对数函数定义域为什么大于0
对数函数和指数函数是反函数。指数的值域是大于0,所以对数的定义域大于0。九万里风9 2023-07-28 11:00:593
log的定义域是什么 带你了解对数函数
1、log对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。 2、对数函数是6类基本初等函数之一。其中对数的定义: 如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。 3、一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。 其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。左迁2023-07-28 11:00:581
log函数的定义域是多少?
log函数的定义域是多少?log函数的定义域是所有正实数。再也不做站长了2023-07-28 11:00:582
指数函数,对数函数求定义域、值域的一般思路
(1)在已知函数的解析式的条件下,求函数的定义域,就是求使得解析式有意义的自变量的允许值范围。(2)指数函数和对数函数的底大于0而且不等于1,对数式的真数大于0等限制条件。(3)函数的值域取决于定义域和对应法则,不论采用什么方法求函数的值域均应考虑其定义域。(4)指数函数值域y>0底数a>0且a不等于1对数函数值域R底数a>0且a不等于1韦斯特兰2023-07-28 11:00:582
对数函数的定义域
就是 x 的范围.对数函数的定义域就是真数x的取值范围.具体的定义域的确定要根据具体情况确定.如:y = ln x,定义域:0 < x < +∞y = ln(x + 2),定义域:-2 < x < +∞y = ln(x^2 + 1),定义域:-∞ < x < +∞y = lg(-x),定义域:-∞ < x < 0y = lg(lgx),定义域:1 < x < +∞y = lglglgx,定义域:10 < x < +∞y = √(lgx),定义域:1 ≤ x < +∞y = lg|x|,定义域:x ≠ 0.x的范围是是定义域(domain),y的范围是值域(range).大鱼炖火锅2023-07-28 11:00:561
对数函数的定义域,值域是怎么求的
要知道对数函数的定义域范围,一般是真数>0真颛2023-07-28 11:00:553
请问对数函数的定义域是什么?
1、对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}2、值域:实数集R,显然对数函数无界;3、定点:对数函数的函数图像恒过定点(1,0);4、单调性:a>1时,在定义域上为单调增函数;5、0<a<1时,在定义域上为单调减函数;6、奇偶性:非奇非偶函数7、周期性:不是周期函数log函数产生历史16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数。德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent,有代表之意)。欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。hi投2023-07-28 11:00:541
对数函数定义域是?
对数函数的定义域是固定的,都是从0到正无穷,当x=1时,y值等于0。铁血嘟嘟2023-07-28 11:00:544
对数函数定义域是什么?
定义域是(0,+∞),即x>0。一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果a^x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数。一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。函数的由来:中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”所以“函数”是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组。苏州马小云2023-07-28 11:00:481
已知实数a满足0<a≤2,a≠1,设函数f(x)= x 3 - x 2 +ax.(1)当a=2时,求f(x)的极小值; (2)若函数g(x
解:(1)当a=2时,f′(x)=x 2 -3x+2=(x-1)(x-2), 列表如下: 所以,f(x)的极小值为f(2)= 。(2)f′(x)=x 2 -(a+1)x+a=(x-1)(x-a),g′(x)=3x 2 +2bx-(2b+4)+ = ,令p(x)=3x 2 +(2b+3)x-1,①当1<a≤2时,f(x)的极小值点x=a,则g(x)的极小值点也为x=a,所以,p(a)=0,即3a 2 +(2b+3)a-1=0,即b= ,此时,g(x)的极大值=g(1)=1+b-(2b+4)=-3-b=-3+ = ,由于1<a≤2,故 ≤ ×2- - = ;②当0<a<1时,f(x)的极小值点x=1,则g(x)的极小值点为x=1,由于p(x)=0有一正一负两实根,不妨设x 2 <0<x 1 ,所以0<x 1 <1,即p(1)=3+2b+3-1>0,故b>- ,此时g(x)的极大值点x=x 1 ,有 综上所述,g(x)的极大值小于等于 .铁血嘟嘟2023-07-28 10:45:461
已知实数a满足a>0且a≠1.命题P:函数y=loga(x+1)在(0,+∞)内单调递减;命题Q:曲线y=x2+(2a-3)x
先看命题P∵函数y=loga(x+1)在(0,+∞)内单调递减,a>0,a≠1,∴命题P为真时?0<a<1…(2分)再看命题Q当命题Q为真时,二次函数对应的一元二次方程根的判别式满足△=(2a-3)2-4>0?0<a<12或a>52…(4分)由“P∨Q”为真且“P∧Q”为假,知P、Q有且只有一个正确.…(6分)(1)当P正确且Q不正确?0<a<112≤a≤52?a∈[12,1)…(9分)(2)当P不正确且Q正确?a>10<a<12或a>52,?a∈(52,+∞)…(12分)综上所述,a取值范围是[12,1)∪(52,+∞)…(14分)余辉2023-07-28 10:45:131
请教等比数列,等差数列以及函数的计算公式?
一、 等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。 等差数列的通项公式为: an=a1+(n-1)d (1) 前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。 , 且任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式。 从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N*,且m+n=p+q,则有 am+an=ap+aq Sm-1=(2n-1)an,S2n+1=(2n+1)an+1 Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。 和=(首项+末项)*项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项 末项=2和÷项数-首项 项数=(末项-首项)/公差+1 等差数列的应用: 日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别 时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级。 若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q)。 若为等差数列,且有an=m,am=n.则a(m+n)=0。 等比数列: 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。 (1)等比数列的通项公式是:An=A1*q^(n-1) (2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q) 且任意两项am,an的关系为an=am·q^(n-m) (3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)若m,n,p,q∈N*,则有:ap·aq=am·an, 等比中项:aq·ap=2ar ar则为ap,aq等比中项。 记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。 性质: ①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. “G是a、b的等比中项”“G^2=ab(G≠0)”. 在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。 等比数列在生活中也是常常运用的。 如:银行有一种支付利息的方式---复利。 即把前一期的利息赫本金价在一起算作本金, 在计算下一期的利息,也就是人们通常说的利滚利。 按照复利计算本利和的公式:本利和=本金*(1+利率)存期 等差数列和公式 Sn=n(a1+an)/2=na1+n(n-1)/2 d 等比数列求和公式 q≠1时 Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q) q=1时Sn=na1 (a1为首项,an为第n项,d为公差,q 为等比)九万里风9 2023-07-28 10:38:221
二次函数 的部分图像如图所示,若关于x的一元二次方程 的一个解为 ,则另一个解 =
5. 试题分析:根据抛物线解析式得:对称轴方程为直线x=3,关于x的一元二次方程 的一个解为x 1 =1,则另一个解x 2 =5.凡尘2023-07-28 10:27:041
excel中details是什么函数
没有这个函数,是不是自定义的?左迁2023-07-26 14:51:324
《西方经济学》求思考题答案 3.名词解释(弹性、生产者剩余、生产函数、无差异曲线、平均收益、边际
全在经济学原理上bikbok2023-07-26 14:04:372
对函数y=lnsinx在区间[π/6,5π/6]上验证罗尔定理 谢
你还是问我什么时候有对象吧.Ntou1232023-07-26 13:24:132
函数y=|x|在区间[-1,1]上是否满足罗尔中值的条件?
不满足罗尔中值定理的前提条件。罗尔中值定理的前提条件:(1)、函数在闭区间上连续;(2)、函数在开区间内可导。y=|x|在[-1,1]上连续,满足前提条件(1)。y=|x|在x=0处不可导,不满足前提条件(2)。阿啵呲嘚2023-07-26 13:23:441
怎么验证一个函数是否满足罗尔中值定理的条件
罗尔中值定理: 如果函数f(x)满足以下条件: ①在闭区间[a,b]上连续, ②在(a,b)内可导, ③f(a)=f(b), 则至少存在一个ξ∈(a,b),使得f"(ξ)=0. 就更具定义来验证是否连续、可导. 连续就是在每个点的左右极限都等于函数值 可导就是在某点的邻域内有定义且左右导数都存在且相等Chen2023-07-26 13:23:431
函数x的绝对值,符不符合罗尔中值定理?
罗尔中值定理是微分学中一条重要的定理,是三大微分中值定理之一,描述如下:如果 R 上的函数 f(x) 满足以下条件:(1)在闭区间 [a,b] 上连续,(2)在开区间 (a,b) 内可导,(3)f(a)=f(b),则至少存在一个 ξ∈(a,b),使得 f"(ξ)=0。函数x的绝对值,不符合罗尔中值定理中第(2)条它在 x = 0 处不可导u投在线2023-07-26 13:23:411
验证函数是否满足罗尔中值定理?
罗尔中值定理是微分学中一条重要的定理,是三大微分中值定理之一,描述如下:如果 R 上的函数 f(x) 满足以下条件:(1)在闭区间 [a,b] 上连续,(2)在开区间 (a,b) 内可导,(3)f(a)=f(b),则至少存在一个 ξ∈(a,b),使得 f"(ξ)=0。函数x的绝对值,不符合罗尔中值定理中第(2)条它在 x = 0 处不可导水元素sl2023-07-26 13:20:471
怎么验证一个函数是否满足罗尔中值定理的条件
罗尔中值定理: 如果函数f(x)满足以下条件: ①在闭区间[a,b]上连续, ②在(a,b)内可导, ③f(a)=f(b), 则至少存在一个ξ∈(a,b),使得f"(ξ)=0. 就更具定义来验证是否连续、可导. 连续就是在每个点的左右极限都等于函数值 可导就是在某点的邻域内有定义且左右导数都存在且相等Jm-R2023-07-26 13:20:211
设圆半径r=1.5,圆柱高h=3,求圆周长、圆面积、圆球表面积、圆球体积和圆柱体积。用scanf函数输入数据,
北境漫步2023-07-26 13:07:398
什么是区间啊 函数上的区间 ?
你说的这个也就是求值域有好几种求法先说两种最基本的作差和图像法不管什么方法首先确定定义域然后再定义域的范围内看图像的根据函数图像来判断作差就是在定义域内取两个x然后将x带入函数用大的减去小的如果结果大于0那么就说明第一个x的函数值大于第二个x的函数值那么第一x又大于第二个x那么就是增函数也就是判断函数单调性然后在增函数这个区间内取最大值和最小值然后找出减函数的单调区间找出最大值最小值我说的好像是二次函数别的也都一样hi投2023-07-26 11:52:493
高中函数中的区间到底什么意思啊
区间是数集的一种表示形式北有云溪2023-07-26 11:52:194
函数区间的表示方法
函数区间:[a,b]——表示a≤x≤b(a,b]——表示a<x≤b[a,b)——表示a≤x<b(a,b)——表示a<x<b希望对您有帮助真颛2023-07-26 11:51:531
什么是区间啊 函数上的区间 ?
在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号.设a,bR,且a①满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];②满足不等式a③满足不等式ax这里的实数a和b叫做相应区间的端点.在数轴上,这些区间都可以用一条以a和b为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点左迁2023-07-26 11:51:511
函数区间的概念
在数学里,区间通常是指这样的一类实数集合:如果x和y是两个在集合里的数,那么,任何x和y之间的数也属于该集合。例如,由符合0 ≤ x ≤ 1的实数所构成的集合,便是一个区间,它包含了0、1,还有0和1之间的全体实数。其他例子包括:实数集,负实数组成的集合等。区间在积分理论中起着重要作用,因为它们作为最"简单"的实数集合,可以轻易地给它们定义"长度"、或者说"测度"。然后,"测度"的概念可以拓,引申出博雷尔测度,以及勒贝格测度。区间也是区间算术的核心概念。区间算术是一种数值分析方法,用于计算舍去误差。区间的概念还可以推广到任何全序集T的子集S,使得若x和y均属于S,且x<z<y,则z亦属于S。例如整数区间[-1...2]即是指{-1,0,1,2}这个集合。记号通用的区间记号中,圆括号表示“排除”,方括号表示“包括”。例如,区间(10, 20)表示所有在10和20之间的实数,但不包括10或20。另一方面,[10, 20]表示所有在10和20之间的实数,以及10和20。而当我们任意指一个区间时,一般以大写字母 I 记之。有的国家是用逗号来代表小数点,为免产生混淆,分隔两数的逗号要用分号来代替。[1] [2] 例如[1, 2.3]就要写成[1; 2,3]。否则,若只把小数点写成逗号,之前的例子就会变成 [1,2,3] 了。这时就不能知道究竟是 1.2 与 3 之间,还是 1 与 2.3 之间的区间了。在法国及其他一些欧洲国家,是用与 代替 与 。比如 写成 , 写成 。这种写法原先也包括在国际标准化组织编制的ISO 31-11内。ISO 31-11是一套有关物理科学及科技中所使用的数学符号的规范。在2009年,已由新制订的ISO 80000-2所取替,不再包括 与 的用法。[3]定义用集合的语言,我们定义各种区间为:注意 均是代表空集,单元素集合不能用区间表示,如集合{0}不能表示为[0]或[0,0]。而当a>b时,上述的四种记号一般都视为代表空集。区间不为空集时,a, b称为区间的端点。一般定义 b - a 为区间的长度。区间的中点则为 (a+b)/2。区间[a,b]有时也称为线段。(不为空集或单元素集的话)除了表示区间,圆括号和方括号也有其他用法,视乎语境而定。譬如也可表示集合论中的有序对丶解析几何中点的坐标,线性代数中向量的坐标,有时也用来表示一个复数,有时在数论中,用 表示整数 的最大公约数。 也偶尔用作表示有序对,尤其在计算机科学的范畴里。同样在数论里,用 表示整数 的最小公倍数。有部分作者以 来表示区间 在实数集里的补集,即是包含了小于或等于a的实数,以及大于或等于b的实数。LuckySXyd2023-07-26 11:50:421
什么是函数区间??????????
函数区间:区间是数集的一种表示形式,因此,区间的表示形式与集合的表示形式相同,实际上区间是指取值范围,例如:x的取值范围为:1<x<5,那么,(1,5)就是一个区间。区间分为:1、开区间:(x的上下限没有“=”号)例如:{x|a<x<b}=(a,b)2、闭区间:(x的上下限有“=”号)例如:{x|a≤x≤b}=[a,b] 3、半开半闭区间:(x的上限,或下限有一个“=”号)例如:{x|a<x≤b}=(a,b] 或 {x|a≤x<b}=[a,b) 有限区间 由数轴上的两点间的一切实数所组成的集合叫做“区间”;其中,这两个点叫做“区间端点”;不含端点的区间叫做“开区间”;含有两个端点的区间叫做“闭区间”;Chen2023-07-26 11:48:421
初中 方程 函数 几何 应用题 要答案打在后面不要在题里
题目都没有,我怎么回答?wpBeta2023-07-26 11:16:453
销售一种商品,进价为40元,当售价为60元时,每月销售100件,求函数关系式
W? 所指和物?利润?!解:设销售量为y,销售单价为x,总利润为wy=100+10*(60-x)=700-10x (40<=x<=60)w=(x-40)*y=(x-40)(700-10x) (40<=x<=60)阿啵呲嘚2023-07-26 11:08:401
为什么奇函数 f(0)一定等于0
如果奇函数的定义域里包括x=0,那么才有f(0)=0,例如题中告诉你奇函数定义域x属于R,因为它是关于原点对称的所以才有f(0)=0瑞瑞爱吃桃2023-07-26 11:01:338
函数f(x)的导数等于0的意义是什么?
表明该函数可能存在极值点。一阶导数等于0只是有极值的必要条件,不是充分条件,也就是说:有极值的地方,其切线的斜率一定为0;切线斜率为0的地方,不一定是极值点。例如,y = x^3, y"=3x^2,当x=0时,y"=0,但x=0并不是极值点。所以,在一阶导数等于0的地方,还必须计算二阶导数,才能作出充分的判断。CarieVinne 2023-07-26 11:01:271
为什么一个奇函数它的常数项必须为0?
因为f(-x)=-f(x)为奇函数的定义 若存在常数项 在计算-f(x)时 常数项则需要变号 然而f(-x)中的常数项不需要变号 等式f(-x)=-f(x)则不成立 所以奇函数的常数项必须为0康康map2023-07-26 11:00:573
函数的奇偶性概念
余辉2023-07-26 10:48:452
函数的奇偶性
第三个y=a的x次方加a的负x次方再减一除于二令f(x)=[a^x+a^(-x)-1]/2 f(x)=0.5[a^x+a^(-x)-1] f(-x)=0.5[a^(-x)+a^x-1] f(-x)=0.5[a^x+a^(-x)-1]即f(x)=f(-x)所以是偶函数。铁血嘟嘟2023-07-26 10:48:452
怎样区别函数的奇偶性?
一、函数的单调性根据定义解题:y=f(x)在其定义域内,当x1<x2时,若在某个区间f(x1)<f(x2),则为单调递增;若在某个区间f(x1)>f(x2),则为单调递减!所以解题时,按如下过程:1.先求定义域;2.设x1<x2均属于定义域,然后计算f(x2)-f(x1),最终结果化成几个含有如(x2-x1)等可以判别下负的因式的积;3.然后根据x1、x2的取值范围分别讨论判断几个因式的积是>0还是<0,从而确定:f(x2)<f(x1),单调减;还是:f(x2)>f(x1),单调增!4.综合结论!严格按照上述步骤解题轻车熟路!二、函数的奇偶性定义:对于任意x∈R,都有f(-x)=(-x)^2=x^2=f(x).这时我们称函数f(x)=x^2为偶函数;对于函数f(x)=x的定义域R内任意一个x,都有f(-x)=-f(x),这时我们称函数f(x)=x为奇函数。解题:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论!判断或证明函数是否具有奇偶性的根据是定义、变式。变式:奇:f(x)+f(-x)=0 f(x)*f(-x)=-f^2(x) f(x)/f(-x)=-1偶:f(x)-f(-x)=0 f(x)*f(-x)=f^2(x) f(x)/f(-x)=1此后故乡只2023-07-26 10:48:441
函数的奇偶性题目求解
f(-2)=-8a-2b-8=10-8a-2b=18f(2)=8a+2b-8=-(-8a-2b)-8=-26北营2023-07-26 10:48:202
怎么判断函数的奇偶性?
如图所示可桃可挑2023-07-26 10:48:203
如何判断函数的奇偶性?
如果f(-x)=-f(x),就是奇函数。如果f(-x)=f(x),就是偶函数。奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能代表其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。概述:偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数。定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴成轴对称图形。f(x)为奇函数《==》f(x)的图像关于原点对称点(x,y)→(-x,-y)。奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。偶函数在某一区间上单调递增,则在它的对称区间上单调递减。黑桃花2023-07-26 10:48:201
怎样判断函数的奇偶性
特别要说明的是函数的奇偶性只是单独对一个函数而言,而此题中的函数y=log3^xy=3^x是两个函数在其定义域内,只能说明是关于直线y=x对称,不能说成是奇偶性的。这两个函数都既不是奇函数也不是偶函数。一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)或f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。说明:①奇、偶性是函数的整体性质,对整个定义域而言②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)再也不做站长了2023-07-26 10:48:191
奇偶函数怎么判断
奇偶函数的判断方法如下:1、定义法判断。用定义来判断函数奇偶性,是主要方法。首先求出函数的定义域,观察验证是否关于原点对称。其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。2、用必要条件判断。具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不具有奇偶性。3、用对称性判断。若f(x)的图象关于原点对称,则f(x)是奇函数。若f(x)的图象关于y轴对称,则f(x)是偶函数。4、用函数运算判断。如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)u2022g(x)是偶函数。简单地,“奇+奇=奇,奇×奇=偶”。类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”。陶小凡2023-07-26 10:48:191
证明函数奇偶性的步骤
解析:1、先求出函数的定义域2、看定义域是否关于原点对称,,如果不是,函数就是非奇非偶函数3、如果f(-x)=f(x),那就是偶函数 如果f(-x)=-f(x),那就是奇函数有什么不明白的可以继续追问,望采纳!再也不做站长了2023-07-26 10:48:192
函数奇偶性的判断口诀
函数奇偶性的判断口诀是内偶则偶,内奇同外。验证奇偶性的前提是要求函数的定义域必须关于原点对称。在复合函数中,只要内层函数为偶函数,则该复合函数为偶函数;如果复合函数里面为奇函数,则需要看外面的那个函数的奇偶性;如果外面的那个函数为奇函数,则该复合函数为奇函数;如果外面的那个函数为偶函数,则该复合函数为偶函数。函数奇偶性的介绍奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能代表其奇偶性。奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。偶函数在某一区间上单调递增,则在它的对称区间上单调递减。偶函数的图象关于y轴成轴对称图形,奇函数图像关于原点对称。大鱼炖火锅2023-07-26 10:48:181
函数的奇偶性
奇偶性的判断,关键是要看f(-x)=多少。定义域是否关于原点对称。若a=0,则这个函数f(-x)=x^2-|x|+2=f(x),是偶函数。若a不等于0,则这个函数f(-x)不等于f(x),也不等于-f(x),是非奇非偶函数。gitcloud2023-07-26 10:47:531
函数的奇偶性?
f(x)=x^3+1f(-x)=-x^3 +1 ≠ -f(x)f(x) 不是奇函数再也不做站长了2023-07-26 10:47:523
"幂函数"的奇偶性判断
指数为偶数则为偶函数.指数为奇数则为奇函数.指数为分数,先将其分数化为最简分式.当分子为偶数时,则幂函数为偶函数.当分子为奇数时,分两种情况:1.分母为奇数时,幂函数奇函数;2.分母为偶数时,幂函数为非奇非偶函数无尘剑 2023-07-26 10:47:512
函数的奇偶性怎样求啊?
求函数奇偶性一般步骤:.先判断函数的定义域是否关于原点对称;不关于原点对称则非奇非偶,关于原点对称则判断f(-x)=f(x)偶函数f(-x)=-f(x)奇函数ardim2023-07-26 10:47:502
怎么判断一个函数是奇函数还是偶函数?
判断函数的奇偶性方法介绍如下:1、根据奇函数和偶函数的定义进行判断满足f(-x) = f(x),则为偶函数;满足f(-x) = -f(x),则为奇函数。2、根据函数的图像进行判断函数的图像关于y轴轴对称(函数的定义域一定是关于原点对称的),则为偶函数;函数的图像关于原点中心对称(函数的定义域一定是关于原点对称的),则为奇函数。奇偶函数在对称区间上的单调性、值域特点1、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。2、奇函数在对称区间上的值域关于原点对称,偶函数在对称区间上的值域相同。特别的,如果一个奇函数的定义域中含有0,则必有f(0)=0。善士六合2023-07-26 10:47:501
如何判别复合函数的奇偶性?
函数的奇偶性口诀如下:奇函数+奇函数=奇函数偶函数+偶函数=偶函数奇函数*奇函数=偶函数偶函数*偶函数=偶函数奇函数*偶函数=奇函数复合函数的奇偶性:内偶则偶,内奇同外;复合函数的单调性:同增异减。奇偶性的运算:两个偶函数相加所得的和为偶函数,两个奇函数相加所得的和为奇函数,两个偶函数相乘所得的积为偶函数,两个奇函数相乘所得的积为偶函数。一个偶函数与一个奇函数相乘所得的积为奇函数,几个函数复合,只要有一个是偶函数,结果是偶函数;若无偶函数则是奇函数。韦斯特兰2023-07-26 10:47:501
怎么判断一个函数的奇偶性?
判定奇偶性四法:(1)定义法用定义来判断函数奇偶性,是主要方法。首先求出函数的定义域,观察验证是否关于原点对称。其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。(2)用必要条件具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不具有奇偶性。(3)用对称性若f(x)的图象关于原点对称,则f(x)是奇函数。若f(x)的图象关于y轴对称,则f(x)是偶函数。(4)用函数运算如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)u2022g(x)是偶函数。简单地,“奇+奇=奇,奇×奇=偶”。类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”。kikcik2023-07-26 10:47:141
函数奇偶性的特征
1.对于奇函数f(x)有(1)函数图像关于原点对称;(2)在关于原点对称的区间上单调性相同;(3)若在x=0处有定义,则有f(0)=0;(4)f(-x)=-f(x)。2.对于偶函数f(x)有(1)函数图像关于y轴对称;(2)在关于原点对称的区间上单调性相反;(3)f(-x)=f(x)=f(|x|)=f(-|x|)=f(|-x|)=f(-|-x|)。3.对于同一定义域上的两个奇(偶)函数有(1)两个奇函数的和或差为奇函数;(2)两个偶函数的和或差为偶函数;(3)两个奇函数的积为偶函数;(4)两个偶函数的积为偶函数;(5)一个奇函数和一个偶函数的积为奇函数。善士六合2023-07-26 10:47:132
举例 函数的奇偶性
奇函数:F(x)=x^3 奇函数以原点为对称点,就是(0,0)这个坐标 偶函数:F(x)=x^2 偶函数以Y轴为对称线左右对称.北境漫步2023-07-26 10:47:121
奇偶性函数的判断口诀
函数奇偶性的判断口诀是内偶则偶,内奇同外。验证奇偶性的前提是要求函数的定义域必须关于原点对称。在复合函数中,只要内层函数为偶函数,则该复合函数为偶函数;如果复合函数里面为奇函数,则需要看外面的那个函数的奇偶性;如果外面的那个函数为奇函数,则该复合函数为奇函数;如果外面的那个函数为偶函数,则该复合函数为偶函数。函数奇偶性的介绍奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能代表其奇偶性。奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。偶函数在某一区间上单调递增,则在它的对称区间上单调递减。偶函数的图象关于y轴成轴对称图形,奇函数图像关于原点对称。苏萦2023-07-26 10:47:111
函数的奇偶性是什么?
奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数);偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能倒推其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。北有云溪2023-07-26 10:47:113
如何判断函数的奇偶性?
奇偶性的判定(1)定义法用定义来判断函数奇偶性,是主要方法 . 首先求出函数的定义域,观察验证是否关于原点对称. 其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性.(2)用必要条件.具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件.(3)用对称性.若f(x)的图象关于原点对称,则 f(x)是奇函数.若f(x)的图象关于y轴对称,则 f(x)是偶函数.(4)用函数运算.如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)u2022g(x)是偶函数. 简单地,“奇+奇=奇,奇×奇=偶”.类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”.Jm-R2023-07-26 10:47:101
函数的奇偶性 奇偶函数
奇偶函数图像的特征: 定理 奇函数的图像关于原点成中心对称图形,偶函数的图像关于y轴的轴对称图形。 f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y)→(-x,-y) f(x)为偶函数<=>f(x)的图像关于Y轴对称 点(x,y)→(-x,y) 奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。 偶函数在某一区间上单调递增,则在它的对称区间上单调递减。 还满足定义:对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 回答者: kinggenius - 十级 2010-2-16 14:48 1.定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)或f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义 2.奇偶函数图像的特征: 定理 奇函数的图像关于原点成中心对称图形,偶函数的图象关于y轴对称。 f(x)为奇函数《==》f(x)的图像关于原点对称 点(x,y)→(-x,-y) 奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。 偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。 3. 奇偶函数运算 (1) . 两个偶函数相加所得的和为偶函数. (2) . 两个奇函数相加所得的和为奇函数. (3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数. (4) . 两个偶函数相乘所得的积为偶函数. (5) . 两个奇函数相乘所得的积为偶函数. (6) . 一个偶函数与一个奇函数相乘所得的积为奇函数. 4.误区警示 判断函数奇偶性时首先要看其定义域是否关于原点对称。一个函数是奇函数或偶函数,其定义域必须关于原点对称。 偶函数的和差积商是偶函数,奇函数的和差是奇函数,积商是偶函数 回答者: 22010419920101 - 五级 2010-2-16 14:49wpBeta2023-07-26 10:46:474
函数奇偶性怎么判断??
9大常见奇函数如图:奇函数的性质1、两个奇函数相加所得的和或相减所得的差为奇函数。2、一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。3、 两个奇函数相乘所得的积或相除所得的商为偶函数。4、一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。偶函数的性质1、如果知道函数表达式,对于函数f(x)的定义域内任意一个x,都满足 f(x)=f(-x) 如y=x*x。2、如果知道图像,偶函数图像关于y轴(直线x=0)对称。3、定义域D关于原点对称是这个函数成为偶函数的必要不充分条件。九万里风9 2023-07-26 10:46:461
函数的奇偶性用口诀怎么表示的。
“函数的奇偶性口诀如下: 奇函数+奇函数=奇函数 偶函数+偶函数=偶函数 奇函数*奇函数=偶函数 偶函数*偶函数=偶函数 奇函数*偶函数=奇函数 复合函数的奇偶性:内偶则偶,内奇同外; 复合函数的单调性:同增异减。bikbok2023-07-26 10:46:462
如何用微分方法判断函数的奇偶性
通过导数来计算原函数的奇偶性,需要验证导函数的奇偶性(导函数可以为非0的常数)。因为原函数与导函数的周期始终不变,原函数与导函数的奇偶性互换。函数的奇偶性判断,对于函数f(x)⑴如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。⑵如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。⑶如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。⑷如果对于函数定义域内的任意一个x,f(-x)=-f(x)或f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。例如:求f(x)=x^2+1(x∈R)的奇偶性求导得:f"(x)=2x,f"(x)=2x是奇函数,所以原函数f(x)=x^2+1为偶函数。苏州马小云2023-07-26 10:46:461
复合函数奇偶性口诀
复合函数奇偶性口诀这个还真不懂看看别人怎么说吧CarieVinne 2023-07-26 10:46:453
怎样判断某个函数的奇偶性?
判断函数的奇偶性方法介绍如下:1、根据奇函数和偶函数的定义进行判断满足f(-x) = f(x),则为偶函数;满足f(-x) = -f(x),则为奇函数。2、根据函数的图像进行判断函数的图像关于y轴轴对称(函数的定义域一定是关于原点对称的),则为偶函数;函数的图像关于原点中心对称(函数的定义域一定是关于原点对称的),则为奇函数。奇偶函数在对称区间上的单调性、值域特点1、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。2、奇函数在对称区间上的值域关于原点对称,偶函数在对称区间上的值域相同。特别的,如果一个奇函数的定义域中含有0,则必有f(0)=0。Chen2023-07-26 10:46:451
如何讨论函数奇偶性
第一看他的对称 是什么 第二看他是-f(x)=f(-x) 还是f(x)=-f(x)西柚不是西游2023-07-26 10:46:215
什么是函数的奇偶性
奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数);偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能代表其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。一般地,对于函数⑴如果对于函数定义域内的任意一个x,都有或那么函数就叫做偶函数。关于y轴对称,。⑵如果对于函数定义域内的任意一个x,都有或,那么函数就叫做奇函数。关于原点对称,。⑶如果对于函数定义域内的任意一个x,都有和,(x∈R,且定义域关于原点对称.)那么函数既是奇函数又是偶函数,称为既奇又偶函数。⑷如果对于函数定义域内的存在一个a,使得,存在一个b,使得,那么函数既不是奇函数又不是偶函数,称为非奇非偶函数。定义域互为相反数,定义域必须关于原点对称特殊的,既是奇函数,又是偶函数。说明:①奇、偶性是函数的整体性质,对整个定义域而言。②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与比较得出结论)③判断或证明函数是否具有奇偶性的根据是定义。④如果一个奇函数在x=0处有意义,则这个函数在x=0处的函数值一定为0。并且关于原点对称。⑤如果函数定义域不是关于原点对称或不符合奇函数、偶函数的条件则叫做非奇非偶函数。例如(]或[)(定义域不关于原点对称)⑥如果函数既符合奇函数又符合偶函数,则叫做既奇又偶函数。例如注:任意常函数(定义域关于原点对称)均为偶函数,只有是既奇又偶函数偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数。定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴成轴对称图形。f(x)为奇函数《==》f(x)的图像关于原点对称点(x,y)→(-x,-y)奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。偶函数在某一区间上单调递增,则在它的对称区间上单调递减。1、大部分偶函数没有反函数(因为大部分偶函数在整个定义域内非单调函数)。2、偶函数在定义域内关于y轴对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同。3、奇±奇=奇(可能为既奇又偶函数) 偶±偶=偶(可能为既奇又偶函数) 奇X奇=偶 偶X偶=偶 奇X偶=奇(两函数定义域要关于原点对称).4、对于F(x)=f[g(x)]:若g(x)是偶函数且f(x)是偶函数,则F[x]是偶函数。若g(x) 是偶函数且f(x)是奇函数,则F[x]是偶函数。若g(x)是奇函数且f(x)是奇函数,则F[x]是奇函数。若g(x)是奇函数且f(x)是偶函数,则F[x]是偶函数。5、奇函数与偶函数的定义域必须关于原点对称。小菜G的建站之路2023-07-26 10:46:201
如何判断一个函数的奇偶性?一共有几种方法?
一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)或f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。说明:①奇、偶性是函数的整体性质,对整个定义域而言②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)kikcik2023-07-26 10:46:202
请问函数的奇偶性怎样判断?
一、y=sinx1、奇偶性:奇函数2、图像性质:中心对称:关于点(kπ,0)对称轴对称:关于x=kπ+π/2对称3、单调性:增区间:x∈[2kπ-π/2,2kπ+π/2]减区间:x∈[2kπ+π/2,2kπ+3π/2]二、y=cosx1、奇偶性:偶函数2、图像性质:中心对称:关于点(kπ+π/2,0)对称轴对称:关于x=kπ对称3、单调性:增区间:x∈[2kπ-π,2kπ]减区间:x∈[2kπ,2kπ+π]三、y=tanx1、奇偶性:奇函数2、图像性质:中心对称:关于点(kπ/2,0)对称3、单调性:增区间:x∈(kπ-π/2,kπ+π/2)没有减区间四、y=cotx1、奇偶性:奇函数2、图像性质:中心对称:关于点(kπ/2,0)对称3、单调性:减函数:x∈(kπ,kπ+π)没有增区间大鱼炖火锅2023-07-26 10:46:201
函数的奇偶性口诀是什么?
内偶则偶,内奇同外。函数奇偶性的判断口诀:内偶则偶,内奇同外。验证奇偶性的前提:要求函数的定义域必须关于原点对称。判定奇偶性四法:(1)定义法。用定义来判断函数奇偶性,是主要方法。首先求出函数的定义域,观察验证是否关于原点对称。其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。(2)用必要条件。具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不具有奇偶性。(3)用对称性。若f(x)的图象关于原点对称,则f(x)是奇函数。若f(x)的图象关于y轴对称,则f(x)是偶函数。(4)用函数运算。如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)u2022g(x)是偶函数。简单地,“奇+奇=奇,奇×奇=偶”。类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”。人类地板流精华2023-07-26 10:46:201
关于奇偶函数的复合函数的奇偶性
奇偶水元素sl2023-07-26 10:46:198
怎样判断,函数的奇偶性,函数在一个区间内
奇偶性 1.定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义 2.奇偶函数图像的特征: 定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。 f(x)为奇函数《==》f(x)的图像关于原点对称 点(x,y)→(-x,-y) 奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。 偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。 单调函数 一般地,设函数f(x)的定义域为I: 如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)< f(x2).那么就说f(x)在这个区间上是增函数。 如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1f(x2).那么就是f(x)在这个区间上是减函数。 如果函数y=f(x)在某个区间是增函数或减函数。那么就说函说y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间,在单调区间上增函数的图像是上升的,减函数的图像是下降的。 注意:(1)函数的单调性也叫函数的增减性; (2)函数的单调性是对某个区间而言的,它是一个局部概念; (3)判定函数在某个区间上的单调性的方法步骤有两种主要方法: 1)定义法 a.设x1、x2∈给定区间,且x1<x2. b.计算f(x1)- f(x2)至最简。 c.判断上述差的符号。 2)求导法 利用导数公式进行求导,然后判断导函数和0的大小关系,从而判断增减性,导函数值大于0,说明是增函数,导函数值小于0,说明是减函数,前提是原函数必须是连续的。人类地板流精华2023-07-26 10:46:191
函数奇偶性是必修几第几章
“函数的奇偶性”在高中必修一的第一章。奇偶性是函数的基本性质之一。一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数。一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数。判断单调:偶函数在对称区间上的单调性是相反的。奇函数在整个定义域上的单调性一致。运算:(1)两个偶函数相加所得的和为偶函数。(2)两个奇函数相加所得的和为奇函数。(3)两个偶函数相乘所得的积为偶函数。(4)两个奇函数相乘所得的积为偶函数。以上内容参考:百度百科-奇偶性北有云溪2023-07-26 10:46:181
函数的奇偶性口诀是什么?
内偶则偶,内奇同外。奇函数,如果定义域含0则有f(0)=0这个最常用。还有就是奇函数+奇函数=奇函数。偶函数+偶函数=偶函数。奇函数*奇函数=偶函数。偶函数*偶函数=偶函数。奇函数*偶函数=奇函数。单调性,定义最常见,还有就是:增+增=增。减+减=减。增-减=增。减-增=减。相关内容解释:奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能倒导其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数。定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴成轴对称图形。f(x)为奇函数《==》f(x)的图像关于原点对称点(x,y)→(-x,-y)。奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。偶函数在某一区间上单调递增,则在它的对称区间上单调递减。墨然殇2023-07-26 10:45:531
如何判断函数图像的奇偶性?
判断函数的奇偶性方法介绍如下:1、根据奇函数和偶函数的定义进行判断满足f(-x) = f(x),则为偶函数;满足f(-x) = -f(x),则为奇函数。2、根据函数的图像进行判断函数的图像关于y轴轴对称(函数的定义域一定是关于原点对称的),则为偶函数;函数的图像关于原点中心对称(函数的定义域一定是关于原点对称的),则为奇函数。奇偶函数在对称区间上的单调性、值域特点1、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。2、奇函数在对称区间上的值域关于原点对称,偶函数在对称区间上的值域相同。特别的,如果一个奇函数的定义域中含有0,则必有f(0)=0。左迁2023-07-26 10:45:531
如何判断一个函数的奇偶性?
先看定义域是否关于原点对称如果不是关于原点对称,则函数没有奇偶性若定义域关于原点对称则f(-x)=f(x),f(x)是偶函数f(-x)=-f(x),f(x)是奇函数具体方法:1、定义法①定义域是否关于原点对称,对称是奇偶函数的前提条件②f(-x)是否等于±f(x).2、图象法①图象关于原点中心对称是奇函数②图象关于y轴对称是偶函数.3、性质法①两个奇函数的和仍是奇函数②两个偶函数的和仍是偶函数③两个奇函数的积是偶函数④两个偶函数的积是偶函数⑤一个奇函数和一个偶函数的积是奇函数.扩展资料:奇偶性是函数的基本性质之一。一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数。一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数。一、运算1、 两个偶函数相加所得的和为偶函数。2、两个奇函数相加所得的和为奇函数。3、两个偶函数相乘所得的积为偶函数。4、 两个奇函数相乘所得的积为偶函数。5、一个偶函数与一个奇函数相乘所得的积为奇函数。6、几个函数复合,只要有一个是偶函数,结果是偶函数;若无偶函数则是奇函数。7、偶函数的和差积商是偶函数。8、奇函数的和差是奇函数。9、奇函数的偶数个积商是偶函数。10、奇函数的奇数个积商是奇函数。11、奇函数的绝对值为偶函数。12、偶函数的绝对值为偶函数。二、判断单调偶函数在对称区间上的单调性是相反的。奇函数在整个定义域上的单调性一致。三、奇偶数一个数满足xmod2=1,那么它是奇数;一个数满足xmod2=0,那么它是偶数。注:mod 是余数的意思。 例如:m=xmod2 ,x=7的话,m=1四、注意判断函数奇偶性时首先要看其定义域是否关于原点对称。一个函数是奇函数或偶函数,其定义域必须关于原点对称。参考资料:百度百科-奇偶性gitcloud2023-07-26 10:45:521
怎么求函数的奇偶性。
判定奇偶性四法:(1)定义法用定义来判断函数奇偶性,是主要方法。首先求出函数的定义域,观察验证是否关于原点对称。其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。(2)用必要条件具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不具有奇偶性。(3)用对称性若f(x)的图象关于原点对称,则f(x)是奇函数。若f(x)的图象关于y轴对称,则f(x)是偶函数。(4)用函数运算如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)u2022g(x)是偶函数。简单地,“奇+奇=奇,奇×奇=偶”。类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”。陶小凡2023-07-26 10:45:521
如何判断一个函数的奇偶性?
函数的奇偶性口诀如下:奇函数+奇函数=奇函数偶函数+偶函数=偶函数奇函数*奇函数=偶函数偶函数*偶函数=偶函数奇函数*偶函数=奇函数复合函数的奇偶性:内偶则偶,内奇同外;复合函数的单调性:同增异减。奇偶性的运算:两个偶函数相加所得的和为偶函数,两个奇函数相加所得的和为奇函数,两个偶函数相乘所得的积为偶函数,两个奇函数相乘所得的积为偶函数。一个偶函数与一个奇函数相乘所得的积为奇函数,几个函数复合,只要有一个是偶函数,结果是偶函数;若无偶函数则是奇函数。苏萦2023-07-26 10:45:522
函数的奇偶性运算公式
⑴两个偶函数相加所得的和为偶函数。⑵两个奇函数相加所得的和为奇函数。⑶两个偶函数相乘所得的积为偶函数。⑷两个奇函数相乘所得的积为偶函数。⑸一个偶函数与一个奇函数相乘所得的积为奇函数。⑹几个函数复合,只要有一个是偶函数,结果是偶函数;若无偶函数则是奇函数。⑺偶函数的和差积商是偶函数。⑻奇函数的和差是奇函数。⑼奇函数的偶数个积商是偶函数。⑽奇函数的奇数个积商是奇函数。⑾奇函数的绝对值为偶函数。⑿偶函数的绝对值为偶函数。Chen2023-07-26 10:45:504
怎么判断函数的奇偶性?
f(-x)=f(x) → 偶函数f(-x)=-f(x) → 奇函数真颛2023-07-26 10:45:2010
怎样判断一个函数的奇偶性
。。。。这是个概念问题。首先奇偶性是对于函数整体来说的,不是哪个局部的特性;其次重点来了: 奇函数:f(x)=-f(-x)∴①若定义域包括原点,则必有f(0)=0 ②若定义域不包括原点,就。。就没什么特别 偶函数:f(x)=f(-x)简而言之 ,奇函数图像关于原点对称,而偶函数图像关于y轴对称。所以由概念可知,判定奇偶性,先看定义域必须得关于0对称,如(2,8)或(7,7]就是非奇非偶然后再由以上奇偶函数性质判定即可。把x,-x分别代入同一个函数,看符合哪个性质(取特值更快)。 综上,一眼B,大概就是靠概念的题。(别说你A.C函数不认识。。。)小菜G的建站之路2023-07-26 10:45:203
函数的奇偶性的定义是什么?
函数的奇偶性口诀如下:奇函数+奇函数=奇函数偶函数+偶函数=偶函数奇函数*奇函数=偶函数偶函数*偶函数=偶函数奇函数*偶函数=奇函数复合函数的奇偶性:内偶则偶,内奇同外;复合函数的单调性:同增异减。奇偶性的运算:两个偶函数相加所得的和为偶函数,两个奇函数相加所得的和为奇函数,两个偶函数相乘所得的积为偶函数,两个奇函数相乘所得的积为偶函数。一个偶函数与一个奇函数相乘所得的积为奇函数,几个函数复合,只要有一个是偶函数,结果是偶函数;若无偶函数则是奇函数。苏萦2023-07-26 10:45:191
如何证明函数的奇偶性
Y是否等于负y小白2023-07-26 10:45:196
函数的奇偶性
复合函数中只要有偶函数则复合函数为偶函数,如一奇一偶为偶;若只有奇函数则复合函数为奇函数,无论奇数个还是偶数个,如两奇仍为奇。1、f(x)*g(x)*h(x)这种相乘的复合函数。奇函数的个数是偶数,复合函数就是偶函数。奇函数的个数是奇数,复合函数就是奇函数。2、f(g(h(x)))这种多层的复合函数。函数中的有偶数,复合函数就是偶函数。函数中的没有偶数,奇函数的个数是偶数,复合函数就是偶函数。函数中的没有偶数,奇函数的个数是奇数,复合函数就是奇函数。扩展资料原理F(x)=f(u),u=g(x),复合函数F(x)=f(g(x))。如果内层函数u=g(x)是偶函数,g(-x)=g(x),F(-x)=f(g(-x)) =f(g(x))= F(x),则复合函数F(x)是偶函数。所以内偶则偶。同理,内奇同外。它的意思是:如果复合函数里面为偶函数,则这个复合函数整体为偶函数;如果里面为奇函数,则需要看外面的那个函数的奇偶性。ardim2023-07-26 10:45:181