函数

判断下列变化过程中,两变量存在函数关系的是A.x,y是变量,y=±2根号x

自变量x和因变量y有如下关系: y=kx+b (k为任意不为零实数,b为任意实数) 则此时称y是x的一次函数。 特别的,当b=0时,y是x的正比例函数。 即:y=kx (k为任意不为零实数) 定义域:自变量的取值范围,自变量的取值应使函数有意义;若与实际相反, 。 一次函数的性质 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k≠0) (k为任意不为零的实数 b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 3.k为一次函数y=kx+b的斜率,k=tg角1(角1为一次函数图象与x轴正方向夹角) 形。取。象。交。减 一次函数的图像及性质 1.作法与图形:通过如下3个步骤 (1)列表[一般取两个点,根据两点确定一条直线]; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.函数不是数,它是指某一变量过程中两个变量之间的关系。 4.k,b与函数图像所在象限: y=kx时 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 y=kx+b时: 当 k>0,b>0, 这时此函数的图象经过一,二,三象限。 当 k>0,b<0, 这时此函数的图象经过一,三,四象限。 当 k<0,b<0, 这时此函数的图象经过二,三,四象限。 当 k0, 这时此函数的图象经过一,二,四象限。 当b>0时,直线必通过一、二象限; 当b<0时,直线必通过三、四象限。 特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 4、特殊位置关系 当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等 当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1) 确定一次函数的表达式 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 一次函数在生活中的应用 1.当时间t一定,距离s是速度v的一次函数。s=vt。 2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。 常用公式(不全,希望有人补充) 1.求函数图像的k值:(y1-y2)/(x1-x2) 2.求与x轴平行线段的中点:|x1-x2|/2 3.求与y轴平行线段的中点:|y1-y2|/2 4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和) 5.求两一次函数式图像交点坐标:解两函数式 两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标 6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2] 7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0) k b + + 在一、二、三象限 + - 在一、三、四象限 - + 在一、二、四象限 - - 在二、三、四象限 8.若两条直线y1=k1x+b1‖y2=k2x+b2,那么k1=k2,b1≠b2 9.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1 应用 一次函数y=kx+b的性质是:(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小。利用一次函数的性质可解决下列问题。 一、确定字母系数的取值范围 例1. 已知正比例函数 ,则当m=______________时,y随x的增大而减小。 解:根据正比例函数的定义和性质,得 且m<0,即 且 ,所以 。 二、比较x值或y值的大小 例2. 已知点P1(x1,y1)、P2(x2,y2)是一次函数y=3x+4的图象上的两个点,且y1>y2,则x1与x2的大小关系是( ) A. x1>x2 B. x1<x2 C. x1=x2 D.无法确定 解:根据题意,知k=3>0,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。 三、判断函数图象的位置 例3. 一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k<0。所以b<0。故一次函数y=kx+b的图象经过第二、三、四象限,不经过第一象限。故选A . 典型例题: 例1. 一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg物体后,弹簧总长是13.5cm,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的取值范围. 分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理. 解:由题意设所求函数为y=kx+12 则13.5=3k+12,得k=0.5 ∴所求函数解析式为y=0.5x+12 由23=0.5x+12得:x=22 ∴自变量x的取值范围是0≤x≤22 一次函数的定义、图象和性质在中考说明中是C级知识点,特别是根据问题中的条件求函数解析式和用待定系数法求函数解析式在中考说明中是D级知识点.它常与反比例函数、二次函数及方程、方程组、不等式综合在一起,以选择题、填空题、解答题等题型出现在中考题中,大约占有8分左右.解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法. 例2.如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式。 解:(1)若k>0,则可以列方程组 -2k+b=-11 6k+b=9 解得k=2.5 b=-6 ,则此时的函数关系式为y=2.5x—6 (2)若k<0,则可以列方程组 -2k+b=9 6k+b=-11 解得k=-2.5 b=4,则此时的函数解析式为y=-2.5x+4 此题主要考察了学生对函数性质的理解,若k>0,则y随x的增大而增大;若k<0,则y随x的增大而减小。 一次函数解析式的几种类型 ①ax+by+c=0[一般式] ②y=kx+b[斜截式] (k为直线斜率,b为直线纵截距,正比例函数b=0) ③y-y1=k(x-x1)[点斜式] (k为直线斜率,(x1,y1)为该直线所过的一个点) ④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式] ((x1,y1)与(x2,y2)为直线上的两点) ⑤x/a-y/b=0[截距式] (a、b分别为直线在x、y轴上的截距) 解析式表达局限性: ①所需条件较多(3个); ②、③不能表达没有斜率的直线(平行于x轴的直线); ④参数较多,计算过于烦琐; ⑤不能表达平行于坐标轴的直线和过圆点的直线。 倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角。设一直线的倾斜角为a,则该直线的斜率k=tg(a) 形如y=kx(k为常数,且k不等于0),y就叫做x的正比例函数. 正比例函数属于一次函数,正比例函数是一次函数的特殊形式. 即当一次函数 y=kx+b 若b=0,则此为正比例函数. 图像做法 1.列表 2.描点 3.连线(一定要经过坐标轴的原点) 其次,正比例函数的图像是经过原点和(1,k)[或(2,2k),(3,3k)等]两点的一条直线。 其他:当k>0时,它的图像(除原点外)在第一、三象限,y随x的增大而增大 当k<0时,它的图像(除原点外)在第二、四象限,y随x的增大而减小 总结:y=kx(k不等于0) 而以方程的角度来说,只要将正比例函数上的一个点的坐标给出,就能确定这个解析式 若求正比例函数与一次函数,二次函数或反比例函数的交点坐标,就是将两个已知的方程联立成方程组 求出其x,y值便可 正比例函数在线性规划问题中体现的力量也是无穷的 比如斜率问题就取决于K值,当K越大,则该函数图像与x轴的夹角越大,反之亦然 还有,Y=Kx是Y=K/x 图像的对称轴. 1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. ①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示: ②正比例关系两种相关联的量的变化规律:对于比值为正数的,即y=kx(k>0),此时的y与x,同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例? 以上各种商都是一定的,那么被除数和除数. 所表示的两种相关联的量,成正比例关系. 注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例. 例如:一个人的年龄和它的体重,就不能成正比例关系,正方形的边长和它的面积也不成正比例关系.
CarieVinne 2023-08-02 10:30:401

一次函数学习

请把题给我
Ntou1232023-08-02 10:30:383

已知一次函数y1=k1x+b图像,另一条一次函数y2=k2x=b与y1夹角30度,求k1,k2关系

夹角公式|(k1-k2)/(1+k1k2)|=tan30°=√3/3
再也不做站长了2023-08-02 10:30:382

设关于x的一次函数y1=k1x+b1(k1不等于0)和y2=k2x+b2(k2不等于0),则称函数y=(k1-k2)x+(b1-b2)

很高兴为您解答:解:(1):由题意一次函数y1=mx-3n和y2=-nx+2m的“差函数”为y=(m+n)x+(-3n-2m)=4x+5即m+n=4 和-3n-2m=5由以上两式解得:m=17 n=-13(2) :一次函数y1=-x-1和y2=kx+b(k不等于0)的图像关于x轴对称则两斜率互为相反数,且在y轴的截距互为相反数即k=-(-1)=1 b=-(-1)=1 即y2=x+1则y1和y2的“差函数”为y=(-1-1)x+(-1-1)=-2x-2谢谢,祝你开心有帮助记得采纳哦
小白2023-08-02 10:30:372

初二数学上册 函数定义人教版

函数与图象  1.求函数自变量的取值范围的原则   (1)解析式是整式,自变量可以取一切实数.   (2)解析式是分式,自变量的取值应使分母不等于零.  (3)如果解析式是以上几种形式综合而成的,自变量取值范围同时满足它们各自的条件.  (4)如果解析式是从实际问题得出的,自变量取值范围必须要具有实际意义.  2.函数的图象   在直角坐标系内用自变量的值和对应的函数值作为点的横坐标和纵坐标,描点,连线.反之,函数图象上的点的横坐标和纵坐标,就是函数中自变量的值和对应的函数值.  (一)一次函数  1.正比例函数的图象   正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线.   2.一次函数的图象.   一次函数y=kx+b(k≠0)的图象是经过( ,0)和(0,b)的一条直线.       (1)两个常用的特殊点:与y轴交于(0,b);与x轴交于( ,0).   (2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。  3. 一次函数的性质  k>0时,y随x增大而增大 ;k<0时,y随x增大而减小 .  4.一次函数y=kx+b(k≠0,k、b是常数)中的k、b的符号很重要.   (1)由k的符号决定函数值y随自变量x的变化而变化,|k|越大,直线y=kx+b越靠近y轴,|k|越小,直线y=kx+b越远离y轴;b的符号决定函数图象与y轴交在正半轴还是负半轴.  (2)k、b的符号直接决定直线y=kx+b的位置.  k、b同正,过一、三、二象限; k、b同负,过二、四、三象限; k正b负,过一、三、四象限;  k负b正,过二、四、一象限.  5.求正比例函数和一次函数的解析式的方法是待定系数法,其步骤是:   ①根据题中所给条件写出含有待定系数的解析式;  ②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;  ③解方程(或组),得到待定系数的具体数值;   ④将求出的待定系数代入要求的函数解析式中.   6.求一次函数解析式的方法   主要有三种:     一、是由已知函数推导或推证.     二、是由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系.   三、是用待定系数法求函数解析式.   “待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本部分构造方程一般有下列几种情况:  (1)根据一次函数的定义 : 构造方程组.      (2)利用一次函数y=kx+b中常数项b恰好是函数图象与y轴交点的纵坐标,即由b来  定点;直线y=kx+b平行于y=kx,即由k来定方向, 若两直线平行,则解析式的一次项系数k相等.例如 y=2x,y=2x+3的图象平行.也就是说,一次函数y=kx+b图象的位置由系数k、b来决定:由k来定方向,由b来定点,即函数图象平行于直线y=kx,经过(0, b)点,反之亦成立,即由函数图象方向定k,由与y轴交点定b.      (3)利用函数图象上的点的横、纵坐标满足此函数解析式构造方程.      (4)利用题目已知条件直接构造方程.   7.求两个函数的图象交点的坐标,就是把两个函数的解析式组成方程组,求出方程组的解,即为交点坐标.  8.求一次函数的图象与两坐标轴围成的三角形面积,需首先求出这条直线与两坐标轴交点的坐标,再求出这两个交点到原点的距离,利用直角三角形面积公式求解.  9.求两个一次函数的图象与坐标轴围成的三角形面积,需首先求出这两条直线交点的坐标(作高),再求出这两个一次函数的图象与两坐标轴交点的坐标(作底),根据不同的情况利用三角形面积和求解.  10.一般情况下,一次函数没有最小值,图象是直线;但联系到一些具体问题时,因自变量的取值范围受限制,,使一次函数有了最大值或最小值,图象也成为射线或线段.  一次函数解析式的常数项就是图象与y轴交点纵坐标.  (二)反比例函数及其图象  (1)反比例函数的图象是双曲线,反比例函数图象的两个分支关于原点对称.   (2)当k>0时,反比例函数图象的两个分支分别在第一、三象限内,且在每个象限内,y随x的增大而减小;当k<0时,图象的两个分支分别在第二、四象限内,且在每个象限内,y随x的增大而增大.   注意:不能说成“当k>0时,反比例函数y随x的增大而减小,当k<0时,反比例函数y随x的增大而增大.”因为,当x由负数经过0变为正数时,上述说法不成立.   (3) 反比例函数解析式的确定:反比例函数的解析式y= (k≠0)中只有一个待定系数k,因而只要有一组x、y的对应值或函数图象上一点的坐标,代入函数解析式求得k的值,就可得到反比例函数解析式.   5.反比例函数解析式的确定   在反比例函数y= (k≠0)定义中,只有一个常数,所以求反比例函数的解析式只需确定一个待定系数k,反比例函数即可确定. 所以只要将图象上一点的坐标代入y= 中即可求出k值.
拌三丝2023-08-02 10:30:361

八年级数学上册函数的知识点重点?

一次函数图象及其性质确定一次函数表达式函数图像的应用
wpBeta2023-08-02 10:30:363

已知反比例函数y=x分之k的图像经过点A(-1,-2) (1)如果正比例函数y=k1的图像与

其范围为<0
豆豆staR2023-08-02 10:30:355

一道数学函数题:已知y=y1+y2,y1与x成正比例,y2与x-2成反比例,当x=1时,y=-1;

解由y1与x成正比例,设y1=k1x由y2与x-2成反比例,设y2=k2/(x-2)故由y=y1+y2知y=k1x+k2/(x-2)又由当x=1时,y=-1;当x=3时,y=5即k1-k2=-13k1+k2=5解得k1=1,k2=2故y与x的函数关系式为y=x+2/(x-2)
Jm-R2023-08-02 10:30:351

一次函数图象交x轴于点A(6,0),与正比例函数图象交于B点,点B在第一象限

解:s(ABC)=6(yB)/2=15,YB=5,所以B(4,5),设一次函数为y=kx+b,0=6k+b,5=4k+b,k=-5/2,b=15, y=-5x/2+15
余辉2023-08-02 10:30:342

一次函数y=k1x+b1与y=k2x+b2的图像关于x轴对称

拌三丝2023-08-02 10:30:341

一次函数解析式有哪些求法

一般式:ax+by+c=0,a,b至少有一个不为0.斜截式:y=kx+b,k为斜率,b为Y轴上截距截距式:x/a+y/b=1,a为X轴截距,b为Y轴截距点斜式:y-y0=k(x-x0),k为斜率,(x0,y0)为直线上一点两点式:y=(y1-y0)(x-x0)/(x1-x0)+y0,(x0,y0),(x1,y1)为直线上两点点法式:y=-(x-x0)/k+y0,k为法线,(x0,y0)为直线上一点特殊式:x=a,(垂直于X轴),y=b (垂直于Y轴)
Ntou1232023-08-02 10:30:334

已知y=y1+y2,y1与x成正比例,y2与x-1成正比例,当x=1时,y=3,当x=2时。y=7,求函数解析式

设函数解析式为y=ax+b(x-1),那么将两点的坐标代入即可解得ab的值
CarieVinne 2023-08-02 10:30:334

已知函数y=y1-y2,其中y1与x成正比例,y2与x-2成反比例,且当x=1时,y=1.当x=3时,y=5.求当x=0时,y的值?

设 y1=k1x,y2=k2/(x-2),y=y1+y2,代入已知数值的k1=1.5,k2=0.5,当x=0时,y=-0.25
肖振2023-08-02 10:30:324

已知一次函数y1=k1x+6与反比例函数y2=k2 x (x>0)的图象交于点A、B,且A、B两点的横坐标分别为2和4

瑞瑞爱吃桃2023-08-02 10:30:321

如图是三个反比例函数y=k1/x,y=k2/x,y=k3/x在x轴上面的图像,则k1,k2,k3的大小关系为

解:读图可知:三个反比例函数y=k1x的图象在第二象限;故k1<0;y=k2x,y=k3x在第一象限;且y=k3x的图象距原点较远,故有:k1<k2<k3;综合可得:k1<k2<k3.故填k1<k2<k3.
ardim2023-08-02 10:30:322

已知一次函数y=k1x+b(k1≠0)的图像与正比例函数y=k2x(k2≠0)的交点为A(4,3),与y轴的交点为点B(0,-3)。

解:1、把A(4,3),B(0,-3)代入一次函数y=k1x+b 得 4k1-3=3 k1=3/2又知b为-3 所以一次函数y=k1x+b解析式为y=3/2x-3 再把A(4,3)代入y=k2x可得k2=3/4 所以正比例函数y=3/4x 2、S△AOB=1/2*|-3|*4=6若对步骤不满意你在进一步整理吧
mlhxueli 2023-08-02 10:30:313

在直角坐标系中,若两条直线互相垂直,那么它们的函数解析式有什么关系

两直线斜率相乘等于-1
豆豆staR2023-08-02 10:30:318

2条函数解析式y=k1x+b和y=k2x+b中的k1和K2当他们是垂直关系时,为什么K1乘K2=负1

不考虑其中一条和坐标轴平行的情况下一个斜率为k则另外一条的斜率则为-1/k证明:设(x1,y1)为平面直角坐标系中直线l1上一点,l1斜率k1= y1/ x1,对于与l1垂直的直线l2的斜率k2(=y2/x2)而言,y2可用 x1, x2可用 -y1、或y2可用-x1, x2可用y1替换,∴k1 k2=( y1/ x1)u2022( y2/x2) =( y1/ x1)u2022( x1/ -y1)= -1; 或者 k1 k2=( y1/ x1)u2022( y2/x2) =( y1/ x1)u2022( -x1/ y1)= -1
LuckySXyd2023-08-02 10:30:301

怎样证明两条互相垂直的一次函数解析式的斜率相乘等于-1?即k1k2=-1?这叫作什么定理吗?

函数的性质定理,
此后故乡只2023-08-02 10:30:303

初二的数学一次函数意义我还不懂,谁给我解释个大概

y=kx+b k是斜率k<0函数在二四象限,k>0 函数在一三象限b是截距 即与y轴的交点 b>0 在y轴正半轴 b<0在y轴负半轴。
hi投2023-08-02 10:30:292

初中数学一次函数

A,B两点在一次函数图像上的位置如图所示,两点的坐标分别为A(x+a,y),B(x,y+b),下列结论正确的是( C )
铁血嘟嘟2023-08-02 10:30:2915

解一次函数怎么解?要例子!

概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。(2)理清题意是采用分段函数解决问题的关键。[3] 常用公式:1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:(x1+x2)/23.求与y轴平行线段的中点:(y1+y2)/24.求任意线段的长:√[(x1-x2)2+(y1-y2)2]5.求两个一次函数式图像交点坐标:解两函数式两个一次函数 y1=k1x+b1,y2=k2x+b2,令y1=y2,得k1x+b1=k2x+b2。将解得的x=x0值代回y1=k1x+b1,y2=k2x+b2两式的任一式,得到y=y0,则(x0, y0)即为 y1=k1x+b1与y2=k2x+b2之交点坐标。6.求任意2点所连线段的中点坐标:( (x1+x2)/2, (y1+y2)/2 )7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)(x,y)为 +,+(正,正)时该点在第一象限(x,y)为 -,+(负,正)时该点在第二象限(x,y)为 - ,-(负,负)时该点在第三象限(x,y)为 +,-(正,负)时该点在第四象限8.若两条直线y1=k1x+b1,y2=k2x+b2互相平行,则k1=k2,b1≠b29.如两条直线y1=k1x+b1,y2=k2x+b2互相垂直,则k1×k2=-110.设原直线为y=kx+by=k(x-n)+b就是直线向右平移n个单位y=k(x+n)+b就是直线向左平移n个单位一次函数的平移y=kx+b+n就是向上平移n个单位y=kx+b-n就是向下平移n个单位口决:左加右减相对于X,上加下减相对于b。11.直线y=kx+b与x轴的交点:(-b/k,0),与y轴的交点:(0,b)生活中的应用1.当时间t一定,距离s是速度v的一次函数。s=vt。2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)。常见题型常见题型一次函数及其图像是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。其中求一次函数解析式就是一类常见题型。现以部分中考题为例介绍几种求一次函数解析式的常见题型。希望对大家的学习有所帮助。一. 定义型例1. 已知函数 是一次函数,求其解析式。解:由一次函数定义知 , , ,故一次函数的解析式为y=-6x+3。注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。如本例中应保证m-3≠0。二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。解: 一次函数 的图像过点(2, -1), ,即k=1。故这个一次函数的解析式为y=x-3。变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1是,求这个函数的解析式。三. 两点型例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。解:设一次函数解析式为y=kx+b由题意得 ,故这个一次函数的解析式为y=2x+4.四. 图像型[4]例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。解:设一次函数解析式为y=kx+b由图可知一次函数 的图像过点(1, 0)、(0, 2) 有所以k=-2b=2故这个一次函数的解析式为y=-2x+2.五. 斜截型例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。解析:两条直线 ; 。当k1=k2 ,b1≠b2时,直线y=kx+b与直线y=-2x平行, 。又 直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2.六. 平移型例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。解析:设函数解析式为 y=kx+b, 直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行直线y=kx+b在y轴上的截距为 b=1-2=-1,故图像解析式为.七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。解:由题意得Q=20-0.2t ,即Q=-0.2t+20故所求函数的解析式为 Q=-0.2t+20( )注意:求实际应用型问题的函数关系式要写出自变量的取值范围,别忘了考虑变量存在等于0的情况。八. 面积型例8. 已知直线y=kx-4与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。解:易求得直线与x轴交点为 ,所以 ,所以|k|=2 ,即故直线解析式为y=2x-4或y=-2x-4九. 对称型若直线 与直线y=kx+b关于(1)x轴对称,则直线 的解析式为y=-kx-b;(2)y轴对称,则直线 的解析式为y=-kx+b;(3)直线y=x对称,则直线 的解析式为;(4)直线y=-x对称,则直线 的解析式为;(5)原点对称,则直线 的解析式为y=kx-b.例9. 若直线l与直线y=2x-1关于y轴对称,则直线l的解析式为____________。解:由(2)得直线l的解析式为y=-2x-1十. 开放型例10. 已知函数的图像过点A(1, 4),B(2, 2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。解:(1)若经过A、B两点的函数图像是直线,由两点式易得y=-2x+6(2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以是双曲线,解析式为(3)其它(略)十一. 几何型例11. 如图,在平面直角坐标系中,A、B是x轴[4]上的两点, , ,以AO、BO为直径的半圆分别交AC、BC于E、F两点,若C点的坐标为(0, 3)。(1)求图像过A、B、C三点的二次函数的解析式,并求其对称轴;(2)求图像过点E、F的一次函数的解析式。解:(1)由直角三角形的知识易得点A(-3√3, 0)、B(√3, 0),由待定系数法可求得二次函数解析式为 ,对称轴是x=-√3  (2)连结OE、OF,则 、 。过E、F分别作x、y轴的垂线,垂足为M、N、P、G,易求得E 、F ,由待定系数法可求得一次函数解析式为十二. 方程型例12. 若方程x2+3x+1=0的两根分别为 ,求经过点P 和Q 的一次函数图像的解析式解:由根与系数的关系得点P(11, 3)、Q(-11, 11)设过点P、Q的一次函数的解析式为y=kx+b则有解得故这个一次函数的解析式为十三. 综合型例13. 已知抛物线y=(9-m2)x2-2(m-3)x+3m的顶点D在双曲线 上,直线y=kx+c经过点D和点C(a, b)且使y随x的增大而减小,a、b满足方程组 ,求这条直线的解析式。解:由抛物线y=(9-m2)x2-2(m-3)x+3m的顶点D 在双曲线上,可求得抛物线的解析式为:y1=-7x2+14x-12,顶点D1(1, -5)及y2=-27x2+18x-18顶点D2  解方程组得 ,即C1(-1, -4),C2(2, -1)由题意知C点就是C1(-1, -4),所以过C1、D1的直线是 ;过C1、D2的直线是5特殊位置关系编辑当平面直角坐两一次函数平行标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)。关于平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数的证明:如图,这2个函数互相垂直,但若直接证明,存在困难,不易理解,如果平移平面直角坐标系,使这2个函数的交点交于原点,就会更简单。就像这一样,可以设这2个函数的表达式分别为;y=ax, y=bx.在x正半轴上取一点(z,0)(便于计算),做与y轴平行的直线,如图,可知OC=z,AC=a*z,BC=b*z,由勾股定理可得:OA=√z^2+(a*z)^2,OB=√z^2+(b^z)^2又有OA^2+OB^2=AB^2,得z^2+(az)^2+z^2+(bz)^2=(az-bz)^2 (因为b小于0,故为az-bz)化简得:z^2+a^2*z^2+z^2+b^2*z^2=a^2*z^2-2ab*z^2+b^2*z^22z^2=-2ab*z^2ab=-1即k=-1所以两个K值的乘积为-1注意:与y轴平行的直线没有函数解析式,与x轴平行的直线的解析式为常函数,故上述性质中这两种直线除外。  两一次函数垂直6学习方法编辑知识要点1.要理解函数的意义。2.联系实际对函数图像的理解。3.随图像理解数字的变化而变化。一次函数考点及例题一次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以一次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。误区提醒1.对一次函数概念理解有误,漏掉一次项系数不为0这一限制条件;2.对一次函数图象和性质存在思维误区;3.忽略一次函数自变量取值范围。7典型例题编辑函数问题1已知正比例函数 ,则当k≠0时,y随x的增大而减小。解:根据正比例函数的定义和性质,得 k<0。函数问题2已知点P1(x1,y1)、P2(x2,y2)是一次函数y=3x+4的图象上的两个点,且y1>y2,则x1与x2的大小关系是( )A. x1>x2 B. x1<x2 C. x1=x2 D.无法确定解:根据题意,知k=3>0,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。函数问题3一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k<0,从而b<0。故一次函数y=kx+b的图象经过第二、三、四象限,不经过第一象限。故选A .函数问题4一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例。如果挂各种形式的一次函数上3kg物体后,弹簧总长是13.5cm,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的取值范围.分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理.解:由题意设所求函数为y=kx+12则13.5=3k+12解之,k=0.5∴y与x的函数关系式为y=0.5x+12由题意,得:23=0.5x+12x=22解之,x=22∴自变量x的取值范围是0≤x≤22函数问题5某学校需刻录一些电脑光盘,若到电脑公司刻录,每张需8元,若学校自刻,除租用刻录机120元外,每张还需成本4元,问这些光盘是到电脑公司刻录,还是学校自己刻费用较省?此题要考虑X的范围解:设总费用为Y元,刻录X张则电脑公司:Y1=8X 学校 :Y2=4X+120当X=30时,Y1=Y2当X>30时,Y1>Y2当X<30时,Y1<Y2函数问题6(1)y与x成正比例函数,当 y=5时,x=2.5,求这个正比例函数的解析式.(2)已知一次函数的图象经过A(-1,2)和B(3,-5)两点,求此一次函数的解析式.解:(1)设所求正比例函数的解析式为 y=kX把 y=5,x=2.5代入上式 得 ,5=2.5k解之,得k=2∴所求正比例函数的解析式为 y=2X(2)设所求一次函数的解析式为y=kx+b∵此图象经过A(-1,2)、B(3,-5)两点,此两点的坐标必满足y=kx+b ,将x=-1 、y=2和x=3、y=-5 分别代入上式,得 2=-k+b,-5=3k+b解得 k=-7/4,b=1/4∴此一次函数的解析式为y=-7x/4+1/4点评:(1) 不能化成带分数.(2)所设定的解析式中有几个待定系数,就需根据已知条件列几个方程.函数问题7拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q(升)与工作时间t(时)之间的函数关系式,指出自变量t的取值范围,并且画出图象.分析:拖拉机一小时耗油5升,t小时耗油5t升,以20升减去5t升就是余下的油量.解: 函数关系式:Q=20-5t,其中t的取值范围:0≤t≤4。图象是以(0,20)和(4,0)为端点的一条线段(图象略)。点评:注意函数自变量的取值范围.该图象要根据自变量的取值范围而定,它是一条线段,而不是一条直线.函数问题8已知一次函数的图象经过点P(-2,0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式.分析:从图中可以看出,过点P作一次函数的图象,和y轴的交点可能在y轴正半轴上,也可能在y轴负半轴上,因此应分两种情况进行研究,这就是分类讨论的数学思想方法.解:设所求一次函数解析式为∵点P的坐标为(-2,0)∴|OP|=2设函数图象与y轴交于点B(0,m)根据题意,SΔPOB=3∴|m|=3∴一次函数的图象与y轴交于B1(0,3)或B2(0,-3)将P(-2,0)及B1(0,3);或P(-2,0)及B2(0,-3)的坐标代入y=kx+b中,得-2k+b=0,b=3; 或-2k+b=0,b=-3。解得 k=1.5,b=3;或k=-1.5,b=-3。∴所求一次函数的解析式为 y=1.5x+3或y=-1.5-3。点评:(1)本题用到分类讨论的数学思想方法.涉及过定点作直线和两条坐标轴相交的问题,一定要考虑到方向,是向哪个方向作.可结合图形直观地进行思考,防止丢掉一条直线.(2)涉及面积问题,选择直角三角形两条直角边乘积的一半,结果一定要得正值.[3] 考点指要一次函数的定义、图象和性质在中考说明中是C级知识点,特别是根据问题中的条件求函数解析式和用待定系数法求函数解析式在中考说明中是D级知识点.它常与反比例函数、二次函数及方程、方程组、不等式综合在一起,以选择题、填空题、解答题等题型出现在中考题中,大约占有8分左右.解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.函数问题9如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式。解:如图示求此函数解析式.[5]考点指要此题主要考察了学生对函数性质的理解,若k>0,则y随x的增大而增大;若k<0,则y随x的增大而减小。[3] 综合测试选择题:1. 若正比例函数y=kx的图象经过一、三象限,则k的取值范围是( )A.k≠0 B.k<0 C.k>0 D.k为任意值2. 一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度y(cm)与燃烧时间x(小时)的函数关系用图象表示为( )A.y=5x B.y=4x C.y=20-5x D.无法确定3. (北京市)一次函数y=x+3 的图象不经过的象限是( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限综合测试答案1.C 2.C 3.D[3]
墨然殇2023-08-02 10:30:291

b, d是反比例函数y=k2/ x在一象限上的点,射线ob, od分别交反比例y=k1/ x的图

(1)∵P是点P是反比例函数 y=k1x(k1>0,x>0)图象上一动点,∴S矩形PBOA=k1, ∵E、F分别是反比例函数 y=k2x(k2<0且|k2|<k1,)的图象上两点, ∴S△OBF=S△AOE= 12|k2|, ∴四边形PEOF的面积S1=S矩形PBOA+S△OBF+S△AOE=k1+|k2|, ∵k2<0, ∴四边形PEOF的面积S1=S矩形PBOA+S△OBF+S△AOE=k1+|k2|=k1-k2. (2)①∵PE⊥x轴,PF⊥y轴可知,P、E两点的横坐标相同,P、F两点的纵坐标相同, ∴E、F两点的坐标分别为E(2,k22),F( k23,3); ②∵P(2,3)在函数y= k1x的图象上, ∴k1=6, ∵E、F两点的坐标分别为E(2,k22),F( k23,3); ∴PE=3- k22,PF=2- k23, ∴S△PEF= 12(3- k22)(2- k23)= (6-k2)212, ∴S△OEF=(k1-k2)- (6-k2)212 =(6-k2)- (6-k2)212 = 36-k2212= 83, ∵k2<0, ∴k2=-2. ∴反比例函数 y=k2x的解析式为y=- 2x.
hi投2023-08-02 10:30:281

如图,p点是反比例函数y=k1/x(k1>o,x>0)图像上一动点,过p点作x轴,y轴的垂线,分别交x轴,y轴于AB两点,交

我也不会。。。。。。。。。。。
Chen2023-08-02 10:30:274

求解!!!数学一次函数、正比例函数、反比例函数的知识点!!!

(1)一次函数如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.(2)一次函数的性质当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为.别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.(3)一次函数的图象一次函数y=kx+b的图象是一条经过(0,b)点和点的直线.特别地,正比例函数图象是一条经过原点的直线.需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.(1)反比例函数如果(k是常数,k≠0),那么y叫做x的反比例函数.(2)反比例函数的性质①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.③反比例函数图象关于直线y=±x对称,关于原点对称.(3)反比例函数的图象反比例函数的图象是双曲线.正比例函数和反比例函数的交点问题若正比例函数y=k1x(k1≠0),反比例函数,则当k1k2<0时,两函数图象无交点;当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.
meira2023-08-02 10:30:261

如果两条一次函数的图象相交,那么k的值

直线Y=K1X+b1与直线Y2=K2X+b2互相垂直,则:K1*K2=-1。一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数。一次函数有三种表示方法,如下:1、解析式法:用含自变量x的式子表示函数的方法叫做解析式法。2、列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。3、图像法:用图象来表示函数关系的方法叫做图象法。扩展资料:y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。根据“两点确定一条直线”的道理,即在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出。参考资料来源:百度百科——一次函数
西柚不是西游2023-08-02 10:30:261

三角函数半角公式是什么

sin(a/2)=根号下[(1-cosa)/2] cos(a/2)=………[(1+cosa)/2] tan(a/2)=………[(1-cosa)/(1+cosa)] 正切的半角公式一般不用那个,一般用的是下面这个: tan(a/2)=(sina)/(1+cosa)=(1-cosa)/(sina)
黑桃花2023-08-02 10:30:242

八年级数学函数问题..

T1(a)m≠2(b)m=0(c)m>2;m=3/4(d)m=-1(e)m=3;m>2和m<-1/2T2解:由题意得:当变量x的取值范围是2≤x≤4时,函数y的取值范围是-1≤y≤2∴设x=2时,y=-1;x=4时,y=2∴由原式y=kx+b得,-1=2k+b2=4k+b解得k=1.5b=-4∴y=1.5x-4I"mgoodat函数,don"t怀疑我的answers哈,以后有anyquestions就send上来哈~
九万里风9 2023-08-02 10:30:245

试讨论一次函数y=k1x+b1与y=kx+b2的图像的位置关系

两条直线(在同一平面内)的关系无非有如下情况:1、平行(重叠为平行的特殊情形);2、相交(垂直为其特殊情形)。对于第一种:K=K1;对于第二种:K≠K1的其他情形均为相交,K*K1=-1。(垂直时)。
小菜G的建站之路2023-08-02 10:30:242

如图,已知y1=k1x+k1(k1≠0)与反比例函数y2=k2x(k2≠0)的图象交于点A、C,其中A点坐标(1,1).(1)

解:(1)将A(1,1)代入反比例解析式得:1=k21,即k2=1,则反比例解析式为y2=1x;(2)由图象可得:当0<x<1时,y1<y2;(3)将A(1,1)代入一次函数解析式得:1=k1+k1,即k1=12,∴一次函数解析式为y1=12x+12,令y=0,得x=-1,∴B(-1,0),即OB=1,则S△AOB=12×OB×yA纵坐标=12×1×1=12;(4)存在.当OA为底边时,此时△AOP1为等腰直角三角形,P1(1,0);当OA为腰时,以O为圆心,OA长为半径画弧,与x轴交于P3,P2,∵A(1,1),∴OA=12+12=2,∴OP3=OP2=2,此时P2(2,0),P3(-2,0);以A为圆心AO为半径画弧,与x轴交于P4,∵OA=AP4,AP1⊥OP4,∴OP1=P1P
此后故乡只2023-08-02 10:30:241

求高中数学必修的三角函数的全部公式

三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAue718cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)ue117cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))ue657和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B))2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB
康康map2023-08-02 10:30:233

互相垂直的两条一次函数系数有什么关系

它们表达式系数相乘等于负一
bikbok2023-08-02 10:30:238

高中三角函数面积公式

高中三角函数面积公式有:三角函数常用公式正弦函数sinθ=y/r。余弦函数cosθ=x/r。正切函数tanθ=y/x。余切函数cotθ=x/y。正割函数secθ=r/x。余割函数cscθ=r/y。三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)。cos3α=4cosα·cos(π/3+α)cos(π/3-α)。tan3a=tana·tan(π/3+a)·tan(π/3-a)。
苏州马小云2023-08-02 10:30:231

三角函数诱导公式高几学的

三角函数诱导公式高一学的。常用的诱导公式有以下几组:三角函数诱导公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα三角函数诱导公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三角函数诱导公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα三角函数诱导公式四:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)三角函数诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα三角函数诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)
瑞瑞爱吃桃2023-08-02 10:30:231

急求高中三角函数倍角公式,包括sin,tan,cos(派一60度)等类似的简化式???

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA
无尘剑 2023-08-02 10:30:214

一元一次函数解析式如何求k与b

1.设。设一次函数解析式y=kx+b(k≠0)2.代。从已知条件中找两个条件,得两组数据,分别带入解析式得二元一次方程组3.解。解方程组,求出k,b4.结。结论
肖振2023-08-02 10:30:213

高中万能公式 三角函数

高中万能公式三角函数如下:三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
墨然殇2023-08-02 10:30:211

请帮忙总结一下高中三角函数的所有公式。

同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2 tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2 cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα ·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] ·推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 ·其他: sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx 证明: 左边=2sinx(cosx+cos2x+...+cosnx)/2sinx =[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差) =[sin(n+1)x+sinnx-sinx]/2sinx=右边 等式得证 sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx 证明: 左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx) =[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx) =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边 等式得证编辑本段三角函数的角度换算 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z)编辑本段正余弦定理 正弦定理是指在一个三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R . 余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA编辑本段部分高等内容 ·高等代数中三角函数的指数表示(由泰勒级数易得): sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)] 泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… 此时三角函数定义域已推广至整个复数集。 ·三角函数作为微分方程的解: 对于微分方程组 y=-y"";y=y"""",有通解Q,可证明 Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。 补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。编辑本段特殊三角函数值 a 0` 30` 45` 60` 90` sina 0 1/2 √2/2 √3/2 1 cosa 1 √3/2 √2/2 1/2 0 tana 0 √3/3 1 √3 None cota None √3 1 √3/3 0编辑本段三角函数的计算 幂级数 c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞) c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞) 它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数. 泰勒展开式(幂级数展开法): f(x)=f(a)+f"(a)/1!*(x-a)+f""(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+... 实用幂级数: ex = 1+x+x2/2!+x3/3!+...+xn/n!+... ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|<1) sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞) cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞<x<∞) arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1) arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1) arctan x = x - x^3/3 + x^5/5 - ... (x≤1) sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞) cosh x = 1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+... (-∞<x<∞) arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - ... (|x|<1) arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1) 在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。 -------------------------------------------------------------------------------- 傅立叶级数(三角级数) f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx) a0=1/π∫(π..-π) (f(x))dx an=1/π∫(π..-π) (f(x)cosnx)dx bn=1/π∫(π..-π) (f(x)sinnx)dx 三角函数的数值符号 正弦 一,二为正, 三,四为负 余弦 一,四为正 二,三为负 正切 一,三为正 二,四为负编辑本段三角函数定义域和值域 sin(x),cos(x)的定义域为R,值域为〔-1,1〕 tan(x)的定义域为x不等于π/2+kπ,值域为R cot(x)的定义域为x不等于kπ,值域为R
Jm-R2023-08-02 10:30:211

求高中数学三角函数公式推导

1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)tga=tana=sinacosa2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)?sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.积化和差公式(上面公式反过来就得到了)sin(a)sin(b)=-12?[cos(a+b)-cos(a-b)]cos(a)cos(b)=12?[cos(a+b)+cos(a-b)]sin(a)cos(b)=12?[sin(a+b)+sin(a-b)]5.二倍角公式sin(2a)=2sin(a)cos(a)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)6.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)7.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)8.其它公式(推导出来的)a?sin(a)+b?cos(a)=a2+b2sin(a+c)其中tan(c)=baa?sin(a)-b?cos(a)=a2+b2cos(a-c)其中tan(c)=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2
u投在线2023-08-02 10:30:202

高中数学必修4三角函数公式大全

建议你买本王后雄教材解读…
铁血嘟嘟2023-08-02 10:30:201

求高中三角函数公式及推理

1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)tga=tana=sinacosa2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)?sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.积化和差公式(上面公式反过来就得到了)sin(a)sin(b)=-12?[cos(a+b)-cos(a-b)]cos(a)cos(b)=12?[cos(a+b)+cos(a-b)]sin(a)cos(b)=12?[sin(a+b)+sin(a-b)]5.二倍角公式sin(2a)=2sin(a)cos(a)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)6.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)7.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)8.其它公式(推导出来的)a?sin(a)+b?cos(a)=a2+b2sin(a+c)其中tan(c)=baa?sin(a)-b?cos(a)=a2+b2cos(a-c)其中tan(c)=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2
人类地板流精华2023-08-02 10:30:201

一次函数的

问什么
墨然殇2023-08-02 10:30:183

高中必背三角函数公式大全 有哪些公式

高中阶段,三角函数这章算是我们比较早接触到的知识点了,但是因为公式很多,内容又比较复杂,所以记忆起来还是有点难度的。 三角函数公式 三角函数知识 三角函数包括两个部分:三角与三角函数、解三角形分析。重点的知识点包括:任意角的三角函数;同角三角函数的基本关系式;诱导公式;三角函数的图象及其变换;三角函数的性质及其应用;三角函数的求值与化简;正弦、余弦定理;解三角形及其综。 三角与三角函数包括任意角及其三角函数、同角关系式和诱导公式、正弦及正弦型函数、余与正切函数、三角恒等变换和三角综合。重点考查基础知识和基本技能,突出角与代数、几何、向量等知识点的联系,题型难度属于容易或中等。 解三角形正弦定理和余弦定理是解三角形的两个重要定理,应用这两个定理,发现并掌握三角形中边长与角度之间的数量关系,并有能力解。
可桃可挑2023-08-02 10:30:181

高中三角函数公式表

高中的数学公式定理大集中 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2α sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα 3tanα-tan3α tan3α=—————— 1-3tan2α 三角函数的和差化积公式 三角函数的积化和差公式 α+β α-β sinα+sinβ=2
西柚不是西游2023-08-02 10:30:171

高中三角函数的所有公式

三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga) 倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2) cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2) tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa)) ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa)) 和差化积2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b) 2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b) sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2) tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb ctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb 正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角
tt白2023-08-02 10:30:173

在平面直角坐标系中两直线互相垂直则他们的函数关系是k1 x k2 =-1,可是平行垂直于这条直线的

若你现在有l1:y=k1x+b1、l2:y=k2x+b2切l1垂直于l2,若已知k1,则可以求出k2此时当x=0时b2并不确定(就是你说的平行垂直于这条直线的直线有很多条),所以无法求出y值,除非你再代一个点进去求出b2,才能确定l2与y轴交点(当x=0)所以算出的y只有当明确了l2解析式后才是只有一个
再也不做站长了2023-08-02 10:30:171

函数Y=K1,X中Y值随X的增大而减小,比例函数Y=K2/X在每个象限内,Y随X的增大而增大,求K1*K2等于多少

∵函数Y=K1X中Y值随X的增大而减小,∴k1<0∵反比例函数Y=K2/X在每个象限内,Y随X的增大而增大,∴K2<0K1*K2>0有疑问,请追问;若满意,请采纳,谢谢!
Ntou1232023-08-02 10:30:171

求三角函数的公式,急。??

高中三角函数公式如下:1、sin(A+B) = sinAcosB+cosAsinB。2、sin(A-B) = sinAcosB-cosAsinB。3、cos(A+B) = cosAcosB-sinAsinB。4、cos(A-B) = cosAcosB+sinAsinB。5、tan(A+B) = (tanA+tanB)/(1-tanAtanB)。6、tan(A-B) = (tanA-tanB)/(1+tanAtanB)。7、cot(A+B) = (cotAcotB-1)/(cotB+cotA)。8、cot(A-B) = (cotAcotB+1)/(cotB-cotA)。双曲函数:sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)
北营2023-08-02 10:30:171

高中数学三角函数公式

1.和角公式sin(x+y)=sinxcosy+cosxsiny(sx+y)cos(x+y)=cosxcosy-sinxsiny(cx+y)tan(x+y)=tanx+tany/1-tanxtany(tx+y)2.差角公式sin(x-y)=sinxcosy-cosxsiny(sx-y)cos(x-y)=cosxcosys+inxsiny(cx-y)tan(x-y)=tanx-tany/1+tanxtany(tx-y)3.倍角公式sin2x=2sinxcosxcos2x=(cos^2)x-(sin^2)x=2(cos^2)x-1=1-2sin^2xtan2x=2tanx/1-(tan^2)xsin3x=3sinx-4(sin^3)xcos3x=4(cos^3)x-3cosxtan3x=3tanx-(tan^3)x/1-3(tan^2)x4.降幂公式(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2ps:如果你还没学必修3的话(我告诉你^是次方的意思,如x^2就是2次方)
gitcloud2023-08-02 10:30:174

高中三角函数公式 三角函数公式介绍

1、高中三角函数公式主要有tana·cota=1sind·cscd=1cosa·seca=1,sind/cosd=tand=secd/csca cosa/sind=cotd=cscd/seca等。 2、三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
大鱼炖火锅2023-08-02 10:30:162

求一次函数y=k1x与y=k2x夹角角平分线解析式

设tanα=k1,tanβ=k2tanγ=tan(1/2(β-α))解三角函数即可求出。
再也不做站长了2023-08-02 10:30:143

一次函数y1=k1x+b1与y2=k2x+b2,k1*k2=-1,则y1与y2有什么关系?试说明理由!

y1=k1x+b1与x轴的夹角a1满足tana1=k1 y2=k2x+b2与x轴的夹角a2满足tana2=k2 tan(a1-a2)=(tana1-tana2)/(1+tan1*tan2) 当k1*k2=-1,tan(a1-a2)=无穷 a1-a2=π/2, y1与y2相互垂直
肖振2023-08-02 10:30:141

求三角函数所有公式

你直接百度:三角函数所有公式就可以找到了,不用提问!
FinCloud2023-08-02 10:30:138

高中数学三角函数公式

高中三角函数公式有很多。三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
苏州马小云2023-08-02 10:30:131

如何证明两垂直相交的一次函数一次项系数相乘为-1?

设两直线斜率分别为k、l,则两直线夹角的正切为(l-k)(1+kl),当kl=-1时,正切值是无穷,说明夹角是90度
苏萦2023-08-02 10:30:131

高中数学三角函数公式

两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)倍角公式tan2A = 2tanA/(1-tan^2 A)Sin2A=2SinA?CosACos2A = Cos^2 A--Sin^2 A=2Cos^2 A—1=1—2sin^2 A三倍角公式sin3A = 3sinA-4(sinA)^3;cos3A = 4(cosA)^3 -3cosAtan3a = tan a ? tan(π/3+a)? tan(π/3-a)半角公式sin(A/2) = √{(1--cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1--cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)}tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]tanA+tanB=sin(A+B)/cosAcosB积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}  其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a) 双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)
gitcloud2023-08-02 10:30:131

高中三角函数公式?

高中三角函数公式如下:1、sin(A+B) = sinAcosB+cosAsinB。2、sin(A-B) = sinAcosB-cosAsinB。3、cos(A+B) = cosAcosB-sinAsinB。4、cos(A-B) = cosAcosB+sinAsinB。5、tan(A+B) = (tanA+tanB)/(1-tanAtanB)。6、tan(A-B) = (tanA-tanB)/(1+tanAtanB)。7、cot(A+B) = (cotAcotB-1)/(cotB+cotA)。8、cot(A-B) = (cotAcotB+1)/(cotB-cotA)。双曲函数:sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)
真颛2023-08-02 10:30:102

高中万能公式 三角函数

高中万能公式三角函数如下:三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
tt白2023-08-02 10:30:091

高中三角函数公式高中数学啊

口诀:奇变偶不变符号看象限。sin(π/2+α)=cosαcos(π/2+α)=—sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsec(π/2+α)=-cscαcsc(π/2+α)=secα
NerveM 2023-08-02 10:30:092

高中三角函数公式表规律

诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tgA=tanA=sinA/cosA两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))三角函数和差化积公式sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)sin(a)u2212sin(b)=2cos((a+b)/2)sin((a-b)/2)cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]二倍角公式sin(2a)=2sin(a)cos(a)cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)半角公式sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))万能公式sin(a)=(2tan(a/2))/(1+tan^2(a/2))cos(a)=(1-tan^2(a/2))/(1+tan^2(a/2))tan(a)=(2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c)[其中,tan(c)=b/a]a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c)[其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2其他非重点三角函数csc(a)=1/sin(a)sec(a)=1/cos(a)双曲函数sinh(a)=(e^a-e^(-a))/2cosh(a)=(e^a+e^(-a))/2tgh(a)=sinh(a)/cosh(a)
豆豆staR2023-08-02 10:30:092

求高中三角函数公式及推理

很多呢~要那个哦
CarieVinne 2023-08-02 10:30:081

高中三角函数公式是什么?

高中三角函数公式是如下:1、sin(A+B) = sinAcosB+cosAsinB。2、sin(A-B) = sinAcosB-cosAsinB。3、cos(A+B) = cosAcosB-sinAsinB。4、cos(A-B) = cosAcosB+sinAsinB。5、tan(A+B) = (tanA+tanB)/(1-tanAtanB)。6、tan(A-B) = (tanA-tanB)/(1+tanAtanB)。7、cot(A+B) = (cotAcotB-1)/(cotB+cotA)。8、cot(A-B) = (cotAcotB+1)/(cotB-cotA)。
NerveM 2023-08-02 10:30:082

求高中三角函数的公式

http://wenku.baidu.com/view/3fbeb5db6f1aff00bed51ea9.html
ardim2023-08-02 10:30:082

求高中三角函数中所有的公式

用多了就记下了
黑桃花2023-08-02 10:30:065

高中必背三角函数公式

1、sin(-α)=-sinα2、cos(-α)=cosα3、sin(π/2-α)=cosα4、cos(π/2-α)=sinα5、sin(π/2+α)=cosα6、cos(π/2+α)=-sinα7、sin(π-α)=sinα8、cos(π-α)=-cosα9、sin(π+α)=-sinα10、tanα=sinα/cosα11、tan(π/2+α)=-cotα12、tan(π/2-α)=cotα13、tan(π-α)=-tanα14、tan(π+α)=tanα扩展资料:常用的和角公式1、sin(α+β)=sinαcosβ+ sinβcosα2、sin(α-β)=sinαcosβ-sinB*cosα3、cos(α+β)=cosαcosβ-sinαsinβ4、cos(α-β)=cosαcosβ+sinαsinβ5、tan(α+β)=(tanα+tanβ) / (1-tanαtanβ)
wpBeta2023-08-02 10:30:052

高中数学三角函数公式有哪几种啊?

高中三角函数公式如下:1、sin(A+B) = sinAcosB+cosAsinB。2、sin(A-B) = sinAcosB-cosAsinB。3、cos(A+B) = cosAcosB-sinAsinB。4、cos(A-B) = cosAcosB+sinAsinB。5、tan(A+B) = (tanA+tanB)/(1-tanAtanB)。6、tan(A-B) = (tanA-tanB)/(1+tanAtanB)。7、cot(A+B) = (cotAcotB-1)/(cotB+cotA)。8、cot(A-B) = (cotAcotB+1)/(cotB-cotA)。双曲函数:sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)
北营2023-08-02 10:30:041

求高中三角函数 所有公式

很高兴为您解答,祝你学习进步!【学习宝典】团队为您答题。有不明白的可以追问!如果您认可我的回答。请点击下面的【选为满意回答】按钮,谢谢!
小白2023-08-02 10:30:021

三角函数的全部公式

无穷无尽!高中的话掌握定义!同角关系,诱导公式,两角和差,倍角,正弦余弦定理
铁血嘟嘟2023-08-02 10:30:004

高中三角函数公式是什么?

高中三角函数公式:公式一:(1)(sinα)^2+(cosα)^2=1。(2)1+(tanα)^2=(secα)^2。(3)1+(cotα)^2=(cscα)^2。证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可。对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC。数学三角函数万能公式二:设tan(A/2)=t。sinA=2t/(1+t^2) (A=?2kπ+π,k∈Z)。tanA=2t/(1-t^2) (A=?2kπ+π,k∈Z)。cosA=(1-t^2)/(1+t^2) (A=?2kπ+πk∈Z)。就是说sinA、tanA、cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了。
tt白2023-08-02 10:29:592

高中三角函数公式及诱导公式大全

高中三角函数公式及诱导公式大全如下所示:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2k T + a )=sin ak∈z;cos(2k T + a )=cos ak∈z;tan(2k Tt +a )=tan ak∈z;cot(2k T + a )=cot akEz公式二:设α为任意角,T+a的三角函数值与α的三角函数值之间的关系:sin ( T + a )=-sin a;cos( T + a )=-cos a;tan( T + a )=tan a;cot ( T+a )=cot a公式三:任意角α与-a的三角函数值之间的关系:sin(- a )=-sin a;cos(- a )=cos a;tan(- a )=-tan a;cot(- a )=-cot a公式四:利用公式二和公式三可以得到T -a与a的三角函数值之间的关系:sin( T 一 a )=sin a;cos ( T - a )=-cos a;tan ( T - a )=-tan a;cot ( T-a )=-cot a
康康map2023-08-02 10:29:591

高中数学三角函数公式是什么?

很多,以下是基础的1、sin(-α)=-sinα2、cos(-α)=cosα3、sin(π/2-α)=cosα4、cos(π/2-α)=sinα5、sin(π/2+α)=cosα6、cos(π/2+α)=-sinα7、sin(π-α)=sinα8、cos(π-α)=-cosα9、sin(π+α)=-sinα10、tanα=sinα/cosα11、tan(π/2+α)=-cotα12、tan(π/2-α)=cotα13、tan(π-α)=-tanα14、tan(π+α)=tanα然后是进阶的1、sin(α+β)=sinαcosβ+ sinβcosα2、sin(α-β)=sinαcosβ-sinB*cosα3、cos(α+β)=cosαcosβ-sinαsinβ4、cos(α-β)=cosαcosβ+sinαsinβ5、tan(α+β)=(tanα+tanβ) / (1-tanαtanβ)
黑桃花2023-08-02 10:29:582

高中三角函数公式表。

高中的数学公式定理大集中 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2α sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα 3tanα-tan3α tan3α=—————— 1-3tan2α 三角函数的和差化积公式 三角函数的积化和差公式 α+β α-β sinα+sinβ=2
阿啵呲嘚2023-08-02 10:29:581

高中三角函数公式是什么?

高中三角函数公式是如下:1、sin(A+B) = sinAcosB+cosAsinB。2、sin(A-B) = sinAcosB-cosAsinB。3、cos(A+B) = cosAcosB-sinAsinB。4、cos(A-B) = cosAcosB+sinAsinB。5、tan(A+B) = (tanA+tanB)/(1-tanAtanB)。6、tan(A-B) = (tanA-tanB)/(1+tanAtanB)。7、cot(A+B) = (cotAcotB-1)/(cotB+cotA)。8、cot(A-B) = (cotAcotB+1)/(cotB-cotA)。
苏州马小云2023-08-02 10:29:542

三角函数所有高中公式

三角函数公式表同角三角函数的基本关系式 倒数关系:商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secαsin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式三角函数的降幂公式 二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2α sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα 3tanα-tan3α tan3α=—————— 1-3tan2α 三角函数的和差化积公式三角函数的积化和差公式 α+βα-β sinα+sinβ=2sin———·cos——— 22 α+βα-β sinα-sinβ=2cos———·sin——— 22 α+βα-β cosα+cosβ=2cos———·cos——— 22 α+βα-β cosα-cosβ=-2sin———·sin——— 221 sinα·cosβ=-[sin(α+β)+sin(α-β)] 2 1 cosα·sinβ=-[sin(α+β)-sin(α-β)] 2 1 cosα·cosβ=-[cos(α+β)+cos(α-β)] 2 1 sinα·sinβ=—-[cos(α+β)-cos(α-β)] 2 化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式
kikcik2023-08-02 10:29:541

高中三角函数公式

有,要是买资料的话可以就近到书店订购,或者登录淘宝网自行购买
此后故乡只2023-08-02 10:29:539

三角函数高中所有公式

三角函数高中所有公式如下:1、两角和公式:sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)2、倍角公式:tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a3、半角公式:sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))三角函数简介:三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
左迁2023-08-02 10:29:511

高中三角函数的所有公式

高中三角函数的所有公式如下:1、锐角三角函数公式(1)sin α=∠α的对边/斜边(2)cos α=∠α的邻边/斜边(3)tan α=∠α的对边/∠α的邻边(4)cot α=∠α的邻边/∠α的对边2、倍角公式(1)Sin2A=2SinA?CosA(2)Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1(3)tan2A=(2tanA)/(1-tanA^2)3、三倍角公式(1)sin3α=4sinα·sin(π/3+α)sin(π/3-α)(2)cos3α=4cosα·cos(π/3+α)cos(π/3-α)(3)tan3a = tan a · tan(π/3+a)· tan(π/3-a)4、三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina5、辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2),cost=A/(A^2+B^2)^(1/2),tant=B/A,Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B6、降幂公式(1)sin^2(α)=(1-cos(2α)/2=versin(2α)/2(2)cos^2(α)=(1+cos(2α)/2=covers(2α)/2(3)tan^2(α)=(1-cos(2α)/(1+cos(2α))7、推导公式(1)tanα+cotα=2/sin2α(2)tanα-cotα=-2cot2α(3)1+cos2α=2cos^2α(4)1-cos2α=2sin^2α(5)1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3a(6)cos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosa(7)sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)(8)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)(9)tan3a=tanatan(60°-a)tan(60°+a)8、半角公式(1)tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);(2)cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA(3)sin^2(a/2)=(1-cos(a))/2(4)cos^2(a/2)=(1+cos(a))/2(5)tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))9、三角和(1)sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ(2)cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ(3)tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)10、两角和差(1)cos(α+β)=cosα·cosβ-sinα·sinβ(2)cos(α-β)=cosα·cosβ+sinα·sinβ(3)sin(α±β)=sinα·cosβ±cosα·sinβ(4)tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)(5)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)11、和差化积(1)sinθ+sinφ=2 sin[(θ+φ)/2]cos[(θ-φ)/2](2)sinθ-sinφ=2 cos[(θ+φ)/2]sin[(θ-φ)/2](3)cosθ+cosφ=2 cos[(θ+φ)/2]cos[(θ-φ)/2](4)cosθ-cosφ=-2 sin[(θ+φ)/2]sin[(θ-φ)/2](5)tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)(6)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)12、积化和差(1)sinαsinβ=[cos(α-β)-cos(α+β)]/2(2)cosαcosβ=[cos(α+β)+cos(α-β)]/2(3)sinαcosβ=[sin(α+β)+sin(α-β)]/2(4)cosαsinβ=[sin(α+β)-sin(α-β)]/213、诱导公式(1)sin(-α)=-sinα(2)cos(-α)=cosα(3)tan (—a)=-tanα(4)sin(π/2-α)=cosα(5)cos(π/2-α)=sinα(6)sin(π/2+α)=cosα(7)cos(π/2+α)=-sinα(8)sin(π-α)=sinα(9)cos(π-α)=-cosα(10)sin(π+α)=-sinα(11)cos(π+α)=-cosα(12)tanA=sinA/cosA(13)tan(π/2+α)=-cotα(14)tan(π/2-α)=cotα(15)tan(π-α)=-tanα(16)tan(π+α)=tanα
西柚不是西游2023-08-02 10:29:511

谁可以告诉我关于高中的数学三角函数中的万能公式是什么

万能公式为:设tan(a/2)=tsina=2t/(1+t^2)tana=2t/(1-t^2)cosa=(1-t^2)/(1+t^2)就是说sina.tana.cosa都可以用tan(a/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.
wpBeta2023-08-02 10:29:501

高一数学三角函数基本公式

  公式一:   设α为任意角,终边相同的角的同一三角函数的值相等:   sin(2kπ+α)= sinα   cos(2kπ+α)= cosα   tan(2kπ+α)= tanα   cot(2kπ+α)= cotα   公式二:   设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:   sin(π+α)= —sinα   cos(π+α)= —cosα   tan(π+α)= tanα   cot(π+α)= cotα   公式三:   任意角α与 —α的三角函数值之间的关系:   sin(—α)= —sinα   cos(—α)= cosα   tan(—α)= —tanα   cot(—α)= —cotα   公式四:   利用公式二和公式三可以得到π—α与α的三角函数值之间的关系:   sin(π—α)= sinα   cos(π—α)= —cosα   tan(π—α)= —tanα   cot(π—α)= —cotα   公式五:   利用公式—和公式三可以得到2π—α与α的三角函数值之间的关系:   sin(2π—α)= —sinα   cos(2π—α)= cosα   tan(2π—α)= —tanα   cot(2π—α)= —cotα   公式六:   π/2±α及3π/2±α与α的三角函数值之间的关系:   sin(π/2+α)= cosα   cos(π/2+α)= —sinα   tan(π/2+α)= —cotα   cot(π/2+α)= —tanα   sin(π/2—α)= cosα   cos(π/2—α)= sinα   tan(π/2—α)= cotα   cot(π/2—α)= tanα   sin(3π/2+α)= —cosα   cos(3π/2+α)= sinα   tan(3π/2+α)= —cotα   cot(3π/2+α)= —tanα   sin(3π/2—α)= —cosα   cos(3π/2—α)= —sinα   tan(3π/2—α)= cotα   cot(3π/2—α)= tanα   (以上k∈Z)   【拓展】高一数学三角函数的解题思路   第一:三角函数的重要性,即使你高一勉强过了,我希望你能在暑假好好学习三角函数知识。   第二:任意角三角函数。同角三角函数公式,切化弦公式以后一会常用到,恒等式公式整合了正余弦之间的关系。诱导公式就是一个BUG不用管它,能记住多少算多少,通用口诀:奇变偶不变符号看象限,奇偶的辨别是PI/2的整数倍的奇偶决定。   第三:三角函数的图像和性质。首先要明白三角函数线的知识,虽然考试不会涉及不过对于理解三角函数的图像的绘制提供了直观的理解。三角函数的草图一律用五点作图法。三角函数的性质包括最值性、单调性、奇偶性、周期性、对称性。三角函数的这五个性质必须好好把握。   第四:正弦函数。这里主要是从基本初等三角函数变换成初等三角函数。Asin(wt+y)+c。关于各个数值的含义你以后会在高中物理中的交流电理论或是简谐振动理论里学习。其中的初相位和圆频率之间的先后变换所产生的"关系必须弄清楚,这里经常会弄错还希望你能注意。   第五:余弦函数。和正弦函数一样,不过还有涉及到余弦的便会涉及到向量的数量积。其实在物理学的功的定义中便接触了。   第六:正切函数。注意它的间断点和周期与正余弦函数的差别。最重要的还是切化弦吧,还有就是直线斜率和正切的关系。   第七:余切,正割,余割,反三角函数,球面三角函数你接触一下吧。虽然高中基本不用对于你的学习还是有好处的。   第八:三角恒等变换。这里是三角函数的难点和重点。八个C级要求这里占了两个。再加上数量积一个,C级要求的三角函数就占了3个。主要思路:变角变名变次数。主要公式:两角和与差公式,二倍角公式及其推论(降幂扩角,升幂缩角),辅助角公式。   第九:两角和与差公式。这个公式如果你不会用,那请好好学。总共六个公式。记住之间正负号和函数的位置。很好记忆的。   第十:二倍角公式。二倍角公式三个。余弦公式中比较复杂,以及由它推导出来的降幂公式升幂公式也是变换的重点。   第十一:辅助角公式。这个其实是两角和函数的逆运算。它的出现频率却不低于二倍角函数,故特引起重视。   第十二:其他变换公式。万能代换就是一个bug,由半角公式推导而来。积化和差和差化积高中应用不多,大学就很重要了,最基本的极限理论就得用到它。三角公式繁多还有其他不列举。   第十二:解三角形。两个公式。正弦定理,余弦定理。优美公式勾股定理不要遗忘哦。计算三角形的面积的方法应该要掌握至少七种吧。   第十二:三角函数的导数。记住三个公式就可以了。   第十三:三角函数的应用。物理问题一般使用正余弦函数居多。实际问题或者是几何问题一般是正切函数居多。   高一数学三角函数求导公式整理   (sinx)" = cosx   (cosx)" = - sinx   (tanx)"=1/(cosx)^2=(secx)^2=1+(tanx)^2   -(cotx)"=1/(sinx)^2=(cscx)^2=1+(cotx)^2   (secx)"=tanx·secx   (cscx)"=-cotx·cscx   (arcsinx)"=1/(1-x^2)^1/2   (arccosx)"=-1/(1-x^2)^1/2   (arctanx)"=1/(1+x^2)   (arccotx)"=-1/(1+x^2)   (arcsecx)"=1/(|x|(x^2-1)^1/2)   (arccscx)"=-1/(|x|(x^2-1)^1/2)   ④(sinhx)"=coshx   (coshx)"=sinhx   (tanhx)"=1/(coshx)^2=(sechx)^2   (coth)"=-1/(sinhx)^2=-(cschx)^2   (sechx)"=-tanhx·sechx   (cschx)"=-cothx·cschx   (arsinhx)"=1/(x^2+1)^1/2   (arcoshx)"=1/(x^2-1)^1/2   (artanhx)"=1/(x^2-1) (|x|<1)   (arcothx)"=1/(x^2-1) (|x|>1)   (arsechx)"=1/(x(1-x^2)^1/2)   (arcschx)"=1/(x(1+x^2)^1/2)
墨然殇2023-08-02 10:29:491

高中的三角函数重要公式有哪些?

倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2α sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα 3tanα-tan3α tan3α=—————— 1-3tan2α 三角函数的和差化积公式 三角函数的积化和差公式 α+β α-β sinα+sinβ=2sin—--·cos—-— 2 2 α+β α-β sinα-sinβ=2cos—--·sin—-— 2 2 α+β α-β cosα+cosβ=2cos—--·cos—-— 2 2 α+β α-β cosα-cosβ=-2sin—--·sin—-— 2 2 1 sinα ·cosβ=-[sin(α+β)+sin(α-β)] 2 1 cosα ·sinβ=-[sin(α+β)-sin(α-β)] 2 1 cosα ·cosβ=-[cos(α+β)+cos(α-β)] 2 1 sinα ·sinβ=- -[cos(α+β)-cos(α-β)] 2 化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
Jm-R2023-08-02 10:29:493
 首页 上一页  6 7 8 9 10 11 12 13 14 15 16  下一页  尾页