- 豆豆staR
-
抛物线方程是指抛物线的轨迹方程,是一种用方程来表示抛物线的方法[1]。在几何平面上可以根据抛物线的方程画出抛物线。抛物线在合适的坐标变换下,也可看成二次函数图像。
抛物线的标准方程有四种形式,参数p的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):其中P(x0,y0)为抛物线上任一点
对于抛物线y^2=2px(p≠0)上的点的坐标可设为( ,y0),以简化运算。
抛物线的焦点弦:设过抛物线y^2=2px(p>0)的焦点F的直线与抛物线交于A(x1,y1)、B(x2,y2),直线OA与OB的斜率分别为k1,k2,直线l的倾斜角为α,则有y1y2=-p^2,x1x2= ,k1k2=-4,|FA|= ,|FB|= ,|AB|=x1+x2+p。
- 瑞瑞爱吃桃
-
因为抛物线的准线是一条直线,所以其求导就是准线的斜率值。
抛物线 的准线方程是 ...
D 试题分析:抛物线 化为 ,则 , ,所以它的准线方程为 ,化为 点评:要得到抛物线的性质,需将抛物线的方程化为标准形式。2023-07-26 05:05:512
抛物线怎样求准线?
抛物线是指平面内到一个定点和一条定直线距离相等的点的轨迹,这个定点就是焦点,定直线就是准线。具体方程式求法是:先将抛物线的方程化为标准形式:抛物线的方程:y^2=2px,焦点在y轴上,它的准线为:y=-p/2;抛物线的方程:x^2=2py,焦点在x轴上,它的准线为:x=-p/2。抛物线的准线:1、抛物线内与准线距离相等的点叫做焦点。2、平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。3、抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它在几何光学和力学中有重要的用处。抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。2023-07-26 05:06:441
抛物线准线方程公式是什么?
抛物线的准线方程公式:y=-p/2。平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示、标准方程表示等等。抛物线的知识点:1、准线、焦点:抛物线是平面内到一定点和到一条不过此点的定直线的距离相等的点的轨迹。这一定点叫做抛物线的焦点,定直线叫做抛物线的准线。2、轴:抛物线是轴对称图形,它的对称轴简称轴。3、弦:抛物线的弦是连接抛物线上任意两点的线段。4、焦弦:抛物线的焦弦是经过抛物线焦点的弦。5、正焦弦:抛物线的正焦弦是垂直于轴的焦弦。6、直径:抛物线的直径是抛物线一组平行弦中点的轨迹。这条直径也叫这组平行弦的共轭直径。2023-07-26 05:06:591
抛物线的准线方程是什么?
焦点在y轴上它的准线为y=-p/2 焦点在x轴上它的准线为x=-p/2。抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。抛物线是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线,在合适的坐标变换下,可看成二次函数图像,它有参数表示、标准方程表示等表示方法,在几何光学和力学中有重要用处。简介:在数学中,抛物线是一个平面曲线,它是镜像对称的,并且当定向大致为U形(如果不同的方向,它仍然是抛物线),它适用于几个表面上不同的数学描述中的任何一个,这些描述都可以被证明是完全相同的曲线。抛物线抛物线的一个描述涉及一个点(焦点)和一条线(该线),焦点并不在于准线,抛物线是该平面中与阵线和焦点等距的点的轨迹,抛物线的另一个描述是作为圆锥截面,由右圆锥形表面和平行于与锥形表面相切的另一平面的平面的交点形成,第三个描述是代数。2023-07-26 05:07:171
抛物线的准线怎么求?
抛物线的准线是:抛物线到定点(焦点)的距离与到定直线的距离之比等于1,那么这个定点就是抛物线的焦点,定直线就是准线。例如y^2=2px,焦点是(p/2,0),准线是x=-p/2。一般建立坐标系时把过定点与定直线垂直的直线作为x轴,定点与定直线的中间点作为原点,这时候抛物线方程可以统一写成y=2px^2或x=2py^2的形式,对应的准线方程为y=(-p/2)或x=(-p/2)。几何性质准线到顶点的距离为Rn/e,准线到焦点的距离为P = Rn(1+e)/e = L0/e 。当离心率e大于零时,则P为有限量,准线到焦点的距离为P = Rn(1+e)/e = L0/e 。当离心率e等于零时,则P为无限大,P是非普适量。用无限远来定义圆锥曲线是不符合常理的。2023-07-26 05:07:341
抛物线的准线方程怎么算
设抛物线方程y^2=2px,p>0,准线为x=-p/2同理y^2=-2px,其准线方程为x=p/2x^2=2py,其准线方程为y=-p/2x^2=-2py,其准线方程y=p/2.2023-07-26 05:08:041
抛物线的准线方程
先将抛物线的方程化为标准形式: 抛物线的方程:y^2=2px,焦点在y轴上 它的准线为:y=-p/2 抛物线的方程:x^2=2py,焦点在x轴上2023-07-26 05:08:181
- y^2=4x-2=4(x-1/2)顶点在(1/2,0)2p=4,p/2=11/2-1=-1/2.准线方程是(x=-1/2)扩展资料:准线方程x=a^2/c(X的正半轴)x=-a^2/c(X的负半轴)1、椭圆椭圆上P点坐标(x0,y0)0<c/a=(xo+p/2)/丨PF丨<1当动点P到定点F(焦点)和到定直线X=Xo的距离之比为离心率时,该直线便是椭圆的准线。准线方程x=a^2/cx=-a^2/c2、双曲线双曲线上P点坐标(x0,y0)c/a=(xo+p/2)/丨PF丨>1对于双曲线方程(以焦点在X轴为例)(x^2/a^2-y^2/b^2=1(a,b>0)亦可定义成:当动点P到定点O和到定直线X=Xo的距离之比为离心率时,该直线便是双曲线的准线。)准线方程x=a^2/cx=-a^2/c3、抛物线抛物线(以开口向右为例)y^2=2px(p>0)(亦可定义成:当动点P到焦点F和到定直线X=Xo的距离之比恒等于1时,该直线是抛物线的准线。)4、准线方程:x=-p/2设抛物线上P点坐标(x0,y0)c/a=(xo+p/2)/丨PF丨=1(ps:x^2=2py(p>0)时。准线方程为y=-p/2)2023-07-26 05:08:281
抛物线的准线什么意思?a二次方/c?比如y的二次方=4x的准线是什么
y=-1,抛物线(以开口向右为例)y^2=2px(p>0)(亦可定义成:当动点P到定点O和到定直线X=Xo的距离之比恒等于1时,该直线是抛物线的准线。) 准线方程y=-p/22023-07-26 05:08:381
求抛物线X=Y^2+1的准线方程。用移轴公式的方法。详细步骤!谢谢
令x-1=y^2,则由x=2py^2的准线方程为y=-1/2p知,该抛物线的准线方程为y=-1/4.这个抛物线相当于是将x=y^2向右移动了一个单位,故其对称轴为x=1.2023-07-26 05:08:501
抛物线的准线是什么?
准线在圆锥曲线的统一定义:平面内一点到定点与定直线的距离的比为常数e(e>0)的点的轨迹,叫圆锥曲线。而这条定直线就叫做准线(Directrix)。0<e<1时, 轨迹为椭圆; e=1时, 轨迹为抛物线; e>1时,轨迹为双曲线。抛物线准线则与p值有关。在空间曲面一般理论中,曲面可以看作一族曲线沿其准线运动所形成的轨迹,对曲线族生成曲面而言,准线就是和曲线族中的每一条曲线均相交的空间曲线。相关信息:在空间曲面一般理论中,曲面可以看作一族曲线沿其准线运动所形成的轨迹,对曲线族生成曲面而言,准线就是和曲线族中的每一条曲线均相交的空间曲线。准线方程的确定对于研究曲面的几何特征和形状有着重要的价值。 一方面,确定一条准线的方程是建立曲面方程的前提,另一方面对于给定方程的曲面的几何特征也可通过其上的一条准线方程研究。2023-07-26 05:08:581
椭圆,双曲线,抛物线的标准方程是什么?
椭圆是一种圆锥曲线(也有人叫圆锥截线的) 1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离,一般称为2a)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距); 2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的椭圆的标准方程有两种,取决于焦点所在的坐标轴: 1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b) 2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1 (a>b) 其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2 ,准线方程是x=a^2/c和x=-a^2/c 又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。 椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ 标准形式的椭圆在x0,y0点的切线就是 : xx0/a^2+yy0/b^2=1数学上指一动点移动于一个平面上,与平面上两个定点F1,F2的距离的差的绝对值始终为一定值2a(2a小于F1和F2之间的距离)时所成的轨迹叫做双曲线(Hyperbola)。两个定点F1,F2叫做双曲线的焦点(focus)。双曲线的第二定义: x=a^2/c (c>a>0) 平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。 注意:定点要在直线外;比值大于1 ·双曲线的标准方程为(x^2/a^2)-(y^2/b^2)=1 其中a>0,b>0,c^2=a^2+b^2,动点与两个定点距离之差的绝对值为定值2a 1、取值区域:x≥a,x≤-a或者y≥a,y≤-a 2、对称性:关于坐标轴和原点对称。 3、顶点:A(-a,0) A"(a,0) AA"叫做双曲线的实轴,长2a; B(0,-b) B"(0,b) BB"叫做双曲线的虚轴,长2b。 4、渐近线: 横轴:y=±(b/a)x 竖轴:y=±(a/b)x 5、离心率: e=c/a 取值范围:(1,+∞) 6 双曲线上的一点到定点的距离和到定直线(相应准线)的距离的比等于双曲线的离心率 7 双曲线焦半径公式:圆锥曲线上任意一点到焦点距离。 过右焦点的半径r=|ex-a| 过左焦点的半径r=|ex+a| 8 等轴双曲线 双曲线的实轴与虚轴长相等 2a=2b e=√2 9 共轭双曲线 (x^2/a^2)-(y^2/b^2)=1 与 (y^2/b^2)-(x^2/a^2)=1 叫共轭双曲线 (1)共渐近线 (2)e1+e2>=2√2 10 准线: x=±a^2/c,或者y=±a^2/c 11。通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2b^2/a抛物线平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。另外,F称为"抛物线的焦点",l称为"抛物线的准线"。 定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0. 以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。抛物线的标准方程 右开口抛物线:y^2=2px 左开口抛物线:y^2=-2px 上开口抛物线:y=x^2/2p 下开口抛物线:y=-x^2/2p抛物线相关参数(对于向右开口的抛物线) 离心率:e=1 焦点:(p/2,0) 准线方程l:x=-p/2 顶点:(0,0) 通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2P抛物线:y = ax^2 + bx + c (a=/0) 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x-h)^2 + k 就是y等于a乘以(x-h)的平方+k h是顶点坐标的x k是顶点坐标的y 标准形式的抛物线在x0,y0点的切线就是 :yy0=p(x+x0) 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py2023-07-26 05:09:331
抛物线的焦点,准线是什么,分别怎么求,有图最好
抛物线是一种常见的二次曲线,它具有特定的焦点和准线。焦点和准线是描述抛物线形状和位置的重要参数。焦点是抛物线上的一个特殊点,所有与该点的距离相等的点在抛物线上对称分布。焦点通常表示为F(xu2080, yu2080),其中(xu2080, yu2080)是焦点的坐标。焦点到焦点轴(与抛物线的对称轴平行)的距离被称为焦半径,记作p。准线是抛物线的直线部分,与抛物线平行且位于焦点轴上,其方程通常可以表示为x = xu2080 - p(或者x = xu2080 + p)。准线的表达式中的p是焦半径。我们可以使用以下方式来计算抛物线的焦点和准线:1. 已知顶点和焦半径:如果我们知道顶点的坐标和焦半径的值,我们可以使用以下公式计算焦点的坐标:F(xu2080, yu2080) = (xu2080, yu2080 + p)2. 已知顶点和直线方程:如果我们知道顶点的坐标和准线的方程,我们可以将准线方程与抛物线的定义相结合,解出焦半径的值,然后使用上述方法计算焦点的坐标。3. 已知焦点和准线方程:如果我们知道焦点的坐标和准线的方程,我们可以通过将焦点的坐标代入准线方程,解出焦半径的值。下面是一个示意图,展示了抛物线、焦点和准线的位置关系:希望这个图示和解释能够帮助你更好地理解抛物线的焦点和准线的概念和计算方法。2023-07-26 05:09:562
- 解由y=ax^2+bx+c =a(x+b/2a)^2+(4ac-b^2)/4a 故函数的顶点为(-b/2a,(4ac-b^2)/4a), 又由y=a(x+b/2a)^2+(4ac-b^2)/4a 得y-(4ac-b^2)/4a=a(x+b/2a)^2 即(x+b/2a)^2=1/a[y-(4ac-b^2)/4a], 故2p=1/a 当a>0时,抛物线开口向上,此时p=1/2a,p/2=1/4a 知焦点到顶点的距离为1/4a,顶点到准线的距离为1/4a, 故焦点坐标为(-b/2a,(4ac-b^2)/4a+1/4a),即为(-b/2a,(4ac-b^2+1)/4a) 故准线为y=(4ac-b^2)/4a-1/4a,即为y=(4ac-b^2-1)/4a. 当a<0时, 抛物线开口向上,此时p=-1/2a,p/2=-1/4a 知焦点到顶点的距离为1/4a,顶点到准线的距离为1/4a, 故焦点坐标为(-b/2a,(4ac-b^2)/4a-(-1/4a)),即为(-b/2a,(4ac-b^2+1)/4a) 故准线为y=(4ac-b^2)/4a+(-1/4a),即为y=(4ac-b^2-1)/4a.2023-07-26 05:10:531
关于抛物线的著名定理有哪些?
附件中没有涉及到的一个重要定理,是帕斯卡定理。它其实是圆锥曲线定理。2023-07-26 05:11:022
抛物线x方=y的准线方程是什么
在抛物线x^2=2py中,焦点是(0,p/2),准线l的方程是y=-p/2有此可知x^2=y中,焦点是(0,1/4),准线l的方程是y=-1/42023-07-26 05:11:291
抛物线焦点到准线的距离是多少?怎么算的?
抛物线方程为:y^2=2px,焦点坐标为(p/2,0),准线方程为x=-p/2,故抛物线焦点到准线的距离为p/2-(-p/2)=p.2023-07-26 05:11:402
抛物线的准线怎么求?
收2023-07-26 05:12:102
抛物线的四种基本图像是什么样的?
抛物线的四种图像如下图所示:平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。扩展资料:抛物线四种方程的异同:共同点:①原点在抛物线上,离心率e均为1。②对称轴为坐标轴。③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。不同点:①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。2023-07-26 05:12:321
抛物线上的点到准线的距离是什么?
抛物线上点到焦点距离等于到准线的距离,也等于这点的横坐标x1+p/2(对应抛物线y^2=2px)。抛物线上点到焦点距离等于到准线的距离。证明:设焦点f(p/2,0),准线x=-p/2,则任意一点x,y满足(x-p/2)^2+y^2=(x+p/2)^2。化简的y^2=2px是抛物线。所以,抛物线上点到焦点距离等于到准线的距离。抛物线抛物线是指平面内与一定点和一定直线(定直线不经过定点)的距离相等的点的轨迹,其中定点叫抛物线的焦点,定直线叫抛物线的准线。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。抛物线的一个描述涉及一个点(焦点)和一条线(准线)。焦点并不在准线上。抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由圆锥形表面和平行于锥形母线的平面的交点形成。第三个描述是代数。以上内容参考:百度百科——抛物线2023-07-26 05:12:471
抛物线的准线方程问题
由y^2=2px得p=2,所以准线方程为x=-1(x型抛物线,且开口向右,所以准线为x=-p/2,即x=-1)记住课本里四个基本的抛物线方程及相应的准线方程就可以了2023-07-26 05:13:071
抛物线 的准线方程是 A. B. C. D
B 分析:先根据抛物线的标准方程得到焦点在y轴上以及2p=1,再直接代入即可求出其准线方程.解:因为抛物线的标准方程为:x 2 =-y,焦点在y轴上;所以:2p=1,即p= , 所以: ,∴准线方程 y= ,即4y-1=0.故答案为:B.2023-07-26 05:13:141
抛物线的四种图像谁能画一下,谢谢
以上2023-07-26 05:13:542
椭圆,双曲线和抛物线的准线方程是什么啊
您好,答案如下哈 椭圆是一种圆锥曲线(也有人叫圆锥截线的) 1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离,一般称为2a)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距); 2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的 椭圆的标准方程有两种,取决于焦点所在的坐标轴: 1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b) 2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1 (a>b) 其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2 ,准线方程是x=a^2/c和x=-a^2/c 又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。 椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ 标准形式的椭圆在x0,y0点的切线就是 : xx0/a^2+yy0/b^2=1 数学上指一动点移动于一个平面上,与平面上两个定点F1,F2的距离的差的绝对值始终为一定值2a(2a小于F1和F2之间的距离)时所成的轨迹叫做双曲线(Hyperbola)。两个定点F1,F2叫做双曲线的焦点(focus)。 双曲线的第二定义: x=a^2/c (c>a>0) 平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。 注意:定点要在直线外;比值大于1 ·双曲线的标准方程为(x^2/a^2)-(y^2/b^2)=1 其中a>0,b>0,c^2=a^2+b^2,动点与两个定点距离之差的绝对值为定值2a 1、取值区域:x≥a,x≤-a或者y≥a,y≤-a 2、对称性:关于坐标轴和原点对称。 3、顶点:A(-a,0) A"(a,0) AA"叫做双曲线的实轴,长2a; B(0,-b) B"(0,b) BB"叫做双曲线的虚轴,长2b。 4、渐近线: 横轴:y=±(b/a)x 竖轴:y=±(a/b)x 5、离心率: e=c/a 取值范围:(1,+∞) 6 双曲线上的一点到定点的距离和到定直线(相应准线)的距离的比等于双曲线的离心率 7 双曲线焦半径公式:圆锥曲线上任意一点到焦点距离。 过右焦点的半径r=|ex-a| 过左焦点的半径r=|ex+a| 8 等轴双曲线 双曲线的实轴与虚轴长相等 2a=2b e=√2 9 共轭双曲线 (x^2/a^2)-(y^2/b^2)=1 与 (y^2/b^2)-(x^2/a^2)=1 叫共轭双曲线 (1)共渐近线 (2)e1+e2>=2√2 10 准线: x=±a^2/c,或者y=±a^2/c 11。通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2b^2/a 抛物线 平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。另外,F称为"抛物线的焦点",l称为"抛物线的准线"。 定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0. 以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。 抛物线的标准方程 右开口抛物线:y^2=2px 左开口抛物线:y^2=-2px 上开口抛物线:y=x^2/2p 下开口抛物线:y=-x^2/2p 抛物线相关参数(对于向右开口的抛物线) 离心率:e=1 焦点:(p/2,0) 准线方程l:x=-p/2 顶点:(0,0) 通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2P 抛物线:y = ax^2 + bx + c (a=/0) 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x-h)^2 + k 就是y等于a乘以(x-h)的平方+k h是顶点坐标的x k是顶点坐标的y 标准形式的抛物线在x0,y0点的切线就是 :yy0=p(x+x0) 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 如果满意请采纳哦谢谢啦,祝您学习进步哦2023-07-26 05:14:411
抛物线的准线方程是什么?
抛物线的准线方程公式:y=-p/2。平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示、标准方程表示等等。抛物线性质1、焦半径公式:(y2=2px(p>0))|MF|=2x0M(x0,y0)为抛物线上任意一点的坐标。2、通径|AB|=2p。3、焦点弦。(1)、|AB|=p+x1+x2。(2)、|AB|=2psin2θ2pP(y2=2px(p>0))。(3)、|AB|=cos2θ(x2=2py(p>0))(通径是最短的焦点弦)。(4)、焦点弦的端点坐标A(x1,y1),B(x2,y2),则有x1x2=,y1y2=-p24p2。(5)、n=1+cosθ,m=1u2212cosθm+n=p。2023-07-26 05:15:201
抛物线准线方程是什么意思?
抛物线方程其实是这样定义的,平面上到一定点与一定直线的距离相等的所有点的结合,此时这个定直线就是抛物线的准线。一般建立坐标系时把过定点与定直线垂直的直线作为X轴,定点与定直线的中间点作为原点,这时候抛物线方程可以统一写成Y=2PX^2或X=2PY^2的形式,对应的准线方程为y=(-p/2)或x=(-p/2)2023-07-26 05:16:201
抛物线的准线是什么?
抛物线是指平面内到一个定点和一条定直线距离相等的点的轨迹,这个定点就是焦点,定直线就是准线。具体方程式求法是:先将抛物线的方程化为标准形式:抛物线的方程:y^2=2px,焦点在y轴上,它的准线为:y=-p/2;抛物线的方程:x^2=2py,焦点在x轴上,它的准线为:x=-p/2。抛物线的准线:1、抛物线内与准线距离相等的点叫做焦点。2、平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。3、抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它在几何光学和力学中有重要的用处。抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。2023-07-26 05:16:311
什么是抛物线的准线方程?
焦点在X轴上 抛物线:2px=y^2 它的准线为:X=-p/2 焦点在Y轴上 抛物线:2py=x^2 它的准线为:Y=-p/22023-07-26 05:17:011
抛物线的准线是什么呢?
抛物线的准线是:抛物线到定点(焦点)的距离与到定直线的距离之比等于1,那么这个定点就是抛物线的焦点,定直线就是准线。例如y^2=2px,焦点是(p/2,0),准线是x=-p/2。一般建立坐标系时把过定点与定直线垂直的直线作为x轴,定点与定直线的中间点作为原点,这时候抛物线方程可以统一写成y=2px^2或x=2py^2的形式,对应的准线方程为y=(-p/2)或x=(-p/2)。几何性质准线到顶点的距离为Rn/e,准线到焦点的距离为P = Rn(1+e)/e = L0/e 。当离心率e大于零时,则P为有限量,准线到焦点的距离为P = Rn(1+e)/e = L0/e 。当离心率e等于零时,则P为无限大,P是非普适量。用无限远来定义圆锥曲线是不符合常理的。2023-07-26 05:18:381
抛物线的准线方程是什么?
焦点在y轴上 抛物线:2px=y^2 它的准线为:y=-p/2 焦点在x轴上 抛物线:2py=x^2 它的准线为:x=-p/22023-07-26 05:19:071
抛物线y2=ax(a≠0)的准线方程是( )?
解题思路:利用抛物线的标准方程,求得2p,从而可求抛物线的准线方程. (1)当a>0时, 焦点在x轴上,且 2p=a, ∴[p/2 = a 4], ∴抛物线的准线方程是 x=u2212 a 4; (2)同理,当a<0时,也有相同的结论. 故选A. ,2,抛物线y 2=ax(a≠0)的准线方程是( ) A.x=-[a/4] B.x=[a/4] C.x=- |a| 4 D.x= |a| 42023-07-26 05:19:171
什么是抛物线的准线?
抛物线是指平面内到一个定点和一条定直线距离相等的点的轨迹,这个定点就是焦点,定直线就是准线。具体方程式求法是:先将抛物线的方程化为标准形式:抛物线的方程:y^2=2px,焦点在y轴上,它的准线为:y=-p/2;抛物线的方程:x^2=2py,焦点在x轴上,它的准线为:x=-p/2。抛物线的准线:1、抛物线内与准线距离相等的点叫做焦点。2、平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。3、抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它在几何光学和力学中有重要的用处。抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。2023-07-26 05:19:261
准线方程怎么求?
准线方程:x=a^2/c,x=-a^2/c。椭圆上P点坐标(x0,y0)0<c/a=(xo+p/2) /丨PF丨<1当动点P到定点F(焦点)和到定直线X=Xo的距离之比为离心率时,该直线便是椭圆的准线。准线方程:x=a^2/c,x=-a^2/c。对于椭圆方程(以焦点在X轴为例) x^2/a^2+y^2/b^2=1 (a>b>0 a为长半轴 b为短半轴 c为焦距的一半)(亦可定义成:当动点P到定点F(焦点)和到定直线X=Xo的距离之比为离心率时,该直线便是椭圆的准线。)扩展资料:双曲线双曲线上P点坐标(x0,y0)c/a=(xo+p/2) /丨PF丨>1对于双曲线方程(以焦点在X轴为例)( x^2/a^2-y^2/b^2=1 (a,b>0)亦可定义成:当动点P到定点O和到定直线X=Xo的距离之比为离心率时,该直线便是双曲线的准线。)准线方程 x=a^2/c x=-a^2/c抛物线抛物线(以开口向右为例) y^2=2px(p>0)(亦可定义成:当动点P到焦点F和到定直线X=Xo的距离之比恒等于1时,该直线是抛物线的准线。)准线方程: x=-p/2设抛物线上P点坐标(x0,y0)c/a=(xo+p/2) /丨PF丨=1(ps:x^2=2py(p>0)时。准线方程为y=-p/2)参考资料来源:百度百科-准线方程2023-07-26 05:19:571
抛物线的准线是什么意思?
抛物线的准线方程公式:y=-p/2。平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示、标准方程表示等等。抛物线性质1、焦半径公式:(y2=2px(p>0))|MF|=2x0M(x0,y0)为抛物线上任意一点的坐标。2、通径|AB|=2p。3、焦点弦。(1)、|AB|=p+x1+x2。(2)、|AB|=2psin2θ2pP(y2=2px(p>0))。(3)、|AB|=cos2θ(x2=2py(p>0))(通径是最短的焦点弦)。(4)、焦点弦的端点坐标A(x1,y1),B(x2,y2),则有x1x2=,y1y2=-p24p2。(5)、n=1+cosθ,m=1u2212cosθm+n=p。2023-07-26 05:20:241
什么是抛物线的准线?
抛物线的准线是:抛物线到定点(焦点)的距离与到定直线的距离之比等于1,那么这个定点就是抛物线的焦点,定直线就是准线。例如y^2=2px,焦点是(p/2,0),准线是x=-p/2。一般建立坐标系时把过定点与定直线垂直的直线作为x轴,定点与定直线的中间点作为原点,这时候抛物线方程可以统一写成y=2px^2或x=2py^2的形式,对应的准线方程为y=(-p/2)或x=(-p/2)。几何性质准线到顶点的距离为Rn/e,准线到焦点的距离为P = Rn(1+e)/e = L0/e 。当离心率e大于零时,则P为有限量,准线到焦点的距离为P = Rn(1+e)/e = L0/e 。当离心率e等于零时,则P为无限大,P是非普适量。用无限远来定义圆锥曲线是不符合常理的。2023-07-26 05:20:371
如何求抛物线的焦点和准线?
抛物线是指平面内到一个定点和一条定直线距离相等的点的轨迹,这个定点就是焦点,定直线就是准线。具体方程式求法是:先将抛物线的方程化为标准形式:抛物线的方程:y^2=2px,焦点在y轴上,它的准线为:y=-p/2;抛物线的方程:x^2=2py,焦点在x轴上,它的准线为:x=-p/2。抛物线的准线:1、抛物线内与准线距离相等的点叫做焦点。2、平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。3、抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它在几何光学和力学中有重要的用处。抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。2023-07-26 05:20:561
抛物线x^2=y的准线方程是?
x^2=2px所以p=1/2顶点是原点,对称轴是y轴,所以准线垂直y轴顶点带准线距离=p/2x^2=y开口向上,所以准线在顶点下方所以是y=-1/42023-07-26 05:21:232
准线方程公式
抛物线的准线方程公式:y=-p/2。平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示、标准方程表示等等。抛物线:抛物线(以开口向右为例) y^2=2px(p>0)(亦可定义成:当动点P到焦点F和到定直线X=Xo的距离之比恒等于1时,该直线是抛物线的准线。)准线方程: x=-p/2。设抛物线上P点坐标(x0,y0)c/a=(xo+p/2) /丨PF丨=1。(ps:x^2=2py(p>0)时。准线方程为y=-p/2)。2023-07-26 05:22:161
什么是抛物线的准线?
抛物线是指平面内到一个定点和一条定直线距离相等的点的轨迹,这个定点就是焦点,定直线就是准线。具体方程式求法是:先将抛物线的方程化为标准形式:抛物线的方程:y^2=2px,焦点在y轴上,它的准线为:y=-p/2;抛物线的方程:x^2=2py,焦点在x轴上,它的准线为:x=-p/2。抛物线的准线:1、抛物线内与准线距离相等的点叫做焦点。2、平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。3、抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它在几何光学和力学中有重要的用处。抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。2023-07-26 05:22:331
抛物线的准线有什么性质?
抛物线的准线是:抛物线到定点(焦点)的距离与到定直线的距离之比等于1,那么这个定点就是抛物线的焦点,定直线就是准线。例如y^2=2px,焦点是(p/2,0),准线是x=-p/2。一般建立坐标系时把过定点与定直线垂直的直线作为x轴,定点与定直线的中间点作为原点,这时候抛物线方程可以统一写成y=2px^2或x=2py^2的形式,对应的准线方程为y=(-p/2)或x=(-p/2)。几何性质准线到顶点的距离为Rn/e,准线到焦点的距离为P = Rn(1+e)/e = L0/e 。当离心率e大于零时,则P为有限量,准线到焦点的距离为P = Rn(1+e)/e = L0/e 。当离心率e等于零时,则P为无限大,P是非普适量。用无限远来定义圆锥曲线是不符合常理的。2023-07-26 05:22:461
抛物线焦点到准线的距离公式是什么啊?
抛物线焦点到准线的距离公式为p/2-(-p/2)=p。因为抛物线方程为:y^2=2px,焦点坐标为(p/2,0),而准线方程是为x=-p/2。平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。在圆锥曲线的统一定义中:平面内一点到定点与定直线的距离的比为常数e(e>0)的点的轨迹,叫圆锥曲线。而这条定直线就叫做准线(Directrix)。0<e<1时, 轨迹为椭圆; e=1时, 轨迹为抛物线; e>1时,轨迹为双曲线。抛物线准线则与p值有关。在空间曲面一般理论中,曲面可以看作一族曲线沿其准线运动所形成的轨迹,对曲线族生成曲面而言,准线就是和曲线族中的每一条曲线均相交的空间曲线。2023-07-26 05:23:021
请问抛物线的焦点,准线是什么,分别怎么求,有图最好
请看这里http://baike.baidu.com/view/734.htm?fr=ala0_12023-07-26 05:23:191
抛物线准线方程的公式?
y^2=mx,准线方程x=-m/4x^2=ny,准线方程y=-n/42023-07-26 05:23:451
抛物线的准线方程怎么算
先化为标准方程X^2=2py或y^2=2px,准线方程为y=1/2p或x=a/2p2023-07-26 05:23:543
求下列抛物线的焦点坐标和准线方程(请写出详细的解题过程).
上面的式子化成标准形式有y=1/2*x^2 开口方向为X轴正向,焦点坐标为(p/2,0)准线方程为x=-p/2 所以焦点坐标为,(1/8,0)准线方程为x等于-1/8. 先判断开口方向再写坐标和准线方程.后面的同理2023-07-26 05:24:021
抛物线的准线是什么意思啊?
抛物线的准线是:抛物线到定点(焦点)的距离与到定直线的距离之比等于1,那么这个定点就是抛物线的焦点,定直线就是准线。例如y^2=2px,焦点是(p/2,0),准线是x=-p/2。一般建立坐标系时把过定点与定直线垂直的直线作为x轴,定点与定直线的中间点作为原点,这时候抛物线方程可以统一写成y=2px^2或x=2py^2的形式,对应的准线方程为y=(-p/2)或x=(-p/2)。几何性质准线到顶点的距离为Rn/e,准线到焦点的距离为P = Rn(1+e)/e = L0/e 。当离心率e大于零时,则P为有限量,准线到焦点的距离为P = Rn(1+e)/e = L0/e 。当离心率e等于零时,则P为无限大,P是非普适量。用无限远来定义圆锥曲线是不符合常理的。2023-07-26 05:24:111
- y^2=4x-2=4(x-1/2)顶点在(1/2,0)2p=4,p/2=11/2-1=-1/2.准线方程是( x=-1/2 )扩展资料:准线方程 x=a^2/c (X的正半轴) x=-a^2/c(X的负半轴)1、椭圆椭圆上P点坐标(x0,y0)0<c/a=(xo+p/2) /丨PF丨<1当动点P到定点F(焦点)和到定直线X=Xo的距离之比为离心率时,该直线便是椭圆的准线。准线方程 x=a^2/c x=-a^2/c2、双曲线双曲线上P点坐标(x0,y0)c/a=(xo+p/2) /丨PF丨>1对于双曲线方程(以焦点在X轴为例)( x^2/a^2-y^2/b^2=1 (a,b>0)亦可定义成:当动点P到定点O和到定直线X=Xo的距离之比为离心率时,该直线便是双曲线的准线。)准线方程 x=a^2/c x=-a^2/c3、抛物线抛物线(以开口向右为例) y^2=2px(p>0)(亦可定义成:当动点P到焦点F和到定直线X=Xo的距离之比恒等于1时,该直线是抛物线的准线。)4、准线方程: x=-p/2设抛物线上P点坐标(x0,y0)c/a=(xo+p/2) /丨PF丨=1(ps:x^2=2py(p>0)时。准线方程为y=-p/2)2023-07-26 05:24:311
抛物线X=y平方 它的准线方程是什么
x=y^2 2p=1 p=1/2 p/2=1/4 因为焦点方程是(1/4,0) 准线在焦点的另一边 所以准线是 x=-p/2=-1/42023-07-26 05:24:471