan3αtan3α=—————— 1-3tan2αardim2023-07-20 08:41:481
请问三角函数sin(a)对时间t求导该怎样求
不就是复合函数求导么?直接套公式就得到了dsin(a)/dt = cos(a) da/dt不知道a和t的实际函数关系,只能算到这点LuckySXyd2023-07-20 08:41:482
请问三角函数怎么求导函数 比如说y=cosx
倒数关系:商的关系:平方关系:tanα·cotα=1sinα·cscα=1cosα·secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα·tanβtanα-tanβtan(α-β)=——————1+tanα·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin—--·cos—-—22α+βα-βsinα-sinβ=2cos—--·sin—-—22α+βα-βcosα+cosβ=2cos—--·cos—-—22α+βα-βcosα-cosβ=-2sin—--·sin—-—221sinα·cosβ=-[sin(α+β)+sin(α-β)]21cosα·sinβ=-[sin(α+β)-sin(α-β)]21cosα·cosβ=-[cos(α+β)+cos(α-β)]21sinα·sinβ=--[cos(α+β)-cos(α-β)]2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)这是公式塞!其实其他公式都是前3个公式推的!CarieVinne 2023-07-20 08:41:471
三角函数sint怎样求导?
sin(arcsinx)=x解题:sin(arcsinx)可以化简,化简后的结果是x设sin(arcsinx)=k,并设arcsinx=t,则有:sint=x。同时,将arcsinx代入题目条件有:sint=k因此有k=x。所以sin(arcsinx)=x.arcsinx是sinx的反函数,一个函数的反函数,再经过一次反函数操作就是它本身。三角函数是数学中属于初等函数中的超越函数的一类函数:它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。墨然殇2023-07-20 08:41:451
三角函数求导
三角函数求导公式,如图所示善士六合2023-07-20 08:41:451